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Abstract: In the context of large displacement and rotations, this work presents a co-rotational finite element 
formulation of an adaptive sandwich beam composed of a viscoelastic core constrained by laminated elas-
tic/piezoelectric faces. A classical sandwich theory is used for the face/core/face set, considering transverse 
shear deformations for the core. The four-parameter fractional Zener model is used in order to take the vis-
coelastic behavior of the middle layer into account, while a classical linear piezoelectric constitutive law is 
used for modeling the piezoelectric material. The finite element formulation allows large displacements and 
rotations with a local small strain measure. Moreover, local electrical degrees-of-freedom are used in order 
to reproduce sensor configurations. Another particularity consists of approximating the fractional derivative 
operator by the Grünwald-Letnikov scheme, where the history of the internal memory force is used to take 
into account the damping effect.

Keywords: Piezoelectric patches, viscoelasticity, fractional derivatives, sandwich beam, co-rotational formulation, 
non-linear dynamics

1. INTRODUCTION

The interest directed to investigate flexible mechanisms undergoing large overall motions in 
non-linear dynamics has been increased in several industrial areas. Special attention is given
for spatial (see, for example, Jonker (1989)� Simo and Vu-Quoc (1988)) and planar beams 
(using, for example, convected coordinates (Belytschko and Hsieh, 1973), inertial frame ap-
proach (Simo and Vu-Quoc, 1986) or corotational formulation (Hsiao and Jang, 1991)). The
latter has been widely investigated. Iura and Atluri (1995) developed a finite element for-
mulation of Timoshenko beams undergoing finite rotations with small strains using inertial
and rotational frames. Large rotations were also accounted for in the work developed by 
Meek and Liu (1995). They introduced rotary inertia effects using finite deformations for a
Timoshenko beam. Further, an Euler–Bernoulli beam undergoing finite displacements and
rotations was analyzed by Chen and Huang (2001). They used a slider-crank mechanism to 
demonstrate that high-speed applications require a non-linear strain measure.
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None of the above-mentioned studies focus on vibration control aspects, which is a re-
search topic of great interest. Three main classes of vibration control can be mentioned: 
passive, active and passive/active damping treatments. In the context of passive techniques, 
viscoelastic constrained layer damping treatments are especially widespread. For this pur-
pose, finite elements formulations of sandwich beams have been developed, for example, for 
rotating beams (Lin and Chen, 2003) or high-speed flexible linkage mechanisms (Zhang and 
Erdman, 2001). Concerning active control using integrated/collocated piezoelectric bodies, 
a total Lagrangian formulation for Euler–Bernoulli beams has been developed by Preiswerk 
and Venkatesh (1994). They used a control law based on the placement of closed-loop poles, 
showing several examples of planar flexible-linkage mechanisms. In the case of more com-
plex structures, an optimal control strategy was considered to control vibrations in spatial 
frames (Shi and Atluri, 1990) or shells (Tan and Vu-Quoc, 2005). Tan and Vu-Quoc (2005) 
presents a reduced-order model strategy, which is similar to the one proposed in this investi-
gation.

Finally, active control can be combined with a passive treatment wherein a very popular 
hybrid technique is the so-called active constrained layer damping treatment. In this kind of 
treatment, the piezoelectric layer works as a constraining layer in order to enhance the shear 
deformation of the viscoelastic damping layer (Baz, 1996� Baz and Ro, 1996). In the context 
of non-linear dynamics, hybrid active/passive strategies are carried out using an active con-
strained layer damping treatment. Baz and Ro (2001) proposed a finite element formulation 
validated through experimental results for rotating beams wherein a proportional derivative 
control law is used in conjunction with a complex shear modulus model for the viscoelastic 
damping. More recently, Fung and Yau (2004) enhanced this formulation by introducing cen-
trifugal stiffening effects due to the rotation of the beam as well as potential energies of the 
viscoelastic layer due to extension and bending. Also, the viscoelastic damping is described 
by a complex modulus technique. Obviously, more sophisticated viscoelastic models can be 
used as for example, the Golla–Hughes–McTavish (GHM) model (Sun and Tong, 2004).

In this work, a co-rotational finite element formulation of an adaptive sandwich beam 
composed of a viscoelastic core constrained by laminated elastic/piezoelectric faces is pre-
sented. The main motivation for developing this co-rotational formulation is to propose 
a general framework in which vibrations and non-linear kinematic effects are investigated 
together. For example, the envisioned applications are related to the vibration control of 
structures after an impact excitation or coupled with a fluid environment. This kind of ap-
proach can easily be enriched to take large structural deflections or centrifugal stiffening 
into account, although in the present work these aspects are neglected. In this investigation, 
a classical sandwich theory is used for the face/core/face set, considering transverse shear 
deformations for the core. A fractional derivative model, i.e. the four-parameter fractional 
Zener model (Bagley and Torvik, 1983) is used in order to take the linear viscoelastic behav-
ior of the middle layer into account, while a classical linear piezoelectric constitutive law is 
used for modeling the piezoelectric material. The authors believe that there are no reports 
in the literature using this rheological model to describe viscoelastic damping in non-linear 
dynamics. The finite element formulation allows large displacements and rotations with a 
local small strain measure. It should be emphasized that centrifugal stiffening effects are 
not taken into account in this investigation since only low speed rotations are considered. 
Obviously, this topic might be analyzed in future works. Concerning the implementation 
of the constitutive laws into the co-rotational formulation, two particular features are high-
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Figure 1. Kinematics of the sandwich beam.

lighted. The first one is associated with the electromechanical coupling arising from the
piezoelectric material. Local electrical degrees-of-freedom are used in order to reproduce
sensor configurations. The second feature is an approximation of the fractional derivative op-
erator using the Grünwald–Letnikov scheme, where the history of the internal memory force
is used to take account of the damping effect. The classical implicit Newmark predictor-
corrector time integration scheme is used to solve the dynamic problem in conjunction with
the Newton–Raphson iterative procedure used to solve the non-linear problem. The latter
requires the calculation of an internal force vector and a tangent stiffness matrix at each it-
eration in the time incrementation. The internal force vector is split up such that the term
arising from the viscoelastic behavior of the core is shifted to the right-hand side of the equa-
tion of motion in order to facilitate the calculations (Galucio et al., 2004). Finally, some
examples are presented and analyzed.

