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Reduced models for modal analysis of fluid–structure systems
taking into account compressibility and gravity effects

O. Andrianarison, R. Ohayon *

Conservatoire National des Arts et Métiers (CNAM), Chair of Mechanics,
Structural Mechanics and Coupled Systems Laboratory, 2, rue Conté, F-75003 Paris, France

It is proposed to investigate and discuss, from theoretical point of view, various reduced order variational formulations for modal anal-
ysis of linear vibrations of bounded fluid–structure systems with free surface, taking into account possible gravity/compressibility inter-
actions, in a non-homogeneous fluid situation.

Those formulations are based on substructural synthesis techniques and various modal reduction schemes are then obtained.
In a previous paper, various original formulations have been exhibited associated to numerical validation. The present paper starts

from those formulations in order to construct theoretically various reduced order models.

Keywords: Fluid–structure interactions; Gravity; Compressibility; Acoustic; Sloshing; Modal reduction; Substructuring

1. Introduction

Formulation, numerical analysis and computer implementation of fluid–structure interaction problems have attracted
many researchers attention. In the context of linear vibration analysis of coupled internal fluid–structure interactions, it
is customary to consider two distinct situations: linear vibrations of an elastic structure completely filled with a homoge-

neous compressible gas or liquid (without gravity effects) and linear vibrations of an elastic structure containing an homo-

geneous incompressible liquid with free surface effects due to gravity. Most of studies dealing with coupled fluid–structure
interaction thus fall into these two classes according to the frequency domain of interest.

We consider here the case of a non-homogeneous, compressible liquid, with internal and free-surface gravity effects.
Those effects must be quantified for instance for vibrations analysis of cryogenic fluids in liquid-propelled launchers. To
the authors knowledge, this situation has only been analysed within the assumption that the internal gravity waves are neg-
ligible [7,12,14,16,17,19]. In Refs. [1,2], we have established the basic equations of the problem together with original
appropriate variational formulations. The objective of this theoretical paper is to derive reduced order models in the
non-homogeneous case from theoretical point of view. The numerical validation of those models will be the purpose of
a forthcoming paper.

For that purpose, substructure synthesis techniques are used (see for instance, in structural dynamics, [6,9,15,3]).
Component mode analysis have also been established for fluid–structure vibration problems (see for instance [11,13]). In

the approach presented in this paper, generalized coordinates are introduced to represent the liquid behaviour. The
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kinematically admissible space relative to the liquid domain (considered as non-homogeneous, compressible and subjected
to gravity effects) is then decomposed into the direct sum of three subspaces: acoustic, sloshing and internal gravity waves
subspaces. This decomposition of the solution is then substituted in different variational formulations and reduced sym-
metric matrix models are then obtained.

The outline of the paper is as follows: in Section 2, we introduce the basic equations and the associated variational prin-
ciple relative to the general case of an inviscid non-homogeneous compressible liquid. In the following two sections we dis-
tinguish the cases of incompressible and compressible liquid: in Section 3, we state a modal reduction scheme for the case of
a non-homogeneous incompressible hydroelastic–sloshing model and in Section 4, the case of a compressible hydroelastic–

sloshing model is derived. Section 5 concerns modal reduction of the homogeneous compressible hydroelastic–sloshing case.

2. General case of an inviscid non-homogeneous liquid. Basic equations and variational formulation

The purpose of this section is to derive the variational formulation associated with a fluid–structure coupled problem
subjected to gravity field [1]. The situation analysed in this section is that of a general non-homogeneous liquid. Local equa-
tions relative to this problem have already been derived in a earlier paper [2] through linearized Euler and mass conserva-
tion equations.

We adopt here a more direct approach: the variational formulation is stated through the classical principle of virtual
work and the local equations are then obtained through linearization of the Piola–Lagrange stress tensor around a pre-
stressed reference configuration.

2.1. Liquid subjected to a prescribed normal displacement

Let us consider a liquid domain of volume XF. The boundary of XF is supposed to satisfy

oXF ¼ C [ R ð1Þ

with C \ R = ;.
C denotes the liquid free surface and R denotes the fluid–structure interface. The outer unit normal vector to oXF is

denoted by n on the fluid–structure interface R and by iz on the liquid free surface C (Fig. 1).
The weak variational formulation describing the response of the fluid to a prescribed normal displacement on the fluid–

structure interface R is obtained through the principle of virtual work as follows:
Z

XF

DivH � duF þ

Z

XF

q0
F g � duF ¼ �x2

Z

XF

q0
F uF � duF ; ð2Þ

where H refers to the spherical Piola–Lagrange stress tensor defined by

HðM ;tÞ ¼ �JP ðM 0
;tÞ IdF

�T
; ð3Þ

P ðM 0
;tÞ denotes the instantaneous pressure in the actual configuration, F denotes the gradient of the transformation

M ! M 0, J is its jacobian and Id is the identity matrix.
In Eq. (2), duF denotes the virtual variation of the fluid displacement vector field uF, q

0
F and g denote respectively the

mass density and the gravity field (supposed constant) whereas x refers to the angular frequency of vibrations.
In order to linearize H, the following quantities are considered:

• the eulerian pressure fluctuation

pðM ; tÞ ¼ P ðM ;tÞ � P 0
ðMÞ; ð4Þ

ηΓ

Σ
Ω

Ω

Fig. 1. Fluid–structure coupled system.
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• the lagrangian pressure fluctuation

pLðM ; tÞ ¼ P ðM 0
;tÞ � P 0

ðMÞ; ð5Þ

• the eulerian density fluctuation

qðM ; tÞ ¼ qF ðM ; tÞ � q0
F ðMÞ; ð6Þ

• the lagrangian density fluctuation

qLðM ; tÞ ¼ qF ðM
0
; tÞ � q0

F ðMÞ; ð7Þ

where P 0
ðMÞ is the liquid hydrostatic pressure and q0

F ðMÞ is the liquid density in the reference configuration.

It can be shown that these linearized quantities satisfy the following relations [2,11]:

pL � p ¼ q0
F g � uF 8M 2 XF ;

qL � q ¼ ðuF � izÞ
oq0

F

oz
8M 2 Xf ;

pL ¼ c2qL 8M 2 XF ;

qL ¼ �q0
F DivuF 8M 2 XF .

