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Reduced models for modal analysis of fluid—structure systems
taking into account compressibility and gravity effects

O. Andrianarison, R. Ohayon *

Conservatoire National des Arts et Métiers (CNAM), Chair of Mechanics,
Structural Mechanics and Coupled Systems Laboratory, 2, rue Conté, F-75003 Paris, France

It is proposed to investigate and discuss, from theoretical point of view, various reduced order variational formulations for modal anal-
ysis of linear vibrations of bounded fluid-structure systems with free surface, taking into account possible gravity/compressibility inter-
actions, in a non-homogeneous fluid situation.

Those formulations are based on substructural synthesis techniques and various modal reduction schemes are then obtained.

In a previous paper, various original formulations have been exhibited associated to numerical validation. The present paper starts
from those formulations in order to construct theoretically various reduced order models.

Keywords: Fluid-structure interactions; Gravity; Compressibility; Acoustic; Sloshing; Modal reduction; Substructuring

1. Introduction

Formulation, numerical analysis and computer implementation of fluid—structure interaction problems have attracted
many researchers attention. In the context of linear vibration analysis of coupled internal fluid—structure interactions, it
is customary to consider two distinct situations: linear vibrations of an elastic structure completely filled with a homoge-
neous compressible gas or liquid (without gravity effects) and linear vibrations of an elastic structure containing an homo-
geneous incompressible liquid with free surface effects due to gravity. Most of studies dealing with coupled fluid—structure
interaction thus fall into these two classes according to the frequency domain of interest.

We consider here the case of a non-homogeneous, compressible liquid, with internal and free-surface gravity effects.
Those effects must be quantified for instance for vibrations analysis of cryogenic fluids in liquid-propelled launchers. To
the authors knowledge, this situation has only been analysed within the assumption that the internal gravity waves are neg-
ligible [7,12,14,16,17,19]. In Refs. [1,2], we have established the basic equations of the problem together with original
appropriate variational formulations. The objective of this theoretical paper is to derive reduced order models in the
non-homogeneous case from theoretical point of view. The numerical validation of those models will be the purpose of
a forthcoming paper.

For that purpose, substructure synthesis techniques are used (see for instance, in structural dynamics, [6,9,15,3]).

Component mode analysis have also been established for fluid-structure vibration problems (see for instance [11,13]). In
the approach presented in this paper, generalized coordinates are introduced to represent the liquid behaviour. The

* Corresponding author. Tel.: +1 40 27 2447; fax: +1 40 27 2716.
E-mail address: ohayon@cnam.fr (R. Ohayon).


mailto:ohayon@cnam.fr

kinematically admissible space relative to the liquid domain (considered as non-homogeneous, compressible and subjected
to gravity effects) is then decomposed into the direct sum of three subspaces: acoustic, sloshing and internal gravity waves
subspaces. This decomposition of the solution is then substituted in different variational formulations and reduced sym-
metric matrix models are then obtained.

The outline of the paper is as follows: in Section 2, we introduce the basic equations and the associated variational prin-
ciple relative to the general case of an inviscid non-homogeneous compressible liquid. In the following two sections we dis-
tinguish the cases of incompressible and compressible liquid: in Section 3, we state a modal reduction scheme for the case of
a non-homogeneous incompressible hydroelastic—sloshing model and in Section 4, the case of a compressible hydroelastic—
sloshing model is derived. Section 5 concerns modal reduction of the homogeneous compressible hydroelastic—sloshing case.

2. General case of an inviscid non-homogeneous liquid. Basic equations and variational formulation

The purpose of this section is to derive the variational formulation associated with a fluid—structure coupled problem
subjected to gravity field [1]. The situation analysed in this section is that of a general non-homogeneous liquid. Local equa-
tions relative to this problem have already been derived in a earlier paper [2] through linearized Euler and mass conserva-
tion equations.

We adopt here a more direct approach: the variational formulation is stated through the classical principle of virtual
work and the local equations are then obtained through linearization of the Piola—Lagrange stress tensor around a pre-
stressed reference configuration.

2.1. Liquid subjected to a prescribed normal displacement

Let us consider a liquid domain of volume Q. The boundary of Qf is supposed to satisfy
0Qr =TuUZx (1)

with I'N X = 0.

I' denotes the liquid free surface and X denotes the fluid—structure interface. The outer unit normal vector to 0Qp is
denoted by n on the fluid-structure interface X and by i. on the liquid free surface I" (Fig. 1).

The weak variational formulation describing the response of the fluid to a prescribed normal displacement on the fluid—
structure interface 2 is obtained through the principle of virtual work as follows:

prg - Sup = —a’ / prug - dug, (2)

QF

Dive - 8uF+/

QF QF

where @ refers to the spherical Piola—Lagrange stress tensor defined by
Owy = —JPuryIdF T, (3)

P, denotes the instantaneous pressure in the actual configuration, F denotes the gradient of the transformation
M — M’, J is its jacobian and Id is the identity matrix.

