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Piezoelectric structural acoustic problems:
Symmetric variational formulations and finite element results

J.-F. Deü *, W. Larbi, R. Ohayon

Conservatoire National des Arts et Métiers (CNAM), Structural Mechanics and Coupled Systems Laboratory, Chair of Mechanics, case 353,

2 rue Conté, 75003 Paris, France

This paper presents an original symmetric finite element formulation for piezoelectric structural acoustic coupled problems. First, an 
unsymmetric variational formulation in terms of structure displacement, electric potential and fluid pressure field is proposed. Then, 
through the introduction of an additional variable, namely fluid displacement potential, a symmetric finite element formulation is pre-
sented. Finally, after a rigorous condensation procedure and using the fluid added mass and piezoelectric added stiffness concepts, a 
reduced symmetric formulation is obtained. Some numerical examples concerning axisymmetric elastic/piezoelectric structures filled with 
internal compressible fluid are presented in order to validate the proposed formulation.
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1. Introduction

Over the past decade, a considerable amount of research
has been devoted to the development, testing and modeling
of noise reduction techniques using passive and/or active
approaches. Classically, noise reduction by passive tech-
niques is achieved by using sound absorbing materials such
as porous media, which consists of an elastic matrix con-
taining interconnected fluid-saturated pores. These materi-
als are generally modeled by poroelastic Biot theory [1–4].
Alternatively, for structural–acoustic applications, a dissi-
pative wall acoustic impedance can be used to take into
account the absorbing properties of the materials at the
fluid–structure interface [5–8]. It is well known that passive
reduction methods are quite effective at high frequencies. In

the low frequency range, active techniques using piezoelec-
tric materials are found to be an attractive alternative or
complementary tool. In this case, sensor and actuator pie-
zoelectric patches are surface-mounted or embedded in the
structure. These patches are capable of self-sensing and
self-actuation for active vibration and noise control. For
the modeling of active-control structural–acoustic prob-
lems in the field of noise reduction applications (see
Fig. 1 for a general sketch of the coupled problem), the
finite element method is one of most powerful approaches.
In this context, let us mention [9,10] where active controller
designs are developed to reduce interior cabin noise levels
and [11,12] where active/passive constrained layer damping
treatments are proposed to control sound radiation from a
vibrating thin structure into an acoustic cavity. Another
methodology consists in combining the finite element
approach for the smart structure and the boundary element
formulation to calculate the acoustic response of the
enclosed fluid. In such a case, a steady-state response of
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acoustic cavities bounded by piezoelectric composite shell
structures is proposed in [13] and an active–passive control
technique, based an output feedback optimal controller
design, is developed in [14].

In the previous finite element citations, different fields
can be chosen to describe the acoustic fluid: pressure, fluid
displacement, fluid displacement potential or fluid velocity
potential [15]. The most natural and common formulation
consists of choosing the scalar pressure field as main vari-
able in the fluid domain. However, if pressure is taken as
nodal variable, the coupled fluid–structure matrix system
is not symmetric. In this context, the overall objective of
the present study is to present a symmetric finite element
formulation for electromechanical–acoustic problems using
pressure variable to describe the acoustic medium.

Thus, we present in this paper an original variational
formulation and the corresponding finite element matrix
equations for fluid/piezoelectric-structure coupled prob-
lems. This formulation is derived from the test-function
method. The coupled system consists of a piezoelectric
structure (described by its displacement field ui and electric
potential w) containing an inviscid, compressible and baro-
tropic fluid (described by its pressure field p), gravity effects
being neglected. First, a non-symmetric variational formu-
lation in terms of (ui;w; p) is proposed for transient and
modal analysis of the coupled system. We next establish,
through the introduction of an additional unknown field
(namely displacement potential of the fluid u), the symmet-
ric variational formulation of the eigenvalue problem.
Finally, it is shown that this problem can be reduced, by
means of a rigorous elimination procedure in the discret-
ized case, to a spectral problem in (ui; p) introducing the
concepts of (i) generalized added mass operator for com-
pressible fluid, and (ii) piezoelectric added stiffness
operator.

2. Finite element formulation for the fluid/piezoelectric-

structure coupled problem

Let us consider the linear vibrations of an elastic/piezo-
electric-structure completely filled with a homogeneous,
inviscid and compressible fluid, neglecting gravity effects.

