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The set of equations governing reacting two-phase flows in liquid-propellant rocket engines
is simplified and linearized around a steady base flow. In the particular case of a liquid/gas
coaxial injector, models for the atomization, evaporation and combustion source terms are
derived from a simplified physical description of both the oxidizer liquid core and spray.
The resulting equations are projected onto a modal basis, leading to a quasi-linear dynamic
description of the evolution of the system. In this paper, detailed model reduction focuses on
the evaporation of polydisperse sprays and on the propagation of acoustic waves within the gas.

I. Nomenclature

〈·〉 = base flow quantity γ = heat capacity ratio
·′ = perturbation quantity ∆r h = enthalpy of combustion per unit mass of oxidizer [J kg−1]
·̄ = average along a given direction ∆vh = enthalpy of vaporisation [J kg−1]
·g = gas-phase quantity ρg = density of the gas phase [kg m−3]
·l = spray quantity ρl = disperse phase density [kg m−3]
· = dot product in Ω ρliq = intrinsic density of the liquid oxidizer [kg m−3]
(· | ·) = inner product in Σ σ = surface tension [N m−1]
Cl = ρl/ρg density ratio Σ = size domain
Lc = length of the liquid core [m] Ω = fluid domain
n = number density function (NDF) [m−4] Ûωato = primary atomization source term [kg m−3 s−1]
s = size coordinate (diameter) [m] ÛωT = combustion source term [W m−3]
Sc = cross-sectional area of the liquid core [m2] Ûωev = evaporation source term [kg m−3 s−1]

II. Introduction

In liquid-propellant rocket engines (LREs), high-frequency instabilities mainly arise from the coupling of acoustics,
combustion and flow dynamics within the combustion chamber (see fig. 1) [1–3]. These destructive phenomena may

trigger a surge in both the chamber pressure and the total wall heat flux, putting the structural integrity of the engine at
risk [4]. Moreover, even mild instabilities hamper the controllability of a rocket, which is especially problematic now
that landing or throttling capabilities and precise trajectory control for multiple payloads have become desirable features.
These instabilities have been observed and studied since the 1950s, yet their exact mechanism is still under scrutiny.
With the recent progress in computing power, numerical tools such as reactive, multiphase Large-Eddy-Simulations

∗PhD Student, DMPE/MPF, email: guillaume.storck@onera.fr
†Research Scientist, DMPE/MPF, email: luc-henry.dorey@onera.fr (corresponding author)
‡Director, Laboratoire EM2C
§Combustion Devices Expert, CNES/DLA

1



(LES) have become attractive. The latter provide a high-fidelity description of the physical processes that take place in
the chamber at a relatively low cost compared to experiments, which is appreciable both for basic understanding and
design validation. In fact, LES give access to quantities that are not even measurable experimentally due to the extreme
conditions in the chamber [5–8]. Yet, their high cost and long run time still make them unsuitable for preliminary design
phases.

Access to space is increasingly being regarded as a commodity; as competition increases, the use of design
optimization tools becomes inevitable to drive the costs of space launchers further down. These tools need to simulate a
large number of designs and operating points before converging to an optimum. However, designers need to ensure
that these designs remain stable within their operating ranges. A full-blown LES at a cost of millions or dozens of
millions of CPU hours clearly does not fit into that scheme. This is why reduced-order models (ROMs) are required to
assess the stability of a given engine during the optimization process. Semi-empirical analytical models have long been
the preferred tool of designers, but their predictive power is rather limited because of the abstractness of their input
parameters and because of the limited number of phenomena they consider [1, 2].

Here, we present an a priori ROM based on a simplified description of some source terms in the two-phase
Navier-Stokes equations in the case of a subcritical flow, i.e. when both propellants (fuel and oxidizer) have injection
temperatures and pressures below their subcritical points. The scope of the study is also restricted to systems with
coaxial injectors. For simplicity, it will be assumed that the fuel is gaseous and that it is injected around a core of liquid
oxidizer. The modeled source terms are plugged into a linearized Euler framework and the features of the resulting
system are investigated using modal projection. The work presented here is inspired by [9, 10] and aims at providing a
ROM for subcritical operating points that is both more accurate and readily usable with a limited knowledge of the
engine’s behavior.

Fig. 1 In LRE, high-frequency instabilities arise from the coupling of a variety of complex phenomena, among
which the dynamics of the liquid oxidizer jets and spray (in the subcritical regime). Only a single injector is
depicted here for clarity, but actual LREs feature dozens to hundreds of them.

III. Governing equations

A. Gas phase
Consider a two-phase medium consisting of a gas phase and a polydispersed spray of oxygen droplets. Let us assume

that each phase contains only one species, and that the dispersed phase is made of incompressible particles which have
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no influence on pressure∗. The equations governing the gaseous flow are the Navier-Stokes equations :
∂t ρg + ∂j

(
ρgug, j

)
= Ûωev,

∂t
(
ρgugi

)
+ ∂j

(
ρgug,iug, j

)
+ ∂ip = ∇ · σ −

[
∂t ρlul,i + ∂j

(
ρlul,iul, j

) ]
,

∂t
(
ρgeg

)
+ ∂j

(
ρgegu j

)
+ p∂j

(
ugj

)
= ÛωT − ∆vh Ûωev,

(1)

where the subscripts l and g refer respectively to the liquid (spray) and gas phase, and e designates the internal energy.
Here, σ specifically refers to the viscous stress tensor. Body forces have been neglected. The internal energy equation
can be rewritten in terms of pressure using the ideal gas equation p = ρgrTg : in fact, for ideal gases, the internal energy
depends only on temperature, with eg = rT