8
>>>>><
>>>>>:

ð8Þ

Notice that in the particular case of a homogeneous weightless (i.e. gravity neglected) compressible fluid or homogeneous

heavy incompressible liquid, no distinction is to be made between p and pL in Eqs. (4) and (5). Otherwise these two state
variables are to be distinguished and combination of Eqs. (8) yields the following constitutive relation:

p

c2
þ q0

F DivuF �
q0
F g

c2
ðuF � izÞ ¼ 0. ð9Þ

Considering now the first order Taylor expansion of J and F�T, it can be shown [8] that the Piola–Lagrange stress tensor
defined in Eq. (2) writes:

H ¼ �pL Id� P 0 Idþ P 0rTuF � P 0 IdDivuF ; ð10Þ

hence

DivH ¼ �rpL �rP 0 �rP 0DivuF þrTuFrP 0. ð11Þ

Eq. (2) then writes:
Z

XF

rpL � duF þ

Z

XF

rP 0 � duF þ

Z

XF

rP 0 � duF DivuF �

Z

XF

duF � rTuFrP 0 �

Z

XF

q0
F g � duF ¼ x2

Z

XF

q0
F uF � duF . ð12Þ

Moreover, the hydrostatic equation writes

rP 0 ¼ q0
F g in XF ð13Þ

with its variational form
Z

XF

rP 0 � duF ¼

Z

XF

q0
F g � duF . ð14Þ

Integrating by parts the first integral of Eq. (12), taking into account the constitutive Eqs. (8)1 and (8)2 and combining with
Eq. (13), we have finally:

Z

XF

q0
F c

2DivuF DivduF þ

Z

XF

q0
F g � duF DivuF þ

Z

XF

q0
F g � uF DivduF �

Z

XF

g
oq0

F

oz
ðuF � izÞðduF � izÞ

þ

Z

C

q0
F gðuF � izÞðduF � izÞ þ

Z

R

pn � duF ¼ x2

Z

XF

q0
F uF � duF . ð15Þ

In Eq. (15), the free surface condition on C has been used as follows:

p ¼ �q0
F g � uF on C. ð16Þ

Let us now introduce the following admissible spaces:

CF ¼ fuF regular in XF such that: uF � n ¼ uN on Rg ð17Þ
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and

C
�
F ¼ fuF regular in XF such that: uF � n ¼ 0 on Rg; ð18Þ

where uN denotes a prescribed normal displacement field of the fluid–structure interface R.
We can then state the following symmetric variational formulation in terms of uF:

for given x 2 Rþ
; find uF 2 CF ; such that 8duF 2 C

�
F :

Z

XF

q0
F c

2DivuF DivduF þ

Z

XF

q0
F g � duF DivuF þ

Z

XF

q0
F g � uF DivduF

�

Z

XF

g
oq0

F

oz
ðuF � izÞðduF � izÞ þ

Z

C

q0
F gðuF � izÞðduF � izÞ

¼ x2

Z

XF

q0
F uF � duF .

8
>>>>>>>>>>><
>>>>>>>>>>>:

ð19Þ

The local boundary value problem is then derived from the previous variational formulation by using Green formula:

rpðuF Þ þ q0
F gDivuF þ

oq0
F

oz
gðuF � izÞ ¼ q0

Fx
2uF ðXF Þ;

pðuF Þ ¼ �q0
F g � uF ðCÞ;

uF � n ¼ uN ðRÞ

8
>><
>>:

ð20Þ

in which p(uF) is defined by Eq. (9).
It is worth noting that formulations defined by Eqs. (19) and (20) contain internal gravity terms (contributions of gravity

inside the domain XF) which are often neglected in literature [10].
Namely, the situation where compressibility effects act in the fluid domain and gravity effects are confined on the free

surface only can be considered as an approximated modeling. Its mechanical description can be stated by considering the
limit case of constant mass density in Eqs. (19) and (20). We thus have the following variational formulation:

for given x 2 Rþ
; find uF 2 CF ; such that 8duF 2 C

�
F :

Z

XF

q0
F c

2DivuF DivduF þ

Z

XF

q0
F g � duF DivuF þ

Z

XF

q0
F g � uF DivduF

þ

Z

C

q0
F gðuF � izÞðduF � izÞ � x2

Z

XF

q0
F uF � duF ¼ 0;

8
>>>>>><
>>>>>>:

ð21Þ

whereas the associated local boundary value problem writes:

rpðuF Þ þ q0
F gDivuF ¼ q0

Fx
2uF ðXF Þ;

pðuF Þ ¼ �q0
F g � uF ðCÞ;

uF � n ¼ uN ðRÞ.

8
><
>:

ð22Þ

2.2. Structure subjected to a liquid pressure loading

The unknown displacement field in the structure domain is denoted as uS, the associated linearized deformation tensor
as eij(uS) and the corresponding stress tensor rij(uS). We also denote as q0

S the constant mass density of the structure at
equilibrium and duS the test function associated to uS, belonging to the kinematically admissible space CS

u of regular func-
tions in XS.

The weak variational formulation describing the response of the structure XS to given harmonic forces of amplitude F
on Rd, and to fluid pressure field p acting on R is written as follows:

for given F and x 2 Rþ
; find uS 2 C

S
u ; such that 8duS 2 C

S
u :

bK ðuS ; duSÞ � x2

Z

XS

q0
SuS � duS �

Z

R

pduS � n ¼

Z

Rd

F � duS ;

8
><
>:

ð23Þ

bK ðuS ; duSÞ denotes the elastogravity operator. This operator takes into account the effect of gravity forces on the fluid–
structure interface and is defined as

bK ðuS ; duSÞ ¼ KðuS ; duSÞ þ KGðuS ; duSÞ þ KRðuS ; duSÞ; ð24Þ
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where

• KðuS ; duSÞ ¼
R
XS

rijðuSÞeijðduSÞ is the usual mechanical elastic stiffness,

• KGðuS ; duSÞ ¼
R
XS

r0
ijum;i dum;j refers to the classical structural geometric prestress symmetric bilinear form in which r0

ij

denotes the prestress tensor,
• KRðuS ; duSÞ ¼ �q0

F g
R
R
½zn1ðuSÞ � duS þ ðiz � uSÞðduS � nÞ� represents prestress symmetric bilinear form due to rotation of

the external normal n. z is the vertical coordinate. The outward normal vector n is dependent of the displacement uS
and n1(uS) is its first order Taylor-expansion with respect to uS.