2. KINEMATICS

Consider the sandwich beam shown in Figure 1. Euler–Bernoulli hypotheses are assumed
for the laminated faces (top and bottom layers), whereas Timoshenko ones are assumed for
the core (middle layer). Additionally, all layers are supposed to be perfectly bonded and in
plane stress state. The mechanical displacement field for each layer is written as:
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uxi�x� z� t� � ui�x� t�� �z � zi�� i�x� t� (1a)

uzi�x� z� t� � ��x� t� (1b)

where the subscript i � a� b� c stands for upper, lower and middle layers, respectively,
uxi and uzi are the axial and transverse displacements of each layer, ui and � i are the axial
displacement of the center line and the cross-sectional rotation of each layer and � is the
transverse displacement (according to Figure 1 in global coordinate system). Furthermore,
in this work, only small strains are considered.

Let us introduce the mean and relative axial displacements given by �u � �ua � ub��2
and �u � ua � ub. Euler–Bernoulli hypotheses for the faces lead to � k � � � for k � a� b

with ���� � ������x . As all layers are supposed to be perfectly bonded, the displacement
continuity conditions at interface layers can be written as uxa � uxc at z � hc�2 and uxb �

uxc at z � �hc�2. Therefore, axial displacements of the centerlines and rotations of each
layer can be written in terms of � � and the above defined variables �u and �u as:

ua � �u �
�u

2
�a � �

� (2a)

ub � �u �
�u

2
�b � �

� (2b)

uc � �u �
�h

4
� � � c � �

�u � �h� �

hc

(2c)

where �h and �h are defined by �h � �ha � hb��2 and �h � ha � hb.
From Equations (1) and (2), and taking the hypothesis of plane stress state into account,

we can write the axial strain of the i th-layer �1i and the shear strain of the core �5c as follows
(i � a� b� c):

�1i � 	i � z
 i � �5c � � c (3)

where 	i is the membrane strain, 
 i the curvature and � c the shear strain of the core. In terms
of the above-defined variables, we have:

	a � �u
� �
�u�

2
� 	b � �u

� �
�u�

2

a � 
b � ��

��

	c � �u
� �
�h

4
� �� 	 
c �

�u� � �h� ��

hc

� c �
�u

hc

�

�
1�
�h

hc

�
� �� (4)

Without covering face layers (i.e. ha � hb � 0), the previous generalized strain quanti-
ties of the core correspond to those of a single Timoshenko beam.
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3. CONSTITUTIVE EQUATIONS

3.1. Laminated Piezoelectric Faces

The piezoelectric laminated faces are poled in the thickness direction with an electric field 
applied parallel to this polarization. For the beam case studied in this work, the three-
dimensional constitutive equations can be reduced to (with k � a� b):


 1k � �c
k
11�1k � �e

k
31 E3k

D3k � �e
k
31�1k � �d

k
33 E3k (5)

where 
 1, �1 are the axial stress and strain and D3, E3 the transverse electric displacement
and field. Modified elastic, piezoelectric and dielectric constants are given by:

�ck
11 � ck

11 �
�ck

13�
2

ck
33

� �ek
31 � ek

31 �
ck

13ek
33

ck
33

� �dk
33 � dk

33 �
�ek

33�
2

ck
33

�

For elastic faces, �ek
31 � 0 and �dk

33 � dk
33. Furthermore, if the material is isotropic

�ck
11 � E��1� �2�, where E and � are the elastic modulus and the Poisson’s ratio.

Finally, throughout this work, we assume that the electric potential is linear in the thick-
ness of each piezoelectric layer. This assumption implies a constant transverse electric
field:

E3k � �Vk�hk (6)

where Vk is the voltage and hk the thickness of the piezoelectric layer.

3.2. Viscoelastic Core

The one-dimensional constitutive equation introduced by Bagley and Torvik (1983) is adopted
in this work to describe the viscoelastic behavior of the core:


 � � ���
 � Eo� � E
�
�
�
�� (7)

where Eo and E
 are the relaxed and non-relaxed elastic moduli, � the relaxation time, � the
fractional order of the time derivative �0 � � � 1�, and D� denotes the �-derivative operator,
which can be approximated by using the Grünwald–Letnikov (GL) power series:

�
� fn �

1

�t�

Nt�

j�0

A j�1 fn� j (8)

where �t is the time step increment of the numerical scheme, Nt is the truncation number
of the series, and A j�1 represents the GL-coefficients given either in terms of the gamma
function or by a recurrence formula:
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A j�1 �
�� j � ��

������� j � 1�
�

j � � � 1

j
A j � (9)

It should be pointed out that the GL-approximation (8) is relatively simple to implement
in a finite element code, however two crucial points are not considered in this work. The
first one concerns the truncation of the power series. Some strategies have been investigated
in recent work, for example, Adolfsson et al. (2004) and Galucio et al. (2004). The second
point deals with the accuracy of the scheme used to approximate the fractional differential
operator. In this context, recent investigations using other approximations have evaluated
their accuracy through theoretical results (Diethelm et al., 2004) and numerical experiments
(Galucio et al., 2006).

In order to avoid working with the stress history arising from the approximation of Equa-
tion (7), let us introduce the following variable change �V � � � 
�E , such that the con-
stitutive Equation (7) can be rewritten in a discretized form as (Galucio et al., 2004):

�Vn�1 � �1� c��
E
 � Eo

E

�n�1 � c�

Nt�

j�0

A j�1�
V
n�1� j (10)

where c� is a dimensionless constant given by c� �
��

�� ��t�
.

4. VARIATIONAL FORMULATION

The discrete equations of motion are derived from the Hamilton’s principle:

�

�
�T �U �W � dt � 0 (11)

where T and U are the kinetic and internal energies and W the external work. For the sake
of simplicity, the latter is not detailed here.

In the following, kinetic and internal energies are shown in detail, recalling that inertial
and internal force vectors are computed from the variation of these energies. Further, the
kinetic energy variation is given by �T � �Ta � �Tb � �Tc and the internal energy variation
by �U � �Ua � �Ub � �Uc.