We establish in this section the variational formulation of
the coupled problem and the corresponding matrix equa-
tions. Note that standard indicial notations are adopted
in this paper: subscripts denote the tensor components
and repeated subscripts imply summation. In addition, a
coma indicates a partial derivative.

2.1. Local equations of the coupled system

We consider a piezoelectric structure occupying the
domain XS at the equilibrium. The structure is subjected
to a prescribed displacement udi on a part Cu and to surface
force density F d

i on the complementary part Cr of its exter-
nal boundary. The interior fluid domain is denoted by XF

and the fluid–structure interface by R (see Fig. 2).
The electric boundary conditions are defined by a

prescribed electric potential wd on Cw and a surface den-
sity of electric charge Qd on the remaining part CD. Thus,
the total structure boundary, denoted oXS, is such
that oXS ¼ CD [ Cw ¼ Cu [ Cr [ R with Cu \ Cr \ R ¼
Cw \ CD ¼ ;.

The linearized deformation tensor is denoted by eij and
the corresponding stress tensor by rij. Moreover, Di denotes
the electric displacement vector components and Ei the elec-
tric field vector components. qS is the mass density of the
structure and nSi is the unit normal external to XS.

Since the compressible fluid is assumed to be inviscid,
instead of describing its motion by a fluid displacement
vector field, which requires an appropriate discretization
of the fluid irrotationality constraint [16], we use the pres-
sure scalar field p. Let us note cF the constant speed of
sound in the fluid, qF the mass density of the fluid, and ni
the unit normal external to XF.

The local equations of the fluid/piezoelectric-structure
coupled problem described in Fig. 2 are

rij;j ¼ qS

o
2
ui

ot2
in XS; ð1aÞ

rijn
S
j ¼ F d

i on Cr; ð1bÞ

ui ¼ udi on Cu; ð1cÞ

rijn
S
j ¼ pni on R; ð1dÞ

Di;i ¼ 0 in XS; ð2aÞ

Din
S
i ¼ �Qd on CD; ð2bÞ
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Fig. 2. Fluid/piezoelectric-structure coupled system.
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Fig. 1. The structural–acoustic interaction problem.
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w ¼ wd on Cw; ð2cÞ

p
;ii ¼

1

c2F

o
2
p

ot2
in XF; ð3aÞ

p
;ini ¼ �qF

o
2
ui

ot2
ni on R; ð3bÞ

with appropriate initial conditions.
Eq. (1a) corresponds to the elastodynamic equation in

absence of body force; Eqs. (1b) and (1c) are the prescribed
mechanical boundary conditions; Eq. (1d) results from the
action of pressure forces exerted by the fluid on the struc-
ture; Eq. (2a) corresponds to the electric charge equation
for a dielectric medium; Eqs. (2b) and (2c) are the previ-
ously described electric boundary conditions; Eq. (3a) is
the Helmholtz equation; and Eq. (3b) is the kinematic
interface fluid–structure condition on R.

The stress tensor rij and electric displacement Di are
related to the linear strain tensor ekl and electric field Ek

through the converse and direct linear piezoelectric consti-
tutive equations:

rij ¼ cijklekl � ekijEk; ð4Þ

Di ¼ eiklekl þ �ikEk; ð5Þ

where cijkl, ekij and �ik denote elastic, piezoelectric and
dielectric material constants.

Moreover, we have the following gradient relations
between the linearized strain tensor ekl and the displace-
ment uk, and between the electric field Ek and the electric
potential w:

ekl ¼
1

2
ðuk;l þ ul;kÞ; ð6Þ

Ek ¼ �w
;k: ð7Þ

We can note from the constitutive Eqs. (4) and (5) and
from the gradient relations (6) and (7) that the stress tensor
rij and the electric displacement vector components Di

depend on the variables uk and w:

rij ¼ rijðuk;wÞ; ð8aÞ

Di ¼ Diðuk;wÞ: ð8bÞ

For a detailed derivation of these classical equations, we
refer the reader, for example, to [17] for piezoelectric
aspects and to [15] for fluid–structure aspects.

2.2. Variational formulation

The local equations of Section 2.1 are expressed in terms
of the chosen unknown fields of the fluid/piezoelectric-
structure boundary value problem, i.e. the structural
mechanical displacement ui, the electric potential in the
structure w, and the fluid pressure p.

In order to obtain the variational formulation associ-
ated with the local equations of the coupled fluid/piezoelec-
tric-structure system given in Eqs. (1)–(3), the test-function
method is applied. We proceed in three steps, successively
considering the equations relating to the structure (subject

to fluid pressure actions), the electric charge equation for a
dielectric medium, and the equations relating to the fluid
(subject to a wall displacement).