For detailed derivation of these operators, we refer the reader to [11,18].

2.3. The coupled problem

To write the variational formulation associated with the coupled problem subjected to given surface forces F, consider
the following admissible spaces:

� C
S
u ¼ fuS regular in XSg; ð25Þ

� C
F
u ¼ fuF regular in XF g; ð26Þ

� Cp ¼ fp regular in XF g; ð27Þ

� C
S;F
u ¼ fuS 2 C

S
u ; uF 2 C

F
u : uS � n ¼ uF � n on Rg. ð28Þ

The variational formulation of the coupled problem is obtained by considering both Eqs. (21) and (23):

given F and x 2 Rþ
; findðuS ; uF Þ 2 C

S;F
u such that 8ðduS; duF Þ 2 C

S;F
u :

bK ðuS ; duSÞ þ

Z

XF

q0
F c

2DivuF DivduF �

Z

XF

g
oq0

F

oz
ðu � izÞðdu � izÞ

þ

Z

C

q0
F gðuF � izÞðduF � izÞ þ

Z

XF

q0
F g � uF DivduF

þ

Z

XF

q0
F g � duF DivuF � x2

Z

XS

q0
SuS � duS þ

Z

XF

q0
F uF � duF

� �
¼

Z

Rd

F � duS .

8
>>>>>>>>>>><
>>>>>>>>>>>:

ð29Þ

The kinematic compatibility condition between uS and uF on R may be relaxed by applying the Lagrange multipliers meth-
od. It can be shown that the Lagrange multiplier associated with this condition represents the pressure so that the following
three-fields variational equation is obtained:

given F and x 2 Rþ
; findðuS 2 C

S
u ; uF 2 C

F
u ; p 2 CpÞ such that

8ðduS ; duF ; dpÞ 2 C
S
u � C

F
u � Cp :

bK ðuS ; duSÞ �

Z

XF

g
oq0

F

oz
ðu � izÞðdu � izÞ þ

Z

XF

q0
F c

2DivuF DivduF

þ

Z

C

q0
F gðuF � izÞðduF � izÞ þ

Z

XF

q0
F g � uF DivduF þ

Z

XF

q0
F g � duF DivuF

þ

Z

R

pn � ðduF � duSÞ � x2

Z

XS

q0
SuS � duS þ

Z

XF

q0
F uF � duF

� �
¼

Z

Rd

F � duS

Z

R

dpn � ðuF � uSÞ ¼ 0.

8
>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð30Þ

3. Modal reduction schemes for the non-homogeneous incompressible hydroelastic–sloshing problem

The inviscid liquid is considered as non-homogeneous, incompressible. We consider here only internal gravity waves
(gravity effects are supposed to act only inside the liquid domain and not on the free surface).

The linearized local equations governing the response of the liquid subjected to a prescribed normal displacement uN
write

5



rpðuF Þ þ
oq0

F

oz
gðuF � izÞ ¼ q0

Fx
2uF ðXF Þ;

DivuF ¼ 0 ðXF Þ;

pðuF Þ ¼ 0 ðCÞ;

uF � n ¼ uN ðRÞ.

8
>>>>>><
>>>>>>:

ð31Þ

The associated variational formulation writes

given x 2 Rþ
; find uF 2 C

d
G such that 8duF 2 C

0
G :

�

Z

XF

g
oq0

F

oz
ðnF � izÞðduF � izÞ ¼ x2

Z

XF

q0
F uF � duF ;

8
><
>:

ð32Þ

where

� CG ¼ fuF 2 C
F
u ;DivnF ¼ 0 in XF g;

� C
d
G ¼ fuF 2 CG such that uF � n ¼ uN on Rg;

� C
0
G ¼ fuF 2 CG such that uF � n ¼ 0 on Rg.

3.1. Conjugate relations

Eigenmodes are obtained from Eq. (32) by letting uN = 0. The associated variational formulation writes:

find xa 2 R
þ and uaF 2 C

0
G such that 8duF 2 C

0
G :

�

Z

XF

g
oq0

F

oz
ðnaF � izÞðduF � izÞ ¼ x2

a

Z

XF

q0
F u

a
F � duF .

8
><
>:

ð33Þ

It can be shown that the eigenmodes ðxa; u
a
F Þ satisfy the following orthogonality relations (also called conjugate relations)

�

Z

XF

g
oq0

F

oz
ðnaF � izÞðu

b
F � izÞ ¼ dabx

2
ala;

Z

XF

q0
F u

a
F � nbF ¼ dabla;

8
>>><
>>>:

ð34Þ

where la and x2
ala are the generalized modal mass and rigidity of the a mode.

The static boundary functions u0F ðuNÞ are required to satisfy the following local equations

rp þ
oq0

F

oz
gðn0F � izÞ ¼ 0 ðXF Þ;

Divu0F ðuN Þ ¼ 0 ðXF Þ;

pðu0F Þ ¼ 0 ðCÞ;

u0F � n ¼ uN ðRÞ

8
>>>>>>><
>>>>>>>:

ð35Þ

and the corresponding variational formulation writes:

find u0F ðuN Þ 2 C
d
G 8duF 2 C

0
G :

Z

XF

oq0
F

oz
gðn0F ðuN Þ � izÞðduF � izÞ ¼ 0.

8
><
>:

ð36Þ

The first conjugate relation is obtained by letting duF be duF ¼ uaF in Eq. (36) so that we have
Z

X

oq0
F

oz
gðn0F ðuN Þ � izÞðu

a
F � izÞ ¼ 0. ð37Þ

The second relation is stated by considering the modal reaction force Ra corresponding to the eigenmode ðxa; u
a
F Þ. This

reaction force is such that
Z

R

Ra � u
0
F ðuN Þ ¼ �x2

a

Z

XF

q0
F n

a
F � u0F ðuN Þ ð38Þ

6



hence the following conjugate relation holds:
Z

XF

q0
F u

a
F � n0F ðuN Þ ¼ �

1

x2
a

Z

R

Ra � u
0
F ðuN Þ. ð39Þ

3.2. Internal gravity sloshing reduced model

In the static formulation defined by Eq. (36), we introduce CGðRÞ ¼ uN ðMÞ;M 2 R. As the solution u0F of Eq. (36)
depends linearly on uN, we introduce the mapping uN 2 CGðRÞ ! u0F ðuN Þ 2 C

d
G which is a static lifting operator of uN

and which is called in engineering the static boundary function. The image of CGðRÞ in this mapping is denoted C
s
G;R

and is called the space of static boundary functions.
To build a reduced model, let us therefore consider the following direct sum:

C ¼ C
s
G;R � C

0
G ð40Þ

so that the general solution can be searched in the form:

uF ¼ u0F ðuN Þ þ
XN

a¼1

qau
a
F . ð41Þ

The proof of this assertion rests upon the following two points:

• uF � u0F ðuN Þ ¼ 0 on R thus we have uF � u0F ðuN Þ 2 C
0
G; uF � u0F ðuNÞ can then be decomposed on the subspace C

0
G.

• Conversely, 8vF 2 C such that vN = vFjR, then we have vF � u0F ðvN Þ 2 C
0
G if u0F ðvN Þ denotes the solution of Eq. (36) for

uN = vN.

