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Abstract Finding communities that are not only relatively densely connected in a
graph but that also show similar characteristics based on attribute information has
drawn strong attention in the last years. There exists already a remarkable body
of work that attempts to find communities in vertex-attributed graphs that are
relatively homogeneous with respect to attribute values. Yet, it is scattered through
different research fields and most of those publications fail to make the connection.
In this paper, we identify important characteristics of the different approaches
and place them into three broad categories: those that select descriptive attributes,
related to clustering approaches, those that enumerate attribute-value combinations,
related to pattern mining techniques, and those that identify conditional attribute
weights, allowing for pre-processing. We point out that the large majority of these
techniques treat the same problem in terms of attribute representation, and are
therefore interchangeable to a certain degree. In addition, different authors have
found very similar algorithmic solutions to their respective problem.

1 Introduction

Graphs are a powerful mechanism to represent data. Applications range from so-
cial networks, over gene analysis, to smart sensor systems. Due to the ubiquitous
nature of graphs, analyzing them is a highly active research field with cluster-
ing/community detection being one of the most important and frequently applied
tasks. While classical graph clustering approaches have considered merely struc-
tural information, in recent years attributed graph clustering has gained strong at-
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Fig. 1 Attributed graph with natural communities (indicated by rectangular box) and de-
scribable communities (grey background)

tention: it integrates additional attribute data about individual instances into the
clustering task, to enhance its result. In a social network, e. g., the attributes de-
scribing each user’s characteristics might be combined with the underlying friend-
ship network to form an attributed graph.1 Figure 1 shows an example, in which
each vertex is, for the sake of presentation, labeled with a set of items.

In the last few years, a number of clustering approaches for attributed graphs
have been introduced. The discussion in the related work sections of publications
on the topic tends to focus on whether different methods allow finding overlap-
ping communities or not, or considers the technical methodology of the approaches
(e. g., distance-based, model-based, random walk-based, etc.). In this survey, we
choose a different way of looking at this issue based on the following observa-
tion: There are essentially two ways of exploiting attribute values. 1) to improve
community detection by leveraging attribute value similarities, and 2) to derive a
concrete description of discovered communities. The latter one enables us to better
understand the structure of the detected communities, i.e. in order to answer the
question why this set of vertices is a reasonable community. This is particularly
relevant not only relating to interpretability but also given the recently renewed
focus on explainable results of data analysis processes.

To return to the example shown in Figure 1, the rectangular boxes show two
communities — two groups of vertices that are strongly connected to each other
but that have few connections among each other. It can also be seen, however,
that neither of those communities can be described by only one single set of
items. The communities marked within grey rectangles, on the other hand, are
still strongly connected within, weakly connected to each other, and describable
with the items “A” (top-left community) and “B” (bottom-right community), re-
spectively. Clearly, those are not the only two describable communities. It is easy
to see that we can further find subcommunities which are described by more com-
plex descriptions, e. g., considering the set of items “A, B” focussing on the four
central vertices of the top-left community. Notably, the set of items “B, C” de-
scribes two communities, one on the left of the upper rectangle, and one in the
center of the lower one, showing that descriptions are not necessarily unique to
communities. Another example, referring to two communities described “C, D” is
given in Figure 2.

1 It is worth mentioning that the term ’attributed graph’ is not the only term used by the
scientific community. Other terms include, e. g.,’graphs with feature vectors’, ’labeled graphs’,
or ’annotated graph’, where also ’network’ is often substituted for ’graph’.
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The approaches we discuss in this work do this at different levels of explicitness.
There are approaches that identify for each community the attribute-value combina-

tions that describe the community, returning ready-made descriptions. Addition-
ally, there are approaches that explicitly identify attributes for which all vertices
in a community have the same or similar values, without, however, also explicitly
returning those values themselves. Finally, there are methods that derive indicators

for the importance that attributes have for different communities but that would
require post-processing of those indicators to enumerate the attributes. We discuss
all three of those approaches. In summary, the main focus of this survey are methods

that explicitly treat attributes and therefore (can) derive descriptive communities.

Indeed, this is in marked contrast to the survey by Bothorel et al. [2015], which
discusses works that exploit the attribute information in graphs for improving clus-
tering results, i.e. improving community detection — by calculating distances or
by augmenting density information. That is, the primary goal of these methods is
to improve clustering performance by using multiple data sources — not to find
descriptive communities. This also means that attributes are not treated explicitly
but the information that is contained in them is mixed with the information inher-
ent in the network. This takes the form of, for instance, defining quality measures
that also take attribute similarity into account. Because the returned results of
those approaches are only the communities, and no information about the contri-
bution of the attributes is included, even post-processing might then not result in
community descriptions. Therefore, these are outside the scope of our survey.

We start our discussion by introducing fundamental definitions in Section 2,
followed by a concrete description of our selection methodology in Section 3. We
then continue with an in-depth survey and categorization of description-oriented
approaches in Section 4. Next, we briefly touch the aspect of evaluation and graph
generation for attributed graphs in Section 5 before Section 6 concludes the survey
with a summary and an outlook on further promising research directions.

2 Definitions

In the following, we outline and summarize fundamental definitions on graphs and
communities.

Definition 1 (Graph) A graph is a tuple G = 〈V,E〉, where V is a set of vertices

and E a set of edges E ⊆ V × V . We refer to the number of edges a vertex v ∈ V
is incident to as the vertex’ degree, deg(v) = |{(u, v) ∈ E | u ∈ V }|.

Definition 2 (Attributed Graph) An attributed graph is a graph G in which each
v ∈ V is associated to a vector of attribute values x = (x1, . . . , xd), and each edge
e ∈ E to a vector y = (y1, . . . , yt). We use ai(v) to refer to the ith attribute value
of a vertex v, and ai(e) for the edge e respectively. We denote with AV the set of
vertex attributes, d = |AV |, and with AE the set of edge attributes, t = |AE |. If
|AV | > 0, |AE | = 0, we refer to G as vertex-attributed ; similarly if |AV | = 0, |AE | > 0,
we call it edge-attributed. If |AV | = 0, |AE | = 0, then we refer to a plain graph.