In Eq. (2), dur denotes the virtual variation of the fluid displacement vector field ug, p% and g denote respectively the
mass density and the gravity field (supposed constant) whereas w refers to the angular frequency of vibrations.

In order to linearize O, the following quantities are considered:

e the eulerian pressure fluctuation

p(M,t) = Py — P(()M)7 4)

Fig. 1. Fluid-structure coupled system.



o the lagrangian pressure fluctuation

pLM 1) = Pory — P(()M)7 (5)
e the eulerian density fluctuation

p(M,1) = pp(M,1) — pp(M), (6)
e the lagrangian density fluctuation

pL(M, 1) = pp(M',1) = pp(M), ()

where P?M) is the liquid hydrostatic pressure and p%(M) is the liquid density in the reference configuration.
It can be shown that these linearized quantities satisfy the following relations [2,11]:

PL—P=prg-up VM € Qr,

.\ 0p)
pL—p=(u-k) = VM€,

pL=Cpy VM € Qp,
PL = —pgDiqu VM € QF.

Notice that in the particular case of a homogeneous weightless (i.e. gravity neglected) compressible fluid or homogeneous
heavy incompressible liquid, no distinction is to be made between p and p; in Egs. (4) and (5). Otherwise these two state
variables are to be distinguished and combination of Egs. (8) yields the following constitutive relation:

0

Ly pY Divug — p;_zg (up - i) = 0. 9)

e
Considering now the first order Taylor expansion of J and F~ ', it can be shown [8] that the Piola—Lagrange stress tensor
defined in Eq. (2) writes:

O = —p, 1d — P°1d + P°V'u; — P’1d Divup, (10)

hence
Dive = —Vp, — VP" — VP’ Divuy + V'u VP’ (11)
Eq. (2) then writes:

Vp,-ous+ [ VP'-Sup+ [ VP’-SurDivuy — [ Sup - V'uVP’ — / phg - dup = wz/ g - dup. (12)
QF QF QF QF QF Qr
Moreover, the hydrostatic equation writes
VP’ =plg in Q (13)
with its variational form
VP - Sup = / phg - dup. (14)
Qr Qr

Integrating by parts the first integral of Eq. (12), taking into account the constitutive Egs. (8); and (8), and combining with
Eq. (13), we have finally:

. . . . opY
/ pgcz Divuz Div duy +/ pgg - dug Divug +/ pgg -ug Divouy — / gﬁ(up i) (Sup - i)
Qp Qr Qp Qp aZ
+ / pgg(up i) (Qup - 1,) + /pn - dup = a)z/ pgup - dup. (15)
r ) Qp
In Eq. (15), the free surface condition on I" has been used as follows:
p=-—plg-u onT. (16)
Let us now introduce the following admissible spaces:
%r = {ug regular in Qr such that: up -n =uy on 2} (17)



and
%7 = {up regular in Qp such that: ur-n=0 on X}, (18)

where u, denotes a prescribed normal displacement field of the fluid—structure interface X.
We can then state the following symmetric variational formulation in terms of ug:

for given w € R", find ux € €, such that Voup € €}

/ pYc? Divug Div duy + / plg - dup Divug + / pYg - uz Div dug
QF Qr QF

op! . . . .
[ &L e )(our i)+ [ pltue i) Gu i)
QF

r

= (1)2/ pguF . 6“1:‘.
QF

The local boundary value problem is then derived from the previous variational formulation by using Green formula:

0

. 0 .
Vp(ur) + phgDivug + %g(up i) = plouy  (Qr),

plup) = —ppg-ur (),
Up N = uy (Z)

in which p(ug) is defined by Eq. (9).

It is worth noting that formulations defined by Eqgs. (19) and (20) contain internal gravity terms (contributions of gravity
inside the domain Q) which are often neglected in literature [10].

Namely, the situation where compressibility effects act in the fluid domain and gravity effects are confined on the free
surface only can be considered as an approximated modeling. Its mechanical description can be stated by considering the
limit case of constant mass density in Egs. (19) and (20). We thus have the following variational formulation:

(20)

for given w € R", find up € €, such that Voup € 6}

/ ,ogc2 Divug Divduy + / pgg - duy Divug + / pgg -up Divoug
Qr Qr Qr (21)

+/ ng(uf 1) (dup - i) — wz/ Pg“F -oup =0,
r Q

i

whereas the associated local boundary value problem writes:

Vp(ur) + plgDivur = plo’ur  (Qr),
p(up) = —plg-up (I), (22)
Ugs -N = Uy (2)

2.2. Structure subjected to a liquid pressure loading

The unknown displacement field in the structure domain is denoted as ug, the associated linearized deformation tensor
as ¢;(us) and the corresponding stress tensor o;{(us). We also denote as p} the constant mass density of the structure at
equilibrium and Sug the test function associated to ug, belonging to the kinematically admissible space % of regular func-
tions in Q.