First, we introduce the space Cu of sufficiently regular
functions ui defined in XS and C�

u ¼ fui 2 Cujui ¼ 0
on Cug. Multiplying Eq. (1a) by any time-independent
test-function dui 2 C�

u, then applying Green’s formula,
and finally taking Eqs. (1b) and (1d) into account, leads to
Z

XS

rijðuk;wÞdeij dvþ qS

Z

XS

o
2
ui

ot2
dui dv�

Z

R

pnidui ds

¼

Z

Cr

F d
i dui ds 8dui 2 C�

u; ð9Þ

where deij ¼
1
2
ðdui;j þ duj;iÞ.

Secondly, we consider the space Cw of sufficiently regu-
lar functions w in XS and C�

w ¼ fw 2 Cwjw ¼ 0 on Cwg.
Multiplying Eq. (2a) by any time-independent test-function
dw 2 C�

w and integrating over XS, we have
Z

XS

Di;iðuk;wÞdwdv ¼ 0 8dw 2 C�
w: ð10Þ

Finally, we consider the space Cp of sufficiently regular
functions p defined in XF. Multiplying Eq. (3a) by any
time-independent test-function dp 2 Cp, applying Green’s
formula, and taking Eq. (3b) into account, we obtain

1

qF

Z

XF

p
;i dp;i dvþ

1

qFc
2
F

Z

XF

o
2
p

ot2
dpdv

þ

Z

R

o
2
ui

ot2
ni dpds ¼ 0 8dp 2 Cp: ð11Þ

Using the piezoelectric constitutive Eqs. (4) and (5), and
taking the electric boundary condition (2b) into account,
Eqs. (9) and (10) can be rewritten in the following forms
Z

XS

cijklekldeij dv�

Z

XS

ekijEkdeij dvþ qS

Z

XS

o
2
ui

ot2
dui dv

�

Z

R

pnidui ds ¼

Z

Cr

F d
i dui ds 8dui 2 C�

u; ð12Þ

and
Z

XS

eiklekl dEi dvþ

Z

XS

�ikEk dEi dv

¼

Z

CD

Qd
dwds 8dw 2 C�

w; ð13Þ

where dEi ¼ �dw
;i.

Thus, the variational formulation of the coupled fluid/
piezoelectric-structure coupled problem consists in finding
ui 2 Cu such that ui ¼ udi on Cu, w 2 Cw such that w ¼ wd

on Cw and p 2 Cp, satisfying Eqs. (11)–(13) with appropri-
ate initial conditions.

2.3. Finite element formulation

Let us introduce U, W and P corresponding to the vec-
tors of nodal values of ui, w and p respectively, and the
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submatrices corresponding to the various terms involved in
Eqs. (11)–(13) defined by
Z

XS

cijklekl deij dv ) dUTKuU; ð14aÞ

qS

Z

XS

ui dui dv ) dUTMuU; ð14bÞ

Z

XS

ekijEk deij dv ) dUTCuwW; ð14cÞ

Z

XS

eiklekl dEi dv ) dW
TCT

uwU; ð14dÞ

Z

R

pni dui ds ) dUTCupP; ð14eÞ

Z

R

uini dpds ) dPTCT
upU; ð14fÞ

1

qF

Z

XF

p
;i dp;i dv ) dPTKpP; ð14gÞ

1

qFc
2
F

Z

XF

pdpdv ) dPTMpP; ð14hÞ

Z

XS

�ikEk dEi dv ) dW
TKwW; ð14iÞ

Z

Cr

F d
i dui ds ) dUTF; ð14jÞ

Z

CD

Qd
dwds ) dW

TQ; ð14kÞ

where Mu and Ku are the mass and stiffness matrices of the
structure; Cuw is the electro-mechanical coupled stiffness
matrix; Kw is the electric stiffness matrix; Mp and Kp are
the mass and stiffness matrices of the fluid; Cup is the
fluid–structure coupled matrix; F and Q are the applied
mechanical force and charge vectors respectively.

Thus, the variational equations (11)–(13) for the fluid/
piezoelectric-structure coupled problem can be written, in
discretized form, as the following unsymmetric matrix
system:

Mu 0 0

0 0 0

CT
up 0 Mp

2

6

4

3

7

5

€U

€W

€P

2

6

4

3

7

5
þ

Ku �Cuw �Cup

CT
uw Kw 0

0 0 Kp

2

6

4

3

7

5

U

W

P

2

6

4

3

7

5
¼

F

Q

0

2

6

4

3

7

5

ð15Þ

with appropriate initial conditions.