4.1. Variation of the Kinetic Energy

The variation of the kinetic energy of the kth lamina is written as (for k � a� b)

�Tk � �

�

�k

�k � �uxk�uxk � �uzk�uzk� d�

� �b

� L

0

�k

�
hk� �uk�uk � ������

h3
k

12
�� k�� k

�
dx (12)
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where an over dot represents differentiation with respect to time, b and L are the width and 
the total length of the beam, and �k and �k are the mass density and the domain of the kth 
layer.

The procedure used to compute the kinetic energy of the core is similar to that used for 
the faces. Then, the variation of the kinetic energy of the core is classically written as

�Tc � �

�

�c

�c � �uxc�uxc � �uzc�uzc� d�

� �b

� L

0

�c

�
hc� �uc�uc � ������

h3
c

12
�� c�� c

�
dx (13)

where �c and �c are the mass density and the domain of the core.

4.2. Variation of the Strain Energy

The variation of the internal energy for the piezoelectric laminated faces can be obtained by
using Equation (5):

�Uk �

�

�k

���1k
 1k � �E3k D3k�d�

�

�

�k

� �ck
11��1k�1k � �e

k
31��1k E3k � �e

k
31�E3k�1k � �d

k
33�E3k E3k�d�

� �U M
k � �U

ME
k � �U

EM
k � �U

E
k (14)

where k � a� b and superscripts M, ME, EM and E stand for mechanical, piezoelectric and
dielectric contributions. These terms can be obtained using Equations (3) and (6):

�U M
k �

� L

0

�ck
11�Ak�	k	k � Ik�
k
k�dx (15a)

�U ME
k �

� L

0

�ek
31

Ak

hk

�	k Vkdx (15b)

�U EM
k �

� L

0

�ek
31

Ak

hk

�Vk	kdx (15c)

�U E
k � �

� L

0

�dk
33

Ak

h2
k

�Vk Vkdx (15d)

where Ak is the cross-sectional area and Ik the moment of inertia of each laminated layer.
Using Equations (7) and (10), the variation of the internal energy of the viscoelastic core

is given by
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Figure 2. Co-rotational configuration of sandwich beam.

�Uc �

�

�c

���1c
 1c � ��5c
 5c�d�

� �1� c��

�

�c

�
�cc
11��1c�1c � �c

c
55��5c�5c

�
d�

� �c� � c��

Nt�

j�1

A j�1

�

�c

�
�cc
11��1c��

V
1c�

n�1� j � �cc
55��5c��

V
5c�

n�1� j
�

d�

� �1� c�� �U
M
c � �c� � c���U

V
c (16)

where c� � c��E � Eo��Eo, �cc
11 � Eo��1� �2� and �cc

55 � Eo��2� 2��. The superscript V
stands for viscoelastic contribution.

Note that the second term in Equation (16) depends on the history of �V. In order to facil-
itate the numerical integration, once discretized, this term is treated as an external dissipative
force (see Section 5.7).

5. CO-ROTATIONAL FORMULATION

5.1. Sandwich Beam Model

Consider the sandwich beam element shown in Figure 2. This beam element allows large
displacements and rotations within the context of small strains. Recall that in a co-rotational
element, the rigid body motion is dissociated from elastic deformations. Therefore, a local
mobile frame, which is related to a rigid body motion of each element, is used to measure
the strains while the internal force vector and the tangent stiffness matrix are evaluated in
the inertial frame. This allows solution of the dynamic equations in the global coordinate
system. For a thorough review of corotational finite elements, the reader is referred to the
didactic work proposed by Felippa and Haugen (2005).
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Figure 2 shows the initial configuration associated to angle �o (global-coordinate sys-
tem) and the current configuration after a rigid body rotation � (local-coordinate system). In 
the initial configuration, the position of nodes 1 and 2 is defined in the global coordinate sys-
tem by �x1� z1� and �x2� z2� (same as in Section 2). The current configuration is associated 
to the mobile frame �x� � z��, such that its origin is placed on the node 1 and the x� -axis passes 
through node 2. Moreover, the notation ���� is related to entities in the local frame.

In order to derive the co-rotational formulation, a set of local degrees-of-freedom is 
chosen. These variables are associated to axial displacement (u�c), cross-sectional rotation
(
� c) and derivative of the transverse displacement ( 
� �). They are written in terms of the
global degrees-of-freedom by:

Node 1: 
uc1 � 0 
� �1 � �1 � � 
� c1 � � c1 � �

Node 2: 
uc2 � �� �o 
� �2 � �2 � � 
� c2 � � c2 � �
(17)

where �o and � are the initial and current length of the element, defined in the global coordi-
nate system as:

�o �

	
x2

21 � z2
21 (18)

� �


�x21 � uc21�

2 � �z21 � �21�2 (19)

with ���21 � ���2 � ���1.
It should be emphasized that these local variables behave alike the global ones. Then,

similarly to Equation (2c), the mean and relative axial displacements in the local frame are
given by:


�ui � 
uci
�
�h

4

� �i


�ui � �hc

� ci
� �h 
� �i (20)

where the subscript i stands for the position of the node, such that i � 1� 2.
Let us introduce the local degrees-of-freedom vector:


q � [ 
�u1 
�
�
1

�u1

�u2 
�

�
2

�u2

Va

Vb]T (21)

and the global one:

q � [ �u1 �1 �1 �u1 �u2 �2 �2 �u2 Va Vb]T� (22)

Note that both vectors are composed of mechanical and electrical degrees-of-freedom.
The latter is the voltage in the piezoelectric layer such that 
Va � Va and 
Vb � Vb.

Using Equations (17) and (20), the mechanical variables of 
q can be written in terms of
the components of q as:
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�u1 � �h1��1 � �� 
� �1 � �1 � �

�u1 � �u1 � h2�


�u2 � �� �o � h1��2 � �� 
� �2 � �2 � �

�u2 � �u2 � h2�

(23)

where h1 �
�h

4
and h2 � hc � �h.