The weak variational formulation describing the response of the structure Qg to given harmonic forces of amplitude F
on X, and to fluid pressure field p acting on X is written as follows:

for given F and w € R*, find us € %>, such that Ydus € 6°:

N 23
K(uS,Sug)—wz/ pgus-SuS—/péSuS-n:/ F - Sug, (23)
Qg z 2y

K (ug, dug) denotes the elastogravity operator. This operator takes into account the effect of gravity forces on the fluid—
structure interface and is defined as

~

1((1137 6115‘) = K(lls, 5115) + Kg(lls, 5“5) + Kz(lls, 5[15), (24)



where

® K(ug,dug) = fQS o (ug)e;(dug) is the usual mechanical elastic stiffness,

* Ks(ug, dug) = fg o, um,Su,,,,j refers to the classical structural geometric prestress symmetric bilinear form in which ag
denotes the prestress tensor,

e Ky(ug,dug) = —phg [, [zm (us) - Sug + (i. - ug)(dus - n)] represents prestress symmetric bilinear form due to rotation of
the external normal n. z is the vertical coordinate. The outward normal vector n is dependent of the displacement ug
and ny(ug) is its first order Taylor-expansion with respect to ug.

For detailed derivation of these operators, we refer the reader to [11,18].
2.3. The coupled problem

To write the variational formulation associated with the coupled problem subjected to given surface forces F, consider
the following admissible spaces:

e % = {uy regular in Qg}, (25)
o %" = {u; regular in Q}, (26)
o %,={pregularin Qr}, (27)
o ¢ ={us€%,ur €% :us-n=ur -non I} (28)
The variational formulation of the coupled problem is obtained by considering both Eqgs. (21) and (23):
given F and o € R", find(ug,ur) € 5" such that V(Sug, duy) € 657
~ ) ) 0
K (us, dug) +/ pYc? Divug Div duy — / g—-=L i (u-i.)(3u-i.)
QF QF aZ
(29)

+ / prg(up - i) (Sug - i) + / pYg - up Div duy
Qr

+/ ng duy Divuy — w {/ psug 8u5+/ pguF.BuF}:/ F - Sug.
Qr Qg QF 24

The kinematic compatibility condition between ug and uz on X may be relaxed by applying the Lagrange multipliers meth-
od. It can be shown that the Lagrange multiplier associated with this condition represents the pressure so that the following
three-fields variational equation is obtained:

given F and o € R, find(us € 3,ur € 6%, p € €,) such that
V(SUS, 6111:; 6[?) S (gi X (gf X (5;; :

0
K(uS,SuS)—/ g%(u-iz)(Su-iz)—F/ pY.c? Divug Div dug
QF

QF

+/pgg(uF -iz)(6up-iz)+/ pgg-uFDiVSUF—i—/ pgg-BuFDivup (30)
r r Qr

+/pn. (Sup — dug) —w2{/ pgus-Sus—&—/ pguF.BuF} :/ F - dug
> Qg QF 2y

/Spn (uF *lls) =0.
X

3. Modal reduction schemes for the non-homogeneous incompressible hydroelastic—sloshing problem

The inviscid liquid is considered as non-homogeneous, incompressible. We consider here only internal gravity waves
(gravity effects are supposed to act only inside the liquid domain and not on the free surface).

The linearized local equations governing the response of the liquid subjected to a prescribed normal displacement u,
write



Y

Vp(ur) + gg(“F i) = ppotur (Qr),

Divuy =0 (Qr), (31)
plup) =0 (),

Up - M= Uy (2).

The associated variational formulation writes

given € R, find up € %% such that Vou € %7

op!) . . (32)
_/ g%(“F'lz)(&lF'lz) = wz/ prug - dur,
QF z Qr
where
o %c={ur €% Divnr =0 in Q},
e %! ={ur € % such that ur -n =uy on X},
e %) ={ur € %¢ such that ur -n =0 on X}.
3.1. Conjugate relations
Eigenmodes are obtained from Eq. (32) by letting uy = 0. The associated variational formulation writes:
find w, € R and u% € %}, such that Your € %9
(33)

o : s [ o
" Jo, ez (0 - i) (Sup - i) = @, [ ppug - Sug.
Qr ar
It can be shown that the eigenmodes (w,, u}.) satisfy the following orthogonality relations (also called conjugate relations)
3pp . .
[ &L i) = g0l
QF z

(34)

[ ot =,
QF

where u, and w2y, are the generalized modal mass and rigidity of the o mode.
The static boundary functions u’(uy) are required to satisfy the following local equations

Vo Lrgn i) =0 ().
Divu)(uy) =0 (QF), (35)
p(ud) =0 (I),

u2~n:u;v (Z)

and the corresponding variational formulation writes:

find w)(uy) € 6% Your € 62
a 0 . . 36
/ L g0 (uy) - 1) (Bur - ) = 0. (36)
o 0z

The first conjugate relation is obtained by letting duy be duy = u}. in Eq. (36) so that we have