3. Coupled fluid/piezoelectric-structure eigenvalue problem

In order to compute the natural vibration modes of the
fluid/piezoelectric-structure coupled problem, we consider
harmonic solutions for the structure displacement ui, elec-
tric potential w, and fluid pressure p, i.e. we assume the fol-
lowing form for ui, w and p:

uiðx; tÞ ¼ uiðxÞ expðixtÞ for x 2 XS; tP 0;

wðx; tÞ ¼ wðxÞ expðixtÞ for x 2 XS; tP 0;

pðx; tÞ ¼ pðxÞ expðixtÞ for x 2 XF; tP 0;

where x > 0 is the circular frequency. Note that, for sake
of simplicity, we keep the same notation for the variables
in terms of (x; t) and those only in terms of (x).

Substituting these expressions in Eqs. (11)–(13), the vari-
ational formulation of the fluid/piezoelectric-structure spec-
tral problem consists in finding x 2 Rþ and ðui;w; pÞ 2
ðC�

u;C
�
w;CpÞ, such that 8ðdui; dw; dpÞ 2 ðC�

u;C
�
w;CpÞ:

Z

XS

cijklekl deij dv�

Z

XS

ekijEk deij dv�

Z

R

pni dui ds

� x2qS

Z

XS

uidui dv ¼ 0; ð16Þ

Z

XS

eiklekl dEi dvþ

Z

XS

�ikEk dEi dv ¼ 0; ð17Þ

1

qF

Z

XF

p
;i dp;i dv

�
x2

qFc
2
F

Z

XF

pdpdv� x2

Z

R

uini dpds ¼ 0: ð18Þ

In discretized form, the previous variational formulation
can be written as

Ku �Cuw �Cup

CT
uw Kw 0

0 0 Kp

2

6

4

3

7

5
�x2

Mu 0 0

0 0 0

CT
up 0 Mp

2

6

4

3

7

5

0

B

@

1

C

A

U

W

P

2

6

4

3

7

5
¼

0

0

0

2

6

4

3

7

5
:

ð19Þ

Using the second row of Eq. (19), the degrees-of-free-
dom associated with the electric potential can be expressed
in terms of structure displacements as

W ¼ �K�1
w CT

uwU: ð20Þ

Thus, after substitution of W into Eq. (19), we get the
following spectral problem in terms of U and P

Ku þ KA �Cup

0 Kp

" #

� x2
Mu 0

CT
up Mp

" #!

U

P

� �

¼
0

0

� �

;

ð21Þ

where the ‘‘added-stiffness matrix’’ KA, which is due to the
electromechanical coupling [18], is given by

KA ¼ CuwK
�1
w CT

uw: ð22Þ

Remark. When the piezoelectric coupling constants are set
to zero, i.e. KA ¼ 0, we obtained the unsymmetric (ui; p)
classical fluid–structure system:

Ku �Cup

0 Kp

� �

� x2
Mu 0

CT
up Mp

" # !

U

P

� �

¼
0

0

� �

: ð23Þ

4. Symmetrized finite element formulation for the fluid/

piezoelectric-structure eigenvalue coupled problem

In the previous section, a non-symmetric eigenvalue for-
mulation has been obtained. The aim of this section is to
establish a symmetric formulation of the fluid/piezoelec-
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tric-structure coupled problem in view of a direct treatment
by finite elements. This symmetrization is obtained through
introduction of an intermediate unknown field [15], namely
the fluid displacement potential field u, defined up to an
additive constant, such that uFi ¼ u;i (u

F
i is the fluid dis-

placement). We shall see in the next section that this prob-
lem can be reduced, by means of an elimination procedure,
to an eigenvalue problem in terms of (ui,w;p).

