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Compressibility and gravity effects in internal
fluid–structure vibrations: Basic equations and

appropriate variational formulations

O. Andrianarison, R. Ohayon *

Conservatoire National des Arts et Me´tiers (CNAM), Chair of Mechanics, Structural Mechanics and Coupled Systems 
Laboratory, 2 rue Conté, F-75003 Paris, France

Various variational formulations for the linear vibrations of bounded fluid–structure systems, taking into account
possible gravity/acoustic interactions are investigated and discussed. The system consists of a tank partially filled with
an inviscid liquid. Two situations corresponding to the cases of a homogeneous and a non-homogeneous liquid are con-
sidered. In this respect, the basic equations describing the interactions between acoustic and gravity waves are derived
and appropriate variational formulations are constructed.

Keywords: Fluid–structure interactions; Gravity; Compressibility; Acoustic; Sloshing

1. Introduction

Within the context of linear vibrations analysis of coupled internal fluid–structure interactions, it is cus-
tomary to consider two distinct situations: linear vibrations of an elastic structure filled with an inviscid
homogeneous compressible fluid neglecting gravity effects for structural-acoustic problems and vibrations
of an elastic structure containing an inviscid homogeneous incompressible liquid with free surface effects
due to gravity. Various symmetric variational formulations based on scalar (pressure and/or displacement
potential and/or velocity potential) fields have been derived leading to finite element discretization for
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interior problems and to reduced order symmetric matrix models through adapted component mode
analysis (see for instance [11,12,15,14]).

It should be noted that in those formulations, fluid–structure interaction taking into account simulta-
neously acoustic and gravity internal waves (specially for intermediate frequency ranges) have not been gen-
erally considered. Such interaction have been only considered through physical assumptions which amount
to consider gravity effects only on the boundary of the fluid domain (liquid free surface and fluid–structure
interface). Those studies are motivated by the consideration of cryogenics liquids contained in elastic tanks
for aerospace industry—liquid propelled launchers and satellites [13].

The standard linearized Euler equations for linearized vibrations of inviscid fluid must be reconsidered in
order to take into account coupling between acoustic and gravity waves. On the other hand, greater atten-
tion must be paid to the kinematics of the liquid. As it will be shown, in this case of full coupling between
gravity and compressibility, the liquid must not any more be considered as homogeneous. The usual
description of the liquid displacement or velocity in terms of a scalar potential must then be reconsidered
because the classical irrotationality property does not hold any more. It is shown that this property is
replaced by an in-plane irrotationality condition.

The objective and the originality of this paper is to present the variational framework for modeling fluid–
structure interaction problems where possible couplings between internal gravity and compressibility effects
may occur. After the derivation of the local equations, appropriate symmetric variational formulations are
constructed. In a first step, the general case of an inviscid non-homogeneous liquid is analyzed. In a second
step, the particular case of an inviscid homogeneous stratified liquid is derived. Preliminary numerical results
are then presented.

2. General case of an inviscid non-homogeneous liquid

The purpose of this section is to derive the variational formulations associated with a fluid–structure
coupled problem subjected to gravity field [1]. Basic linear equations are first derived, then it is shown that
combination of gravity field and non-homogeneity leads to a particular kinematically admissible space,
which can be exploited to derive original variational formulations.

Let us consider an elastic structure occupying at rest the volume XS containing a liquid occupying the
volume XF with a free surface C. The fluid–structure interface is denoted by R. n and iz denote the outward
unit normal of the fluid–structure interface and the liquid free surface. The system is submitted to
prescribed forces Fd on Rd(oXsnR). The notations are those of Fig. 1.

ηΓ

Σ
Ω

Ω

Fig. 1. Fluid–structure coupled system.
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2.1. Basic linear local equations

In order to derive the linear local equations, the following quantities are considered:

• The Eulerian pressure fluctuation

pðM ; tÞ ¼ P ðM ;tÞ � P 0
ðMÞ ð1Þ

in which P 0
ðMÞ denotes the hydrostatic pressure at rest.