Combination of Eqs. (32), (34), (37) and (39) leads to the following reduced model:

find u0F ðuN Þ 2 C
s
G;R; and qa such that 8v0F 2 C

s
G;R:

�

Z

X

g
oq0

F

oz
ðu0F � izÞðv

0
F � izÞ � x2

Z

XF

q0
F u

0
F � v0F ¼ �x2

XN

a¼1

qa

Z

R

Ra

x2
a

� v0F

ð�x2 þ x2
aÞlaqa ¼ �x2

Z

R

Ra

x2
a

� u0F ;

8
>>>>>><
>>>>>>:

ð42Þ

where v0F ¼ u0F ðvNÞ refers to the static boundary function associated to an arbitrary displacement vN on R.

4. Modal reduction schemes for the non-homogeneous compressible hydroelastic–sloshing general case

It was shown earlier that the variational formulation associated to the coupling problem of an elastic structure in con-
tact with a non-homogeneous heavy compressible liquid states:

given x 2 Rþ and F; findðuS ; uF Þ 2 C
S;F
u such that 8ðduS; duF Þ 2 C

S;F
u :

bK ðuS ; duSÞ þ

Z

XF

q0
F c

2DivuF DivduF �

Z

XF

g
oq0

F

oz
ðuF � izÞðduF � izÞ

þ

Z

C

q0
F gðuF � izÞðduF � izÞ þ

Z

XF

q0
F g � uF DivduF þ

Z

XF

q0
F g � duF DivuF

�x2

Z

XS

q0
SuS � duS þ

Z

XF

q0
F uF � duF

� �
¼

Z

Rd

F � duS ;

8
>>>>>>>>>><
>>>>>>>>>>:

ð43Þ

where the kinematically admissible space C
S;F
u refers to

C
S;F
u ¼ fðuF ; uSÞ regular: uF � n ¼ uS � n on Rg.

The reduced model can be obtained by considering the following decomposition for the fluid displacement field:

uF ¼ uAC þ uSL þ uGW; ð44Þ

where uSL is the displacement relative to sloshing model, uAC is the displacement relative to compressible-hydroelastic
model whereas uGW refers to the internal gravity waves displacements. It should be noted that this representation
of the displacement field corresponds to the decomposition of CF

u as

C
F
u ¼ CAC � CSL � CG. ð45Þ

7



Replacing uF into the variational formulation (43) then leads to

given F and x; findðuS ; uAC; uSL; uGWÞ 2 C
S;F
u ; 8ðduS ; duF Þ 2 C

S;F
u :

eK ðuS ; duSÞ þ

Z

XF

q0
F c

2DivuACDivduF þ

Z

C

q0
F gðuSL � izÞðduF � izÞ

þ

Z

XF

q0
F g � duF DivuAC þ

Z

XF

q0
F g � ðuSL þ uAC þ uGWÞDivduF

�

Z

XF

g
oq0

F

oz
ðuGW � izÞðduF � izÞ

�x2

Z

XS

q0
SuS � duS þ

Z

XF

q0
F uSL � duF þ

Z

XF

q0
F uAC � duF þ

Z

XF

q0
F uGW � duF

� �

¼

Z

Rd

F � duS .

8
>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

ð46Þ

Incompressibility constraints DivuSL = 0 and DivuGW = 0 together with orthogonality conditions have been used to derive
this variational formulation [4,5].

Similarly let us decompose the virtual displacement vector into

duF ¼ duAC þ duSL þ duGW. ð47Þ

By enforcing the continuity of the liquid and structure normal displacement on their interface, the variational formulation
of the reduced model then rewrites, taking into account Eq. (47) and orthogonality properties between subspaces:

given x and F; findðuS ; uSL; uAC; uGW; pÞ; 8ðduS ; duSL; duAC; duGW; dpÞ:

eK ðuS ; duSÞ þ
R
C
q0
F gðuSL � izÞðduSL � izÞ þ

Z

XF

q0
F c

2DivuACDivduAC

�

Z

XF

g
oq0

F

oz
ðuGW � izÞðduGW � izÞ

þ

Z

XF

q0
F g � duACDivuAC þ

Z

XF

q0
F g � duSLDivuAC þ

Z

XF

q0
F g � duGWDivuAC

þ

Z

XF

q0
F g � uACDivduAC þ

Z

XF

q0
F g � uSLDivduAC þ

Z

XF

q0
F g � uGWDivduAC

�x2

Z

XS

q0
SuS � duS þ

Z

XF

q0
F uSL � duSL þ

Z

XF

q0
F uAC � duAC þ

Z

XF

q0
F uGW � duGW

� �

þ

Z

R

pn � ðduSL þ duAC þ duGW � duSÞ ¼

Z

Rd

F � duS .

8
>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð48Þ

Let us now consider the modal decompositions of each subspace as discussed in the previous section. Using Eqs. (A.14),
(A.25) and (40) (see Appendix A), we can write:

uSL ¼ u0SL þ
PN

i¼1

aiu
i
SL;

uAC ¼ u0AC þ
PN

i¼1

biu
i
AC;

uGW ¼ u0GW þ
PN

i¼1

ciu
i
GW;

8
>>>>>>>>><
>>>>>>>>>:

ð49Þ

where uiSL (resp. uiAC, u
i
GW) is the sloshing (resp. acoustic, internal gravity waves) modes and u0SL (resp. u0GW, u

0
AC) is the static

mode relative to sloshing (resp. internal gravity and acoustic waves) problems. By restricting duSL to fdu0SL; u
j

SLg, duAC to
fdu0AC; u

j

ACg and duGW to fdu0GW; u
j

GWg and taking into account the orthogonality and conjugate relations established in
Section 3 and Appendix A, the different terms of the variational formulation are obtained and detailed in Appendix A.