Note, that this definition subsumes the widely used labeled graph definition, in
which each vertex has a label, and each edge a label or a weight, as a special case.
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Fig. 2 Projection of vertices of the graph shown in Figure 1 labeled with “C,D”

Definition 3 (Projected Graph) Given a set of vertex attributes AV , an at-
tributed graph G, a description p = {A1 � val1, . . . , Ad � vald} with Ai ∈ AV ,
valj ∈ dom(Aj), and � ∈ {<,≤,=,≥, >}, a projected graph Gp is defined as fol-
lows: the subgraph Gp = 〈Vp, Ep〉, Vp = {vj ∈ V | ai(vj) � vali}, Ep = {(u, v) ∈ E |
u ∈ Vp, v ∈ Vp}, is referred to as the projected graph according to description p.

The graph shown in Figure 2 depicts the result of projecting the graph shown
in Figure 1 on the description “C,D”. The projection acts as a filter on the vertices,
and creates two communities that can both be described by a single set of items,
which we also call an itemset.

Definition 4 (Graph partition) A partition of a graph G is a set of sets of vertices
PG = {C1, . . . , Ck}, with Ci ∩ Cj = ∅, and

⋃
i Ci = C; the individual Ci are also

referred to as clusters or communities. The external (internal) degree of a vertex
v refers to the number of edges connecting it to vertices in other (the same)
communities:

– degext(v) = |{(u, v) ∈ E | v ∈ Ci, u ∈ Cj , i 6= j}| ,
– degint(v) = |{(u, v) ∈ E | v ∈ Ci, u ∈ Ci}| .

This definition is equivalent to the standard community detection definition, in
which it is assumed that vertices can belong to a single community only, and
that the graph is partitioned w.r.t. vertices, not w.r.t. edges. A consequence of
the latter is that edges can have end points belonging to different communities,
a characteristic that is exploited in calculating the quality of communities. When
the assumption of strict vertex membership is relaxed, we refer to overlapping

communities.
Overall, how to define communities is a rather complex topic, on which no

consensus has been reached yet in the literature. We do not discuss all possible
aspects but refer the interested reader to Fortunato [2010]. An often enforced
requirement is connectedness.

Definition 5 (Path) Given a graph G, a path of length p ∈ N between two vertices
v, u is a list of edges 〈(v1, v2), (v2, v3), . . . , (vp, vp+1)〉 for distinct vertices vi, vi ∈ V ,
i.e. vi 6= vj , i 6= j, with v = v1, u = vp+1.
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Definition 6 (Connectedness/Reachability) A community C ⊆ V is considered
connected if and only if there is a path between any two vertices v, u ∈ C. The
n-reachability of a community derives from the existence of a path of maximally
length n between any two vertices in the community.

Yet given that reachability requirements could be satisfied by chains of vertices,
stronger connectivity requirements are often imposed, such as that vertices need
to form a k-core [Seidman, 1983].

Definition 7 (k-Core) A community C is referred to as a k-Core if and only if
degint(v) ≥ k for every v ∈ C, i.e. each vertex is adjacent to at least k vertices
of the community, and the community is maximal, i.e. one cannot add additional
vertices without violating that property.

A sufficient criterion for communities, finally, is that they are not only con-
nected but have more internal connections than external ones, focusing on the
density. This is in general related to the notion of density, e. g., [Charikar, 2000,
Diestel, 2006], where we focus on edge density differentiating between edges inter-

nal/external to a given community.

Definition 8 ((Edge) Density) Given a community Vi, its intra-community den-

sity is the ratio of existing internal edges to the maximum possible number of
internal edges:

δint(Ci) =
|{(u, v) | u, v ∈ Ci}|
|Ci|(|Ci| − 1)/2

=

∑
v∈Ci

degint(v)

|Ci|(|Ci| − 1)
.

Its inter-community density is the ratio of existing edges external edges to possible
external edges:

δext(Ci) =
|{(u, v) | u ∈ Ci, v ∈ Cj , i 6= j}|

|Ci||V \ Ci|
=

∑
v∈Ci

degext(v)

|Ci||V \ Ci|
.

Such criteria can be absolute, using the definition above with a threshold, but
also relative. There are too many different measures for relative density to list
them here, which is why we only mention the widely-known modularity.

Definition 9 (Modularity) The modularity [Newman, 2004, Newman and Girvan,
2004] of a graph clustering with k communities C1, . . . , Ck ⊆ V focuses on the
number of edges within a community and compares that with the expected such
number given a null-model (i.e., a corresponding random graph where the vertex
degrees of G are preserved). It is given by

Modularity(C1 , . . . ,Ck ) =
1

2m

k∑
i=1

∑
u,v∈Ci

Au,v −
deg(u) deg(v)

2m
,

where Au,v is the entry of the adjacency matrix referring to vertices u and v, and
m is the number of edges of the whole graph.
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Modularity has been used as optimization criterion driving a number of differ-
ent classical community detection algorithms, i.e. ones not taking attribute infor-
mation into account.

When it comes to communities in attributed graphs, finally, structural density
is not enough but vertices should also agree with respect to attributes, which can
be assessed using a cohesion function [Moser et al., 2009], for instance.

Definition 10 (Cohesion function) A cohesion function is a function

f : P (V )× P (AV )×R 7→ {true, false}

This function is required to satisfy both a maximality characteristic, i.e. for any
set of vertices V ′ and set of attributes A′V , the latter contains all attributes for
which V ′ is cohesive,

(f(V ′, A′V , θs) = true ∧ @A′′V ⊃ A′V : f(V ′, A′′V , θs) = true)⇒

(f(V ′, A∗V , θs) = true⇒ A∗V ⊆ A
′
V ),

and an anti-monotonicity characteristic, i.e. given a set of vertices and a set of
attributes that are cohesive, any subsets of those attributes/vertices stay cohesive:

f(V ′, A′V , θs) = true⇒ f(V ′′, A′′V , θs) = true, ∀V ′′ ⊆ V ′, A′′V ⊆ A
′
V

Moser et al. [2009] also provide a a concrete example of such a definition:

f(V ′, A′V , θs) = ∀Ai ∈ A′V : |max
v∈V ′

ai(v)− min
v∈V ′

ai(v)| ≤ θs

As an illustration, consider Figure 4: assuming θs = 0.2, A′V for the upper shaded
community would be {A,B}, and for the lower shaded one {A,B,C}.