The equations of the coupled spectral problem in terms
of (ui,w;p,u) can be rewritten as follows:

rij;j þ x2qSui ¼ 0 in XS; ð24aÞ

rijn
S
j ¼ 0 on Cr; ð24bÞ

ui ¼ 0 on Cu; ð24cÞ

rijn
S
j ¼ x2qFuni on R; ð24dÞ

Di;i ¼ 0 in XS; ð25aÞ

Din
S
i ¼ 0 on CD; ð25bÞ

w ¼ 0 on Cw; ð25cÞ

qFu;ii þ
p

c2F
¼ 0 in XF; ð26aÞ

u;ini ¼ uini on R; ð26bÞ

p

qFc
2
F

¼
x2

c2F
u in XF: ð26cÞ

The corresponding variational formulation, involving
structure displacement, electric potential, fluid displace-
ment potential, and pressure can be easily obtained as
described below:

• Multiplying Eq. (24a) by dui 2 C�
u, integrating by parts

over XS (using Green’s formula), taking into account
the boundary conditions (Eqs. (24b)–(24d)) and using
the piezoelectric constitutive equation (Eq. (4)), leads to
Z

XS

cijklekl deij dv�

Z

XS

ekijEk deij dv� x2qS

Z

XS

ui dui dv

� x2qF

Z

R

uni dui ds ¼ 0 8dui 2 C�
u: ð27Þ

• Multiplying Eq. (25a) by dw 2 C�
w, integrating over XS,

taking into account the boundary conditions (Eqs.
(25b) and (25c)) and using the piezoelectric constitutive
equation (Eq. (5)), we have
Z

XS

eiklekl dEi dvþ

Z

XS

�ikEk dEi dv ¼ 0 8dw 2 C�
w: ð28Þ

• Multiplying Eq. (26c) by a test-function dp 2 Cp, inte-
grating over XF, we have

1

qFc
2
F

Z

XF

pdpdv�
x2

c2F

Z

XF

udpdv ¼ 0 8dp 2 Cp: ð29Þ

• Finally, we consider the space Cu of sufficiently regular
functions u defined in XF. Multiplying Eq. (26a) by

du 2 Cu, integrating over XF, applying Green’s formula,
and taking Eq. (26b) into account, we obtain

� qF

Z

XF

u;i du;idvþ qF

Z

R

uini dudsþ
1

c2F

Z

XF

pdudv ¼ 0

8du 2 Cu: ð30Þ

Then, the variational formulation consists in finding
x 2 Rþ and ðui;w; p;uÞ 2 ðC�

u;C
�
w;Cp;CuÞ satisfying Eqs.

(27)–(30).
The discretization of the preceding formulation leads to

the following symmetric matrix equation:

Ku �Cuw 0 0

�CT
uw �Kw 0 0

0 0 Mp 0

0 0 0 0

2

6

6

6

4

3

7

7

7

5

� x2

Mu 0 0 A

0 0 0 0

0 0 0 B

AT 0 BT �Fu

2

6

6

6

4

3

7

7

7

5

0

B

B

B

@

1

C

C

C

A

�

U

W

P

U

2

6

6

6

4

3

7

7

7

5

¼

0

0

0

0

2

6

6

6

4

3

7

7

7

5

; ð31Þ

where U, W, P and U are the vectors of nodal values of ui,
w, p and u respectively, and where the not yet defined sub-
matrices of Eq. (31) are given by:

qF

Z

R

uni dui ds ) dUTAU; ð32aÞ

qF

Z

R

uini duds ) dU
TATU; ð32bÞ

1

c2F

Z

XF

udpdv ) dPTBU; ð32cÞ

1

c2F

Z

XF

pdudv ) dU
TBTP; ð32dÞ

qF

Z

XF

u;i du;i dv ) dU
TFuU: ð32eÞ

After elimination of degrees-of-freedom associated with
the electric potentialW using the second row of Eq. (31), we
obtain the following symmetric system in terms of U, P and
U:

KuþKA 0 0

0 Mp 0

0 0 0

2

6

4

3

7

5
�x2

Mu 0 A

0 0 B

AT BT �Fu

2

6

4

3

7

5

0

B

@

1

C

A

U

P

U

2

6

4

3

7

5
¼

0

0

0

2

6

4

3

7

5
;

ð33Þ

where KA is given by Eq. (22).
We recall that the matrix KA, which is due to the piezo-

electric properties of the structure, is added to the struc-
tural elastic stiffness matrix. The main advantage of Eq.
(33), when compared to Eq. (19), is the possibility of using
symmetric eigenvalue solvers. The drawback is naturally
the doubling of fluid degrees-of-freedom. In fact, this dis-
advantage can be avoided following the rigorous condensa-
tion procedure described in the next section.
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5. Symmetric reduced model for fluid/piezoelectric-structure

eigenvalue coupled problem

In this section, in order to obtain a symmetric reduced
model for the fluid/piezoelectric-structure coupled prob-
lem, we propose to eliminate the fluid displacement poten-
tial U in the symmetric formulation given in the last
section.