It should be noted that the obtained variational formulation is symmetric and its discretization in terms of so-called
reduced stiffness and mass matrices can be expressed as

8



eK 0 0 0 0 0 0

0 K00
SL;SL K00

SL;AC 0 0 K0i
SL;AC 0

0 K00T

SL;AC K00
AC;AC K00

GW;AC K i0
SL;AC K i0

AC;AC K i0
GW;AC

0 0 K00
GW;AC K00

GW;GW 0 K0i
GW;AC 0

0 0 K
j0
SL;AC 0 K

jj

SL;SL K
ji

SL;AC 0

0 K
0j
SL;AC K

j0
AC;AC K

0j
GW;AC K

ij

SL;AC K
jj

AC;AC K
ij

GW;AC

0 0 K
j0
GW;AC 0 0 K

ji

GW;AC K
jj

GW;GW

������������������

������������������

;

MS 0 0 0 0 0 0

0 M00
SL;SL 0 0 0 0 0

0 0 M00
AC;AC 0 0 0 0

0 0 0 M00
GW;GW 0 0 0

0 0 0 0 M
jj

SL;SL 0 0

0 0 0 0 0 M
jj

AC;AC 0

0 0 0 0 0 0 M
jj

GW;GW

�����������������

�����������������

.

5. Modal reduction schemes for the particular case of the homogeneous compressible hydroelastic–sloshing problem

As mentioned in Section 1, one may be interested in an approximate model which consists in considering the liquid as
homogeneous.

The first part of this section deals with a modal reduction scheme based on the displacement vector variable. The reduced
model is obtained by a direct decomposition of the liquid displacement field into its parts relative to compressible hydro-
elastic and sloshing problems. This situation can be considered as a particular case of Section 4 by letting q0

F be constant.
The second part of this section consists in deriving a modal reduction scheme based on the pressure formulation.

5.1. Displacement based model

The considerations stated in the previous sections are used here to exhibit some modal reduction schemes of the com-
pressible hydroelastic—sloshing problem in the case of homogeneous liquid.

The variational formulation associated to the coupling problem of an elastic structure in contact with a homogeneous

heavy compressible liquid is obtained by letting q0
F be constant in Eq. (30). This formulation writes

given F and x 2 Rþ
; findðuS 2 C

S
u ; uF 2 C

F
u ; p 2 CpÞ such that

8ðduS ; duF ; dpÞ 2 C
S
u � C

F
u � Cp:

bK ðuS ; duSÞ þ

Z

XF

q0
F c

2DivuF DivduF þ

Z

C

q0
F gðuF � izÞðduF � izÞ

þ

Z

XF

q0
F g � uF DivduF þ

Z

XF

q0
F g � duF DivuF

þ

Z

R

pn � ðduF � duSÞ � x2

Z

XS

q0
SuS � duS þ

Z

XF

q0
F uF � duF

� �
¼

Z

Rd

F � duS
Z

R

dpn � ðuF � uSÞ ¼ 0.

8
>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð50Þ

The reduced model can be obtained by considering the following decomposition for the fluid displacement field:

uF ¼ uSL þ uAC; ð51Þ

where uSL is the displacement relative to sloshing model whereas uAC is the displacement relative to compressible-hydro-
elastic model. This representation of the liquid’s displacement field also corresponds formally to decompose the admissible
space as

C
F
u ¼ CAC � CSL; ð52Þ

where CAC and CSL are defined in Appendix A.

9



Replacing uF into the variational formulation (50) and decomposing the virtual displacement as duF = duSL + duAC lead
to

given F and x find ðuS ; uSL; uAC; uGW; pÞ 8ðduS ; duSL; duAC; duGW; dpÞ :

eK ðuS ; duSÞ þ

Z

C

q0
F gðuSL � izÞðduSL � izÞ þ

Z

XF

q0
F c

2DivuACDivduAC

þ

Z

XF

q0
F g � duACDivuAC þ

Z

XF

q0
F g � duSLDivuAC þ

Z

XF

q0
F g � duGWDivuAC

þ

Z

XF

q0
F g � uACDivduAC þ

Z

XF

q0
F g � uSLDivduAC þ

Z

XF

q0
F g � uGWDivduAC

�x2

Z

XS

q0
SuS � duS þ

Z

XF

q0
F uSL � duSL þ

Z

XF

q0
F uAC � duAC þ

Z

XF

q0
F uGW � duGW

� �

þ

Z

R

pn � ðduSL þ duAC þ duGW � duSÞ ¼

Z

Rd

F � duS .

8
>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð53Þ

After decomposing each displacement vector field as

uSL ¼ u0SL þ
PN

i¼1

aiu
i
SL;

uAC ¼ u0AC þ
PN

i¼1

biu
i
AC

8
>>><
>>>:

ð54Þ

and taking into account the orthogonality and conjugate relations, we obtain the stiffness and mass reduced matrix models:

eK 0 0 0 0

0 K00
SL;SL K00

SL;AC 0 K0i
SL;AC

0 K00T

SL;AC K00
AC;AC K i0

SL;AC K i0
AC;AC

0 0 K
j0
SL;AC K

jj

SL;SL K
ji

SL;AC

0 K
0j
SL;AC K

j0
AC;AC K

ij

SL;AC K
jj

AC;AC

�������������

�������������

;

MS 0 0 0 0

0 M00
SL;SL 0 0 0

0 0 M
jj

SL;SL 0 0

0 0 0 M00
AC;AC 0

0 0 0 0 M
jj

AC;AC

�������������

�������������

.

5.2. A modal reduction scheme for the pressure formulation

The purpose of this subsection is to derive an alternative reduced model of the coupled problem of a structure interact-
ing with a homogenous fluid. Compared with the previous sections, the fluid is described here by the pressure variable.

The variational formulation describing the response of the structure to a fluid loading pressure writes

given x and F; find uS 2 Cu such that:

bK ðuS ; duSÞ � x2

Z

XS

q0
SuS � duS �

Z

R

pn � duS ¼

Z

Rd

F � duS .

