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Model Predictive Control for Dynamic Quadrotor Bearing Formations

Julian Erskine1, Rafael Balderas-Hill1, Isabelle Fantoni2, and Abdelhamid Chriette1

Abstract— Formation control of multi-agent systems deals
with groups of robots forming specific spatial geometries.
Combined with the advancements of unmanned aerial vehicles
(UAVs) in the past decade, formation control may potentially be
applied to tasks such as search-and-rescue, surveillance, even
collaborative manipulation. A key challenge is the decentral-
ization of formation control, where each agent behaves inde-
pendently using onboard sensors and computation, improving
the scaleability and robustness of the system.

This paper proposes a decentralized controller based on
model predictive control (MPC), for the control of formations
of quadrotor UAVs defined by inter-agent bearings. The use of
MPC allows the controller to account for attitude kinematics,
improving upon the results of existing bearing formation control
methods based on rigidity and visual servoing approaches,
which typically only consider the quadrotor as a single or
double integrator. Furthermore the near-optimality of MPC
permits a more optimal use of the quadrotors dynamic ca-
pabilities for faster maneuvering. Extensive simulations are
performed to demonstrate the improved transient formation
convergence and fast maneuvering permitted by this controller.
Experiments show that it is indeed a real-time feasible solution
for bearing formation control.

Index Terms— Multi-Robot Systems, Formation Control,
Model Predictive Control, Quadrotor Swarms, Visual Servoing

I. INTRODUCTION

Multi-agent systems (MAS) are of great interest to the
robotics community, due to the potential for system redun-
dancy, cost-effectiveness, and augmented capabilities beyond
those of individual robots [1]. A computer able to commu-
nicate with all agents can act as a centralized controller, but
decentralization is often preferred due to superior scaleability
and robustness to communication delays and single point
failures. Initial work focused on swarm behaviour and flock-
ing [2], generally following Reynolds’ rules [3] for which
the collective motion is more important than the positioning
of individual agents. Recently however there has been sig-
nificant work in the field of formation control, where precise
inter-agent geometries may be optimal for certain tasks such
as intruder searches [4], search-and rescue [5], cooperative
mapping [6], and even cinematography [7].

The type of control law for MAS generally depends on the
type of information available to the controllers, and on the
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Fig. 1: Formation flight with three quadrotors

constraints of the agents. In situations where the positions
of all agents are known, a wide selection of controllers
are available [8], [9]. The knowledge of all positions in a
common frame however is a best-case scenario. Formations
of agents that must evolve in unmapped and GPS-denied
environments must be able to self-localise with their neigh-
bours using onboard measurements. Often, this takes the
form of distance measurements [10], [11] or bearing (often
referred to as visual) measurements [12]–[14] which return
incomplete information about the state of the formation. In
this paper we only consider bearing measurements, which
are extractable from cheap and lightweight cameras.

Most bearing formation controllers (see [14] for sur-
vey) only consider the translation and yaw kinematics of
quadrotors, neglecting the full attitude kinematics to which
they are coupled (due to the well-known under-actuation of
quadrotors), and which become significant during aggressive
maneuvering. For agents simulated as single or double inte-
grators this is not an issue, but for real quadrotors this limits
the reactivity of the system due to the low gains and filtering
which are required to avoid highly dynamic attitudes, and
which may result in instability. To solve this, we apply model
predictive control (MPC) considering the quadrotors thrust
and angular velocity as control inputs to track the desired
bearing trajectory of the formation. This allows us to account
for the (almost) full dynamics of the quadrotor in the control
law, permitting near-optimal convergence and maneuvering
of the formation. The major contributions of this paper
compared to existing work on MPC for formation control
[15]–[17] is the use of bearing error in the optimisation
cost function, allowing for a weak dependence on the inter-
agent distance. We can thus say our controller is “almost-
bearing-only” (i.e. functions with only bearing sensors in
most situations), while providing a more reactive formation
compared to existing bearing-only controllers.

The paper is structured as follows: Section II presents
the modelling of quadrotors and bearing formations. In
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section III, rigidity based control of bearing formations
are presented, along with the concept of model predictive
control. The application of MPC to bearing formation control
is presented in section IV, and is supported by extensive
simulations in section V and by real-time experiments in
section VI. Finally in section VII we discuss the successes
and drawbacks of this novel MAS control strategy.