In order to write the trigonometric functions of � in terms of global variables, we use:

cos� � coc � sos sin� � cos � soc (24)

with:

co � cos�o �
x21

�o
so � sin�o �

z21

�o
(25a)

c � cos��o � �� �
x21 � uc21

�
s � sin��o � �� �

z21 � �21

�
� (25b)

5.2. Virtual Local Displacements

The goal of this section is to write a relation between the virtual local displacement vector
� 
q and the virtual global displacement vector �q. This implies calculating the variation of
Equation (23):

� 
�u1 � �h1���1 � ��� � 
� �1 � ��1 � �� �~ �u1 � � �u1 � h2��

� 
�u2 � ��� h1���2 � ��� � 
�
�
2 � ��2 � �� �~ �u2 � � �u2 � h2��

(26)

where two variations must be calculated: �� and ��. The virtual current length of the sand-
wich beam, which is derived from Equation (19), is defined as:

�� � c�uc21 � s��21 � c� �u21 � s��21 � h1c��21 (27)

or in terms of the virtual global displacement vector:

�� � rT�q (28)

where the vector r is defined by:

r �
�
�c �s �h1c 0 c s h1c 0 0 0

�T
� (29)

Concerning ��, let us write the variation of the sinus expression in Equation (25b) as:

�s � c �� �
���21 � �z21 � �21���

�2
� (30)

Substituting Equation (27) into Equation (30), the variation of � can be then written in
terms of global variables as:
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�� � �
s

�
�uc21 �

c

�
��21 � �

s

�
� �u21 �

c

�
��21 �

h1s

�
��21 (31)

or in terms of the virtual global displacement vector:

�� �
1

�
zT�q (32)

with

z �
�

s �c h1s 0 �s c �h1s 0 0 0
�T
� (33)

Substituting Equation (32) into Equation (26), one obtains the relation between � 
q and
�q, i.e.

� 
q � T�q (34)

where T is the transformation matrix whose components are given in Appendix A.

5.3. Finite Element Discretization

The aim of this subsection is to provide a spatial discretization of the variational formulation
outlined in Section 4 by using classical techniques.

Linear and cubic shape functions are used to approximate axial displacements and de-
flections in the local coordinate system. They are:

H1 � 1�
x

�o
(35a)

H2 �
x

�o
(35b)

H3 � x

�
1�

x

�o

�2

(35c)

H4 � �
x2

�o

�
1�

x

�o

�
(35d)

where x is the axial position and �o the initial length of the beam.
Using Equations (35), strains and voltages as well their variations can be approximated by:

	i � Bmi 
q� 
 i � Bbi 
q� � c � Bsc 
q� 
Vk � H�k 
q

�	i � � 
q
TBT

mi � �
 i � � 
q
TBT

bi � �� c � � 
q
TBT

sc� � 
Vk � � 
q
THT
�k

(36)

where the following subscripts are used: i stands for the layer i � a� b� c� k for faces, i.e.
k � a� b� m for membrane strain� b for bending strain� and s for shear strain. Addition-
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ally, the displacement-strain matrix operators B associated to membrane, bending and shear
strains are defined as:

Bmi � H�xi � Bbi � H�ri and Bsc � Hrc �Hrk (37)

with the interpolation vectors related to axial displacements Hx , rotations Hr and voltages
H� given by:

Hxa � [ H1 0 H1�2 H2 0 H2�2 0 0 ] (38a)

Hxb � [ H1 0 �H1�2 H2 0 �H2�2 0 0 ] (38b)

Hxc � [ H1 h1 H �3 0 H2 h1 H �4 0 0 0 ] (38c)

Hrk � [ 0 �H �3 0 0 �H �4 0 0 0 ] (38d)

Hrc � [ 0 �h2�hc � 1�H �3 H1�hc 0 �h2�hc � 1�H �4 H2�hc 0 0 ] (38e)

H�a � [ 0 0 0 0 0 0 1 0 ] (38f)

H�b � [ 0 0 0 0 0 0 0 1 ]� (38g)

5.4. Mass Matrix

The mass matrix of the sandwich beam is derived from the finite element discretization of
Equations (12) and (13). Hence, the elementary mass matrices of each piezoelectric face
(k � a� b), arising from the discretization of Equation (12), is given by:

Mk �

� �o

0

�k

�
Ak

�
HT

xkHxk �HT
z Hz

�
� IkHT

rkHrk

�
dx (39)

and that of the core, arising from the discretization of Equation (13), is classically defined
as:

Mc �

� �o

0

�c

�
Ac

�
HT

xcHxc �HT
z Hz

�
� IcHT

rcHrc

�
dx � (40)

It should be stressed that the electromechanical coupling within piezoelectric faces and
the viscoelastic behavior of the core are not involved in the calculation of the mass matrix.
These piezoelectric and viscoelastic contributions are taken into account through the internal
force vector and/or external forces as described below.

5.5. Internal Force Vectors

Using expressions (15) and (16), the internal force vectors are obtained through the relation:

�U � �qTF � � 
qT 
F � �qTTT 
F (41)
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where F is the global internal force vector and F�the local internal force vector.
It should be noted that Equation (41) must hold for all �q, therefore the internal force 

vector, written in the global coordinate system, is given by:

F � TT 
F (42)

with the local internal force vector defined as:


F �
�

k�a�b

� 
FM
k �

FME

k �

FEM

k �

FE

k �� �1� c�� 
F
M
c (43)

where 
FM
i (with i � a� b� c) is the mechanical internal force vector� 
FME

k and 
FEM
k the piezo-

electric internal force vector� 
FE
k the dielectric internal force vector� and c� 
F

M
c the added-

mechanical internal force vector associated to the viscoelastic behavior of the core. For
illustrative purposes, these vectors are given in the Appendix B.

Another way of writing the local internal force vector deals with the concept of general-
ized forces such that:


F �
�
�N1 M1

�N1
�N2 M2

�N2 Qa Qb

�T
(44)

where each component is associated to those of the local degree-of-freedom vector defined in
Equation (21). It is worth mentioning that this way of writing 
F is useful for the calculation
of the geometric stiffness matrix as we shall see below.