γ−1 . It follows that

∂tp + ug, j∂jp = −γp∂jugj + (γ − 1) [ ÛωT − ∆vh Ûωev] . (2)

As a result, the system governing the evoluation of the gas phase now reads
∂t ρg + ∂j

(
ρgug, j

)
= Ûωev,

∂t
(
ρgugi

)
+ ∂j

(
ρgug,iug, j

)
+ ∂ip = ∇ · σ −

[
∂t ρlul,i + ∂j

(
ρlul,iul, j

) ]
,

∂tp + ug, j∂jp + γp∂jugj = (γ − 1) [ ÛωT − ∆vh Ûωev] .
(3)

B. Disperse phase
The liquid phase on the other hand obeys to the Williams-Boltzmann kinetic equation:

∂tn + ∇x · (nul) + ∇ul
· (nF ) + ∂snK + ∂θRn = Γ(n) +Q(n) + A, (4)

where n is the number density, such that n(t, x, s, ul, θ)dtdxdsduldθ represents the number of droplets in an infinitesimal
volume around x at time t having a diameter between s and s + ds, a temperature between θ and θ + dθ and a velocity
within the infinitesimal volume uldul in the state-space. Here, K = Ûsev represents the evaporation operator, F = Ûul is
the acceleration due to drag, R = Ûθhe symbolizes heat exchanges with the ambient gas, while the operators Γ and Q
modelize fragmentation and coalescence, respectively. A is the primary atomization source term.

Assuming that the distribution n can be split in three factors [11], n(t, x, s, ul, θ) = ñ(t, x, s)nθ (θ)nul
(ul) and that the

partial distributions in temperature and velocity are Dirac distributions, the terms related to these variables vanish. For
the sake of convenience, we shall keep the same notation, so that the equation reduces to

∂tn + ∇x · (nul) + ∂snK = Γ(n) + A, (5)

with n now a function of (t, x, s) only, with x ∈ Ω and s ∈ Σ = [0; smax ]. The feature of interest here is the volumic
evaporation rate Ûωev, which is obtained from

Ûωev = −
πρliq

2

∫
Σ

K(s)n(s)s2ds, (6)

while the disperse phase density reads ρl =
πρliq

6

∫
Σ

s3n(s)ds, ρliq being the density of the liquid oxidizer. An additional
equation involving the velocity of the droplets ul is required to close the system, viz.

∂t (ρluli) + ∂j(ρluliul j) =
ρl
τd

(
ugi − uli

)
, (7)

where τd is the characteristic drag time of the droplets. Under the low-Reynolds number approximation, Stokes’ law can
be used to compute the drag term:

τd =
ρliq

18µg

∫
Σ

s2n(s)ds (8)

Using a single drag time for all droplets regardless of their size is a crude approximation, but it is made necessary by the
size-velocity decoupling hypothesis made earlier. Summing up this discussion, the final system of 2Nd + 3 governing

∗This essentially amounts to assuming a small volume fraction of liquid.
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equations, with Nd = dimΩ, reads

∂t ρg + ∂j
(
ρgug, j

)
= Ûωev,

∂t
(
ρgugi

)
+ ∂j

(
ρgug,iug, j

)
+ ∂ip = ∇ · σ −

[
∂t ρlul,i + ∂j

(
ρlul,iul, j

) ]
,

∂tp + ug, j∂jp + γp∂jugj = (γ − 1) [ ÛωT − ∆vh Ûωev] ,
∂t (ρluli) + ∂j(ρluliul j) =

ρl
τd

(
ugi − uli

)
,

∂tn + ∇x · (nul) + ∂snK = Γ(n) + A.

(9)

where the lattermost equation alone involves the size coordinate s, increasing the dimensionality of the problem to
Nd + 1.

IV. Source terms
Atomization The atomization source term ensures the persistence of the spray which is otherwise consumed by the
evaporation term. Given the small diameter of typical coaxial rocket injectors (a few millimeters) compared to the
acoustic wavelengths (a few centimeters for a wave oscillating at a frequency in the range of 10 kHz), the liquid jets may
be regarded as acoustically compact and modeled spatially as 1D manifolds (curved lines) oscillating in the flow. Let 1C
be the indicator function of a given jet : 1C(t, x) = 1 if and only if x ∈ C(t) where C(t) refers to the liquid core at time t.
Then the atomization source term reduces to

A =
6 Ûmox

πρliqLc S̄cm3
A(s)1C, (10)

where Ûmox is the mass flow of oxidizer entering the domain, Lc is the length of the intact liquid core, S̄c is its average
cross-sectional area and A(s) is the number distribution of the atomized droplets at time t, and m3 is the third-order
moment ofA. It is expected that acoustic waves alter this distribution; however, modelling this effect is a rather complex
venture that goes beyond the scope of this study. In the steady state, Marmottant [12] observed that the number density
of liquid fragments stemming from coaxial atomization follow a narrow normal distribution N

(
d̄, (0.2d̄)2

)
, which can

readily be restricted to a suitable interval Σ = [0; d̄ + 3σ], and renormalized :

A(s) = 3.420
(
Ûmox

ρliqLcSc

)
1
d̄4

e−
1
2

(
s−d̄
0.2d̄

)2

. (11)

The mean diameter of the fragments is derived from the most amplified wavelength of the transverse instability of the
liquid core, λ⊥ as detailed by Marmottant and Villermaux in [13]. Their model takes into account the operating point of
the injectors, but not the direct effect of acoustics on the atomization phenomenon, as already underlined.