II. MODELLING

A. Quadrotor Modelling

Each quadrotor i is considered as a rigid body with frame
Fi = {Oi,xi,yi, zi} moving with respect to a common
inertial frame F0 = {O0,x0,y0, z0}. The primary interest in
decentralized bearing control is to act without any external
system of localization. As such, the position pi =

−−−→
O0Oi

is unknown. The quadrotors are, however, able to measure
their velocity vi, acceleration v̇i, and angular velocity ωi in
Fi using onboard optical flow sensors, accelerometers, and
gyroscopes respectively.

The attitude of the quadrotors are also known. Indeed,
an accurate estimation of the roll and pitch (denoted as φi
and θi) is necessary for stable flight, and is often recovered
from a sensor fusion of the accelerometer and gyroscope. The
yaw (denoted as ψi) of each agent is more difficult as the
magnetic field used for yaw estimations is easily perturbed
[18], even by the electric current in the UAV itself [19]. In
the case where a consistent estimate of the absolute yaw is
infeasible, a decentralized bearing estimator such as [20] can
be used for each agent to converge to a common (although
arbitrarily rotated) reference frame for the yaw. We choose
to use the quaternion q = [qw qx qy qz]

T representation for
the attitude control due to it’s computationally efficiency.

The state of the ith quadrotor evolves according to:

ṗi = vi (1)

v̇i =
fi
mi

2(qwqy + qxqz)
2(qyqz − qwqx)
1− 2(q2x + q2y)

+ g (2)

q̇i =
1

2

[
0
ωi

]
⊗ qi (3)

ω̇i = I−1i τi − I−1i (ωi × Iiωi) (4)

where mi is the mass, fi is the thrust along the zi axis, and
τi is the steering moment of the quadrotor. The inertia tensor
Ii, as well as ωi and τi are expressed in Fi, while pi, vi,
and qi are expressed in F0. The gravitational acceleration
g = [0 0 − 9.81]T ms−2 is also expressed in F0.

Each quadrotor is controlled by setting the angular ve-
locity of four co-planar propellers. Each propeller p gen-
erates a thrust force fp = ktΩ

2
p and a drag torque τp =

sign(Ωp)kdΩ
2
p, where kt and kd are aerodynamic coefficients

and Ωp is the rotational velocity of the propeller. The vector
of squared propeller velocities Ωi = [Ω2

1 · · ·Ω2
4]T can be

directly related to the actuation wrench wi = [fi τ
T
i ]T by

wi = ΓΩi (5)
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(b) An embedding of (a) in R3 × S1

Fig. 2: The graph and framework representations of a di-
rected bearing formation, where an arrow from Ai to Aj
indicates a measurement βij

where Γ depends on the quadrotor geometry and on the
aerodynamic coefficients of the propellers [21]. Generally the
propeller velocities themselves behave as first order systems
but this is neglected along with drag effects and lower level
motor and battery dynamics due to difficulties (although not
insurmountable [22]) in accurately identifying them.

B. Formation Modelling

Typically in formation control, the formation is repre-
sented as a graph G(V ,E) composed of a set of vertices
V and a set of edges E as in Fig. 2a. Each agent Ai is
represented by a vertex Vi ∈ V , and each inter-agent mea-
surement corresponds to an edge Eij = Vi×Vj ∈ E . Graphs
only represent the flow of information, thus a framework
F(G,q) is defined such that q = [qT1 · · ·qT|V|]

T (known as
the embedding) associates a state qi to each Vi as shown in
Fig. 2b. Because of the under-actuation of quadrotors, the
embedding is chosen as the state of the quadrotor projected
on the R3 × S1 manifold, thus the embeded state of Ai is
qi = [pTi ψi]

T . As the quadrotor frame Fi evolves in SE(3),
a vector xi ∈ R3 in Fi can be reprojected onto the R3 × S1
manifold using a ZYX Euler angle convention.

xR3×S1
i = Ry(φi)Rx(θi)x

SE(3)
i (6)

We assume that each quadrotor (or agent) is equipped with
a camera, capable of measuring the direction (or bearing) of
other agents in its own frame of reference (see Fig. 3). The
bearing of Aj wrt Ai expressed in Fi can be written as

βij = RT
z (ψi)

pij
dij
∈ S2 (7)

where pij = pj − pi is the position of Aj with respect to
Ai expressed in F0, dij = ||pij || is the distance between the
two agents, and Rz is a rotation matrix about the z0-axis.
Note that the yaw can be expressed as

ψ = atan2(2qwqz + 2qxqy,−2q2y − 2q2z + 1) (8)

III. CONTROL BACKGROUND

To understand the benefits of MPC in the context of
formation control, we discuss existing control methods for
formations, beginning at the level of the quadrotor and
moving up to the higher level formation controller.
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Fig. 3: Agent Ai measuring the bearing βij . As Ai is
quasi-static, it has no need to reproject βij . However Aj
is performing a high-dynamics maneuver, and thus must
reproject any measurements in Fj onto its R3×S1 manifold.