• The Lagrangian pressure fluctuation in the liquid

p
L
ðM ; tÞ ¼ P ðM 0 ;tÞ � P 0

ðMÞ. ð2Þ

• The Eulerian density fluctuation

qðM ; tÞ ¼ qF ðM ; tÞ � q0
F ðMÞ. ð3Þ

• The Lagrangian density fluctuation in the liquid

qLðM ; tÞ ¼ qF ðM
0; tÞ � q0

F ðMÞ. ð4Þ

It can be shown that these linearized quantities satisfy the following relations [11]:

p
L
� p ¼ q0

F g � uF 8M 2 XF ;

p
L
¼ c2q

L
8M 2 XF ;

qL ¼ �q0
F DivuF 8M 2 XF ;

8
><

>:
ð5Þ

where q0
F ðMÞ is the liquid density in the reference configuration.

Combination of Eq. (5)2 with Eq. (5)3 yields the following constitutive relation:

p

c2
þ q0

F DivuF �
q0
F g

c2
ðuF � izÞ ¼ 0 ð6Þ

in which c is the velocity of sound.
Performing a first order Taylor expansion, the following relation is moreover obtained:

qL � q ¼ q0
F ðM

0; tÞ � qF ðM ; tÞ ’ rq0
F � uF ¼ ðuF � izÞ

oq0
F

oz
. ð7Þ

In Eq. (7), M 0 (belonging to the actual configuration X0
F ), and M (belonging to the reference configuration

at rest XF), are related by

M 0 ¼ M þ uF ðMÞ. ð8Þ

Moreover the last equality of Eq. (7) will be justified in the following subsection where it is shown that the
fluid density q0

F depends only on the vertical coordinate z.
Taking into consideration Eqs. (5) and (7) the following constitutive relation is also obtained:

qðM ;tÞ ¼
p

c2
�

oq0
F

oz
þ q0

F

g

c2

� �
ðuF � izÞ. ð9Þ

To proceed further, the dynamical equilibrium equations governing the liquid domain behaviour can be
obtained through the Euler equations:

rP ðM 0Þ ¼ q0
ðM 0 ;tÞ½g� c� ðM 0 2 X0

F Þ;

rP 0 ¼ q0
F g ðM 2 XF Þ;

(

ð10Þ

where c is the acceleration of the fluid particle.
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Linearization of Eq. (10) in the framework of vibrations, in conjunction with definitions (1)–(4) gives

rp ¼ qðMÞgþ x2q0
F uF ; ð11Þ

where x is the angular frequency.
On account of the constitutive relation (9), the previous equilibrium equation turns into

rp ¼
p

c2
g�

oq0
F

oz
þ
q0
F g

c2

� �
gðuF � izÞ þ q0

Fx
2uF . ð12Þ

Eq. (12) may then be written in a more convenient way by defining the following quantity:

N 2 ¼ � g
oq0

F

oz
þ
q0
F g

2

c2

� �
. ð13Þ

N2 is called the Brunt–Väisälä frequency and it can be shown that its positiveness is a necessary condition
for the liquid to be stable under the action of gravity field [9, Chapter 4.1].

Note that the constitutive relation (6) is still to be considered here so that the two following equations
state:

rp ¼
p

c2
g� q0

FN
2ðuF � izÞ þ q0

Fx
2uF ðXF Þ;

p

c2
¼ �q0

F DivuF þ
q0
F g

c2
ðuF � izÞ ðXF Þ.

8
><

>:
ð14Þ

Eqs. (14) may then be recasted as follows:

rp ¼ �q0
F gDivuF þ g

oq0
F

oz
ðuF � izÞiz þ q0

Fx
2uF ;

p

c2
¼ �q0

F DivuF þ
q0
F g

c2
ðuF � izÞ.

8
>><

>>:
ð15Þ

2.2. Considerations on the admissible space

Attention is focused here on the kinematically admissible space in which the fluid displacement field is
sought. It is shown that the fluid has a so-called in-plane irrotationality.

Let us consider the hydrostatic equation

rP 0 ¼ q0
F ðMÞg. ð16Þ

Taking the rotational of Eq. (16) leads to

curlq0
F ðMÞg ¼ 0 ð17Þ

or

g
oq0

F

oy
¼ 0;

g
oq0

F

ox
¼ 0.