3 Scope and Overview: Algorithm Selection and Categorization

The numerous techniques that are capable of putting a concrete description on
discovered communities rely on the following mechanisms: (a) descriptions drive
community detection — they are explicitly enumerated and restrict the vertices
that can be used to form communities, (b) communities drive description formation
— only those attribute values appearing for vertices in a community can be used, or
(c) vertex and attribute membership probabilities for communities are optimized
together. The first two approaches are not necessarily exclusive: as we will see
later, some methods iterate between the two.

Hence, there are different options for constructing a description. Following the
local pattern mining view [Hand, 2002, Morik, 2002, Morik et al., 2005], we focus
on attributes, and attribute values; and a description combines these in a suitable
way, e. g., by a conjunction, disjunction, or combination thereof. Also, please note
that such descriptions (patterns) induce local structures that can be regarded as
the result themselves, or can be integrated into a global approach that partitions
the complete (graph) data space.

In this paper, we intend to explore these issues in detail, drawing explicit
connections between the different methods, in the same spirit as has been done
in [Novak et al., 2009] for supervised rule induction. A comparison between [Pool
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et al., 2014] and [Galbrun et al., 2014], for example, has been reported in the
latter, showing that the description language and discriminative learning of the
former leads to rather different results. However, the remaining techniques that we
consider (see below), notwithstanding their similarities, have not been compared
against each other before.

3.1 Algorithmic Selection Criteria

Our selection methodology is based on different aspects of description-oriented
approaches, focusing on ideas from community detection and local pattern min-
ing. For the latter, we first need to consider what makes up a local pattern. For
that, we take some ideas and definitions from local pattern detection [Hand, 2002,
Morik, 2002, Morik et al., 2005] which we also illustrate with an example below:
According to Hand [2002] a local pattern can be regarded as a data vector exhibit-
ing an anomalously high local density of data points compared to a background
model. A local pattern has two important characteristics [Hand, 2002, Klösgen,
2002] — exemplified by the gray boxes in Figure 3: (1) Local patterns cover small
parts of the data space. (2) Local patterns deviate from the distribution of the
population of which they are part. This deviation is usually measured by inter-
estingness measures that contrast their behavior with that of the entire data or
of other patterns. As a simple illustration, consider Figure 3: item “A” occurs in
five vertices, item “B” in only four but the set of items “A,B” in four vertices out
of 11. The expected frequency of that set of items is (5 · 4)/11 = 1.81, so its ob-
served frequency deviates clearly from the background distribution. The expected
distribution of “C, D”, on the other hand, is (9 ∗ 9)/11 = 7.36 and its observed
distribution 7, it can therefore be regarded as not local.

Fig. 3 Attributed graph with a community describable by a local, discriminative description
(top), and one describable by a non-local, non-discriminative one (bottom)

Therefore, in an unsupervised view on local pattern detection, no informa-
tion but the data itself is given to find out what patterns may be present in the
database. In contrast, a supervised view exploits some information about a con-
cept of interest, or some target distribution in order to identify interesting patterns.
Then, a local pattern can be regarded as a subgroup, for example, covering a set
of instances that contrasts the global model, cf. Morik [2002]. If we consider the
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edge distribution to be the target distribution, “A,B” is also a local pattern from
a supervised perspective since the described community is denser than expected.

Thus, our main focus in this survey is on techniques that have two important
aspects in common: (1) Each algorithm identifies a subset of attribute dimensions,
i.e. attributes or attribute–values, that are relevant for the detected communities.
(2) These subsets can be mapped to individual communities and their respective
induced subgraphs (according to the idea of a local pattern).

While communities (i.e. set of vertices) are local structures more or less by
definition, different categories how to handle the attributes have been proposed.
We are specifically interested in local methods where the focus is on subsets of
attribute dimensions that are locally relevant. Also, we focus on methods that
create concise attributive descriptions, in contrast to those approaches for which
the derived descriptions often only take the form of certain values appearing in
the majority of vertices in a community, instead of all of them.

Based on these intuitions we can identify three possible categories of algo-
rithms/methods, allowing different potential for interpretation/description:

1. Description via (explicit) attribute selection: Considering Figure 4, such a method
would select {A,B} for the upper shaded community because their values are
rather close for all vertices, as well as {A,B,C} for the lower one.

2. Description via (explicit) attribute-value selection: Considering Figure 4, such a
method could find the description A ≥ 0.75 ∧ B = 0.75 for the upper shaded
community, for instance, and B ≤ 0.3 ∧ C ≤ 0.65 ∧ C ≥ 0.5 for the lower one.

3. Description via implicit attribute selection/attribute weighting, i.e. post-processing

algorithmic output w.r.t. attributes: For Figure 4, such a method could for
instance derive the following weights:

Upper communities Lower communities
Attribute complete shaded complete shaded

A 1.18 5 ∞ ∞
B 2 ∞ 3.33 6.67
C 1.11 1.25 2.5 6.67
D 1.11 1.43 1.11 1.11
E 1.11 1.11 1.11 1.43
F 1.11 1.43 1.43 1.43

If we apply a threshold of 3 to select relevant attributes, the non-shaded upper
community cannot be described at all, the shaded one by attributes “A” and
“B”, the lower non-shaded one with “A” and “B”, and the shaded one with
“A”, “B”, and “C”.

A=0.95,B=0.75,C=0.9,

D=0.1,E=0.3,F=0

A=0.9,B=0.75,C=0.7,

D=0.3,E=0,F=0.7

A=0.85,B=0.75,C=0.5,

D=0,E=0.9,F=0.1 A=0.8,B=0.75,C=0.3,

D=0.5,E=0.1,F=0.5

A=0.75,B=0.75,C=0.1,

D=0.7,E=0.7,F=0.3

A=0,B=0.3,C=0.65,

D=0.9,E=0.1,F=0

A=0.1,B=0.25,C=0,

D=0.9,E=0.5,F=0.9

A=0,B=0,C=0.9,

D=0.3,E=0.9,F=0.3

A=0,B=0.25,C=0.6,

D=0.7,E=0,F=0.5

A=0,B=0.2,C=0.55,

D=0,E=0.5,F=0.7

A=0,B=0.15,C=0.5,

D=0.5,E=0.7,F=0.1

Fig. 4 Projection of vertices of the graph shown in Figure 4 labeled with “C,D”