A. Quadrotor Control Structure

The most common approach to deal with the inherent
under-actuation of quadrotors is to have multiple layers of
control, with an outer translation controller tracking a high-
level position or velocity trajectory by generating a thrust
and reference attitude for the low-level attitude controller.
The attitude controller uses the attitude estimation and body-
rate measurements to feed either a kinematic or dynamic
controller in order to track the reference attitude by applying
actuation moments which, along with the thrust, are then
converted to propeller speeds through Eq. (5). As a general
rule, the high-level planners run at 1-20 Hz, the translation
controllers at 20-200 Hz, and the attitude and motor level
controllers run at frequencies greater than 200 Hz.

B. Existing Bearing Controllers

The control of bearing formations consists primarily in
driving the formation measurements β = [βT1 , · · · ,βT|V|]

T

(where βi(t) = [βij(t)
T · · ·βin(t)T ]T is the stack of bear-

ings observed by Ai) toward to a desired set of values βd.
Secondary tasks such as moving the formation may also
be imposed. Existing work on quadrotor bearing formations
generally uses the first order kinematics of the formation,
expressed as

β̇ = B

[
v

ψ̇

]
(9)

where B is the bearing rigidity matrix (similar to the
Jacobian in other robotic domains) relating the change in
bearings to the velocity v = [vT1 · · · vT|V|] and yaw rates
ψ̇ = [ψ̇1 · · · ψ̇|V|] of the agents. The quadrotors are then
controlled by their body frame velocities and yaw rates such
as to minimize the bearing error eβ = βd−β. A successful
example of this is the rigidity controller from [20] which
uses the jacobian transpose control law[

v

ψ̇

]
= kcB

Tβd (10)

allowing for a compact, low computation controller which is
easily decentralizable and is tuned by a single gain kc.

It is important to discuss the previously mentioned steering
of the bearing formation. It has been proven in [20] that any
(rigid) bearing formation in R3 × S1 has a five-dimensional

matrix in the kernel of the bearing rigidity matrix. This
corresponds to the five trivial motions

M = span(ker(B)) = [vF ∈ R3 ψ̇F ∈ S1 ṡF ∈ R1] (11)

corresponding to a spatial translation vF of the formation,
a rotation ψ̇F of the formation about z0, and a change of
scale1 ṡF of the formation. Any trivial motion can thus be
expressed in the body-frame velocity of Ai as

vi = RT
i (vF + ψ̇F (cF − pi)× z0 + ṡF (cF − pi)) (12a)

ψ̇i = ψ̇F (12b)

where cF is a finite position in space about which the
formation rotates and expands, taken in this paper as the
centroid of the agents. The fact that the motions in Eq. (12)
lie in the kernel of the rigidity matrix decouples them from
the first order bearing control problem.

Other control laws exist treating agents either as double
integrators or as non-holonomic mobile robots, but few
formation control works consider the coupling between the
attitude and translational dynamics of the quadrotors. In fact,
this coupling poses a significant problem for accurate bearing
control as the quadrotor is not able to instantly generate the
velocity or acceleration set by the formation controller, due
to the need to reorient itself. This requires that either the
formation control gains are low or that the control signal
is heavily filtered, which results in slow convergence to the
desired formation and less reactive steering.

C. Model Predictive Control

MPC was initially pioneered to control complex systems
with constraints. Recently it has become a popular tool in
robotics due to its near optimality (it is truly optimal only
for an infinite control horizon [23]) and constraint handling
capabilities. It has in fact been used in various quadrotor
applications trajectory planning and tracking [24], [25], as
well as for multi-objective tasks such as tracking a trajectory
while keeping and object in view [26].