8
>><

>>:
ð18Þ

It follows from Eq. (18) that:

q0
F ðMÞ ¼ q0

F ðzÞ ð19Þ

which means that under the gravity field the liquid is horizontally stratified.
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Consider now the dynamical equilibrium equation (15). Projecting this equation onto the horizontal
plane, and taking into account (19), results in

rap ¼ q0
Fx

2uFa ; ð20Þ

where the Greek indices a refers to horizontal coordinates (1, 2).
As a consequence, the admissible space of the fluid displacement field is

V
F
u ¼ uF 2 XF =curlu

F
a ¼ 0

� �
. ð21Þ

Therefore an in-plane horizontal displacement potential w, defined up to an additive constant, can be
introduced

uFa ¼ raw. ð22Þ

2.3. Symmetric variational formulations in terms of (uS, p, w, f)

A mixed variational formulation for the liquid-structure vibrations is now derived, taking into account
gravity and compressibility effects for non-homogeneous fluid.

Let us first introduce the internal energy W of the liquid.
It can be shown (see [9]) that this internal energy can be expressed as follows:

W ¼

Z

XF

p2

2b
þ

Z

XF

1

2
q0
FN

2ðuF � izÞ
2
þ

Z

C

1

2
q0
F gðuF � izÞ

2
; ð23Þ

where the Brunt–Väisälä frequency N2 has been defined in Eq. (13) and the parameter b is defined by
b ¼ q0

F c
2.

The internal energy consists of

• a potential energy due to acoustic waves,
• a potential energy due to the so-called internal gravity waves,
• a free-surface potential energy.

It should be emphasized that gravity acts in two different ways: inside the liquid domain, which corre-
sponds to the second volume integral of Eq. (23) and on the free-surface (third surface integral in Eq. (23)).
It should be also noticed that the compressibility-gravity coupling aspects are contained in the
Brunt–Väisälä frequency.

Two types of variational formulations can be derived, a so-called stiffness coupling formulation where
the coupling terms between the field variables are not multiplied by x2 and a so-called mass coupling for-
mulation (those considerations may be easily seen through a matrix discretization of the formulation in the
framework of a finite element procedure for instance) (see [11,19]).

2.3.1. Stiffness coupling formulation

The stiffness coupling formulation can be derived by considering the following Lagrangian functional for
the fluid part (introducing f = uF Æ iz and omitting, in the sequel, for sake of brevity, the subscript F for the
liquid displacement notation uF):

Lf ðua; f; p; kÞ ¼

Z

XF

p2

2b
þ
1

2
q0
FN

2f2
� �

dsþ

Z

C

1

2
q0
F gf

2 dr�

Z

XF

k
p

b
þr � ua þ ozf�

g

c2
f

� �
ds

�

Z

XF

1

2
q0
Fx

2ðu2a þ f2Þds; ð24Þ
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where, as can be seen, the displacement vector has been split into in-plane (referred to by Greek indices) and
out of plane components. Notice also that the constitutive relation is enforced through a Lagrange multi-
plier k.

Stationarity conditions with respect to ua lead to

�

Z

XF

kr � dua ds�

Z

XF

q0
Fx

2ua � dua ds ¼ 0. ð25Þ

Applying the Green formula, we obtain the local equation

rak ¼ q0
Fx

2ua ð26Þ

or (for x5 0)

ra

k

q0
Fx

2

� �
¼ ua ð27Þ

so that an in-plane horizontal displacement potential w can be defined as

ua ¼ raw. ð28Þ

In the same way, writing the stationarity condition with respect to the pressure variable allows us to define
the Lagrange multiplier k as the pressure p. Substituting back the expressions of k and ua in Eq. (24), the
Lagrangian reduces to

Lf ðw; f; pÞ ¼

Z

XF

�
p2

2b
þ
1

2
q0
FN

2f2
� �

dsþ

Z

C

1

2
q0
F gf

2 dr

�

Z

XF

p r � rawþ ozf�
g

c2
f

h i
ds�

Z

XF

1

2
q0
Fx

2ðraw
2 þ f2Þds. ð29Þ

Considering again the variational formulation Eq. (64) associated to the response of the structure subjected
to a fluid pressure loading, and taking into account the kinematic condition at the fluid–structure interface,
one obtains the following stiffness coupling formulation:

given x 2 Rþ; and Fd ; find ðuS ; p;w; fÞ such that 8ðduS ; dp; dw; dfÞ :

bK ðuS; duSÞ �

Z

R

duS � npdr� x2

Z

XS

qSuS � duS ds ¼

Z

Rd

duS � Fd dr;