It has been observed that the liquid core is distorted by the flow and oscillates due to both the drag force and the
acoustic radiation pressure [14]. Following a similar reasoning, one may write the momentum transport equation along
the jet – which is assumed to have a constant cross-section – and obtain the system obeyed to by the velocity of the jet
uJ relative to the chamber: 

∂uJ

∂t
+UJ

∂uJ

∂l
=

u′g(l, y(t), t) − uJ

τJ
+ arad

yJ (l, t) =
∫ t

0
uJ (t ′, l)dt ′

, l ∈ [0; Lc], (12)

where l is an arc length parametrization of the jet, UJ is the bulk injection velocity of the oxidizer, arad designates the
acceleration due to acoustic radiation and τJ is the characteristic drag response time of the jet, to be modeled. This
formulation can be discretized in space, albeit at a significant computational cost. Fortunately, liquid cores tend to be
short compared to acoustic wavelengths in combustion chamber conditions, which allows several simplifications:

1) Neglecting their curvature, effectively reducing them to oscillating segments attached to a fixed point
2) Assuming that the acoustic velocity u′g is uniform along the jet: u′g(t, yJ ) ≈ ū′g(t).

Integrating eq. (12) from the origin (where uJ = 0) to the tip of the jet (where uJ = ug) and dividing by the length of
the jet yields a closed system governing the length-averaged movement of the jet:

dūJ

dt
+

ūJ

τJ
=

(
1
τJ
− UJ

Lc

)
ū′g + ārad

ȳJ (t) =
∫ t

0
ūJ (t ′)dt ′

(13)
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Note that this short-jet approximation is not always true in rocket gas generators as well as in some academic setups
such as MASCOTTE test bench at ONERA [15, 16], where atomization is less intense, resulting in rather long jets at
specific operating conditions.

Evaporation We shall adopt Godsave’s “d2-law” [17]. Given the high temperature of a typical rocket combustor, the
heating delay of each droplet is neglected and its temperature is assumed to be constant and equal to the saturation
temperature of the oxidizer at chamber pressure Tsat. As a result,

s2(t) = s2
0 − βt ⇒ K = − β

s
, (14)

where the evaporation rate β reads

β =
4λgNu(s)
ρliqcpg

ln (1 + BT ), (15)

where λg is the thermal conductivity of the ambient gas, cpg its heat capacity and Tg its temperature, and Nu(s) is the
droplet’s Nusselt number, which formally depends on its size. Considering the Ranz-Marshall correlation [18] gives for
instance

Nu(s) = 2 + 0.6Pr1/3
g Re(s)1/2, (16)

which for model reduction purposes can be simplified to Nu ≈ 2 given that the evaporating droplets are expected to be
small, and so is their Reynolds number. Since the droplet is supposed to have reached its saturation temperature, the
Spalding transfer number BT [19] boils down to

BT =
cpg(Tg − Tsat)

Lv
, (17)

with Lv being the latent heat of vaporization of the oxidizer. In the end, this formulation ensures that β is effectively
a constant. This simplification, however, is not without consequences, as it makes the term K singular at s → 0;
additionally, it prevents the coupling between pressure fluctuations and the latent heat of evaporation, which has been
identified as a possible instability mechanism [20].

Fragmentation Droplet fragmentation through aerodynamic stresses is a crucial mechanism because it can greatly
reduce the droplet size. We shall use a statistical fragmentation operator inspired by [21], i.e.

Γ = − ffrag(s)n(s) +
∫
Σ

ffrag(r)P(s |r)n(r)
( r

s

)3
dr, (18)

where ffrag is the characteristic fragmentation frequency – which also depends on the state of the gas, although this
dependence has been omitted here for the sake of legibility – that has been modeled by Pilch and Erdman [22] as

(τ∗ ffrag)−1 =



0, Wes ≤ 12
6(Wes − 12)−1/4, Wes ∈]12; 18]
2.45(Wes − 12)1/4, Wes ∈]18; 45]
14.1(Wes − 12)−1/4, Wes ∈]45; 350]
0.766(Wes − 12)1/4, Wes ∈]350; 2670]
5.5, Wes > 2670

(19)

with Wes =
ρgs

σ | |ug − ul | |2 the Weber number of the droplet and τ∗ = s
| |ug−ul | |

√
ρliq
ρg

being a characteristic breakup
time. Note that for Wes < Wecr = 12, no breakup is occurring. This expression is rather complex for model reduction
purposes. Approximating this law provides a convenient surrogate:

ffrag(s) = 0.212
√

ρg

ρliq

| |ug − ul | |
s

1Wes>12, (20)

with a correlation coefficient R2 = 0.981 when compared to the Pilch-Erdman model for Wes ∈ [20; 104]. From a
computational perspective, this reduced formulation also has the advantage of removing the singularity at Wes = 12.
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The model (18) implies that each droplet breaks up into a cloud of uniformly sized droplets. The probability that a
droplet of diameter r gives rise to a droplet of diameter s < r is denoted P(s |r). It can be modeled in various ways;
according to Hsiang and Faeth [23], in the resulting cloud, the ratio of the mass median diameter (MMD) and the Sauter
mean diameter (SMD) is approximately MMD/SMD = 1.2, where the SMD can be related to the Weber number of the
parent droplet through correlations such as the one by Wert [24]. A number of probability distributions with compact
support may then be used to model P(s |r); yet, because the expression of the SMD involves a Weber number, these
distributions are functions of both the relative velocity and the size variable s, which cannot be uncoupled. As we shall
see, this is an undesirable feature for model reduction purposes. In order to keep the expressions tractable, we shall
consider that droplets fragment in a purely deterministic way, i.e.