MPC is performed by predicting the state q of the system
over a prediction horizon Tp in the future, discretized into
Np samples, as a function of the current state q0, a desired
trajectory qd(t), and the future control inputs u(t). The
control input is optimized to minimize an objective function

min
u

Np∑
i=1

O(q,qd,u,∆t)

s.t. u ≤ u ≤ ū

Ceq(q,u) = 0

C(q,u) ≤ 0

(13)

where O is the objective function to be minimized, Ceq and
C are constraint functions which must be respected, and u
and ū are the lower and upper bounds of the control signal.
Generally once the optimization converges, the first values
of the computed control input sequence u(t0) are applied to

1The scale sF is defined as the mean distance between each quadrotor,
and the centroid of the formation cF
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the system, and the optimization is run again using updated
state information.

IV. MPC FOR BEARING FORMATIONS

The first decision is to choose a control variable that may
be accurately applied to the quadrotor so that it will evolve
as close to the prediction as possible. We choose to use
ui = [fi ω

T
i ]T as the quadrotor control, which will be

tracked by a low-level control attitude rate controller setting
the motor speeds. This is because ωi is measured directly,
can be integrated to recover the future attitude, and the
attitude rate dynamics of quadrotors are very fast allowing
rapid tracking by the low-level rate controller. Motor control
is not used because the required rate for stable, vibration-
free flight may be difficult to reliably achieve with onboard
real-time optimization, together with potential computation
or image processing tasks.

A. Prediction

Given the choice of control signal, we choose the state

qi = [qi,vi,pi] (14)

for which the prediction qi(t) may be calculated from a
control signal ui(t), t ∈ Tp and the state qi at t0 (up to an
unknown translation) by integrating Eq. (1-3) with respect
to time. Each predicted bearing βij(t) is then defined by
Eq. (7-8). The position of Aj relative to Ai expressed in Fi
given the bearing measurement βij at time t0 is predicted as

p̂j(t) = βij d̂ij + vFt (15)

where d̂ij is an approximate distance and the vFt term acts
as the MPC equivalent of a velocity feed-forward term. Note
that this requires that the inter-agent relative yaw is well
estimated, which requires communication between connected
nodes in the formation graph [20]. The distance may be
taken as either the desired distance corresponding to a desired
formation scale, an estimated distance (using such methods
as [27], [28] for scale estimation), or even a unitary distance
as is often done in 2D visual servoing [29]. As there is no
known initial position pi in an inertial frame, the predicted
position pi(t) is therefore relative to Fi at the time t0,
projected onto the R3 × S1 manifold.

B. Objective Function

The objective function of Ai may be a function of the
predicted state qi(t), bearings βi(t), and inputs ui(t). As
discussed in section III-B, there are two primary tasks of
formation control:

1) Achieve the desired inter-agent geometry
2) Steer the formation by it’s trivial motions

We therefore formulate the objective function as a multi-
objective optimization problem of the shape

Oi = Oβi + wOMi (16)

where Oβi is a function minimizing the bearing error, and
OMi is a function minimizing the trivial motion error, and
w is an inter-objective weight.

The bearing error eβi = βdi −βi minimization is achieved
using the function

Oβi =

Np∑
n=1

eTβi(n∆t)Qβieβi(n∆t) (17)

where Qβi is a positive diagonal matrix.
The second task minimizes the trivial motion error

eMi = [vdi (t)Tψdi (t)]T − [vi(t)
Tψi(t)]

T (18)

where vdi (t) and ψdi (t) come from the mapping of a desired
trivial motion Md (given by a pilot or a higher level control
algorithm for example) to the quadrotor motion by Eq. (12).
The objective function is thus

OMi =

Np∑
n=1

eTMi(n∆t)QMieMi(n∆t) (19)

where QMi is a positive diagonal matrix. Because M ∈
ker(B) applies only to the first order model whereas we use
a third order model (i.e. the input ωi must be thrice integrated
to get the bearing output). An individual minimization of the
two objectives may yield conflicting inputs, thus w is used
to shape the Pareto frontier of the two tasks.

C. Constraints

The optimization of the objective function may account
for constraints that must necessarily be satisfied. There are
many possible constraints for this system, but we only briefly
discuss them for the sake of completeness.

1) Operational Constraints: These are constraints relat-
ing to the quadrotor itself, its actuation limits, operational
stability, or similar criteria. The only critical one in our case
is the input bounds from Eq. (13), which are defined (for our
quadrotor) as

fi ≤ fi ≤ f̄i (20a)
ωxy,i ≤ ωxy,i ≤ ω̄xy,i (20b)

ωz,i ≤ ωz,i ≤ ω̄z,i (20c)

where x and x̄ are respectively the lower and upper limits of
x. These constraints are chosen such that there is no motor
saturation during an aggressive manual flight respecting these
limits. Other constraints could include limitations on the
velocity, and on the maximum tilt angle of the quadrotor.