Z

XF

rap � radwds ¼ x2

Z

XF

q0
Fraw � radwds;

Z

XF

q0
FN

2fdfdsþ

Z

C

q0
F gfdfdrþ

Z

XF

g

c2
pdfds�

Z

XF

pozdfds

� � � þ

Z

R

pdfðiz � nÞdr ¼ x2

Z

XF

q0
F fdfds;

Z

XF

�
pdp

b
dsþ

Z

XF

g

c2
dpfds�

Z

XF

dpozfdsþ

Z

XF

raw � radpds

� � � þ
R
R
fdpðiz � nÞdr�

R
R
dpn � uS dr ¼ 0.

8
>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>:

ð30Þ

2.3.2. Mass coupling formulation

It was established in the previous section that the splitting of the displacement field into in-plane and
normal components allows us to define a displacement potential w that accounts for the in-plane irrotation-
ality condition. Let us now consider the following Lagrangian functional:

6



Lf ðw; f; pÞ ¼

Z

XF

p2

2b
þ
1

2
q0
FN

2f2
� �

dsþ

Z

C

1

2
q0
F gf

2 dr�

Z

XF

1

2
q0
Fx

2ðraw
2 þ f2Þds; ð31Þ

where the variables (w, f, p) are sought to satisfy the relations

p

b
þr � rawþ ozf�

g

c2
f ¼ 0 ðXF Þ;

onwþ fðiz � nÞ ¼ uS � n ðRÞ.

8
<

: ð32Þ

Applying a partial Legendre–Fenchel transform (see [16] for a similar derivation of the mass-coupling
formulation and [3,17] for details on Legendre transforms) to the third integral

Z

XF

1

2
q0
F ðraw

2 þ f2Þds

of Eq. (31) and using the expression of $ Æ $aw extracted from Eq. (32), one obtains

�

Z

XF

1

2
q0
Fraw

2 ds�

Z

XF

q0
Fw �

p

b
� ozfþ

g

c2
f

� �
ds � � � þ

Z

R

q0
FwuS � ndrþ

Z

XF

1

2
q0
F f

2 ds. ð33Þ

Hence the Lagrangian for the fluid part writes

Lf ðw; f; pÞ ¼

Z

XF

p2

2b
þ
1

2
q0
FN

2f2
� �

dsþ

Z

C

1

2
q0
F gf

2 dr

� � � þ x2

Z

XF

1

2
q0
Fraw

2 dsþ

Z

XF

q0
Fw �

p

b
� ozfþ

g

c2
f

� �
ds

� �

� � � � x2

Z

R

q0
FwuS � ndrþ

Z

XF

1

2
q0
F f

2 ds

� �
. ð34Þ

The mass coupling variational formulation can finally be obtained by writing the stationarity condition of
Lf combined with the response of the structure to a pressure loading. One then obtains

Given x 2 Rþ; and Fd ; find ðuS ; p;w; fÞ such that 8ðduS ; dp; dw; dfÞ :

bK ðuS ; duSÞ � x2

Z

R

q0
FwduS � ndr� x2

Z

XS

qSuS � duS ds ¼

Z

Rd

duS � Fd dr;

�x2 �

Z

XF

q0
Fraw � radwþ

Z

XF

q0
F dw

p

b
þ

Z

XF

q0
F dwozf�

Z

XF

q0
F g

c2
fdw

� �

� � � � x2
R
R
q0
F dwuS � n ¼ 0;

Z

XF

q0
FN

2fdfþ

Z

C

q0
F gfdf� x2

Z

XF

q0
F fdf�

Z

XF

q0
Fw

g

c2
dfþ

Z

XF

q0
Fwozdf

� �
¼ 0;

Z

XF

pdp

b
� x2

Z

XF

wdp

c2
¼ 0.