8
<
: ð55Þ

The local equations describing the response of the fluid to a prescribed normal wall displacement uN write

Dp þ
x2

c2
p ¼ 0 ðXF Þ;

op

on
¼ q0

Fx
2uN ðRÞ;

op

oz
¼

x2

g
p ðCÞ;

Z

R

uN þ

Z

C

p

q0
F g

þ

Z

XF

p

q0
F c

2
¼ 0.

8
>>>>>>>>>>><
>>>>>>>>>>>:

ð56Þ
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It must be noticed that the constraint equation (56)4 is an additive relation which allows to state the well posedness of the
boundary value problem (56) for x = 0. For more detailed considerations on this point, the reader is referred to [13].

The variational formulation associated to local Eqs. (56) states

given x and uN ; find p 2 Cp such that:
Z

XF

rp � rdp ¼ q0
Fx

2

Z

R

uN dp þ
x2

g

Z

C

pdp þ
x2

c2

Z

XF

pdp

with

Z

R

uN þ

Z

C

p

q0
F g

þ

Z

XF

p

q0
F c

2
¼ 0

8
>>>>><
>>>>>:

ð57Þ

so that the coupled problem can be described with the following variational formulation:

given x and F; findðuS; pÞ 2 Cu � Cp such that:

bK ðuS ; duSÞ � x2

Z

XS

q0
SuS � duS �

Z

R

pn � duS ¼

Z

Rd

F � duS

Z

XF

rp � rdp ¼ q0
Fx

2

Z

R

uS � ndp þ
x2

g

Z

C

pdp þ
x2

c2

Z

XF

pdp

Z

R

uS � nþ

Z

C

p

q0
F g

þ

Z

XF

p

q0
F c

2
¼ 0.

8
>>>>>>>>>><
>>>>>>>>>>:

ð58Þ

Let us define

C
AC�

p ¼ fp 2 C
p

: p ¼ 0 on ðCÞg;

C
AC�

p is the vector space spanned by the acoustic modes which satisfy the following orthogonality relations:
Z

XF

rpi � rpj ¼
x2

i;AC

c2
lij;ACdij;

Z

XF

pi dpj ¼ lij;ACdij.

8
>>><
>>>:

ð59Þ

In the same way, it can be shown that for a homogeneous heavy incompressible liquid, the following decomposition holds:

C
SL
p ¼ C

SL
ps

� C
SL�

p ; ð60Þ

where

C
SL
ps

¼ ps 2 C
p

: ps ¼ �
q0
F g

jCj

Z

R

uN

� �
;

C
SL�

p ¼ p 2 C
p

:

Z

C

p ¼ 0

� �
;

C
SL�

p refers to the vectorial space associated to the sloshing modes which satisfy the following orthogonality relations:
Z

XF

rpi � rpj ¼
x2

i;SL

g
lij;SLdij;

Z

C

pi dpj ¼ lij;SLdij.

8
>>><
>>>:

ð61Þ

In order to establish the reduced model for the complete problem, we consider the following decomposition:

Cp ¼ C
SL
ps

� C
SL�

p � C
AC�

p ð62Þ

that is the pressure variable p is searched in the following form:

p ¼ pSLs þ
X

i

rip
SL
i þ

X

i

rip
AC
i . ð63Þ

Let this expression of p be replaced in the variational formulation Eq. (58) and let us restrict the virtual pressure to
dp ¼ fdpSLs ; pAC

j ; pSLj g by taking into account the orthogonality relations. We have:

11



bK ðuS; duSÞ þ
qF g

jCj

Z

R

uS � n

� � Z

R

duS � n

� �
�
P
a

rSLa

Z

R

pSLa n � duS

�
P
b

rAC
a

Z

R

pAC
b n � duS ¼

Z

Rd

F � duS

xSL2

a lSL
a rSLa ¼ x2

Z

R

uS � np
SL
a þ x2lSL

a rSLa

xAC2

b lAC
b rAC

b ¼ x2

Z

R

uS � np
AC
b þ x2lAC

b rAC
b .

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

ð64Þ

The associated finite element discretizations then writes:

bK þ Ks
h i

U �
P
a

CSL
a rSLa �

P
b

CAC
b rAC

b � x2MU ¼ F;

xSL2

a lSL
a rSLa ¼ x2CSLT

a rSLa þ x2lSL
a rSLa ;

xAC2

b lAC
b rAC

b ¼ x2CACT

b rAC
b þ x2lAC

b rAC
b

8
>>>><
>>>>:

ð65Þ

and

K tot � x2M tot x2DSL x2DAC

x2DT
SL ½lSL� � x2 lSL

x2
SL

h i
0

x2DT
AC 0 ½lAC� � x2 lAC

x2
AC

h i

0
BBB@

1
CCCA

U

½rSL�

½rAC�

0
B@

1
CA ¼

F

0

0

0
B@

1
CA; ð66Þ

where

K tot ¼ bK þ Ks
;

M tot ¼ M þ
X

a

1

xSL2

a

CSL
a CSLT

a þ
X

b

1

xAC2

b

CAC
b CACT

b ;

DSL
a ¼

X

a

1

xSL2

a

CSL
a ;

DAC
b ¼

X

b

1

xAC2

b

CAC
b .

6. Conclusion

This paper presents theoretical derivation for dynamic substructuring analysis of fluid–structure interaction problems
taking into account both gravity and compressibility effect in order to construct reduced order models.

The key point of our approach is that the generalized coordinates of the compressible liquid can be decomposed into the
direct sum of those relative to structural acoustics and incompressible hydroelastic–sloshing problems. Using this decom-
position into the variational formulations, symmetric reduced matrix systems expressed in terms of generalized coordinates
of the fluid are then obtained. Investigation are presently undertaken in order to validate numerically the theoretical results
and will be the subject of future publications.

Appendix A. Basic reduced fluid–structure problems

We will recall in this appendix basic results which will be useful to construct reduced order models in the general non-
homogeneous fluid–structure problem. For detailed aspects of the adopted methodology, we refer the reader to [11,13].

The two elementary situations we consider are the following:

• structural acoustic problem with modal interaction between structural modes in vacuo or incompressible hydroelastic
modes and acoustic modes in rigid cavity,

• hydroelastic–sloshing problem with modal interaction between incompressible hydroelastic structural modes and incom-
pressible liquid sloshing modes in rigid cavity.