/ 902 o 00 (uy) - i) 0 - i) = 0. (37)

The second relation is stated by considering the modal reaction force R, corresponding to the eigenmode (w,,u%). This
reaction force is such that

R witn) = 02 [ o ud) (39
z QF



hence the following conjugate relation holds:

” 1
[ o) = -
QF

o7 ], Reuban). (39)

3.2. Internal gravity sloshing reduced model

In the static formulation defined by Eq. (36), we introduce ¢6(X) = uy(M),M € X. As the solution u). of Eq. (36)

depends linearly on uy, we introduce the mapping uy € 66(2) — ul(uy) € €% which is a static lifting operator of uy

and which is called in engineering the static boundary function. The image of #¢(X) in this mapping is denoted %y, ;
and is called the space of static boundary functions.
To build a reduced model, let us therefore consider the following direct sum:

C=C,,0C (40)
so that the general solution can be searched in the form:
N
up = up(uy) + Y .05 (41)
=1
The proof of this assertion rests upon the following two points:
e ur —u(uy) =0 on X thus we have ur — u)(uy) € 6%; up — ul(uy) can then be decomposed on the subspace 6%..

e Conversely, ¥vp € 4 such that vy = vz X, then we have vy — ul(vy) € %Y if ul.(vy) denotes the solution of Eq. (36) for
Uy = Upn.

Combination of Egs. (32), (34), (37) and (39) leads to the following reduced model:
find u).(uy) € € 5, and g, such that W), € 67, ,:

apgo-o- 2/000 2N /Rzo
— [ g—(u; -L)(v. ‘L) —w Prly - Vo = —@ q, | —-V
[ e a0 1) 30 [ i )
(7602 + wi)luacqoc = 7602 RO{ : u?’?

)
> Wy

where v = ul.(vy) refers to the static boundary function associated to an arbitrary displacement vy on X.

4. Modal reduction schemes for the non-homogeneous compressible hydroelastic—sloshing general case

It was shown earlier that the variational formulation associated to the coupling problem of an elastic structure in con-
tact with a non-homogeneous heavy compressible liquid states:

given o € R and F, find(ug,ur) € 5" such that V(Sug, duy) € 657

~ . . 0p°
K (ug, dug) +/ pYc? Divug Div duy — / Pr (ug - i) (dup - i)
o o)
p%g - ur Div duy +/ pYg - dup Divug

Fg 0z
+/p%g(up-iz)(8uF-iz)+/
r QF Qf

—coz{/ pguS-5u5+/ pguF-BuF}:/ F - Sug,
Qg Qp Za

where the kinematically admissible space %> refers to

(43)

%5" = {(up,us) regular: up -n =us-n on X}.
The reduced model can be obtained by considering the following decomposition for the fluid displacement field:
Up = Upc 1 UsL + UGw, (44)

where ugp is the displacement relative to sloshing model, uac is the displacement relative to compressible-hydroelastic
model whereas ugw refers to the internal gravity waves displacements. It should be noted that this representation
of the displacement field corresponds to the decomposition of %~ as

G = Gac ®CsL ® G (45)



Replacing uy into the variational formulation (43) then leads to

given F and o, find(ug,usc,ust,ugw) € €5, V(dug, dur) € 65"

K (ug, Sug) +/ phc? Divuac Div dugy + / p%e(ugy - i) (Sup - i.)
QF

r

+/ pgg -dugy Divupc + / p(;,g . (uSL + uac + UGW) Div 6up
QF Qr

0

o
RS RIS

—wz{ / psus - Sug + / ppusy - Sup + / pruac - dur + / pgucw-SuF}
Qg QF Qr Qr

:/ F- 8“5.
2y

Incompressibility constraints Divug;, = 0 and Divugw = 0 together with orthogonality conditions have been used to derive
this variational formulation [4,5].

Similarly let us decompose the virtual displacement vector into

(46)

6111: = SUAC + BUSL + SUGW- (47)

By enforcing the continuity of the liquid and structure normal displacement on their interface, the variational formulation
of the reduced model then rewrites, taking into account Eq. (47) and orthogonality properties between subspaces:

given w and F, find(ug, usp, usc, Ugw, p), ¥(dug, dugsy, Suac, Sugw, Op):

I~((us, dug) + [, phg(usy - i,)(Susy - i) + / pf)pc2 Divuyc Divduac
Qp

0p° . .
- /QFgg(UGW 'lz)(SUGW : lz)

+/ pOFg . SUAC DiVllAC + / pgg . SuSL DiVUAC + / pgg . BUGW DivuAC
Qp Qp Qp (48)

+/ prg - usc Divduac +/ prg - usp Divduac +/ g - ugw Divusc
Qr QF

QF

- 602{/ Pg“s - dug + / POFUSL - dugy, + / P%UAC - dupc + / P%UGW : 5UGW}
Qg QF QF QF

