Mean perimeter and area of the convex hull of a planar Brownian motion in the presence of resetting - Archive ouverte HAL
Article Dans Une Revue Physical Review E Année : 2021

Mean perimeter and area of the convex hull of a planar Brownian motion in the presence of resetting

Résumé

We compute exactly the mean perimeter and the mean area of the convex hull of a $2$-d Brownian motion of duration $t$ and diffusion constant $D$, in the presence of resetting to the origin at a constant rate $r$. We show that for any $t$, the mean perimeter is given by $\langle L(t)\rangle= 2 \pi \sqrt{\frac{D}{r}}\, f_1(rt)$ and the mean area is given by $\langle A(t) \rangle= 2\pi\frac{D}{r}\, f_2(rt)$ where the scaling functions $f_1(z)$ and $f_2(z)$ are computed explicitly. For large $t\gg 1/r$, the mean perimeter grows extremely slowly as $\langle L(t)\rangle \propto \ln (rt)$ with time. Likewise, the mean area also grows slowly as $\langle A(t)\rangle \propto \ln^2(rt)$ for $t\gg 1/r$. Our exact results indicate that the convex hull, in the presence of resetting, approaches a circular shape at late times. Numerical simulations are in perfect agreement with our analytical predictions.
Fichier principal
Vignette du fichier
2011.06668 (573.21 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03177642 , version 1 (16-12-2023)

Identifiants

Citer

Satya N. Majumdar, Francesco Mori, Hendrik Schawe, Grégory Schehr. Mean perimeter and area of the convex hull of a planar Brownian motion in the presence of resetting. Physical Review E , 2021, 103 (2), ⟨10.1103/PhysRevE.103.022135⟩. ⟨hal-03177642⟩
32 Consultations
25 Téléchargements

Altmetric

Partager

More