P(s |r) = δ(s − sW (r))1Wer<12, (21)

where sW (r) is the diameter of the secondary droplet given by Wert’s correlation [24]:

Wes = 0.32
[
Wer

( τfrag

τ∗
− 1.9(Wer − 12)−1/4

)]2/3
. (22)

Again, this piecewise model may be approximated by a much simpler form, viz.

sW (r) = 0.4671
(
σ

ρg

)1/4 r3/4√
| |ug − ul | |

1Wer<12. (23)

Conversely, the diameter of the parent droplet to a droplet of diameter s is given by

s−1
W (s) = 2.141

[ ρg
σ

u2s4
]1/3
= 2.141sWe1/3

s . (24)

As a result, the fragmentation operator may be recast as

Γ(n) = − ffragn(s) + 9.812Wes ffrag(s−1
W (s))n(s−1

W (s)). (25)

Combustion Given the harsh conditions in a combustion chamber, it is reasonable to assume an infinitely fast
combustion process. Thus, the oxidizer burns as soon as it evaporates and the combustion source term reads

ÛωT = ∆r h Ûωev (26)

V. Model reduction
While the results derived in this section are meant to be most generic, a special focus is given on evaporation. As a

consequence, the reduction of the droplet break-up and jet dynamics models will be detailed in future work.

A. Disperse phase

1. Principle
The system is governed by a set of (2Nd + 3) equations and has a dimensionality of (Nd + 1), which makes its

rather expensive to solve, especially if the droplet size dimension is to be accurately discretized. Cost reduction is
traditionally achieved by approximating the disperse phase distribution using a collection of Dirac distributions or a
piecewise constant or affine approximation [11, 21]. This turns eq. (5) into a set of Ns equations, Ns being the number
of classes or sections considered. These local discretizations certainly are the most flexible, but their convergence rate
may be slow, requiring a large number of sections to obtain an accurate description of the disperse phase. Therefore, we
shall rather use a global projection of the density n onto a carefully chosen Hilbert basis of the size space Σ.

First of all, note that (5) is linear with respect to n. The latter is a function of (t, x) as well as s ∈ Σ = [0; smax ] with
the upper bound set by the primary atomization mechanism (smax = 1.6d̄) since coalescence has been neglected. It
is first necessary to define L2(Σ) = { f ∈ F (Σ→ R) | | | f | |2 < +∞} where the norm | | · | |2 is the canonical L2-norm
defined as

| | f | |22 =
∫
Σ

f 2ds.
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Acoustics

Evaporation

Combustion

Oxidizer jet (1D)

yJ(t)

Atomization source

Fragmentation

Fig. 2 The full spectrum of phenomena considered for low-order modeling covers most of the spray dynamics,
as well as the time-space fluctuations of the atomization source term.

Usual modal projections use the canonical dot product in L2 to construct a orthonormal family (πi)i∈N of functions of
the space variable – here, the size variable s – onto which the time-dependent field is to be projected. However, because
of the singularity of the evaporation operator n 7→ ∂s(nK), this functional space is not suited to our model. Therefore,
we have to be careful to ensure the existence of both the modal amplitudes (n | πi) and the evaporation source term Ûωev
as defined in (6). The first step is then to define the following change of variable:

ϕ : s 7→ smax e−z/a, a > 2, z ∈ [0;+∞[ (27)

which is a C1-diffeomorphism. This peculiar change of variable results from multiple trials and errors; its aims are to
ensure the stability of the dynamical system resulting from modal projection, as well as the existence of certain specific
moments of the number density function. In the rest of this paper, a is arbitrarily set to 3. Then, if we still denote
n ≡ n ◦ ϕ for the sake of conciseness, eq. (5) turns into

∂tn + ∇x · (nul) + β′e2z/a
[
∂sn +

n
a

]
= Γz(n) + Az, (28)

where β′ = aβ

s2
max

and the right-hand side terms are now expressed in terms of the z variable rather than s. Now,
define a dot product (· | ·) and the associated space L2(Z = R+). Consider a Hilbert basis (πj)j∈N of L2(Z) and let
n(t, x, z) = ∑Ns

j=1 νj(t, x)πj(z) + n′′(t, x, z). In other words, the number density can be decomposed into an N th
s -order

filtered approximation ñ and an orthogonal residual n′′. Introducing this decomposition into eq. (28) and taking its dot
product with any of the basis functions πi, i ≤ Ns yields

∂tνi+∇x ·(νiul)+
(
β′e2z/a

[
πj

a
+

dπj
dz

]
| πi

)
νj−

(
Γz(πj) | πi

)
νj = (Az | πi)−

(
β′e2z/a

[
n′′

a
+

dn′′

dz

]
| πi

)
+(Γz(n′′) | πi) .

(29)
This system can be more conveniently rewritten in a matrix form; let Ki j =

(
β′e2z/a

[
πj

a +
dπj

dz

]
| πi

)
and Gi j =(

Γz(πj) | πi
)
. K ′′ and G′′ refer to the respective associated residual vectors. Finally, let Ai = (Az | πi) and Ni = νi .