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

ð35Þ

3. Particular case of an inviscid homogeneous liquid

This section is devoted to the analysis of fluid–structure interaction problems, taking into account both
gravity and compressibility effects [1]. The liquid is considered here as homogeneous.

The linear local equations and variational formulations can obviously be derived from the previous sec-
tion by considering a constant density.
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Nevertheless, as it is shown below, a more direct approach is possible. The local equations are obtained
through linearization of the Piola–Lagrange stress tensor around a prestressed reference configuration
whereas the variational formulation is derived through the classical principle of virtual work.

3.1. Liquid subjected to a prescribed normal displacement

The variational formulation describing the response of the fluid to an imposed normal displacement on
the fluid–structure interface R is obtained through the principle of virtual work

Z

XF

DivH � duF þ

Z

XF

qF g � duF ¼ �x2

Z

XF

qF uF � duF ; ð36Þ

where H refers to the Piola–Lagrange stress tensor defined by

HðM ; tÞ ¼ �JP ðM 0 ;tÞIdF
�T; ð37Þ

where P ðM 0 ;tÞ denotes the instantaneous pressure in the actual configuration, F denotes the gradient of the
transformation M ! M 0, J is its jacobian and Id is the identity matrix.

In Eq. (36), duF denotes the virtual variation of the fluid displacement vector field uF, qF and g denote
respectively the mass density and the gravity (supposed constant) and x denotes the angular frequency of
the vibrations.

In order to linearize H, we consider the quantities defined in Eqs. (1)–(4) under the assumption that
q0
F ðMÞ is constant.
Notice that in the particular case of a homogeneous weightless (gravity neglected) compressible fluid

or homogeneous heavy incompressible liquid, p and p
L

are identical in Eq. (5)1. Otherwise these two state
variables are to be distinguished and combination of Eq. (5)2 with Eq. (5)3 leading to constitutive relation
(6) is still valid.

Considering now the first order Taylor expansion of J and F�T, it can be shown [7] that the Piola–
Lagrange stress tensor defined in Eq. (37) writes

H ¼ �p
L
Id � P 0Id þ P 0rTuF � P 0Id DivuF . ð38Þ

Applying Green formula to Eq. (36) and letting H be replaced by its above stated expression, the latter Eq.
(36) turns into

Z

XF

H � rduF �

Z

oXF

Hn � duF �

Z

XF

q0
F g � duF ¼ x2

Z

XF

q0
F uF � duF ð39Þ

and
Z

XF

q0
F c

2DivuF DivduF þ

Z

XF

P 0rTuF � rduF �

Z

XF

P 0DivuF DivduF �

Z

oXF

Hn � duF

�

Z

XF

P 0DivduF �

Z

XF

q0
F g � duF ¼ x2

Z

XF

q0
F uF � duF . ð40Þ

Moreover the hydrostatic equation writes

rP 0 ¼ q0
F g. ð41Þ

Applying test function method to Eq. (41) leads to
Z

XF

P 0DivduF þ

Z

XF

q0
F g � duF �

Z

oXF

P 0n � duF ¼ 0. ð42Þ

8



Hence combination of Eq. (40) and Eq. (42) finally gives
Z

XF

q0
F c

2DivuF DivduF �

Z

XF

P 0DivuF DivduF þ

Z

XF

P 0rTuF � rduF

�

Z

oXF

ðHþ P 0Þn � duF ¼ x2

Z

XF

q0
F uF � duF . ð43Þ

Alternatively, another formulation of this problem can be derived by expressing the Piola–Lagrange tensor
H in terms of the Eulerian fluctuation pressure p.

Namely, substitution of Eq. (5)1 into Eq. (38) leads to

H ¼ �ðp þ q0
F g � uF ÞId � P 0Id þ P 0rTuF � P 0DivuF Id. ð44Þ

Hence

DivH ¼ �rp �rP 0 � q0
F gDivuF . ð45Þ

Equilibrium Eq. (36) then writes

�

Z

XF

rp � duF �

Z

XF

rP 0 � duF �

Z

XF

q0
F g � duF DivuF þ

Z

XF

q0
F g � duF ¼ �x2

Z

XF

q0
F uF � duF . ð46Þ

Applying Green formula to the first integral of Eq. (46) and taking into account Eq. (5) and Eq. (40), one
obtains