2) Task Constraints: There are no task constraints im-
plemented currently, however we may easily envisage con-
straints ensuring that all observed quadrotors remain in
the field of view of the observing quadrotor as in [30],
which require the persistent observation of a target outside
the formation [31], or ensuring collision avoidance with
environmental obstacles [32].

V. SIMULATIONS

Because of the difficulty in proving the stability of de-
centralized MPC in this application, this section shows the
results of extensive simulations to both demonstrate the
stability of the proposed MPC control strategy, as well as
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TABLE I: Relationship between bearing error norm ||eβ ||
and the equivalent angular error eα between the measured
and desired values of a single bearing measurement

eα (deg) 180 90 45 30 15 10 5 1
||eβ || 2.0 1.41 0.77 0.52 0.26 0.17 0.09 0.02

(a) Three agents (b) Four agents (c) Five agents

Fig. 4: Test Formation Graphs

to compare its performance relative to other state of the art
bearing control methods. We compare our controller with the
rigidity-based controller in [20], which considers only first-
order quadrotor kinematics, but follows a locally optimal
gradient due to the controller of Ai considering not only
it’s observations βij , but also all observations βki of itself.
In all simulations and experiments, in order to compare
results between formations of different sizes, the bearing
error magnitude is scaled by 1/

√
|E|, and thus always has a

maximum value of 2.0, regardless of the number of edges.
Table I can be referred to for a comparison between bearing
magnitude error and the more interpretable angular error.

The quadrotors are modelled in Simulink using Eqns. 1-4
with noise and first order propeller dynamics. The velocity
(P), attitude (PD) [33] and body rate (P) controllers run at
200 Hz, while the outer loop bearing formation controllers
run at 30 Hz. We use the well-known Matlab function
fmincon to solve the optimization, while the prediction uses
a fourth-order Runge-Kutta (RK4) algorithm.

With all agents starting at random positions and yaw
angles, and the desired bearings based on another set of
random position and yaw angles, the simulation is run for
five seconds using both the proposed MPC controller and
the rigidity controller. The results of 1110 simulations of
the three, four, and five-agent formations (Fig. 4) are shown
in Fig. 5a-b, with only formations considered as potentially
converging (an average bearing error of eα ≤ 45◦ at 5 s)
are kept, with the others being assumed to have either
crashed (due to controller instability) or fallen into local
minimas. It is seen that despite the lack of formal proof, the
system shows good convergence properties as only 4% of
MPC simulations failed to converge, while 12% of Rigidity
controllers failed.

VI. EXPERIMENTS

A. Real-time MPC Implementation

We used the ACADO toolbox [34] to generate efficient C-
code for an SQP (sequential quadratic programming) mini-
mization of the objective function with multiple shooting dis-
cretization, RK4 integration, and using the QPoases library

(a) Probability density histograms of the bearing error magnitude
of converged simulations at intervals of 1 s

(b) A continuous-time box and whisker plot of the bearing error
in successful simulations

Fig. 5: The results extensive simulations comparing the MPC
(red) and rigidity (blue) controllers.

for solving sparse quadratic programming problems. Since
ACADO is pre-compiled, it lacks the runtime flexibility to
re-dimension the MPC problem for the variable number of
graph edges leaving each vertex (as in Fig. 4b-c). Rather than
pre-compile separate code for each agent, we generated code
based on a maximum number of observations per agent (we
used four) and set the weights of unused measurements to
zero at runtime. After testing, the best results were obtained
when running the MPC at 50 Hz, performing two steps of
the SQP algorithm (about 8 ms per step) each loop and a
prediction horizon of 1.5 s discretized into Np = 15 steps.
An inter-robot distance estimate is required (see Eq. (15)) and
we use a constant value of d̂ij = 2.0 m for all measurements.