Then, eq. (29) reduces to
∂tN + ∇x · (Nul) + (K − G)N = A + G′′ − K ′′. (30)
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Note that because the evaporation and fragmentation terms are nonlinear in the z coordinate, it is not possible to neglect
the residuals K ′′ and G′′ in the general case. These two vectors are unclosed and require modeling, which will be
addressed in section V.A.2 of this study. At this point, it is also necessary to specify which inner product shall be used;
it turns out that the weighted form

(· | ·) : ( f , g) ∈ L2(Z)2 7→
∫ +∞

0
f (z)g(z)e−zdz, (31)

is particularly suited to this problem as it ensures that K is finite when used in conjunction with the natural choice for
the orthonormal basis (πi)i∈N, i.e. the family of the Laguerre polynomials, which is orthonormal for this particular
choice of dot product. In fact,

Ki j = β
′
∫ +∞

0
πi

(
πj

a
+

dπj
dz

)
e−(1−2/a)zdz < +∞. (32)

Considering that the evaporation coefficient β is a constant makes the exact computation of K straightforward using a
computer algebra system. The expression of G on the other hand is more complex because of the strongly nonlinear
dependence of Γ on the velocity difference ug − ul and the threshold effect induced by the critical Weber number
condition. This term will be dealt with in future work.

2. On the stability of the evaporation term
It can be observed that the matrix K has strictly positive eigenvalues indeed, and that it is diagonalizable. Therefore,

the very simplified system
dN
dt
+ KN = 0 (33)

is stable and limt→+∞ N(t) = 0. However, as Ns increases, the eigenvalues of N spread over a greater and greater part of
R+, with their minimum becoming close to zero. For instance, when Ns = 6, min Sp(K) = 6.426 × 10−2β′, whereas
for Ns = 12, min Sp(K) = 8.029 × 10−3β′. This result in a very slow relaxation of the system. Consequently, the total
mass of liquid may take unphysical negative values and then increase before converging to zero. This can be avoided by
choosing an appropriate, ad hoc closure model for the evaporation residual K ′′:

K ′′ = kcorrβ
′INs (34)

where kcorr ≈ 1 is a correction constant and INs designates the identity matrix. It should be noted that although this
approach shifts all eigenvalues of K to the right of the complex plane by the same amount, in practice this is only
significant for the smallest of them as the order of magnitude of the shift is very small compared to most characteristic
frequencies of the system. Nevertheless, this solution is far from perfect since it artificially alters the dynamics of the
system as illustrated in figure 3: rather than becoming negative and then slowly going to zero – which is not physically
possible – the mass of liquid decreases steadily to zero in the corrected case. Ongoing work focuses on finding a more
physical closure model for the evaporation residual.

B. Perturbation equations
Consider a domain Ω having Nd spatial dimensions and Ninj injectors, all of which produce acoustically compact

liquid cores. The disperse phase is described by Ns modes in the size space. Then the state vector describing the system

becomes X =
(
ρg p ug,i ul,i νj uk

J,i, y
k
J,i

)T
, i ∈ [[1; Nd]], j ∈ [[1; Ns]] k ∈ [[1; Ninj]], and it obeys to the system (9) where

the last equation has been replaced by the system (30). This is a fully nonlinear system because of the description of the
gas phase. It may however be simplified using two assumptions:

1) Viscous stresses are negligible
2) The gaseous flow Xg =

(
ρg p ug,i

)T may be decomposed into a base flow 〈Xg〉 satisfying eq. (3) and a small
perturbation X ′g.

The base flow can be obtained from a RANS† simulation of the engine operating in its nominal state, or inferred as long
as it is a solution of the system presented here. Then the Navier-Stokes equations for the gas phase reduce to the Euler

†Reynolds Averaged Navier-Stokes
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Fig. 3 Evolution of the total mass of liquid in the case presented in section VI.C, with and without the modeled
unclosed term.

equations. These can subsequently be linearized around the base flow, leading to the following system:
∂t ρ
′
g = Ûω′ev − 〈ρg〉∂ju′gj − 〈ugj〉∂j ρ′g − u′gj∂j 〈ρg〉 − ρ′g∂j 〈ugj〉

∂tp′ = −γp′∂j 〈ugj〉 − γ〈p〉∂ju′gj + (γ − 1)
[
Ûω′T − ∆vh Ûω′ev

]
− 〈ugj〉∂jp′ − u′gj∂j 〈p〉

∂tu′gi = −〈ugj〉∂ju′gi − u′gj∂j 〈ugi〉 −
∂i p

′

〈ρg 〉 +
[
〈uli〉 − 〈ugi〉

] Ûω′ev
〈ρg 〉 +

(
u′
li
− u′gi

)
〈 Ûωev 〉
〈ρg 〉

− 〈ρl 〉〈ρg 〉
[
∂tu′li + 〈ul j〉∂ju

′
li

]
− ρ′

l

〈ρg 〉 〈ul j〉∂j 〈uli〉 −
ρ′g
〈ρg 〉 〈ugj〉∂j 〈ugi〉

(35)

Note that a perturbed liquid density ρ′
l
appears in the momentum equation; this quantity can be obtained from

ρ′l = ρl − 〈ρl〉 =
πρliq

6
RT N − 〈ρl〉 (36)

with Rk =
s4

max
a

∫ +∞
0 e−4z/aπk(z)dz. Similarly, Ûω′ev =

πρliq
2 LT N − 〈 Ûωev〉 with Lk =

βs2
max
a

∫ +∞
0 e−2z/aπk(z)dz. Moreover,

the momentum equation of the disperse phase boils down to

∂tu′li =
1
〈τd〉

(
u′gi − u′li

)
(37)

Leaving the injectors aside for the sake of simplicity (Ninj = 0), the combination of systems (30) and (35) yields