12



A.1. Structural acoustic

The first situation which is considered here is the structural acoustic one. A fluid domain XF at equilibrium is considered.
The fluid is supposed to be homogeneous, inviscid and gravity effects are not considered. Its boundary consists of two
parts: R is the part that is in contact with the structure domain and is submitted to a prescribed normal displacement
uN whereas C is the free surface.

The local equations describing the harmonic response of the fluid to a prescribed arbitrary normal displacement uN
write:

rp ¼ q0
Fx

2uF ðXF Þ;

p ¼ �q0
F c

2DivuF ðXF Þ;

uF � n ¼ uN ðRÞ;

p ¼ 0 ðCÞ.

8
>>><
>>>:

ðA:1Þ

Eq. (A.1) may be rewritten in terms of the displacement vector uF. We obtain:

�q0
F c

2rDivuF ¼ q0
Fx

2uF ðXF Þ;

uF � n ¼ uN ðRÞ;

pðuF Þ ¼ 0 ðCÞ.

8
><
>:

ðA:2Þ

It should be noted that the solution of this boundary value problem satisfies automatically the irrotationality constraint
CurluF = 0 for the strictly positive values of x.

The test function method allows us to derive the variational formulation associated to Eq. (A.2) as

given x 2 Rþ
; find uF 2 C

d
AC such that 8duF 2 C

0
AC:Z

XF

q0
F c

2DivuF DivduF ¼ x2

Z

XF

q0
F uF � duF ;

8
<
: ðA:3Þ

where

� CAC ¼ fuF 2 C
F
u ;CurluF ¼ 0 in XF g;

� C
d
AC ¼ fuF 2 CAC such that uF � n ¼ uN on Rg;

� C
0
AC ¼ fuF 2 CAC such that uF � n ¼ 0 on Rg.

A.1.1. Conjugate relations

Conjugate relations relate the acoustic modes in rigid motionless cavity uaF with the static boundary functions u0F ðuN Þ.
Acoustic modes are obtained from Eq. (A.3) with uN = 0. The associated weak form then states:

find xa 2 R
þ

; and uaF 2 C
0
AC such that 8duF 2 C

0
AC:Z

XF

q0
F c

2DivuaF DivduF ¼ x2
a

Z

XF

q0
F u

a
F � duF .

8
<
: ðA:4Þ

It can be shown that the acoustic modes ðxa; u
a
F Þ satisfy the following orthogonality relations:

Z

XF

q0
F c

2DivuaF DivubF ¼ dabx
2
ala;

Z

XF

q0
F u

a
F � ubF ¼ dabla;

8
>><
>>:

ðA:5Þ

where la and x2
ala are the generalized modal mass and rigidity of the a mode.

The local equations relative to the static boundary functions are obtained from Eq. (A.1) by letting x = 0. The static
boundary functions u0F ðuN Þ thus satisfy:

rp ¼ 0 ðXF Þ;

p ¼ �q0
F c

2Divu0F ðXF Þ;

u0F � n ¼ uN ðRÞ;

p ¼ 0 ðCÞ.

8
>>><
>>>:

ðA:6Þ
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Eq. (A.6)1, in conjunction with Eq. (A.6)4 leads to

p ¼ p0 ¼ 0. ðA:7Þ

The fluid displacement u0F ðuN Þ thus satisfies:

Divu0F ¼ 0 ðXF Þ;

u0F � n ¼ uN ðRÞ;

Divu0F ¼ 0 ðCÞ.

8
><
>:

ðA:8Þ

It can be shown that the solution u0F ðuN Þ of Eq. (A.8) is unique as far as we are concerned with static irrotational motion.
The corresponding variational formulation Eq. (A.8) writes:

find u0F ðuN Þ 2 C
d
AC 8duF 2 C

0
AC:Z

XF

q0
F c

2Divu0F ðuN ÞDivduF ¼ 0.

8
<
: ðA:9Þ

The first conjugate relation is obtained by letting duF to be duF ¼ uaF in Eq. (A.9). This leads to
Z

XF

q0
F c

2Divu0F ðuNÞDivuaF ¼ 0. ðA:10Þ

In order to state the second conjugate relation, let us consider the modal reaction force Ra corresponding to the eigenmode
ðxa; u

a
F Þ. This reaction force obeys the following property:

Z

R

Ra � duF ¼

Z

XF

q0
F c

2DivuaF DivduF � x2
a

Z

XF

q0
F u

a
F � duF . ðA:11Þ

The second conjugate relation is obtained by stating duF ¼ u0F ðuN Þ in Eq. (A.11) so that:

Z

XF

q0
F u

a
F � u0F ðuN Þ ¼ �

1

x2
a

Z

R

Ra � u
0
F ðuNÞ. ðA:12Þ

A.1.2. Structural acoustic reduced model

To derive the reduced model associated to structural acoustic, the solution uF of Eq. (A.3) is decomposed into

uF ¼ u0F ðuN Þ þ
XN

a¼1

qau
a
F ; ðA:13Þ

where N denotes the number of retained acoustic modes. It can be shown that this decomposition is unique and it actually
corresponds to the following decomposition:

CAC ¼ C
s
AC � C

0
AC; ðA:14Þ

where C
s
AC refers to the admissible class associated to the static boundary functions u0F ðuN Þ.

Inserting Eq. (A.13) into Eq. (A.3) and taking into account of the conjugate relations (A.10) and (A.12), the following
system is obtained:

find u0F ðuN Þ 2 C
s
AC 8v0F 2 C

s
AC:

Z

XF

q0
F c

2Divu0F Divv0F � x2

Z

XF

q0
F u

0
F � v0F ¼ �x2

XN

a¼1

qa

Z

R

Ra

x2
a

� v0F

ð�x2 þ x2
aÞlaqa ¼ �x2

Z

R

Ra

x2
a

� u0F ;

8
>>>>>><
>>>>>>:

ðA:15Þ

where v0F ¼ u0F ðvN Þ refers to a static boundary function associated to an arbitrary displacement vN on R.

A.2. Incompressible hydroelastic sloshing

The second elementary situation which is to be considered is the incompressible hydroelastic problem. The liquid is sup-
posed to be inviscid homogeneous and incompressible. The liquid possesses a free surface C on which gravity effects act and
a fluid–structure interface R where a prescribed displacement uN is applied.
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The local equations governing the small movements of such a liquid are

rp ¼ q0
Fx

2uF ðXF Þ;

DivuF ¼ 0 ðXF Þ;

p ¼ q0
F gðuF � izÞ ðCÞ;

uF � n ¼ uN ðRÞ.