5.6. Tangent Stiffness Matrix

The global tangent stiffness matrix KT is derived by differentiating the internal force vector
through the degree-of-freedom vector, i.e.:

�F � KT�q� (45)

This relation can be rewritten by using Equation (42):

�F � TT� 
F� �TT 
F � KM�q�KG�q (46)

where KM and KG are the material and geometric stiffness matrices, such that

KT � KM �KG� (47)

The calculation of these matrices is carried out below noting that, cf. Equation (46), KM

depends on the variation of the internal force vector while KG depends on the variation of
the transformation matrix.
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5.6.1. Material stiffness matrix

Following Equation (46), the calculation of KM is related to:

KM�q � TT� 
F (48)

where T is given in Appendix A. Concerning the calculation of � 
F, let us introduce a local
(8� 8)-matrix such that:

� 
F � 
K� 
q (49)

where the components of 
K are given in Appendix C.
By combining Equations (34), (48) and (49), the material stiffness matrix written in

global coordinate system is given by:

KM � TT 
KT� (50)

Noting that KM is a (10�10)-matrix written in the global coordinate system.

5.6.2. Geometric stiffness matrix

As above mentioned, the geometric stiffness matrix is obtained from the expression:

KG�q � �T
T 
F (51)

which requires the calculation of �T. For this purpose, let us rewrite the right-hand side of
Equation (51) using Equation (44):

�TT 
F � �N1�T1 � M1�T2 � �N1�T3 � �N2�T4 � M2�T5 � �N2�T6 � Qa�T7 � Qb�T8 (52)

where each (1�8)-vector Ti (i � 1� � � � � 8) represents the i th row of T, defined in Equa-
tion (76), Appendix A. Consistent with Equation (77), the variation of T depends on ��, �r
and �z:




������������������
�

�T1

�T2

�T3

�T4

�T5

�T6

�T7

�T8

�

������������������
�

� �
1

�2




������������������
�

h1

�1

h2

h1

�1

h2

0

0

�

������������������
�

���zT � zT��� �




������������������
�

0

0

0

1

0

0

0

0

�

������������������
�

�r� (53)
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Noting that �r � z�� � 
1
� 
zzT�q and �z � �r�� � � 1

� 
rzT�q. In addition, �� and �� are 

given by Equations (28) and (32), respectively. Using these relations, the transpose of �T is 
then:

�TT � �
1

�2
�rzT � zrT��q[ h1 �1 h2 h1 �1 h2 0 0 ]

�
1

�
zzT�q[ 0 0 0 1 0 0 0 0 ]� (54)

The substitution of Equation (54) into (52) provides the geometric stiffness matrix:

KG �
1

�
�N2zzT �

1

�2

�
h1� �N1 � �N2�� �M1 � M2�� h2� �N1 � �N2�

�
�rzT � zrT� (55)

where KG is a (10� 10)-matrix written in the global coordinate system.

5.7. Complete and Reduced System

Recall that we are seeking to solve a problem in non-linear dynamics in which several pa-
rameters are involved, i.e. to control a sandwich beam with viscoelastic core and piezoelec-
tric/elastic laminated faces undergoing large displacements and rotations. In order to take the
electromechanical coupling into account, electrical degrees-of-freedom are used in the for-
mulation, in concordance with the global degree-of-freedom vector defined in Equation (22).
This vector can be rewritten as:

q � [qM V]T (56)

where qM represents the mechanical global degree-of-freedom vector (first eight lines of
q) and V the voltage vector such that V � [Va Vb]T. Using this notation, the non-linear
problem to be solved in the inertial frame is described as:

�
M 0

0 0

��
�qM

n�1

�Vn�1

�

�

�
FM�qn�1�� c�F

M
c �qn�1�� FME�qn�1�

FEM�qn�1�� FE�qn�1�

�

�

�
GM

n�1 �GV
n�1

0

�

(57)

where M is the global mass matrix such that M �Ma�Mb�Mc, noting that Ma and Mb are
defined in Equation (39) and Mc in Equation (40). It should be underlined that the total mass
matrix is singular due to the non-inertial electrical degrees-of-freedom. In order to overcome
such a difficulty, an elimination of the electrical degrees-of-freedom can be performed at
elementary level as we shall see later.

The second term in the left-hand side of Equation (57) represents the internal force vec-
tors, which are thoroughly described in Appendix B. Thus, in the first line, the mechanical
contribution is given in Equation (78) and the electromechanical one in Equation (82). In the
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second line, we find the electromechanical contribution and the dielectric one both defined 
in Equations (83) and (84), respectively.

In the right-hand side of Equation (57), two external force vectors appear. They are 
related to a classical time-dependent mechanical load GM and a dissipative load GV arising 
from the viscoelastic constitutive law of the core. The latter is derived from the discretization 
of the second term of Equation (16), i.e.

GV
n�1 � ��c� � c��

Nt�

j�1

A j�1FV�qn�1� j�� (58)

The minus sign is due to the shifting of this term from internal energy to external dis-
sipative one, as mentioned in the end of Section 4. The internal force vector associated to
the “anelastic” strain is represented by FV, which depends on the history of the degree-of-
freedom vector. Such a vector is called here internal memory force vector, which is computed
by discretizing Equation (10):

FV�qn�1� � �1� c��
E
 � Eo

E

FM

c �qn�1�� c�

Nt�

j�1

A j�1FV�qn�1� j� (59)

where the mechanical internal force vector FM
c associated to the core is defined by Equa-

tion (80).
It might be worthwhile considering the elastic case for which c� � 0 and consequently

c� � 0. This implies the terms c�F
M
c and GV, appearing in Equation (57), vanish.