A survey on descriptive community mining 9

Reference A
tt

ri
b
u
te

S
el

ec
ti

on

A
tt

r.
-V

al
u
e

S
el

ec
ti

on

P
os

t-
p
ro

ce
ss

in
g

Atzmueller and Mitzlaff [2010, 2011],
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Atzmueller et al. [2018, 2019] �
Boden et al. [2012, 2013] �
Du et al. [2017] �
Galbrun et al. [2014] �
Günnemann et al. [2010, 2011, 2012, 2013a,b,c] �
Kalofolias et al. [2019] �
Moser et al. [2009] �
Pool et al. [2014] (�)
Sánchez et al. [2013] �
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Smith et al. [2016] �
Wang et al. [2016] �
Xu et al. [2012] �
Yang et al. [2013] �

Table 1 Categorization of algorithms (references in alphabetical order) based on the selection
criteria. The top part shows the selected methods based on the inclusion criteria (1 and 2),
while the bottom includes the algorithms which will be discussed in less detail in Section 4.3.

As we will outline in Section 4.3, the third option differs from the first two in
that attributes are not explicitly selected. Instead, all methods discussed in that
section derive some kind of indicator for attributes that could be post-processed
to create description.

Table 1 provides an overview of all considered techniques according to this
selection methodology in the order as discussed above, i.e. (1) attribute selection,
(2) attribute-value selection, and (3) postprocessing. Here, the methods in the
upper part (and the respective algorithms) will be discussed in detail in Sections
4.1 and 4.2, and the ones in the lower part in Section 4.3, including explicit and
more implicit methods and options for postprocessing.

3.2 Algorithmic Categorization

Considering the above selection of approaches based on their type of description,
we provide in the following sections a more detailed categorization of the first two
groups according to different criteria. While this section presents an overview on
the given criteria, the next section summarizes and categorizes the techniques in
more detail.

The first three subcategories concern the informativeness of the descriptions:
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1. Does the technique select explicit attribute values as part of the description?
All techniques surveyed in detail select a subset, or subspace, of attributes that
are specific to the given communities. Not all of them also select the attribute
values that describe the community. While those can usually be extracted in a
post-processing step, given the community and the relevant attribute subspace,
selecting values allows to present the user with communities and their actual
descriptions directly.

2. Can found communities overlap? The ability to mine overlapping communities
gives additional flexibility and therefore a higher chance to find high-quality
results. On the other hand, this can lead to redundancy among communities
and reduce interpretability.

3. Does the technique identify local patterns as descriptions, according to the
criteria given in Section 3.1?
– In addition, we assess whether found descriptions are discriminative, i.e.

whether they are found by contrasting different communities, or, in other
words, whether knowing any of the descriptions allows one to recover a
particular community. Notably, a non-local description will not be discrim-
inative but a local one will not automatically help to discriminate between
communities.

To illustrate this sub-characteristic, we can again consider Figure 3. “A,B”, is
discriminative in that this description occurs in all vertices of the upper highlighted
community and only there. “C,D”, on the other hand, while correcting describing
the lower highlighted community, also occurs in other vertices.
Additional categories concern the applicability of the techniques:

4. In which language are descriptions enumerated? Most commonly, description
languages are sets of attributes, or conjunctions of attribute-value pairs, but
more expressive languages are also possible.

5. Does the technique work on discrete attribute values, continuous ones, or both?
6. Are attributes considered on vertices, edges, or both?
7. Does the technique consider a single graph, or does it allow for multi-layer

graphs/multiplex networks?

Finally, techniques can traverse the search space either heuristically or in an
exact manner, trading off execution speed against qualitative guarantees. A sum-
mary of the approaches and their corresponding characteristics is presented in
Table 2.
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4 Survey on Relevant Algorithms

In the following three subsections, we describe the selected techniques in more de-
tail. We focus mainly on the first four characteristics (1.-4.) since the applicability
criteria (4.-8.) do not lend themselves to much interpretation, and add some in-
formation about the traversal strategy. The order of the discussed techniques will
be chronological, allowing the reader to follow the methodological developments.

4.1 Attribute Selection

We subdivide techniques according to whether they select attribute values or not,
and the first class of techniques identifies attribute subspaces that are relevant for
particular communities but not the values of those attributes, which could however
be derived in a post-processing step.

CoPaM Moser et al. [2009] propose to mine so-called cohesive patterns. A cohesive
pattern is a tuple of a set attributes D and a subgraph G = (V,E) that fulfills three
criteria: (1) D satisfies a cohesion function, (2) G is dense, and (3) G is connected.

To find patterns, the approach first removes all non-cohesive edges, i.e. edges
for which the vertices violate the cohesion function. The resulting connected com-
ponents are processed independently in an Apriori-like manner, joining edges until
they violate the cohesive pattern constraint, i.e. the approach is community-driven.
Attribute subspaces are identified via a maximal attribute subspace for a subgraph
that is still cohesive. This implies several characteristics of the found patterns: as
mentioned above, while attribute subspaces are explicitly selected, attribute values
are not. Since edges are joined, it is possible that communities (vertex-)overlap.
Furthermore, because attribute subspaces are chosen without recurrence to the
full graph or even communities resulting from the same connected community, it
is neither guaranteed that they are local, nor that they are discriminative.

GAMER Günnemann et al. [2010, 2013c] enhance the above principle by taking
the possible redundancy of subgraphs into account. While CoPaM reports all max-
imal dense subgraphs — which might overlap to a high extent — the works by
Günnemann et al. [2010, 2013c] focus on finding a set of non-redundant dense
subgraphs with maximal interestingness. Here, interestingness can be any func-
tion taking the density, size, or number of attributes of the subgraph into account.
Furthermore, the attributes of the community need to satisfy a cohesion function.
To find clusters, a set enumeration tree operating on the set of vertices is exploited.
The tree is traversed in a best-first approaches leading to an exact, non-heuristic
solution.