Z

XF

q0
F c

2DivuF DivduF þ

Z

XF

q0
F g � duF DivuF þ

Z

XF

q0
F g � uF DivduF

þ

Z

oXF

pn � duF ¼ x2

Z

XF

q0
F uF � duF . ð47Þ

In terms of the Lagrangian fluctuation, the free surface condition on C writes

p
L
¼ 0 ð48Þ

which can be written in terms of the Eulerian fluctuation as

p ¼ q0
F g � uF . ð49Þ

The boundary integral in Eq. (47) then writes
Z

oXF

pn � duF ¼

Z

R

pn � duF þ

Z

C

q0
F gðuF � ı̂zÞðduF � ı̂zÞ. ð50Þ

Eq. (47) then leads to
Z

XF

q0
F c

2DivuF DivduF þ

Z

XF

q0
F g � duF DivuF þ

Z

XF

q0
F g � uF DivduF þ

Z

C

q0
F guF � duF

þ

Z

R

pn � duF ¼ x2

Z

XF

q0
F uF � duF ð51Þ

from which, the following local equations in XF are easily derived (by integrations by parts):

rp þ q0
F gDivuF ¼ q0

Fx
2uF ð52Þ

in which p is expressed as a function of uF as

�p ¼ q0
F c

2DivuF þ q0
F g � uF . ð53Þ

9



Remark. It can be seen that the Eulerian pressure fluctuation depends upon gravity while its expression in
terms of Lagrangian pressure fluctuation is independent of gravity (see also Eq. (5)).

From Eq. (52) we notice that, by applying the curl operator, generally

curluF 6¼ 0. ð54Þ

If we neglect internal gravity waves (i.e. gravity terms in Eq. (52) and Eq. (53)), keeping only gravity effects
on the free surface C, then for x5 0, uF satisfies the usual irrotationality condition

curluF ¼ 0. ð55Þ

Let us now introduce the following admissible spaces:

CF ¼ fuF =uF � n ¼ uN on Rg; ð56Þ

C
�
F ¼ fuF =uF � n ¼ 0 on Rg; ð57Þ

where uN denotes a prescribed normal displacement field of the fluid–structure interface R.
We can then state the following symmetric variational formulation in terms of uF:

for given x 2 Rþ; find uF 2 CF ; such that 8duF 2 C
�
F :Z

XF

q0
F c

2DivuF DivduF þ

Z

XF

q0
F g � duF DivuF þ

Z

XF

q0
F g � uF DivduF

þ

Z

C

q0
F guF � duF � x2

Z

XF

q0
F uF � duF ¼ 0.

8
>>>>><

>>>>>:

ð58Þ

The local boundary value problem is then derived from the previous variational formulation as follows
(using Green formula):

rpðuF Þ þ q0
F gDivuF ¼ q0

Fx
2uF ðXF Þ;

pðuF Þ ¼ q0
F g � uF ðCÞ;

uF � n ¼ uN ðRÞ

8
><

>:
ð59Þ

in which p(uF) is defined by Eq. (53).
The formulations defined by Eqs. (58) and (59) contain internal gravity terms (contributions of gravity

inside the domain XF) which are often neglected.
In this last case, in which compressibility effects (in the domain XF) and gravity effects (on the free sur-

face C) are taken into account, the irrotationality condition holds and scalar formulations for the fluid to-
gether with the introduction of the elevation g of the fluid surface can be derived [16,10,8,5,18].

More specifically, the curl-free condition may be dealt through a displacement potential u taken as
an auxiliary variable in place of the displacement field uF. Hence, following a procedure described in
[11], it can then be shown that the fluid domain may be completely described by three independent scalar
fields: the pressure p, a displacement potential u and the free-surface elevation g. The choice of these three
fields ensures the variational formulation to satisfy exactly the curl-free condition on one hand and to be
symmetric on the other hand. Consistent with the above description of the fluid behaviour, two types of
(uS, p, u, g) variational formulations can be constructed: a mass coupling or a stiffness coupling formula-
tion [16,6].