∂t X +

[
〈A〉k 0

0 〈ul,k〉δi j

]
︸                    ︷︷                    ︸

Ãk

∂kX +

[
〈B〉 〈C〉
0 K + ∂k 〈ul,k〉δi j

]
︸                            ︷︷                            ︸

B̃

X = 〈Sc〉 + S(X) (38)
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with the matrices being (if dimΩ = 3)

〈A〉k =



〈ugk〉 0 〈ρg〉δk1 〈ρg〉δk2 〈ρg〉δk3 0 0 0
0 〈ugk〉 γ〈p〉δk1 γ〈p〉δk2 γ〈p〉δk3 0 0 0
0 δk1〈ρg〉−1 〈ugk〉 0 0 〈Cl〉〈ulk〉 0 0
0 δk2〈ρg〉−1 0 〈ugk〉 0 0 〈Cl〉〈ulk〉 0
0 δk3〈ρg〉−1 0 0 〈ugk〉 0 0 〈Cl〉〈ulk〉
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


(39)

〈C〉 =
πρliq

2



−LT

−(γ − 1)(∆r h − ∆vh)LT

〈ug 〉−〈ul 〉
〈ρg 〉 LT +

〈ul, j 〉
3〈ρg 〉 ∂j 〈ul〉R

T

〈vg 〉−〈vl 〉
〈ρg 〉 LT +

〈ul, j 〉
3〈ρg 〉 ∂j 〈vl〉R

T

〈wg 〉−〈wl 〉
〈ρg 〉 LT +

〈ul, j 〉
3〈ρg 〉 ∂j 〈wl〉RT

0Nd


(40)

〈B〉 =



∇ · 〈ug〉 0 ∂x 〈ρg〉 ∂y 〈ρg〉 ∂z 〈ρg〉
0 γ∇ · 〈ug〉 ∂x 〈p〉 ∂y 〈p〉 ∂z 〈p〉
0 0 ∂x 〈ug〉 + 〈Cl 〉

τd
+
〈 Ûωev 〉
〈ρg 〉 ∂y 〈vg〉 ∂z 〈wg〉

0 0 ∂x 〈ug〉 ∂y 〈vg〉 + 〈Cl 〉
τd
+
〈 Ûωev 〉
〈ρg 〉 ∂z 〈wg〉

0 0 ∂x 〈ug〉 ∂y 〈vg〉 ∂z 〈wg〉 + 〈Cl 〉
τd
+
〈 Ûωev 〉
〈ρg 〉

0 0 −1/τd 0 0
0 0 0 −1/τd 0
0 0 0 0 −1/τd

0 0 0
0 0 0

−
(
〈Cl 〉
τd
+
〈 Ûωev 〉
〈ρg 〉

)
0 0

0 −
(
〈Cl 〉
τd
+
〈 Ûωev 〉
〈ρg 〉

)
0

0 0 −
(
〈Cl 〉
τd
+
〈 Ûωev 〉
〈ρg 〉

)
1/τd 0 0

0 1/τd 0
0 0 1/τd



(41)

There are two source terms, the first of which is constant whereas the second is a nonlinear function of the state vector:

〈Sc〉 =



−〈 Ûωev〉
(γ − 1)(∆r h − ∆vh)〈 Ûωev〉

(〈ug〉 − 〈ul〉) 〈 Ûωev 〉
〈ρg 〉 + 〈Cl〉〈ul, j〉∂j 〈ul〉

(〈vg〉 − 〈vl〉) 〈 Ûωev 〉
〈ρg 〉 + 〈Cl〉〈ul, j〉∂j 〈vl〉

(〈wg〉 − 〈wl〉) 〈 Ûωev 〉
〈ρg 〉 + 〈Cl〉〈ul, j〉∂j 〈wl〉
0Nd+Ns


(42)

S(X)T =
[

0T2(1+Nd ) NT
(
G(〈ug〉 + u′g, 〈ul〉 + u′

l
) − (∇ · u′

l
)INs

)T
+ G′′T − K ′′T

]
, (43)
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where In is the identity matrix of size n and 0n is a column vector of n zeros. Note that the equations of the disperse
phase modal amplitudes are not linearized because of the strong nonlinearity of the fragmentation terms. In fact,
this nonlinearity and the threshold effect it allows is thought to be crucial in capturing the triggering of subcritical
combustion instabilities [9].

C. Projection onto spatial modes
Now, let (Ψk)1≤k≤M be an orthonormal basis of functions of x ∈ RNd → R2[1+Nd (1+Nin j )]+Ns , i.e.∫

Ω

Ψi · Ψj = δi j (44)

For each mode k, let Pk = diag(Ψk) be the diagonal matrix whose terms are the components of Ψk . Then, project
the state vector X onto that basis : X(x, t) = ∑M

k=1 Pk(x) ×Hk(t) + r(x, t) where the residual r and its derivatives are
assumed to be orthogonal to any of the modes. This is for instance the case for empirical POD‡ modes, in which
case each variable can be decomposed onto its own modal basis. The choice of the modes is not anodine as each of
them must satisfy the boundary conditions imposed on the system. This is typically done by considering the acoustic
eigenmodes of the cavity; however, these modes may not be optimal for the disperse phase, which is generally localized
in the vicinity of the injectors, thus requiring high-frequency acoustic modes to be properly resolved. Using a specific
basis for each variable alleviates this issue and allows better faster spectral convergence [25].