EDCAR Günnemann et al. [2013a] use the same modeling approach as the work
above. In contrast, however, they exploit a heuristic search principle, thus leading
to much better scalability. More precisely, the set enumeration tree is explored via
the GRASP (Greedy Randomized Adaptive Search) principle.
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DB-CSC Deviating from the above scenario that the attribute values of a clus-
ter are bounded by a specific interval, Günnemann et al. [2012, 2011] propose a
density-based cluster definition. More precisely, in the selected attribute subspace
the cluster needs to follow the well-known DBSCAN [Ester et al., 1996] clustering
definition; while in the graph space an extension of k-cores has been proposed.
Again, a set of non-redundant clusters is generated. Since DBSCAN allows to
find arbitarly shaped clusters, no specific attribute values selection is provided
per cluster. For finding the clusters, an apriori-like search principle combined with
fixed-point iteration is exploited: starting with 1-dimensional clusters, higher di-
mensional clusters are iteratively constructed. Within each subspace, clusters can
be detected via a fixpoint iteration. The subspaces are neither contrasted to the
overall distribution, nor to other communities.

SSCG Günnemann et al. [2013b] extend the principle of spectral clustering to
find subspace clusters in attributed graphs. Following the idea of subspace clus-
tering, each cluster is associated with an individual set of relevant attributes. The
selected attributes subsequently determine the similarity/weight of two adjacent
vertices; that is, the affinity matrix used in spectral clustering is no longer static
but depends on the selected subspaces. Overall, since neither the subspaces nor
the clusters are known, both aspect are learned in a joint fashion by minimizing
the so-called normalized subspace cut — an extension of the normalized cut. The
approach does not identify local patterns but optimizes a global model. Since solv-
ing this optimization problem is NP-hard, the authors propose an approximative
alternating optimization scheme.

ConSub Sánchez et al. [2013] use a Monte Carlo process to generate interval con-
straints on vertex attributes, which are used to create projected subgraphs. If the
number of edges in the subgraph is higher than expected, a congruent subspace
and corresponding subgraph has been found. To derive larger attribute subspaces,
the authors propose a bottom-up, Apriori-like approach, similar to Günnemann
et al. [2010]. The authors view their approach rather as dimensionality reduction
to make community (outlier) detection more effective.

There are two common threads to the techniques described so far: 1) descrip-
tions drive community discovery, and 2) vertex attributes’ values’ similarity are
considered, either via explicit thresholding or via clustering.

OSCom Starting from ego-networks, Du et al. [2017], Sun et al. [2018] apply a
metric-based greedy strategy for detecting a set of subnetworks based on the re-
spective attributed neighborhood, i.e. the common attributes. After that, subcom-
munities are extracted, forming an overall supergraph. Finally, global semantic
communities are identified on this supergraph.

MIMAG Orthogonal to the above works that mostly consider vertex-attributed
graphs, Boden et al. [2013, 2012] focuse on edge-attributed graphs. Similar to the
work of Günnemann et al. [2010] they build on extensions of quasi-cliques (i.e.
δint ≥ 0.5), now taking multiple graph layers into account and finding descriptions
operating on the edge attributes. They propose a joint set enumeration tree to
efficiently generate the communities in an informed best first search.
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4.2 Attribute-Value Selection

The second class of techniques identifies both attributes and their relevant values
directly. This obviates the need for a post-processing step of the discovered pat-
terns to discover the appropriate values for the description. These techniques in
many cases also use descriptions to drive community detection directly in order
to establish a mapping between attribute dimensions and induced subgraph. The
presented techniques below are somewhat younger than those proposed in the pre-
ceding section, and not surprisingly, there are clear connections to existing (local)
pattern mining approaches.

SCPM Silva et al. [2012] binarize attributes, allowing them to treat attribut-value
combinations as items, and apply frequent itemset mining to find promising can-
didates. By projecting the graph on the itemset, certain vertices will be removed,
and the remaining connected components can be checked for the satisfaction of a
minimum density constraint. By calculating upper bounds on the structural corre-
lation of itemsets, the pruning capabilities of the approach are enhanced. Clearly,
overlap is entirely possible for the communities found by this approach. In addition,
while frequent patterns have been considered the first instance of local patterns
in the literature, there is in fact no locality as such — a frequent pattern can be
so frequent that it applies to different sections of the network. The literature on
frequent patterns includes quite many examples of interestingness measures that
relate the frequency of a pattern to background models [Vreeken and Tatti, 2014].

ParaminerLC / MinerLC Soldano and Santini [2014] take this approach towards
the logical conclusion in terms of frequent itemset mining, mining closed frequent

itemsets as candidate descriptions. As in Silva et al. [2012], the graph is projected
and connected components identified. A difference to the older technique is the
use of the Galois operator on the candidate community, refining both community
and description further. Both enumeration options, descriptions driving commu-
nity discovery and communities driving description enumeration, are therefore
interleaved.

A follow-up work [Soldano et al., 2015] turns the approach into an iterative
one, treating found communities as networks in which sub-communities should be
found. The similarity to the preceding approach means that Soldano et al. also
inherit the limitations, such as the lack of true locality, while they also apply
a different definition of local (abstract) patterns; essentially, they add the idea
of graph abstractions which lead to further constrained subnetworks where com-
munities are identified, as described above. This is implemented in the MinerLC
algorithm (as an adaptation of the ParaminerLC algorithm) for undirected but
also regarding directed networks [Soldano et al., 2017] and further graph abstrac-
tions. If a (strong) constraining graph abstraction constraint is applied (e. g., a
k-core [Seidman, 1983] constraint, where k > 1), then MinerLC basically focuses
on those (locally) induced (constrained) subgraphs, thus advancing on purely fre-
quent pattern based approaches for community detection on attributed networks.
There are further extensions, e. g., regarding two-mode attributed networks [Sol-
dano et al., 2019] with according constraints as well.
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DCM Instead of starting from the description side, as the approaches discussed
above, Pool et al. [2014] start with communities (as groups of vertices). The space
of possible communities is larger than that of (conjunctive) descriptions, which
means that they have to use a heuristic approach to find high-scoring ones, as is
usual in community detection. Concretely, the approach starts from basic com-
munity candidates and greedily adds/removes vertices to improve a community
score. Once those candidates stabilize, a pattern mining approach is used to find
discriminative conjunctive patterns that predict vertices’ community membership.
For each community, corresponding patterns are combined into a disjunction. This
gives DCM a much richer description language than other methods discussed in
this section. Vertices matching the description are included in the community (and
non-matching ones removed). Since this will result in changes to the communities,
the process is iterated until the community structure remains unchanged.