First, the third row of Eq. (33) is written:

ATUþ BTP� FuU ¼ 0: ð34Þ

In Eq. (34), the matrix Fu is singular and consequently
U cannot be directly expressed in terms of U and P. In
order to avoid this problem, we use the procedure
described by Morand and Ohayon for elasto-acoustic
problems [15] as detailed below.

Let us define a partitioning of U by letting UT ¼ ½U1U
T
2 �

where U1 denotes a particular component of U (here, the
first), which induces the following partitioning of the matri-
ces A, B and Fu in Eq. (33):

Ku þKA 0 0 0

0 Mp 0 0

0 0 0 0

0 0 0 0

2

6

6

6

4

3

7

7

7

5

�x2

Mu 0 A1 A2

0 0 B1 B2

AT
1 BT

1 �F u11 �Fu12

AT
2 BT

2 �Fu21 �Fu22

2

6

6

6

4

3

7

7

7

5

0

B

B

B

@

1

C

C

C

A

�

U

P

U1

U2

2

6

6

6

4

3

7

7

7

5

¼

0

0

0

0

2

6

6

6

4

3

7

7

7

5

: ð35Þ

Fu22 being nonsingular, U2 can be expressed in terms of
U, P and U1 using the fourth row of Eq. (35):

U2 ¼ �F�1
u22Fu21U1 þ F�1

u22A
T
2Uþ F�1

u22B
T
2P: ð36Þ

Considering this relation, the third row of Eq. (35)
becomes:

ðAT
1 � Fu12F

�1
u22A

T
2 ÞUþ ðBT

1 � Fu12F
�1
u22B

T
2 ÞP

¼ ðF u11 � Fu12F
�1
u22Fu21ÞU1: ð37Þ

Moreover, it can be shown that:

F u11 � Fu12F
�1
u22Fu21 ¼ 0 ð38Þ

because the kernel vector of Fu is constant (see Ref. [15,
Chapter 8, p. 158]).

Thus, Eq. (37) can be written as:

aTUþ bTP ¼ 0; ð39Þ

where matrices a and b are defined by:

aT ¼ AT
1 � Fu12F

�1
u22A

T
2 ; ð40aÞ

bT ¼ BT
1 � Fu12F

�1
u22B

T
2 : ð40bÞ

Finally, replacing U2 by its expression Eq. (36) in the
two first rows of Eq. (35) and using Eq. (39), the following
matrix system is obtained:

Ku þ KA 0 0

0 Mp 0

0 0 0

2

6

4

3

7

5
� x2

Mu þ A2F
�1
u22A

T
2 A2F

�1
u22B

T
2 a

B2F
�1
u22A

T
2 B2F

�1
u22B

T
2 b

aT bT 0

2

6

6

4

3

7

7

5

0

B

B

@

1

C

C

A

�

U

P

U1

2

6

4

3

7

5
¼

0

0

0

2

6

4

3

7

5
; ð41Þ

which exhibits the matrix MS, called the ‘‘generalized
added-mass operator’’ in the compressible case, which is
expressed as

MS ¼

A2F
�1
u22A

T
2 A2F

�1
u22B

T
2 a

B2F
�1
u22A

T
2 B2F

�1
u22B

T
2 b

aT bT 0

2

6

6

4

3

7

7

5

: ð42Þ

We note that the relation aTUþ bTP ¼ 0, corresponding
to the last row of Eq. (41), is the discretization of the var-
iational property (30) for du constant:

qF

Z

R

uini dsþ
1

c2F

Z

XF

pdv ¼ 0: ð43Þ

This latter equation results from the global mass conser-
vation in XF.

6. Numerical results

We present in this section some finite element results,
obtained with the previous formulation, for the free vibra-
tion analysis of elastic/piezoelectric structures coupled with
compressible fluid. These results are computed via a spe-
cific Matlab software developed by the authors for axisym-
metric geometries. The structure is discretized using an
axisymmetric laminated piezoelectric conical shell element.
This two-node element is based on the Kirchhoff–Love the-
ory and combines an equivalent single layer approach for
the mechanical behavior with a layerwise representation
of the electric potential in the thickness direction. The fluid
domain is discretized with quadrilateral axisymmetric ele-
ments. Moreover, a semi-analytical procedure combining
the finite element method and Fourier series expansion in
the circumferential direction, is used [19].