+/pn- (dusp + dupc + dugw — dug) = / F - Sug.
P

24

Let us now consider the modal decompositions of each subspace as discussed in the previous section. Using Egs. (A.14),
(A.25) and (40) (see Appendix A), we can write:

N
_ 0 i
usp = ug + > o,
i=1

N
Upac = quc + ; Bscs (49)

N
Ugw = Ugy + Z VilGw>
where uf; (resp. w, uk,y,) is the sloshing (resp. acoustic, internal gravity waves) modes and ug; (resp. uly, u%c) is the static
mode relative to sloshing (resp. internal gravity and acoustic waves) problems. By restricting dusy. to {8ud; ,uf; }, Suac to
{Su%.C, w,} and SuGW.to {Suly, .uIGW} and taking into account the orthogonality and. conjugate rel.atioos established in
Section 3 and Appendix A, the different terms of the variational formulation are obtained and detailed in Appendix A.

It should be noted that the obtained variational formulation is symmetric and its discretization in terms of so-called
reduced stiffness and mass matrices can be expressed as



K 0 0 0 0 0 0

0 Kgs Ksiac 0 0 Kgac O

0 K (S)(I)_T,AC K OAOC,AC K ?‘?W,AC K éOL,AC K QCAC K QW,AC

0 0 Kg)W,AC KOGOWAGW 0 ng,Ac 0 )
0 0 KJS.(LAC 0 K: é/.LASL K gL,AC 0

0 K(S)jl;,AC KQC,AC KOGjW,AC KgL,AC K{AjC«,AC K%W,AC
0 0 KjGOW.,AC 0 0 Kj(éW,AC Kj(j}.W«,GW
Mg 0 0 0 0 0 0
0 MY 0 0 0 0 0
0 0 MY%.c 0 0 0 0
0 0 0  MEygw O 0 0
0 0 0 0 MY g 0 0
0 0 0 0 0 Micac 0
0 0 0 0 0 0 Mlvew

5. Modal reduction schemes for the particular case of the homogeneous compressible hydroelastic—sloshing problem

As mentioned in Section 1, one may be interested in an approximate model which consists in considering the liquid as
homogeneous.

The first part of this section deals with a modal reduction scheme based on the displacement vector variable. The reduced
model is obtained by a direct decomposition of the liquid displacement field into its parts relative to compressible hydro-
elastic and sloshing problems. This situation can be considered as a particular case of Section 4 by letting p. be constant.

The second part of this section consists in deriving a modal reduction scheme based on the pressure formulation.

5.1. Displacement based model

The considerations stated in the previous sections are used here to exhibit some modal reduction schemes of the com-
pressible hydroelastic—sloshing problem in the case of homogeneous liquid.

The variational formulation associated to the coupling problem of an elastic structure in contact with a homogeneous
heavy compressible liquid is obtained by letting p% be constant in Eq. (30). This formulation writes

given F and o € R, find(us € 3, ur € %, p € %,) such that
V(Sus, dur, p) € €5 x €5 x 6,

I?(uS,SuS) +/ p(,),czDiquDivﬁuF +/p°Fg(uF -1,)(Sug - 1)
r

QF

+/ pgg-uFDiVBup+/ pg - dur Divug (50)
Qr Qp

—|—/pn' (dur — dug) —wz{/ pgus . 5u5+/ ngF . Bup} :/ F - Sug
x> Qg Qr 24
/Bpn- (up —ug) = 0.
)

The reduced model can be obtained by considering the following decomposition for the fluid displacement field:

Ur = Ugp + Uac, (51)

where ug; is the displacement relative to sloshing model whereas uac is the displacement relative to compressible-hydro-
elastic model. This representation of the liquid’s displacement field also corresponds formally to decompose the admissible
space as

%" = Gac Gy, (52)
where ¥ac and @ are defined in Appendix A.



Replacing uy into the variational formulation (50) and decomposing the virtual displacement as duz = dugy, + dusc lead
to

given F and o find (us, ugp, usc, ugw, p) V(dus, dugy, duac, Sugw, Op):

K (ug, Sug) +/pgg(uSL~iZ)(6uSL-iz) +/ pYc? Divuac Div duac
r

QF

+/ pg - Supc Divuac + / pyg - Susy Divuac + / g - Sugw Divusc
Qr QF QF

+/ p0Fg~uACDiv8uAC+/ p(}g~u5LDiv8uAc+/ p%g - ugw Divdu,c (53)
Qr QF Qp

_wz{/ Pg“s - Sug +/ P%USL - dugy. + / P%“AC - duac + / P%“GW : 6lle}
Qg Qf QF Qr

—|—/pn . (6USL + SUAC + SUGW — 6“5) = / F- 6“5.
b

24

After decomposing each displacement vector field as

N
Usp = “(s)L + D gy,
i=1
b (54)
Urc = U+ fule
i=1

and taking into account the orthogonality and conjugate relations, we obtain the stiffness and mass reduced matrix models:

K 0 0 0 0

0 Kig Kiiac 0 Kiiac
0 K g(IiT,AC K OAOC,AC K goL,AC K QC.AC )
0 0  Kia Kis Kiiac
0 K(S)j[;‘AC KQ)C,AC KgL‘AC K{\jC‘AC
Ms 0 0 0 0
0 MEg 0 0 0

0 0 Mg 0 0
0 0 0 Mieac 0
0 0 0 0 M{cac

5.2. A modal reduction scheme for the pressure formulation

The purpose of this subsection is to derive an alternative reduced model of the coupled problem of a structure interact-
ing with a homogenous fluid. Compared with the previous sections, the fluid is described here by the pressure variable.
The variational formulation describing the response of the structure to a fluid loading pressure writes

given w and F, find ug € %, such that:
K (ug, dug) — a)z/ pus - dug — /pn S dug = / F - Sug. (55)
s z 2y

Q
The local equations describing the response of the fluid to a prescribed normal wall displacement u” write
2

w
Ap+§p=0 (2r),
d
L= pholuy (2),
o (56)

g

Oz P
[ [ e oo
z r Pr& Qr PFC

10



It must be noticed that the constraint equation (56), is an additive relation which allows to state the well posedness of the
boundary value problem (56) for @ = 0. For more detailed considerations on this point, the reader is referred to [13].
The variational formulation associated to local Egs. (56) states

given o and uy, find p € %, such that:

/ Vp - Vip = ppo /uN5p+—/p5p+—/ pop (57)
with /uN—l—/ / 5=
ng o ch

so that the coupled problem can be described with the following variational formulation:

given o and F, find(us,p) € 4, x %, such that:

K (ug, dug) — / pguS-SuS—/pn-SuS:/ F - Suy
Qg z 24
Vp Vip = pro /us n8p+—/p8p+—/ pop

v [
/z rPre Jo. phc?

Let us define
AC* _ L
%, ={pe® :p=0on (I},

(gﬁc* is the vector space spanned by the acoustic modes which satisfy the following orthogonality relations:
2
w;
VP VP = =5 HiacOi;
v (59)

/ bi 517,' = #z’jACéij'
Qr

In the same way, it can be shown that for a homogeneous heavy incompressible liquid, the following decomposition holds:
SL _ ¢/SL SL*
(gp - (gpx @ (gp ) (60)

where

0
@ =p et ip =18
Ds {ps Dy |1—~| B Uy ¢

(ggL*z{pe(gP:/pzo},
r

%EL* refers to the vectorial space associated to the sloshing modes which satisfy the following orthogonality relations:

2
WisL
Vp; - VP/ = ,“ij,SLéijv
O £ (61)

/F PiOp; = Wjs1.0.
In order to establish the reduced model for the complete problem, we consider the following decomposition:
G =% 06" @6 (62)
that is the pressure variable p is searched in the following form:

p=p"+> g+ > rptc. (63)

Let this expression of p be replaced in the variational formulation Eq. (58) and let us restrict the virtual pressure to
dp = {8p3~, pi*°, pi*} by taking into account the orthogonality relations. We have:

11



k(“s,&ls)-l-%(/uky-n) (/&ls.n) _ZFEL/piLn_SuS
P > % 5

—Zrﬁc/pﬁcnﬁus:/ F - Sug
B z Zq

(64)
wiLZIuELrgL — o / u - nng + o? 'uELr:L
b
2
AT = 07 [+
The associated finite element discretizations then writes:
R+ KUt - S CHnC oMU = F,
w:LZ HerzL _ wzchT},:L T+ M§Lr§L7 (65)
2 ACT
a)?c H?CV}?C — ? c r?c + o? H?CV}?C
and
Ktot _ ZMtot 2D ZD
OJT s N W DAc U F
Dy [ - [Zi;] 0 S =10, (66)
AC C
@Dy 0 [A€] — w? L"OZTJ [ 0
where
Ktot — 12 + KS,
1 T 1 T
tot __ SL ~SL AC ~AC
M _M+Z SLZC“ (O +Z AC2C/‘ C/f ’
x Oy s Dg
1
SL SL
D, = Z S G
o o
1
AC _ AC
Dﬂ - Z AC? Cﬂ :
5 @p

6. Conclusion

This paper presents theoretical derivation for dynamic substructuring analysis of fluid—structure interaction problems
taking into account both gravity and compressibility effect in order to construct reduced order models.

The key point of our approach is that the generalized coordinates of the compressible liquid can be decomposed into the
direct sum of those relative to structural acoustics and incompressible hydroelastic—sloshing problems. Using this decom-
position into the variational formulations, symmetric reduced matrix systems expressed in terms of generalized coordinates
of the fluid are then obtained. Investigation are presently undertaken in order to validate numerically the theoretical results
and will be the subject of future publications.