To ensure interpretability and control redundancy, the top-k communities are
selected in a post-processing step, scored by a measure trading off community
quality and description complexity, and controlled by a redundancy threshold on
the Jaccard-similarity between communities vertices. The use of the discriminative
pattern miner results in local patterns, and the redundancy threshold can be used
to control community overlap — typically some overlap will be accepted.

Spectral, LDense, Pivot Galbrun et al. [2014] also consider the problem of finding a
set of at most k communities in a labeled graph, the cumulative densities of which
are maximal. Vertices are described by labels, i.e. by words. Since a bag-of-words

shows the same characteristics as an itemset, the two problem settings are inter-
changeable. After translating their problem into the generalized maximum coverage

problem and showing guarantees for a greedy algorithm that always adds the com-
munity having highest residual density, they propose three different techniques
for finding the best community. To control redundancy, edges already included in
communities are removed between iterations but can be re-added in later iterations
to improve the formed communities.

– One of the three techniques, Spectral, begins with calculating a similarity
matrix between attribute-values, using Jaccard over vertices having the respec-
tive attribute values as similarity measure. Using the Laplacian of this matrix,
attribute values are ordered according to the fiedler vector, and continuous
intervals in this ordering considered to identify candidates for communities.
The set of communities found by this approach can be vertex-overlapping but
edge-overlap is explicitly excluded. Descriptions are not compared to those of
other communities or the background graph.

– Next, LDense, greedily — i.e. heuristically — adds labels such that the cor-
responding vertex set has the highest density, until the description becomes
too specific and matches no vertices anymore. Among the vertex sets formed
during this search process, the densest (and its description) is included into
the solution set.

– The third approach, Pivot, heuristically forms communities, and after forma-
tion greedily constructs the description best matching it. As in [Pool et al.,
2014], vertices are then added and removed according to whether they match
the description or not.
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COMODO Atzmueller et al. [2016], propose a technique that explicitly aims at
identifying local patterns. Inspired by subgroup discovery methods [Atzmueller,
2015], their approach exhaustively enumerates conjunctions of attribute-value tests,
and calculates (standard) community quality measures such as the modularity [New-
man and Girvan, 2004], the segregation index [Freeman, 1978], or the inverted
average out degree fraction [Yang and Leskovec, 2012] on the corresponding com-
munities, using upper bounds/optimistic estimates of these measures to aid in
pruning. Comodo returns the top-k community patterns, with an optional redun-
dancy check using a minimal improvement filter, e. g., Bayardo et al. [2000]. The
use of the community quality measure implies discriminative descriptions, such
that a description covering several communities (components) receives a low score.

Atzmueller [2016] applies the algorithm also to more complex community qual-
ity functions for anomaly detection on labeled edges. The measures used to score
descriptions compare community densities to that of the entire graph, satisfying
the locality property. [Atzmueller et al., 2016, Atzmueller, 2016] build on [Atz-
mueller and Mitzlaff, 2010, 2011], which used fewer measures. These papers pre-
cede the other works discussed in this section.

MinerLSD Atzmueller et al. [2018, 2019] combine central ideas of the COMODO [Atz-
mueller et al., 2016] and MinerLC [Soldano et al., 2015, 2017] algorithms for ex-
plicitly mining closed local patterns into the MinerLSD algorithm. It focuses both
on local pattern mining, applying the standard local modularity metric [Newman,
2004, Atzmueller et al., 2016] as possible for COMODO. In addition, MinerLSD
can utilize graph abstractions which reduce graphs to k-core subgraphs [Soldano
et al., 2015] for enabling further graph (interestingness) constraints. Then, local
patterns are identified in a similar way as for MinerLC, while the applied com-
munity measure (local modularity) also favors discriminative descriptions as for
COMODO. In particular, in order to prevent the typical pattern explosion in pat-
tern mining, MinerLSD employs closed patterns. Then, the top-k patterns or those
above a certain local modularity threshold are returned.

RoSi Kalofolias et al. [2019] apply the same approach as Comodo — treat commu-
nity detection as subgroup discovery, let description enumeration drive discovery,
use optimistic estimates — but propose a different, k-core based measure to dis-
cover more robust communities.

With the exception of DCM, all techniques in this section have very much in com-
mon with each other. SCPM, ParaminerLC, Spectral, LDense, and Pivot all use
an itemset representation. While the conjunctions of attribute-value combinations
used by Comodo, MinerLSD and RoSi would give them more flexibility in the case
of numerical attributes, for discrete attributes these can be translated into items,
as SCPM shows.

Most of the methods also let descriptions drive community discovery, although
DCM and ParaminerLC interleave the two processes to a certain degree, and Pivot
also starts from communities.
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4.3 Attribute-Guided Graph Mining (Post-processing possibilities)

There are a number of techniques that employ option three in Section 3.1, i.e. that
utilize descriptive information for mining attributed graphs but do not explicitly
select attributes or attribute values directly. The post-processing necessary would
therefore be more extensive than in the case of the methods described in Section
4.1. Strictly speaking, most of these methods fall into the class of algorithms
only exploiting attribute information to improve community detection that are
described by Bothorel et al. [2015].

They differ from those methods that integrate attribute information via com-
bined similarity functions or by introducing virtual vertices, however. In the former
case, inverting the function to derive attribute importance is far from obvious, and
in the latter there may be parts of a community that depend not at all on attribute
vertices and others that fall apart if one removed these vertices.

Whereas the methods described in Section 4.2 explicitly enumerate both at-
tributes and their values, and those in Section 4.1 at least return the attributes
that need to be processed, the techniques in this section calculate the relative
importance of attributes and this information has to be post-processed to derive
descriptions. We therefore discuss most of these techniques in less detail, giving
more attention to those that demonstrated this kind of post-processing.

We summarize the different methods in Table 3, indicating whether overlapping
communities can be found, the used algorithmic technique, whether the method
considers vertex or edge attributes, and whether attributes are discrete or contin-
uous.

4.3.1 Explicit post-processing

We start with methods including explicit post-processing options.

GT model We begin with the work of McCallum et al. [2006], which has several
interesting characteristics: 1) this is, to the best of our knowledge, the first such
work, 2) they consider attributes on edges, not vertices, and 3) they explicitly
post-process their results to retrieve the most relevant attributes. Concretely, they
consider edges to be labeled with words, equivalent to items, and employ a topic
model taking both labels and group membership into account. They extract the
five to eight (depending on experimental setting) most relevant words from the
topic model.