As a particular case, under the assumption that the fluid is homogeneous, compressible and weightless

(gravity neglected), Eq. (58), restricted to irrotational motions for uF, reduces to
Z

XF

q0
F c

2DivuF DivduF ¼ x2

Z

XF

q0
F uF � duF . ð60Þ
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The associated local equations are then

rp ¼ q0
Fx

2uF ðXF Þ;

�p ¼ q0
F c

2DivuF ðXF Þ;

p ¼ 0 ðCÞ;

uF � n ¼ uN ðRÞ.

8
>><

>>:
ð61Þ

Another particular case consists in considering the fluid as homogeneous, incompressible and with gravity
acting on free surface. Eq. (58), restricted to irrotational motions for uF, and also to the incompressibility
condition, then reduces to

Z

C

q0
F guF � duF ¼ x2

Z

XF

q0
F uF � duF ð62Þ

with the corresponding local equations

rp ¼ q0
Fx

2uF ðXF Þ;

DivuF ¼ 0 ðXF Þ;

p ¼ q0
F g � uF ðCÞ;

uF � n ¼ uN ðRÞ.

8
>><

>>:
ð63Þ

For those cases, one can use, for the fluid, either displacement type of unknown as in [4] or scalar field as in
[11].

3.2. Structure subjected to a liquid pressure loading

The unknown displacement field in the structure domain is denoted as uS, the associated linearized defor-
mation tensor as eij(uS) and the corresponding stress tensor rij(uS). We also denote as qS the constant mass
density of the structure at equilibrium and duS the test function associated to uS, belonging to the kinemat-
ically admissible space C

S
u , classical for linear elasticity (regular functions in XS).

The weak variational formulation describing the response of the structure XS to given harmonic forces of
amplitude Fd on Rd, and to fluid pressure field p acting on R is written as follows:

for given x 2 Rþ; find uS 2 C
S
u ; such that 8duS 2 C

S
u :

bK ðuS ; duSÞ � x2

Z

XS

qSuS � duS �

Z

R

pduS � n ¼

Z

Rd

Fd � duS ;

8
><

>:
ð64Þ

bK ðuS ; duSÞ denotes the elastogravity operator. This operator takes into account the effect of gravity forces on
the fluid–structure interface and is defined as

bK ðuS ; duSÞ ¼ kðuS; duSÞ þ kGðuS ; duSÞ þ kRðuS ; duSÞ; ð65Þ

where

• kðuS; duSÞ ¼
R
XS
rijðuSÞeijðduSÞ is the usual mechanical elastic stiffness,

• kGðuS; duSÞ ¼
R
XS
r0
ijum;idum;j refers to the classical structural geometric prestress symmetric bilinear form

in which r0
ij denotes the prestress tensor,

• kRðuS ; duSÞ ¼ �q0
F g

R
R
½zn1ðuSÞ � duS þ ðiz � uSÞðduS � nÞ� represents prestress symmetric bilinear form due to

rotation of the external normal n. z is the vertical coordinate. n is dependent of the displacement uS and
n1(uS) is its first order Taylor-expansion with respect to uS.

For a detailed derivation of these operators, see [11,20,21].
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3.3. The coupled problem

To write the weak variational formulation associated with the coupled problem, consider the following
kinematically admissible space:

� C
S
u ¼ fuS regular in XSg; ð66Þ

� C
F
u ¼ fuF regular in XF g; ð67Þ

� Cp ¼ fp regular in XF g; ð68Þ

� C
S;F
u ¼ fuS 2 C

S
u ; uF 2 C

F
u such that uS � n ¼ uF � n on Rg. ð69Þ

The variational formulation of the coupled problem is obtained by considering both Eqs. (58) and (64):

given x 2 Rþ; find ðuS; uF Þ 2 C
S;F
u such that 8ðduS ; duF Þ 2 C

S;F
u :

bK ðuS; duSÞ þ

Z

XF

q0
F c

2DivuF DivduF

þ

Z

C

q0
F guF � duF þ

Z

XF

q0
F g � uF DivduF þ

Z

XF

q0
F g � duF DivuF

�x2

Z

XS

qSuS � duS þ

Z

XF

q0
F uF � duF

� �
¼

Z

Rd

Fd � duS .