8
>>><
>>>:

ðA:16Þ

The test function method allows us to write the corresponding variational formulation as

given x 2 Rþ
; find uF 2 C

d
SL such that 8duF 2 C

0
SL:Z

C

q0
F gðuF � izÞðduF � izÞ ¼ x2

Z

XF

q0
F uF � duF ;

8
<
: ðA:17Þ

where

� CSL ¼ fuF 2 C
F
u ;DivuF ¼ 0 in XF ;CurluF ¼ 0 in XF g;

� C
d
SL ¼ fuF 2 CSL such that uF � n ¼ uN on Rg;

� C
0
SL ¼ fuF 2 CSL such that uF � n ¼ 0 on Rg.

A.2.1. Conjugate relations

Conjugate relations relate the sloshing modes with the static boundary functions u0F ðuN Þ. Sloshing modes are obtained
from Eq. (A.17) by letting uN = 0. The associated variational formulation writes:

find xa 2 R
þ

; and uaF 2 C
0
SL such that 8duF 2 C

0
SL:Z

C

q0
F gðu

a
F � izÞðduF � izÞ ¼ x2

a

Z

XF

q0
F u

a
F � duF ;

8
<
: ðA:18Þ

It can easily be shown that the sloshing modes ðxa; u
a
F Þ satisfy the following orthogonality relations:

Z

C

q0
F gðu

a
F � izÞðu

b
F � izÞ ¼ dabx

2
ala;

Z

XF

q0
F u

a
F � ubF ¼ dabla;

8
>><
>>:

ðA:19Þ

where la and x2
ala are the generalized modal mass and rigidity of the a mode.

Following the same process as in the structural acoustic problem, the local equations relative to the static boundary
functions are obtained from Eq. (A.16) by letting x = 0. The static boundary functions u0F ðuNÞ thus satisfy:

rp ¼ 0 ðXF Þ;

Divu0F ðuN Þ ¼ 0 ðXF Þ;

p ¼ q0
F gðu

0
F ðuN Þ � izÞ ðCÞ;

u0F � n ¼ uN ðRÞ

8
>>><
>>>:

ðA:20Þ

and the corresponding variational formulation states

find u0F ðuN Þ 2 C
d
SL 8duF 2 C

0
SL:Z

C

q0
F gðu

0
F ðuN Þ � izÞðduF � izÞ ¼ 0.

8
<
: ðA:21Þ

The first conjugate relation is obtained by letting duF be duF ¼ uaF in Eq. (A.21) so that we have
Z

C

q0
F gðu

0
F ðuNÞ � izÞðu

a
F � izÞ ¼ 0. ðA:22Þ

In order to state the second conjugate relation, the reaction force Ra corresponding to the eigenmode ðxa; u
a
F Þ needs to be

expressed. This reaction force satisfies the following property:
Z

R

Ra � u
0
F ðuN Þ ¼ �x2

a

Z

XF

q0
F u

a
F � u0F ðuN Þ; ðA:23Þ
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hence the following conjugate relation holds:
Z

XF

q0
F u

a
F � u0F ðuN Þ ¼ �

1

x2
a

Z

R

Ra � u
0
F ðuNÞ. ðA:24Þ

A.2.2. Hydroelastic–sloshing reduced model

The admissible class CSL can be considered as the direct sum of two subsets Cs
SL and C

0
SL so that:

CSL ¼ C
d
SL � C

0
SL. ðA:25Þ

The solution uF can then be searched under the form:

uF ¼ u0F ðuN Þ þ
XN

a¼1

qau
a
F ; ðA:26Þ

where N is the number of retained sloshing modes.
This decomposition of uF, in conjunction with the conjugate relations (A.22) and (A.24) leads to the following reduced

model:

find u0F ðuN Þ 2 C
d
SL; and qa 2 C

0
SL 8v0F 2 C

s
SL:

Z

C

q0
F ðu

0
F � izÞðv

0
F � izÞ � x2

Z

XF

q0
F u

0
F � v0F ¼ �x2

XN

a¼1

qa

Z

R

Ra

x2
a

� v0F

ð�x2 þ x2
aÞlaqa ¼ �x2

Z

R

Ra

x2
a

� u0F ;

8
>>>>>>><
>>>>>>>:

ðA:27Þ

where v0F ¼ u0F ðvN Þ refers to a static boundary function associated to an arbitrary displacement vN on R.

Appendix B. Development of the bilinear forms for the reduced model

The different bilinear forms describing the reduced model are splitted, using the decomposition of the virtual displace-
ment fields given corresponding to Eq. (49) (taking for duSL, successively du0SL, u

j

SL; j ¼ 1; n, and similarly for the other vir-
tual displacement fields).

We give hereafter some of the decomposed bilinear forms.

Z

C

q0
F gðuSL � izÞðduSL � izÞ )

Z

C

q0
F gðu

0
SL � izÞðdu

0
SL � izÞ

and

aidijljx
2
j;SL;

8
>>>><
>>>>:

ðB:1Þ

Z

XF

q0
F c

2r � uACr � duAC )

Z

XF

q0
F c

2r � u0ACr � du0AC

and

aidijljx
2
j;AC;

8
>>><
>>>:

ðB:2Þ

Z

XF

g
oq0

F

oz
ðuGW � izÞðduGW � izÞ )

Z

XF

g
oq0

F

oz
ðu0GW � izÞðdu

0
GW � izÞ

and

aidijljx
2
j;GW;

8
>>><
>>>:

ðB:3Þ

Z

XF

q0
F g � duACr � uAC þ

Z

XF

q0
F g � uACr � duAC

)

Z

XF

q0
F g � du

0
ACr � u0AC þ bi

Z

XF

q0
F g � du

0
ACr � uiAC þ

Z

XF

q0
F g � u

0
ACr � du0AC þ bi

Z

XF

q0
F g � u

i
ACr � du0AC

andZ

XF

q0
F g � u

j

ACr � u0AC þ bi

Z

XF

q0
F g � u

j

ACr � uiAC þ

Z

XF

q0
F g � u

0
ACr � ujAC þ bi

Z

XF

q0
F g � u

i
ACr � ujAC.

8
>>>><
>>>>:

ðB:4Þ
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