Appendix A. Basic reduced fluid—structure problems

We will recall in this appendix basic results which will be useful to construct reduced order models in the general non-
homogeneous fluid—structure problem. For detailed aspects of the adopted methodology, we refer the reader to [11,13].
The two elementary situations we consider are the following:

e structural acoustic problem with modal interaction between structural modes in vacuo or incompressible hydroelastic
modes and acoustic modes in rigid cavity,

¢ hydroelastic—sloshing problem with modal interaction between incompressible hydroelastic structural modes and incom-
pressible liquid sloshing modes in rigid cavity.

12



A.1. Structural acoustic

The first situation which is considered here is the structural acoustic one. A fluid domain Qf at equilibrium is considered.
The fluid is supposed to be homogeneous, inviscid and gravity effects are not considered. Its boundary consists of two
parts: X is the part that is in contact with the structure domain and is submitted to a prescribed normal displacement
uy whereas I is the free surface.

The local equations describing the harmonic response of the fluid to a prescribed arbitrary normal displacement u,
write:

Vp=ppotur (2F),
p= —pgczDiqu (.QF), (A])
Uy - N = Uy (Z),
p=0 ().
Eq. (A.1) may be rewritten in terms of the displacement vector uz. We obtain:
—p%c*V Divur = plo*ur  (QF),
Uy -N = Uy (Z), (AZ)

p(ur) =0 ().

It should be noted that the solution of this boundary value problem satisfies automatically the irrotationality constraint
Curluz= 0 for the strictly positive values of .
The test function method allows us to derive the variational formulation associated to Eq. (A.2) as

given o € R", find ur € %4, such that Vouy € 65

A3
/ pf,c2 Divug Divouy = a)z/ pguF - dug, (A3)
o o

where
o Gac={ur €% Curlur =0in Qr},
e %% = {ur € Gac such that up -n = uy on X},

o %"= {ur € Gac such that ur -n =0 on X}.

A.1.1. Conjugate relations
Conjugate relations relate the acoustic modes in rigid motionless cavity u with the static boundary functions uf(uy).
Acoustic modes are obtained from Eq. (A.3) with uy = 0. The associated weak form then states:

find w, € R*, and u% € 6% such that Your € 63

. . A4
/ pc? Divul Div duy = wi/ poul - Sug. (A4)
QF QF
It can be shown that the acoustic modes (w,, u}) satisfy the following orthogonality relations:
/ P Divut Divul = 8,501,
or (A.5)

/ PR Ul = S,
QF

where y, and @2, are the generalized modal mass and rigidity of the o mode.
The local equations relative to the static boundary functions are obtained from Eq. (A.1) by letting w = 0. The static
boundary functions ul.(uy) thus satisfy:

Vp=0 (Qr),

p=—ppc’Divuy  (Qp), (A6)
woon=uy (2), '
p=0 (I).
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Eq. (A.6);, in conjunction with Eq. (A.6)4 leads to
p=p"=0. (A7)
The fluid displacement u).(uy) thus satisfies:
Divu) =0 (Qp),
wWon—uy (D), (A8)
Divu) =0 (I).

It can be shown that the solution u).(uy) of Eq. (A.8) is unique as far as we are concerned with static irrotational motion.
The corresponding variational formulation Eq. (A.8) writes:

find u%(uy) € €4 Vour € 6%

A9
/ chz Divug(u;v) Divduz = 0. (A9)
Qr
The first conjugate relation is obtained by letting dur to be dur = u}. in Eq. (A.9). This leads to
/ pc? Divul(uy) Divus = 0. (A.10)
Qr

In order to state the second conjugate relation, let us consider the modal reaction force R, corresponding to the eigenmode
(w4, u%). This reaction force obeys the following property:

/ R, - dur = / phc? Divul Div duy — wi/ phul - Sug. (A.11)
z Qr Qr

The second conjugate relation is obtained by stating dur = u’(uy) in Eq. (A.11) so that:

1

)
(1)1 >

/ P - ul (uy) = R, - u)(uy). (A.12)
QF

A.1.2. Structural acoustic reduced model
To derive the reduced model associated to structural acoustic, the solution uz of Eq. (A.3) is decomposed into

N
ur =l (uy) + Y q,ur, (A.13)

o=1

where N denotes the number of retained acoustic modes. It can be shown that this decomposition is unique and it actually
corresponds to the following decomposition:

Cac = Cyc © Cre (A.14)

where %’ refers to the admissible class associated to the static boundary functions uf.(uy).
Inserting Eq. (A.13) into Eq. (A.3) and taking into account of the conjugate relations (A.10) and (A.12), the following
system is obtained:

find u)(uy) € €\ VW% € €\

N
R
0 21yi0m0 Tyiv w0 2 0.0 0 2 z 0
Divul Divv! — V=0’ g, | -
/QFch vu, Divy, — / PrUR -V & ‘L/sz Vi (A.15)

QF o=1 o

R,
(70‘)2 + wi)iu'aqx = 7602/2 E : ll?;,

where v = ul.(vy) refers to a static boundary function associated to an arbitrary displacement vy on X.