Block-LDA Balasubramanyan and Cohen [2011] combine block models with LDA
to estimate both community membership and conditional topic distributions. By
Gibbs sampling fifteen terms per community, they recover the most relevant terms.

CESNA Yang et al. [2013] use a model in which each vertex has community af-
filiation probabilities. Those affiliation probabilities predict both edges between
vertices and attribute values, and the formation process consists of estimating
those affiliations in such a way that they align with the edges and attributes ob-
served in the data. Vertices are annotated with words or phrases, by exploiting
the estimated conditional attribute weights, the authors extract the top attributes
per community.
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SENC Revelle et al. [2015] use a topic model for finding relevant topics for com-
munities, as well as vertex membership probabilities, and employ an EM algorithm
to optimize the two. They assume that vertices are described by words but differ
from other work in using term weights (TFIDF ), i.e. switching from an itemset-like
setting to one of numerical values. In the experimental evaluation, they present
the top-40 terms per community according to learned conditional probabilities.

SCI Wang et al. [2016] employ non-negative matrix factorization (NMF). Vertices
are described by bags-of-words, or itemsets, and the objective function combines
topology and attribute similarity, using a trade-off parameter. As a result of their
formulation, one of the derived matrices encodes the relationships between com-
munities and attributes, which they exploit to extract the top-10 words.

ASCD The work of Qin et al. [2018] differs only to a small degree from SCI, mainly
due to a focus on the fact that topology and shared attribute values can disagree,
requiring the ability to fine-tune the trade-off between the two. The also extract
the top-10 words.

4.3.2 Post-processing left to the user

Finally, we focus on approaches which do not include explicit post-processing, but
leave that to the user for potentially extracting descriptions from the discovered
communities. Steinhaeuser and Chavla [2008] annotate edges with the similarity
between vertices’ attribute values, and group them into communities by thresh-
olding those similarity values. By post-processing those communities, one could
identify those attributes for which vertices are similar, as well as their values but
the descriptions could be rather general. Li et al. [2010] first form communities
using the Girvan-Newman method [Girvan and Newman, 2002], and then iden-
tify relevant topics using Latent Dirichlet Allocation. Community detection is not
informed by descriptions, and communities are not adjusted afterwards, however,
meaning that descriptions could be unreliable or non-existent. Xu et al. [2012]
propose building an MAP model over vertex attribute values to cluster vertices.
While one could use model values to identify the most relevant attributes for each
cluster, this is not an output of the approach. Smith et al. [2016] use a random-
walk based method for identifying communities, and derive weights for attribute
values based on their frequency in the network and the visitation frequency of the
random walker. Those walks could be used to identify the description correspond-
ing to a community in post-processing. Newman and Clauset [2016] use a Bayesian
modeling technique based on stochastic block models for estimating community al-
locations including structural and attributive information, however no description
is targeted. Baldominos et al. [2017] find stereotypes from communities detected
using a modularity-optimizing algorithm by weighting labels according to the pro-
portion of vertices in the community that support them. Conversely, Mart́ınez-Seis
[2017] use homophilic principles for obtaining a ranking of the attributes and then
only apply those for community detection.
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5 Evaluation and attributed graph generation

A glaring issue for finding descriptions of communities is evaluation. It is already a
difficult challenge in the case of classical community detection because the ground
truth is often not known, and evaluating whether the description of a community is
appropriate is arguably even harder. There are some benchmark graph generators
for creating plain networks, e. g., [Lancichinetti et al., 2008, Baldesi et al., 2018,
Bojchevski et al., 2018], however, these do not take attribute information into
account when creating the respective graphs.

Attributed graph generators aim to generate graphs following natural prop-
erties, e.g., power-law behaviour of the degree distribution. Existing works cover
extensions of preferential attachment models [Zheleva et al., 2009, Lee et al., 2015],
stochastic block models [Newman and Clauset, 2016], or sampling approaches
[Robles-Granda et al., 2016]. Kaytoue et al. [2017] generate attributed graphs
incorporating connected components with attributive structure. Furthermore, Ser-
ratosa [2018] presents a methodology for generating pairs of attributed graph with
a bounded graph edit distance, focussing on graph matching problems. Note that
all these approaches for generating attributed graphs usually do not explicitely
model communities. That is, the ’true’ community structure will not be known for
the generated graphs. In contrast, Largeron et al. [2015, 2017] introduce a graph
generator for attributed graphs that is able to incorporate community structure
in the generated attributed graphs. However, the work does not propose how to
find these communities.

It is worth noting that all attributed graph clustering models based on prob-
abilistic generative models (e.g. Kim and Leskovec [2011], Yang et al. [2013], Xu
et al. [2014]) could in principle also be used for generating data; usually, however,
they are used for inference only.

6 Conclusion

Even though community detection in attributed graphs, and more concretely de-
tecting communities and their descriptions together, is still a relatively young re-
search direction, progress has been quick and a variety of mature techniques exist
already. Surveying those approaches, we have identified three main families, one
which employs subspace clustering ideas, i.e. identifying those attribute-subspaces
for which communities occur in the graph/network, a second one that adapts ideas
developed in local pattern mining, and a third one that identifies the conditional
importance of attributes in certain communities.

For the first class of methods, this allows exploiting the rich set of clustering
techniques developed over several decades of research to address the similarity
question in the attribute space, giving those approaches both high flexibility and
good running times. Accordingly, multiple established clustering notions such as
degree-based clustering, spectral clustering, or density-based clustering have been
transfered to the attributed graph domain.

The second class of techniques has undergone the same progression as previous
forms of pattern mining: starting from frequent patterns, via condensed represen-
tations, to exhaustive techniques employing sophisticated upper bounds to find the
best patterns according to established quality criteria. As was to be expected, this
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progression happened much faster than for the original pattern mining settings,
which also means that the field has completely caught up to the state of the art.
Any future developments in pattern mining could be ported to the communities-
plus-descriptions-setting without problems, giving rise to new powerful methods.