5.7.1. Reduced-order System

Let us split up the displacement vector in mechanical qM and electrical sensor/actuator parts
(V S and V A) as:

q � [qM V S V A]T� (60)

According to this notation, the system described in Equation (57) becomes:




��
�

M 0 0

0 0 0

0 0 0

�

��
�




��
�

�qM
n�1

�V S
n�1

�V A
n�1

�

��
��




��
�

FM�qn�1�� c�F
M
c �qn�1�

0

0

�

��
��




��
�

FME
S �qn�1�

0

0

�

��
�

�




��
�

0

FEM
S �qn�1�

FEM
A �qn�1�

�

��
��




��
�

0

FE
S�qn�1�

FE
A�qn�1�

�

��
� �




��
�

GM
n�1 �GV

n�1 �GME
n�1

0

0

�

��
� (61)
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S

where the local components of the piezoelectric and dielectric internal force vectors are 
defined in Appendix B. Furthermore, a new vector appears in the right-hand side of this 
equation. It deals with the piezoelectric internal force vector associated to an actuator 
configuration. Indeed, in the first line of the system, an added-internal force vector asso-
ciated to a sensor configuration FME appears in the left-hand side and an electric force GME

in the right-hand side. The latter is related to the piezoelectric internal force vector by:

GME � �FME
A (62)

where, for each layer, we have in the global coordinates system:

GME
a � ��ea

31

Aa

ha

V Aga (63a)

GME
b � ��eb

31

Ab

hb

V Agb (63b)

with the corresponding vectors:

ga �
�
�c �s �1� c�h1 �1�2 c s ��1� c�h1 1�2

�T
(64a)

gb �
�
�c �s �1� c�h1 1�2 c s ��1� c�h1 �1�2

�T
� (64b)

Note that V A is the voltage applied to the piezoelectric layer, a known variable in the
problem. Moreover, we assume that the piezoelectric sensor/actuator is associated with only
one laminated face (a or b), not with both.

When effecting the elimination of the electrical degrees-of-freedom in the system (61),
the third line is automatically verified. The second line, which is represented by:

FEM
S �qn�1�� FE

S�qn�1� � 0 (65)

gives the measured voltage in the piezoelectric sensor in terms of the local displacements:

V S
a �

�ea
31

�da
33

ha

�o

�

�u21 �

�u21

2

�

(66a)

V S
b �

�eb
31

�db
33

hb

�o

�

�u21 �

�u21

2

�

� (66b)

In the first line of Equation (61), we note an added internal force vector associated to a
sensor configuration FME

S . This vector depends on the measured voltage V S as:

FME
Sa � �e

a
31

Aa

ha

V Sga (67a)

FME
Sb � �e

b
31

Ab

hb

V Sgb (67b)
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Table 1. Newmark (average acceleration) / Newton-Raphson algorithm.

1. Enter time step loop
tn�1 � tn ��t

2. Predict displacement, velocity and acceleration: Equation (69)
3. Calculate the dissipative load: Equation (58)
4. Evaluate residual: Equation (70)
5. Convergence analysis

5Y. If � Rn�1 �� � is true

a) Update FV: Equation (59)

5N. Else

a) Calculate the iteration matrix: Equation (71)
b) Calculate the correction: Equation (72)
c) Correct the solution: Equation (73)
d) Control law

� Evaluate the sensor voltage: Equation (66)
� Compute FME

S : Equation (67)
� Calculate the time derivative of V S: Equation (75)
� Compute the actuator voltage: Equation (74)
� Compute GME: Equation (63)

e) Evaluate residual: Equation (70)

6. Update time step and return to 1.
n� n � 1

where the vectors ga and gb are defined in Equations (64).
Finally, the new system obtained is simply given by:

M �qM
n�1 � FM�qM

n�1�� c�F
M
c �q

M
n�1�� FME

S �q
M
n�1� � GM

n�1 �GME
n�1 �GV

n�1� (68)

Note that the resolution of this problem does not require the use of electrical degrees-of-
freedom since after their elimination, only qM is involved in the numerical simulation.

5.8. Algorithm

In order to solve the non-linear problem (68), a combined Newmark (average acceleration) /
Newton–Raphson scheme is used. This predictor-corrector algorithm works like a classical
scheme. The difference lies in the calculation of the terms arising from the viscoelastic core.
The dissipative force is evaluated before the iteration loop, while the internal memory force
vector is updated at each time step after the iteration loop (or after convergence).

For the sake of clarity, the algorithm is illustrated in Table 1. In the prediction step,
displacement, velocity and acceleration vectors are expressed by:

q
p

n�1 � qn ��t �qn � �0�5� ���t2 �qn (69a)
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�q
p
n�1 � �qn � �1� � ��t �qn (69b)

�q
p
n�1 � 0� (69c)

We note that the acceleration is chosen to be zero in order to obtain a stable iterative
procedure (Géradin and Rixen, 1997).

The dissipative load is then calculated using Equation (58) and the residual vector can
be evaluated as:

Rn�1 �M �qn�1 � F��qn�1��G�n�1 (70)

where F� � FM � c�F
M
c � FME

S and G� � GM �GME �GV.
The succeeding step consists of evaluating the norm of the residual vector, which has to

satisfy a convergence criterion. If this condition holds, the internal memory force vector is
updated through Equation (59). Otherwise, the iterative procedure is applied. We start by
calculating the iteration matrix S such that:

S � KT �
1

��t2
M (71)

which is used to compute the correction of the solution by the following expression:

S�qn�1��q � �Rn�1 (72)

where the displacement increment�q is used to correct the solution by:

qn�1 � q
p
n�1 ��q (73a)

�qn�1 � �q
p
n�1 �

�

��t
�q (73b)

�qn�1 � �q
p
n�1 �

1

��t2
�q� (73c)

After this, the electromechanical coupling is taken into account by means of a feedback
derivative control law, which is applied to link the piezoelectric patches. This means that the
voltage measured in the actuator is directly proportional to the time derivative of the voltage
induced in the sensor:

V A � �Kd
�V S (74)

where Kd is the derivative control gain constant. Further, the time derivative of the sensor
voltage is computed by the Euler-backward approximation:

�V S
n�1 �

V S
n�1 � V S

n

�t
� (75)
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Figure 3. Sandwich frame (Deng and Vu-Quoc, 1998).

In this part of the algorithm, the piezoelectric internal force vector associated to a sensor
configuration FEM

S as well as the piezoelectric external force vector associated to an actuator
configuration GME have to be computed.

Finally, the equilibrium equation is evaluated to verify the convergence criterion.

6. RESULTS AND ANALYSIS

Two examples are presented in this section. The first one focuses on the validation of the
sandwich beam formulation. It is an example extracted from Deng and Vu-Quoc (1998)
where the authors propose an ideal sandwich frame formulation based on a Timoshenko
beam theory. The second example deals with the attenuation of transient oscillations of a
sandwich flexible robot arm by using hybrid active/passive damping treatment.