A.2. Incompressible hydroelastic sloshing
The second elementary situation which is to be considered is the incompressible hydroelastic problem. The liquid is sup-

posed to be inviscid homogeneous and incompressible. The liquid possesses a free surface I' on which gravity effects act and
a fluid-structure interface X~ where a prescribed displacement uy is applied.
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The local equations governing the small movements of such a liquid are

Vp = plotuy  (Qp),
Divuz =0 Qr),

" ) (2r) (A.16)
p=ppglur-i) (I),
Up -0 = Uy (2).

The test function method allows us to write the corresponding variational formulation as
given o € R", find ur € %, such that Your € %3,
(A.17)

/pgg(up-iz)(SuF-iz) =w2/ ppug - Sup,
I

Qp
where
o s = {ur € 4", Divur =0 in Q, Curlur = 0 in Qr},
o %% ={ur € %5 such that up -n = uy on X},

e %3 = {ur € ¥s. such that up -n=0 on X}.

A.2.1. Conjugate relations
Conjugate relations relate the sloshing modes with the static boundary functions ul.(uy). Sloshing modes are obtained
from Eq. (A.17) by letting uy = 0. The associated variational formulation writes:

find o, € R*, and u% € %Y, such that Vdur € 6y,

. . ” A.18
[ hetut - )our i) = o [ phui s, (A.18)
r Qr
It can easily be shown that the sloshing modes (w,, u%) satisfy the following orthogonality relations:
/ P?:g(ll; : iZ)(ufﬂ? 'iZ) = 506/"60;“17
r (A.19)

0. p
/ pFu;‘ : uf’: = 59(/?:“&7
QF

where p, and @2, are the generalized modal mass and rigidity of the & mode.
Following the same process as in the structural acoustic problem, the local equations relative to the static boundary
functions are obtained from Eq. (A.16) by letting @ = 0. The static boundary functions ul.(uy) thus satisfy:

Vp=0 ('QF)v
Divu! =0 Qr),
_Vuf](uN)o . (@r) (A.20)
p_ng(uF(uN)'lz) (F)a
udon=uy (2)
and the corresponding variational formulation states
find u).(uy) € €% Voup € 6y :
(A.21)

[ et i) 6ur i) o
r
The first conjugate relation is obtained by letting duy be dur = u% in Eq. (A.21) so that we have
[ phetubnn) i) w1 =0 (A22)
r

In order to state the second conjugate relation, the reaction force R, corresponding to the eigenmode (w,, u%) needs to be
expressed. This reaction force satisfies the following property:

R utlon) == [ gt ) (A23)
> o
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hence the following conjugate relation holds:

. 1
[ ot ) = -
Qr

o . R, - ul(uy). (A.24)

A.2.2. Hydroelastic—sloshing reduced model
The admissible class s can be considered as the direct sum of two subsets %3, and %3, so that:

G = Coy ® Gy (A.25)

The solution ug can then be searched under the form:

N
up =W (uy) + g0, (A.26)
a=1

where NV is the number of retained sloshing modes.
This decomposition of ug, in conjunction with the conjugate relations (A.22) and (A.24) leads to the following reduced
model:

find u).(uy) € 6%, and g, € €3 W) € Gy
0 /40 0 2 0,0 0 v R,
/FPF(“F : lZ)(VF L) —o /QF PpUp Vg = —@ Zq“/z E'VF (A.27)

R,
(_wZ + wi)iurxqoc = _a)z/Z E : ug‘a

where v%. = ul.(vy) refers to a static boundary function associated to an arbitrary displacement v on X.

Appendix B. Development of the bilinear forms for the reduced model

The different bilinear forms describing the reduced model are splitted, using the decomposition of the virtual displace-
ment fields given corresponding to Eq. (49) (taking for Sugy, successively dul; , uéL, j = 1, n, and similarly for the other vir-
tual displacement fields).

We give hereafter some of the decomposed bilinear forms.

[ phetuty Lot 1)
[ et i)ous 1) = { g (B.1)

2
% 5i/ﬂjwj,su

/ Prc’V Ui V- Sugc
QF

/QF pgczv . uACV . SHAC = and (BZ)
Ofiéij#jwjngc;
op) . .
y | L i) By )
_F o3 3 F
/QF 8, (Uow - i)(Bugw i) = § 4 (B.3)

OCl'(sl'/"ujwj2i,GW )
/ ng -0uacV - upc + / pﬂg “upacV - dupc
QF Qr

/ Pl dul V- u} . + /3,-/ plg - dul V- Uy +/ plg - u\ .V - dul . + ﬂi/ plg - u\ V- Su}.
QF QF QF QF
= 4 and (B.4)
/ p%g : “/ACV : “gc + ﬁi/ /’zovg : “/Acv “Uye + / /’zovg : uOACv : “IAC + ﬁ,/ p%g UV “’AC
o Qr Qr o
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