The third class draws liberally from anything that allows to assess attribute im-
portance, whether via clustering, learning, probabilistic modeling or others. This
gives that class the highest flexibility when it comes to integrating recent ad-
vances, and makes it the largest of the three algorithmic classes we considered.
Yet matching attributes or their combinations to communities will in most cases
only be approximate, as opposed to the more concrete descriptions of the other
two classes.

One of the benefits of surveying the state of the art lies in seeing what potential
research directions remain underexplored.

1. Existing approaches have arguably picked the low-hanging fruit in focusing on
itemset or attribute-value annotations. Yet vertices could as well be described
by sequences, graphs (molecules), or logical formulas. Given that clustering
and pattern mining techniques for such complex data representations exist,
there is no reason that one could not port existing work to the — admittedly
challenging — problem setting of finding communities that have more complex
descriptions than attribute-value combinations.

2. The real-life data captured in graphs is often not static but changes over
time, whether in collaboration networks or networks modeling human mobil-
ity, e. g., Giannotti et al. [2016]. Dynamic attributed graphs have been studied
[Desmier et al., 2014, Boulicaut et al., 2016], as has community detection in
dynamic graphs [Mucha et al., 2010, Nguyen et al., 2011, Xie et al., 2013] but
the two have yet to be married.

3. While we pointed out a few approaches that address edge-attributed graphs,
i.e. characterizations of the relationships among entities, the vast majority of
existing work focuses on vertex-attributed graphs, i.e. characterizations of the
entities themselves.

4. Richer network representations like multi-layer and multiplex networks [Mucha
et al., 2010] provide a rich set of analysis options concerning the network struc-
ture which can be exploited in community detection.

5. Finally, while each of the previously mentioned future directions should be
expected to be challenging, we fully expect that at some point they will be
combined, if only because the problem setting offers a very rich descriptive
model of the world. Finding communities in dynamic multiplex networks that
can be described (and therefore understood) by complex descriptions on ver-
tices and edges is the foreseeable endpoint of a development of which we have
only sketched the beginnings in this work.

It is not entirely clear, however, whether developments in this direction can be
expected anytime soon. Research on graph and network analysis has exceedingly
focussed on embedding techniques in recent years, even if it is not clear that such
techniques represent clear improvements [Mara et al., 2020]. It is therefore entirely
possible that we will see the same development as in deep learning-based machine
learning: opaque models are learned, and symbolic methods added afterwards to
make those models interpretable, instead of deriving interpretable results directly.



22 Martin Atzmueller et al.

References

Martin Atzmueller. Subgroup Discovery. WIREs: Data Mining and Knowledge

Discovery, 5(1):35–49, 2015.
Martin Atzmueller. Detecting community patterns capturing exceptional link

trails. In Ravi Kumar, James Caverlee, and Hanghang Tong, editors, 2016

IEEE/ACM International Conference on Advances in Social Networks Analysis and

Mining, ASONAM 2016, San Francisco, CA, USA, August 18-21, 2016, pages 757–
764. IEEE Computer Society, 2016.

Martin Atzmueller and Folke Mitzlaff. Towards Mining Descriptive Community
Patterns. In Workshop on Mining Patterns and Subgroups. Leiden, The Nether-
lands, 2010.

Martin Atzmueller and Folke Mitzlaff. Efficient Descriptive Community Mining.
In Proc. 24th International FLAIRS Conference, pages 459 – 464, Palo Alto, CA,
USA, 2011. AAAI Press.

Martin Atzmueller, Stephan Doerfel, and Folke Mitzlaff. Description-Oriented
Community Detection using Exhaustive Subgroup Discovery. Information Sci-

ences, 329:965–984, 2016.
Martin Atzmueller, Henry Soldano, Guillaume Santini, and Dominique Bouthinon.

MinerLSD: Efficient local pattern mining on attributed graphs. In Hanghang
Tong, Zhenhui Jessie Li, Feida Zhu, and Jeffrey Yu, editors, 2018 IEEE In-

ternational Conference on Data Mining Workshops, ICDM Workshops, Singapore,

Singapore, November 17-20, 2018, pages 219–228. IEEE, 2018.
Martin Atzmueller, Henry Soldano, Guillaume Santini, and Dominique Bouthinon.

MinerLSD: Efficient mining of local patterns on attributed networks. Applied

Network Science, 4(1):43:1–43:33, 2019.
Ramnath Balasubramanyan and William W. Cohen. Block-LDA: Jointly modeling

entity-annotated text and entity-entity links. In Proceedings of the Eleventh SIAM

International Conference on Data Mining, SDM 2011, April 28-30, 2011, Mesa,

Arizona, USA, pages 450–461. SIAM / Omnipress, 2011.
Luca Baldesi, Carter T. Butts, and Athina Markopoulou. Spectral graph forge:

Graph generation targeting modularity. In 2018 IEEE Conference on Computer

Communications, INFOCOM 2018, Honolulu, HI, USA, April 16-19, 2018, pages
1727–1735. IEEE, 2018.

Alejandro Baldominos, Javier Calle, and Dolores Cuadra. Beyond Social Graphs:
Mining Patterns Underlying Social Interactions. Pattern Analysis and Applica-

tions, 20(1):269–285, 2017.
Roberto Bayardo, Rakesh Agrawal, and Dimitrios Gunopulos. Constraint-Based

Rule Mining in Large, Dense Databases. Data Mining and Knowledge Discovery,
4:217–240, 2000.
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Stephan Günnemann, Ines Färber, Brigitte Boden, and Thomas Seidl. GAMer:

A Synthesis of Subspace Clustering and Dense Subgraph Mining. In Knowledge

and Information Systems (KAIS). Springer, 2013c.
David J Hand. Pattern Detection and Discovery. In David J Hand, Niall M

Adams, and Richard J Bolton, editors, Pattern Detection and Discovery, volume
2447 of LNCS, pages 1–12. Springer, 2002.

Janis Kalofolias, Mario Boley, and Jilles Vreeken. Discovering robustly connected
subgraphs with simple descriptions. In Jianyong Wang, Kyuseok Shim, and
Xindong Wu, editors, 2019 IEEE International Conference on Data Mining, ICDM

2019, Beijing, China, November 8-11, 2019, pages 1150–1155. IEEE, 2019.
Mehdi Kaytoue, Marc Plantevit, Albrecht Zimmermann, Ahmed Anes
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