6.1. Sandwich Frame

Consider the sandwich frame shown in Figure 3. According to Deng and Vu-Quoc (1998),
the three layers are supposed to be elastic and made with fictitious materials. Mechanical
characteristics for the core (light gray layer) are given by �c � 1, cc

11 � 103 and cc
55 � 2�103

and for the faces (dark gray layer), �k � 20 and ck
11 � 4 � 105 (in a suitable unit system).

Concerning geometrical data, length and width of the frame are OA � AB � 10 and b � 1,
respectively. Moreover, the thickness of the core is hc � 1 and a symmetrical configuration
is assumed with ha � hb � 0�05.

The sandwich frame is discretized by a regular mesh of twenty finite elements: ten
through OA and ten through AB. The calculations are performed using a time step equal to
�t � 0�025. The structure is clamped in O and submitted to an impact load at B. This force
is described by a Heaviside function such as:
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Figure 4. Sandwich-frame deformed shapes at different time steps: (a) present work and (b) Deng and

Vu-Quoc (1998).

F�t� �

�
��

��

�1000 if 0 � t � 0�5

0 if t � 0�5�

In Figure 4, the deformed shapes of the sandwich frame are presented for different in-
stants (each 40 time steps) up to T � 6. It can be noted that the present results (Fig-
ure 4(a)) are very close to the reference solution developed by Deng and Vu-Quoc (1998)
(Figure 4(b)).

Another set of results are depicted in Figure 5. They represent the time history of the
axial and transverse displacements and rotations at point B. In the first row, axial (dashed
line) and transverse displacements (solid line) obtained by using the present formulation Fig-
ure 5(a.1) are compared to the results obtained by Deng and Vu-Quoc (1998) Figure 5(a.2).
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Figure 5. Time history of (a) axial and transverse tip displacements and (b) rotations at tip, where 1

stands for present work and 2 for Deng and Vu-Quoc (1998).

In the second row, the rotations are compared. In both cases, the present results are in very
good agreement with those presented by Deng and Vu-Quoc (1998). Therefore, this example
allows the validation of the (i) non-linear sandwich beam formulation without taking account
of the viscoelastic/piezoelectric effects and (ii) the numerical predictor-corrector algorithm.

6.2. Sandwich Flexible Robot Arm

Consider a sandwich robot arm rotating in the plan �x� z�. A rotation is imposed on one of its
ends, which is simply supported, the other end being free (see Figure 6). Mechanical char-
acteristics of the materials used herein are shown in Table 2, noting that the four parameters
of the viscoelastic model have been identified in Galucio et al. (2004).

The length of the arm is OA � 250 mm and that one of the piezoelectric patches is
50 mm, with a common width of b � 10 mm. The position of the piezoelectric patch is
such that its center is situated 75 mm to the right of point O. Twenty-five regular finite
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Figure 6. Sandwich flexible robot arm.

Table 2. Mechanical/electrical characteristics of different materials.

Aluminum � � 2690 kg�m3 � � 0�345 E � 70�3 GPa

PZT5H � � 7500 kg/m3 c11 � c33 � 126 GPa c13 � 84�1 GPa
e31 � �6�5 C/m2 e33 � 23�3 C/m2 d33 � 1� 3� 10�8 F/m

ISD112 at 27�C � � 1600 kg/m3 � � 0�5 Eo � 1�5 MPa E
 � 69�95 MPa
� � 0�7915 � � 1�4052� 10�2 ms

elements are used to discretize the beam: five between the point O and the left-end side of
the piezoelectric patch, five along the patch and fifteen elsewhere. A feedback derivative
control law is applied to the piezoelectric patches. Moreover, the structure is submitted to a
prescribed rotation such that

��t� �

�
���

���

�ot

t1
if 0 � t � t1

�o if t1 � t � T

where t1 � 20 ms, T � 200 ms and �o � ��2 rad. The time step used in the calculations is
equal to�t � 0�02 ms.

The geometry of the example is shown in Figure 6. The core is supposed to be viscoelas-
tic (ISD112 at 27�C) constrained by elastic faces (aluminum) supplied with piezoelectric
patches (PZT5H). The thickness distribution is 0.1, 1.5, and 0.5 (in mm) for the viscoelastic
core, elastic faces and piezoelectric patches respectively.

Figure 7 presents the responses of the sandwich arm for a control gain Kd � �10�3 ms.
In the first row of the figure, the phase-space diagrams are depicted for axial (a) and trans-
verse (b) tip displacements. The second row shows the corresponding displacement evolution
in time. After 20 ms, i.e. the positioning time, the oscillations can be clearly observed in the
space-phase diagrams to be successively attenuated. It should be emphasized that due to the
large number of parameters involved in this non-linear problem, an experimental validation
might be necessary in order to obtain the best values of geometry, integration parameters and
so on. The present formulation allows one to treat non-linear dynamics with coupled systems
without further numerical effort.

Finally, the number of iterations required to achieve convergence does not exceed four,
which is a reasonable number. Obviously, this number depends on several parameters, espe-
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Figure 7. Axial (a) and transverse (b) space-phase diagrams and tip displacements of the sandwich arm.

Figure 8. Number of iterations to achieve convergence.

24



cially on the time discretization. Therefore, a set of numerical tests should be performed in 
order to optimize the computational time for this kind of problem.

7. CONCLUSIONS

A co-rotational finite element formulation of an adaptive sandwich beam composed of a 
viscoelastic core constrained by laminated elastic/piezoelectric faces is proposed. The four-
parameter fractional Zener model is used to take the linear viscoelastic behavior of the middle 
layer into account, while a three-dimensional classical piezoelectric constitutive law is used 
for modeling the piezoelectric material.

The finite element formulation allows large displacements and rotations with a local 
small strain measure. Local electrical degrees-of-freedom are used in order to reproduce sen-
sor configurations. A static condensation is performed at elementary level in order to elim-
inate electrical degrees-of-freedom to solve a mechanic system. Concerning the viscoelas-
tic damping, fractional derivative operators are approximated by the Grünwald–Letnikov 
scheme, where the history of the internal memory force is used to take account of the damp-
ing effect.