The first example concerns the free vibration of an axi-
symmetric elastic tank filled with fluid. In this example,
we analyse the added mass effect of the fluid on the natural
vibration of the coupled system. The second example,
which concerns the free vibration of a simply supported
piezoelectric cylindrical shell filled with compressible fluid,
illustrates (i) the added stiffness effect due to the piezoelec-
tric material and (ii) the added mass effect due to the fluid.

6.1. Free vibration of an axisymmetric tank filled with fluid

This example concerns the vibration analysis of an axi-
symmetric tank clamped along its central circumference
edge and completely filled with a compressible fluid. The
geometry of the tank is presented in Fig. 3 and the follow-
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ing mechanical properties are used: Young’s modulus
E = 210 GPa, Poisson’s ratio m ¼ 0:3 and mass density
qS ¼ 8000 kg/m3. The considered fluid has a mass density
qF ¼ 565 kg/m3 and a speed of sound cF ¼ 730 m/s.

Table 1 and Figs. 4–7 present the natural frequencies
and the mode shapes (fluid pressure and shell displace-
ment) of (i) the fluid in a rigid cavity, (ii) the structure with-
out fluid and (iii) the fluid–structure coupled system. All of
these eigenmodes are computed for harmonic n = 1. The
3D mode shapes of the structure in uncoupled (Fig. 5)

and coupled (Fig. 7) cases have been constructed from
the 1D element using the Fourier series expansion of the
displacement field in the circumferential direction.

From the second column of Table 1 and from Fig. 5, it
can be seen that there are two mode shapes at each natural
frequency for the tank without fluid. This is due to the
boundary condition at the centre of the tank.

Table 1 and Figs. 5 and 7 show that the eigenmodes C1

and C2 are structural modes corresponding to the first two
first modes S1 and S2 of the empty shell. In fact, the mode
shapes C1 and C2 are the sum of the mode shapes S1 and S2

in two different geometrical configurations. This is due to
the presence of the fluid which couples, through the added
mass effect, the mode shapes associated with the double fre-
quencies 363.1 Hz. Moreover, the eigenmodes C3, C4, C5

and C6 correspond to the first four eigenmodes of the fluid
in the rigid cavity (F1,F2,F3,F4) with a similar shape but
different frequencies.

1.5 m

0.5 m

0.5 m

0.05 m

Fluid

Structure

clamped

Fig. 3. Axisymmetric tank filled with fluid: geometrical data and meshes.

Table 1

Frequencies (Hz) of (i) the fluid in a rigid cavity, (ii) the structure without

fluid, and (iii) the fluid–structure coupled system, for harmonic n = 1

Fluid (F) in a

rigid cavity

Structure (S)

without fluid

Coupled (C)

problem

F1 = 438.1 S1 = 363.1 C1 = 311.3

F2 = 487.1 S2 = 363.1 C2 = 316.0

F3 = 577.7 S3 = 1052.2 C3 = 470.5

F4 = 693.7 S4 = 1052.2 C4 = 537.6

F5 = 817.9 S5 = 1372.8 C5 = 595.9

F6 = 940.6 S6 = 1372.8 C6 = 672.7

Fig. 4. First six mode shapes of the fluid in rigid cavity for harmonic n = 1.

Fig. 5. First six mode shapes of the structure without fluid for harmonic n = 1.
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6.2. Free vibration of a piezoelectric cylindrical shell filled

with a compressible fluid

We present in this second example a comparative study
of a simply supported piezoelectric cylindrical shell filled
with compressible fluid. The geometrical properties are
L = 5 m, R = 1 m and h = 0.02 m (Fig. 8). Moreover, the
piezoelectric material is the PZT-5H [20] and the consid-
ered fluid has a mass density qF ¼ 1000 kg/m3 and a speed
of sound cF ¼ 1500 m/s. Note that a null pressure is pre-
scribed at both ends of the fluid cylinder.

Table 2 presents the frequencies of the empty piezoelec-
tric cylinder calculated by our finite element method and
those given by an exact three-dimensional solution pro-
posed by the authors [20]. This exact solution is based on
a mixed state-space approach previously developed for
the free-vibration analysis of laminated piezoelectric plates
actuated by transverse shear mechanisms [21].

As it can be observed from this table, there is a good
agreement between finite element and exact solutions for

Fig. 6. Fluid–structure coupled modes: 2D fluid pressure and shell displacement.