B. Hardware

The quadrotors are based on the Lynxmotion Crazy2fly
34 cm frame with MT2208 1100 kV brushless motors, 12 A
ESCs, 8” × 4” plastic propellers, a 3-cell LiPo battery, and
have masses of around 1.0 kg. They are controlled by a
Pixhawk running PX4v1.10.1 [35] which performs sensor
fusion and tracks the commands (thrust, body rate, etc...)
sent by the formation controller. The PX4 controller was
tuned for reactive body rate control with aggressive PD
gains, and the integrator removed to reduce phase shift. The
formation controller for a given quadrotor runs on its onboard
Raspberry Pi 4B computer with 4GB of RAM running
Ubuntu 18.04. The ROS Melodic Mavros package is used
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(d) The top plot shows the evolution of the normalized bearing
error for E3.1 (blue) and E3.2 (orange). The middle and bottom
plots shows the desired formation velocity vdF,y (dark green line)
and the measured velocities vi,y (light green lines) expressed
in F0 for E3.1 and E3.2. respectively. The bearing error peaks
correspond to new desired formations (a)-(c).

Fig. 6: Two experimental results with the graph of Fig. 4a

to handle message exchanges between the computer and the
Pixhawk. Each quadrotor receives desired bearing references
from the ground station computer over a 5 GHz wireless
network. A Qualisys motion capture (MoCap) system with
eight cameras is used to send the pose of the quadrotors to the
other quadrotors through the ground station. This information
is only used for extracting bearing information where needed
(using Eq. (7), mimicking an onboard monocular camera),
and to generate some nullspace commands to assist the pilot.

C. Experimental Procedures and Results

All experiments began with the quadrotors hovering at pre-
specified positions, and the formation controller takes over
at time t = 0 s as seen in Figures 6-7. As experiments were
performed in a small (relative to the formation footprint)
4× 6× 4 m flying arena, an autopilot algorithm running at
20 Hz provides the vFx, vFz , and ṡF trivial motions in F0

to keep the formation centered along the short axes or the
arena and at a scale of 1 m. The other trivial motions vFy
and ψ̇F were given manually at 50 Hz using a joystick.

Two experiments each are shown for the three (E3.1-2) and
four (E4.1-2) agent formations in Fig. 4. We see in figures 6-
7 that despite differing pilot inputs, the experiments generally
share very similar convergence properties. The difference
in E3.1-2 for the initial formation shows that due to slight
differences in the initial configuration, the two tests followed
different convergence paths and were still successful. We can
furthermore see that the maximum steering velocity (2.5 ms-1

in E3.1 and 5.0 ms-1 in E3.2) had some effect on the bearing
control, as the peak bearing error for E3.2 at 8 s, 24 s,
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(a) Formation #1
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(b) Formation #2
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F0

(c) Formation #3

(d) The top plot shows the evolution of the normalized bearing
error for E4.1 (blue) and E4.2 (orange). The middle and bottom
plots shows vdF,y (dark green line) and the measured vi,y (light
green lines) expressed in F0 for E4.1 and E4.2. respectively. The
bearing error peaks correspond to new desired formations (a)-(c).

Fig. 7: Two experimental results with the graph of Fig. 4b

49 s and 52 s occur directly after the peak velocity times.
This is possibly due to propeller saturation that occurs when
attempting to re-orient the quadrotor while maintaining high
thrust to reach accelerations of v̇i > 12 ms-2.

The second pair of experiments show that similar results
may be obtained when scaling up the formation and using
variable numbers of edges. Experiments E4.1-2 had a one
agent with a single bearing measurement, two agents with
two bearing measurements, and a single agent with three
bearing measurements. The steering was less aggressive
(with peak velocities of 2.5 ms-1 and peak accelerations of
6 ms-2) as the formation occupied more volume making it
harder to pilot in the arena, and there was more aerodynamic
interference between quadrotors. We can see in Fig. 7 the
yaw rate of the formation (e.g. 30-36 s in E4.2 among others)
visible due to the distinctive sine wave induced by ωzF . A
video of the experiments can be found online2.

VII. CONCLUSION

This paper showed that model predictive control (MPC)
may be applied to bearing formations of quadrotors, im-
proving the transient rate of formation convergence and
allowing for high-speed maneuvering of the formation. Ex-
tensive simulations have shown that it is able to increase the
performance, and possibly the reliability, of bearing-based
formations. Future work will include the implementation
of MPC formation controllers in constrained environments
requiring dynamic maneuvering, and with field of view
handling (to which MPC is well suited). Work is underway to
integrate real-time visual detection using monocular fish-eye
cameras on the quadrotors for the extraction of bearings.

2https://youtu.be/KCpXjPI6eyU
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