8
>>>>>>>>>><

>>>>>>>>>>:

ð70Þ

The kinematic compatibility condition between uF and uS on R may be relaxed by applying the Lagrange
multipliers method. It can be shown that the Lagrange multiplier associated with the jump condition iden-
tifies itself to the pressure so that the following three-field variational equation is obtained:

given x 2 Rþ; find ðuS 2 C
S
u ; uF 2 C

F
u ; p 2 CpÞ such that

8ðduS ; duF ; dpÞ 2 C
S
u � C

F
u � Cp :

bK ðuS; duSÞ þ

Z

XF

q0
F c

2DivuF DivduF

þ

Z

C

q0
F guF � duF þ

Z

XF

q0
F g � uF DivduF þ

Z

XF

q0
F g � duF DivuF

þ

Z

R

pn � ðduF � duSÞ � x2

Z

XS

qSuS � duS þ

Z

XF

q0
F uF � duF

� �
¼

Z

Rd

Fd � duS;

Z

R

dpn � ðuF � uSÞ ¼ 0.

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

ð71Þ

4. Numerical results

Preliminary numerical results are presented here to validate the derived formulations. The considered
model is a two-dimensional square box of dimensions a = 1 m with a liquid height h = 1 m. All the walls
are taken to be rigid. A free surface is considered where gravity effects act.

Exact analytical solutions can be obtained in that case of a incompressible non-homogeneous liquid
contained in a rigid cavity. The derivation of the analytical expression of the eigenvalues are not detailed
here. It can be shown that they may be obtained by solving the local equations in terms of a stream
function w.

12



Table 1

Analytical/numerical circular eigenfrequencies comparison for internal gravity waves

Eigenvalues IGW

Mode (1, 2) (1, 3) (2, 2) (3, 1)

Analytical (rad/s) 0.4470 0.3161 0.7069 0.9485

Computed (rad/s) 0.4509 0.3255 0.7066 0.9453

Table 2

Analytical/numerical circular eigenfrequencies comparison for sloshing gravity waves

Eigenvalues SW

Analytical (rad/s) 5.5383 7.8469 9.6105 11.0973

Computed (rad/s) 5.4958 7.6128 9.0091 9.9753

Fig. 2. Internal gravity modes (eigenfrequencies in rad/s) (a) 0.4509 (1, 2), (b) 0.3255 (1, 3), (c) 0.7063 (1, 1), (d) 0.5502 (2, 3), (e) 0.7066

(2, 2) and (f) 0.9453 (3, 1).
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Analytical eigenfrequencies for internal gravity waves and sloshing waves are given as follows:

xIGW
ij ¼ N

ip

a

ip

a

� �2

þ
jp

h

� �2

þ
b2

4

" #�1=2

;

xSW
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g
ip

a

� �
tanh

ip

a

� �s

.

8
>>>>><

>>>>>:

ð72Þ

The geometric and physical characteristics of the problem are:

q0
F ¼ 1000 kg=m3;

N 2 ¼ 1 s�2;

a ¼ 1 m;

h ¼ 1 m.

8
>><

>>:
ð73Þ

Tables 1 and 2 sum up the first analytical eigenfrequencies and their corresponding wave numbers for inter-
nal gravity waves.

The first eigenfrequencies of sloshing waves propagation are presented in Table 2.
In Figs. 2 and 3, we represent the computed eigenmodes corresponding to the previous analytical ones.

The finite elements mesh consists of 20 · 20 triangle elements. For the incompressible situation considered
here, the previous variational formulations reduce to a displacement-based formulation which is discretized
in the framework of Raviat–Thomas finite elements method.

5. Conclusion

This paper presents the theoretical framework for analysis of fluid–structure interaction interior linear
vibration problems taking into account both internal gravity and compressibility effects. Local equations

Fig. 3. Sloshing modes (eigenfrequencies in rad/s) (a) 5.4958, (b) 7.6128, (c) 9.0091 and (d) 9.9753.
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are derived and original symmetric variational formulations are constructed in the case of an inviscid homo-

geneous then a non-homogeneous liquid.
Those symmetric formulations lead to possible various finite element discretization. Current work is

undertaken for the construction of various symmetric matrix reduced order models using adapted compo-
nent mode analysis [2].
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