Introducing this decomposition into eq. (38), multiplying on the left by Pn, n ∈ [[1; M]] and integrating over the
domain, one obtains

∀n ∈ [[1; M]], ∂tHn +

∫
Ω

Pn

(
Ãi∂iPk + B̃Pk

)
Hk =

∫
Ω

Pn〈Sc〉 +
∫
Ω

PnS(X) (45)

where the summations over the i and k indices are implied. Denoting E = (HT
1 · · ·H

T
N )T , Dnk =

∫
Ω

Pn

(
Ãi∂iPk + B̃Pk

)
,

Σ(X) =
∫
Ω

PnS(X) and Σc =
∫
Ω

Pn〈Sc〉, equation (45) leads to the quasi-linear differential system

∂tE + DE = Σc + Σ(X) (46)

It should be noted that the matrix D is of size M2(2 + 2Nd(1 + Ninj) + Ns)2 and that it can be pre-computed as it only
depends on the base flow and on the choice of a modal basis. Moreover, all the eigenvalues of D should have positive
(or zero) real parts as the system is stable in the absence of any source term. This final differential system may be solved
using any suitable time integration scheme, i.e. any scheme that would not prevent divergence should the system be
unstable. Here, we use Matlab’s built-in ode15s solver [26] because of the stiffness of the K matrix.

VI. Results
In this section, we discuss the results obtained using the model in a simplified, one-dimensional case without

atomization and droplet break-up. The reduced computation is compared to the output of a laminar simulation made
with the CEDRE CFD platform developed at ONERA [27–29].

A. Test case and numerical methods
The purpose of this case is to highlight the salient features of the reduced-order model, especially when compared to

a more complex CFD approach, and to validate its results. Consider the problem described in figure 4: it consists in
a simple channel which is narrow enough to neglect acoustic effects in the transverse direction, reducing it to a 1D
problem. Both boundaries are fully reflective. The base flow is quiescent and it is composed of methane at a temperature
T0 = 1000 K and a pressure p0 = 20 bar. An initial, isentropic Gaussian pressure perturbation with a relative pressure
amplitude of 1% is superimposed over this field with an offset ensuring a zero mean of p′(0, x) over the entire domain:

p′(0, x) = 0.01p0

{
exp

[
−1

2

(
x − 0.05
0.0071

)2
]
− 0.0251

}
.

‡Proper Orthogonal Decomposition
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Fig. 4 Overview of the test case with the initial pressure field

The disperse phase initially has a uniform density in the domain Ω and is made of quiescent oxygen droplets following
an exponential size distribution:

n(s) = 2.7068 × 1012 exp
{
− s

D10

}
, D10 = 20 µm, s ∈ [0; 100] µm

Their initial temperature is 130 K and the total volumic fraction of liquid is αl = 10−6. This low value has been chosen
to limit the coupling effects between the gas and the disperse phase. The method applied here has been recently
used to simulate subcritical, diphasic flows, either nonreacting with coaxial air-assisted atomization [14], or reactive
flows replicating experiments conducted on the MASCOTTE LRE test bench [29]. Two Eulerian solvers are used
simultaneously:

• A Separated Phase Solver (SPS) called CHARME solves the compressible Navier-Stokes equations in the gas
phase, here in the laminar case.

• A Disperse Phase Solver (DPS) called SPIREE solves a variant of the semi-kinetic equation (5) for the disperse
phase using a sectional affine discretization of the number density distribution.

Both solvers are fully coupled through source terms. The only limitation of this approach is that the disperse
phase does not alter the propagation of acoustic waves in the gaseous medium, which can be problematic in situations
where ρl is very large. This further motivates our choice of a very low liquid load. Tables 1 and 2 specify the setups
of the CEDRE simulation and the ROM, respectively. The ROM uses ten Laguerre polynomials to reconstruct the
size distribution. The initial error on the total mass of droplets between both cases is about one percent. Thus, both
approaches are equivalently accurate in reconstructing the initial number density function. Moreover, each variable is
projected onto a finite spatial basis of twenty Fourier modes. In this very simplified case, with a single space dimension
and a quiescent base flow with no disperse phase, the constitutive terms of the system (38) boil down to

〈A〉 =


0 0 〈ρg〉 0
0 0 γ〈p〉 0
0 〈ρg〉−1 0 0
0 0 0 0


, (47)

〈B〉 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 −1/τd 1/τd


, (48)

〈C〉 =
πρliq

2


−LT

(γ − 1)∆vhLT

01×6

01×6


, (49)
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General setup

Solvers DPS and SPS , two-way coupling

Time marching
∆tDPS = 5 × 10−8 s
∆tSPS = 5 × 10−8 s

Mesh 1D, 1000 cells in the x-direction with ∆x = 100 µm

SPS

Species CH4,O2 (ideal gases w/ polynomial cp and detailed transport properties)

Space discretization 2nd-order MUSCL method, HLLC Euler fluxes

Time integration 2nd-order explicit RK3

SPS

Physical models
Drag source term
Evaporation (Hybrid model derived from Abramzon & Sirignano [11])

Size discretization 2nd-order piecewise affine reconstruction, 10 sections

Space discretization 2nd-order MUSCL scheme, Godunov flux scheme

Time integration
Explicit RK2 scheme for droplet convection

Explicit RK3 scheme for source terms
Strang splitting (2nd-order)

Table 1 Numerical setup of the CEDRE DPS and SPS solvers

〈Sc〉T =
[

0 0 0 0 0 0 0 0 0
]
and S(X)T =

[
0 0 0 0 −(∇ · u′

l
)I5N

]
. In this case, the closure

model (34) for the evaporation residual was used with kcorr = 1, so that the matrix K effectively is the corrected version
of K , i.e. K + kcorrβ

′I and thus the unclosed residual K ′′ disappears from the nonlinear source term S(X).