Fig. 7. Fluid–structure coupled modes: 3D shell displacement.

h=0.02m

R=1m

L=5m

Fig. 8. Geometrical data and meshes of the piezoelectric cylindrical shell filled with compressible fluid.

Table 2

Frequencies (Hz) of a piezoelectric cylindrical shell: comparison with an

exact state space solution [20]

n Short circuited Open circuited

Present Exact Error % Present Exact Error %

1 87.81 88.23 0.48 93.37 93.79 0.45

216.13 216.26 0.06 228.16 228.23 0.03

278.71 275.96 �1.00 278.71 275.96 �1.00

312.56 311.65 �0.29 331.70 330.65 �0.32

368.99 366.97 �0.55 383.70 392.13 2.15

2 36.70 37.32 1.64 39.49 40.11 1.55

113.54 114.21 0.59 121.98 122.68 0.57

193.36 193.79 0.22 207.47 207.92 0.21

259.39 259.35 �0.02 278.51 278.43 �0.03

308.94 308.46 �0.15 332.12 331.55 �0.17
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different electric boundary conditions corresponding to
short-circuited (wd ¼ 0 on oXS) or open-circuited (Qd ¼ 0
on oXS) configurations. These boundary conditions are
prescribed on the inner and outer surface of the piezoelec-
tric shell. Note that the error committed by the finite ele-
ment approximation is lower than 3%. We can observe
that the frequency of the third mode for n = 1
(278.71 Hz) is not influenced by the electric boundary con-
ditions. This is due to the fact that this axial mode does not
induce any electromechanical coupling due to the radial
electric polarization. For the other modes, as expected,
the natural frequencies are higher in the open-circuit case
than in the closed-circuit one. This weak difference should
not be neglected. It might be used to assess the piezoelectric
effect through the so-called effective modal electromechan-
ical coupling coefficient [21]. For illustration purpose, the
mode shapes associated with the frequencies given in Table
2 are presented in Figs. 9 and 10.

Table 3 presents the eigenfrequencies of the fluid/piezo-
electric-structure coupled system computed by our finite
element approach and those obtained by the exact solution
[20]. The results, given for the two first circumferential har-
monics, show a good agreement between the two methods
validating the finite element electromechanical–acoustic
formulation. It is important to note that the difference
between exact and finite element solutions can increase
for higher modes, in particular due to the linearity assump-
tion of the electric potential used in the finite element
modeling. As expected, the frequencies are lower in the
fluid–structure case due to the added mass effect of the fluid.

7. Conclusions

In this paper, a symmetric finite element formulation for
fluid/piezoelectric-structure coupled problem has been
proposed. The local equations, in terms of structure dis-
placement, electric potential and fluid pressure, and the
corresponding unsymmetric variational formulation are
first presented. Then, through the introduction of addi-
tional variable, namely fluid displacement potential, a sym-
metric formulation is established. It is shown that the
electric potential and the fluid displacement potential can
be eliminated from this symmetric formulation using a con-
densation procedure. This rigorous procedure is related to
the fluid added mass and piezoelectric added stiffness

Fig. 9. First five mode shapes of the cylindrical shell for harmonic n = 1 in the short-circuited case.

Table 3

Frequencies (Hz) of a piezoelectric cylindrical shell filled with a

compressible fluid: comparison with an exact state space solution [20]

n Short circuited Open circuited

Present Exact Error % Present Exact Error %

1 45.44 44.76 �1.53 49.49 48.27 �2.53

108.92 107.39 �1.42 115.31 115.61 0.26

154.56 154.13 �0.28 166.24 166.06 �0.10

191.02 189.33 �0.89 209.63 204.21 �2.66

220.02 217.19 �1.30 236.25 234.47 �0.76

2 19.64 19.92 1.40 21.00 21.46 2.16

62.50 62.60 0.16 66.93 67.62 1.03

108.11 108.57 0.43 116.42 117.25 0.71

148.61 149.02 0.28 161.25 160.91 �0.21

182.89 182.82 �0.04 197.33 197.40 0.04

Fig. 10. First five mode shapes of the cylindrical shell for harmonic n = 2 in the short-circuited case.
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concepts. Some preliminary numerical examples concern-
ing axisymmetric elastic/piezoelectric structures filled with
internal compressible fluid are presented in order to vali-
date the proposed formulation. Structural–acoustic appli-
cations using passive/active noise reduction techniques
with damping materials and piezoelectric patches are in
progress.
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