The classical Newmark/Newton–Raphson predictor-corrector algorithm is slightly modi-
fied to solve the non-linear dynamic problem. The internal memory force vector is updated 
at each time step after convergence of the solution. A feedback derivative control law is used 
to take the piezoelectric effect into account.

An example validation is performed showing very good agreement between the present 
method and the reference solution. Finally, the transient responses of a sandwich flexible 
robot arm are attenuated through passive and active/passive damping treatments.

A. TRANSFORMATION MATRIX

As previously mentioned, the relation between the virtual local and global displacement 
vectors is such that �q�� T�q, where T is the transformation matrix defined as:

T � [ T1 T2 T3 T4 T5 T6 T7 T8 ]T (76)

with its row-matrices given by:

T1 �
h1

�
zT � [ 0 0 �h1 0 0 0 0 0 0 0 ] (77a)

T2 � �
1

�
zT � [ 0 0 1 0 0 0 0 0 0 0 ] (77b)

T3 �
h2

�
zT � [ 0 0 0 1 0 0 0 0 0 0 ] (77c)

T4 � rT �
h1

�
zT � [ 0 0 0 0 0 0 �h1 0 0 0 ] (77d)

T5 � �
1

�
zT � [ 0 0 0 0 0 0 1 0 0 0 ] (77e)
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T6 �
h2

�
zT � [ 0 0 0 0 0 0 0 1 0 0 ] (77f)

T7 � [ 0 0 0 0 0 0 0 0 1 0 ] (77g)

T8 � [ 0 0 0 0 0 0 0 0 0 1 ] (77h)

where the vectors r and z are respectively defined in Equations (29) and (33).

B. LOCAL INTERNAL FORCE VECTOR

Let us recall the definition of the internal force vector written in local coordinate system:

�U � � 
qT 
F

where viscoelastic and piezoelectric contributions are taken into account through 
F, in ac-
cordance with Equation (43). Hence, each contribution of 
F is given below.

B1. Components of 
F

B.1.1. Mechanical internal force vectors

The mechanical contribution of the internal force vector is derived from the discretization of
Equations (15a) and (16) such that:


FM � 
FM
a �

FM

b � �1� c�� 
F
M
c � (78)

Note that the mechanical contribution associated with the core arises solely from the
discretization of the first term of the right-hand side of Equation (16). The other term, which
depends on the history of the internal memory force vector, is treated as an external loading
following Section 5.7.

After discretizing Equation (15a), the mechanical contribution of the internal force vec-
tor for the laminated faces becomes:


FM
a �
�ca
11 Aa

�o




�������������������
�

�
�u21 � 
�u21�2

0

�
�u21�2� 
�u21�4


�u21 � 
�u21�2

0


�u21�2� 
�u21�4

0

0

�

�������������������
�

�
�ca
11 Ia

�o




������������������
�

0

4 
� �1 � 2 
� �2

0

0

2 
� �1 � 4 
� �2

0

0

0

�

������������������
�

(79a)
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FM
b �
�cb
11 Ab

�o




�������������������
�

�
�u21 � 
�u21�2

0


�u21�2� 
�u21�4


�u21 � 
�u21�2

0

�
�u21�2� 
�u21�4

0

0

�

�������������������
�

�
�cb
11 Ib

�o




������������������
�

0

4 
� �1 � 2 
� �2

0

0

2 
� �1 � 4 
� �2

0

0

0

�

������������������
�

� (79b)

For the middle layer, the partial discretization of Equation (16) allows one to write the
mechanical internal force vector associated with the core as:


FM
c �

FM

mc �

FM

bc �

FM

sc (80)

where its membrane, bending and shear components are given by:


FM
mc �

�cc
11 Ach1

�o




�����������������
�

�
�u21�h1 � 
�
�
21
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2

�
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�

� �1 � 2 
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�

0

0

0
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�����������������
�

(81a)
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c




�������������������
�

0

2h2�4 
� �1 � 
�
�
2��5�

�u21

� 
� �21 � 2�2 
�u1 � 
�u2��h2

0

�2h2� 
�
�
1 � 4 
� �2��5�


�u21


� �21 � 2� 
�u1 � 2 
�u2��h2

0

0

�

�������������������
�

� (81c)

B.1.2. Piezoelectric internal force vectors

The electromechanical internal force vector arising from the discretization of Equation (15b)
depends simply on the voltage applied (or induced) at each piezoelectric layer:


FME
a �

�ea
31 Aa

ha

�
� 
Va 0 � 
Va�2 
Va 0 
Va�2 0 0

�T
(82a)


FME
b �

�eb
31 Ab

hb

�
� 
Vb 0 
Vb�2 
Vb 0 � 
Vb�2 0 0

�T
(82b)

whereas the one computed using Equation (15c) depends on the mechanical axial displace-
ments:


FEM
a �

�ea
31 Aa

ha

�
0 0 0 0 0 0 
�u21 � 
�u21�2 0

�T
(83a)


FEM
b �

�eb
31 Ab

hb

�
0 0 0 0 0 0 0 
�u21 � 
�u21�2

�T
� (83b)

B.1.3. Dielectric internal force vectors

The dielectric contribution of the internal force vector is obtained from the discretized form
of Equation (15d). This results in the following expressions:


FE
a �

�da
33 Aa�o

h2
a

�
0 0 0 0 0 0 � 
Va 0

�T
(84a)


FE
b �

�db
33 Ab�o

h2
b

�
0 0 0 0 0 0 0 � 
Vb

�T
� (84b)
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K

C. MATERIAL STIFFNESS MATRIX

C1. Components of

Recall that the material stiffness matrix, which was previously defined by Equation (50), 
depends on the matrix transformation given in Appendix A and on the following (8 � 8)-
matrix:


K �




�������������������
�


K11

K12

K13 � 
K11 � 
K12 � 
K13


K17

K18


K22

K23 � 
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K23 0 0
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K23

K36


K37

K38


K11

K12


K13 � 
K17 � 
K18

symm 
K22

K23 0 0


K33 � 
K37 � 
K38


K77 0


K88

�

�������������������
�

(85)

where its fourteen independent components, written in terms of geometric and material prop-
erties, are defined by:
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