B. Acoustic propagation
Before proceeding to a full simulation, let us verify the ability of our reduced-order model to retrieve the accurate

(albeit linear) propagation of acoustic waves in the cavity. To that end, we shall compare the pressure and velocity
outputs of CEDRE and the ROM at t = 1 ms (about 8 acoustic periods) in the absence of a disperse phase (ρl = 0).
Figure 5 outlines the very good agreement between both codes, in terms of pressure as well as velocity. It should be
emphasized, though, that the acoustic perturbation studied here has been deliberately chosen to be linear. In reality,
pressure excursions in LREs may reach significant fractions of the mean chamber pressure, causing nonlinear phenomena
to alter the propagation of acoustic waves. In that case, our ROM would not agree that well with the DPS. In fact,
looking at the pressure history at a specific location, for instance the center of the domain, hints at the existence of
slight nonlinearities. As it can be seen on figure 6, the pressure curves computed by CEDRE and the ROM are slightly
out of phase; this is explained by the slight variations (±0.4 m s−1) in the speed of sound due to the compression and
expansion of the gas caused by the acoustic waves, as well as the uncertainty on the exact value of the speed of sound.
This highlights the usefulness of nonlinear acoustics and accurate base flow fields when it comes to predicting the
interaction between acoustics and very small features (compared to the acoustic wavelength) such as flames and jets.
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General setup

Space modes 20 1D Fourier modes

Time integration Explicit variable-order stiff solver ode15s (Matlab)

Gas phase

Base flow 〈ρg〉 = 3.9 kg m−3, 〈p〉 = 20 bar, 〈ug〉 = 0 m s−1

Thermodynamics γ = 1.127, ∆r h = 0 J kg−1

Disperse phase

Base flow 〈ρl〉 = 0 kg m−3, 〈ul〉 = 0 m s−1

Size discretization 10 orthogonal polynomials, smax = 100 µm

Physical models
Drag time τd = 2.8 ms
Evaporation (Lv = 146.4 kJ kg−1, β = 1.005 × 10−6 m2 s−1)

Table 2 Physical and numerical setup of the ROM
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Fig. 5 Comparison of acoustic pressure (left) and velocity (right) between the ROM and CEDRE.

C. Evolution of the disperse phase
Now that the ability of the ROM to replicate the propagation of acoustic waves accurately enough has been verified,

we shall proceed to the complete simulation as detailed in subsection VI.A. Remember that the variable of interest is the
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Fig. 6 Acoustic pressure history at the center of the domain for both the ROM (blue) and CEDRE (red).

evolution of the evaporation rate or, equivalently, of the density of the liquid phase. The evaporation model used in the
SPS is far more advanced than the one implemented in the reduced-order model; in particular, the heating delay is not
taken into account in the ROM, which can be expected to lead to a negative time lag between the output of the ROM and
that of the SPS. In fact, when comparing the results given by both codes (see fig. 7), one can observe a clear similarity
in the evolution of the liquid masses. However, the slopes of both curves slightly differ, leading to errors lower than
20%. This discrepancy was expected, as SPS uses a more advanced evaporation model where the exchange coefficients
are computed dynamically. Moreover, the ROM assumes that all droplets already are at thermal equilibrium with the
ambient gas, i.e. that their temperature equals the saturation temperature of oxygen at the ambient pressure, which is
Tsat = 132.7 K, while the CEDRE computation is initialized with Tl = 130 K at t = 0 out of numerical stability concerns.
In addition to that, CEDRE features a more detailed description of molecular diffusion than the ROM. Yet, despite the
quantitative differences in their outputs, the general agreement between both models can be regarded as acceptable and
quite encouraging. Of course, the difference would be more prominent should the droplets be initialized at a much lower
temperature – in that case, the CEDRE computation would have exhibited an induction period corresponding to the
heating of the droplets before they reach their saturation temperature. When simulating real engines using the ROM,
then, some errors should be expected in the close vicinity of the injector. In terms of computational cost, however, both
codes are incomparable: the speed-up factor between CEDRE and the ROM is about 200. Of course, this is a very
simple case without the highly nonlinear fragmentation term and few acoustic modes, yet it illustrates the potential of
reduced-order modeling.

VII. Conclusion
A reduced-order, quasi-linear model of subcritical diphasic flows has been derived. It is based upon simplified

evolution equations for both the gaseous and disperse phase and can be updated to take into account nonlinear acoustic
effects. In this paper, the solution of these equations is carried out using a Galerkin expansion of the solution over a basis
of space modes, which allows to significantly decrease the computational cost of the simulation when compared to an
advanced CFD tool, while providing still acceptable results. That being said, the model remains compatible with other
generic PDE solution techniques, such as FEM or Discontinuous Galerkin methods. The model captures significant
physical phenomena, including the time lag induced by drag as well as polydisperse evaporation, and is being updated to
account for the threshold effect of droplet break-up. This allows us to believe that it may prove useful in the prediction
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of combustion instabilities in the subcritical regime.
Nevertheless, the ROM still requires improvement. Tests in higher dimensional cases as well as the inclusion of

injectors and atomization source terms will be necessary to assess its effectiveness in more realistic cases. Following the
work conducted at ONERA over the last decade [11, 14, 29], high-fidelity Large Eddy Simulations of a representative
case are being carried out to confront the results of the ROM, using the CEDRE platform showcased in this study.
Finally, the a priori choice of a suitable modal basis is still a current topic of research [25] and will need to be tackled.
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