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Abstract. In computer vision and medical imaging, the problem of matching
structures finds numerous applications from automatic annotation to data recon-
struction. The data however, while corresponding to the same anatomy, are often
very different in topology or shape and might only partially match each other. We
introduce a new asymmetric data dissimilarity term for various geometric shapes
like sets of curves or surfaces. This term is based on the Varifold shape represen-
tation and assesses the embedding of a shape into another one without relying on
correspondences between points. It is designed as data attachment for the Large
Deformation Diffeomorphic Metric Mapping (LDDMM) framework, allowing to
compute meaningful deformation of one shape onto a subset of the other. Reg-
istrations are illustrated on sets of synthetic 3D curves, real vascular trees and
livers’ surfaces from two different modalities: Computed Tomography (CT) and
Cone Beam Computed Tomography (CBCT). All experiments show that this data
dissimilarity term leads to coherent partial matching despite the topological dif-
ferences.

1 Introduction

Finding shape correspondences is a standard problem in computer vision that has nu-
merous applications such as pattern recognition ([6], [5], [17]), annotation ([4], [12])
and reconstruction ([16]). In particular, in the field of medical imaging, matching an
atlas and a patient’s anatomy ([12]), or comparing exams of the same patient acquired
with different imaging techniques ([27], [2]), provide critical information to physicians
for both planning and decision making.

In medical imaging, this problem has been tackled by numerous authors ([26]) by
registering directly the images, most of the time assuming that both images contains
the entire object of interest. But in practice, it often happens that only part of an object
is visible in one of the two modalities: in CBCT for instance, the imaged organs can
be larger than the field of view, when the whole organ can be acquired in CT. In order
to make the best of the two modalities, one needs to find a partial matching between
them. This work is focused on sparse segmented structures registration where only part
of these structures can be matched.

Previous works. The problem of matching shapes has been widely addressed in the
literature in the past decades ([18]). In the specific case of partial matching, one can
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find two main approaches to such problem: either by finding correspondences, sparse or
dense, between structures from descriptors that are invariant to different transformations
([1], [24], [15]), or by looking for a deformation aligning the shapes with respect to a
given metric ([1], [4], [12], [16]).

The early works on partial shape correspondence as reviewed in [18] rely on cor-
respondences between points computed from geometric descriptors extracted from an
isotropic local region around the selected points. The method is refined in [17] by se-
lecting pairs of points to better fit the local geometry using bilateral map. The features
extracted can also be invariant to different transformation, as in [25] where the descrip-
tors extraced are scale invariant. Such sparse correspondences are naturally adapted to
partial matching, yet they cannot take the whole shapes into account in the matching
process.

Using a different approach, functional maps were introduced in [22] allowing dense
correspondences between shapes by transferring the problem to linear functions be-
tween spaces of functions defined over the shapes. In [24] the non-rigid partial shape
correspondence is based on the Laplace-Beltrami eigenfunctions used as prior in the
spectral representation of the shapes. Recently in [15], such functional map models
were adapted in a deep unsupervised framework by finding correspondences minimiz-
ing the distortion between shapes. Such methods are yet limited to surface correspon-
dences.

The second kind of approaches relies on the deformations that can be generated to
align the shapes with each other. It usually involves minimizing a function called data
attachment that quantifies the alignment error between the shapes. A deformation cost
is sometimes added to regularize these deformations. The sparse correspondences be-
ing naturally suited to partial matching, they are notably used in Iterative Closest Point
(ICP) methods and their derivatives to guide a registration of one shape onto the other.
In [1] a regularized version of the ICP selects the sets of four co-planar points in the
points cloud. In [4] the ICP is adapted to the specific case of vascular trees and compute
curves’ correspondences through an Iterative Closest Curve method. Working on trees
of 3D curves as well, [12] hierarchically selects the overall curves correspondences min-
imizing the tree space geodesic distance between the trees. This latter method although
specific to tree-structures, allows topological changes in the deformation.

On the other hand some authors compute the deformation guided by a dense data at-
tachment term. In [6] isometry-invariant minimum distortion deformations are applied
to 2D Riemannian manifolds thanks to a multiscale framework using partial matching
derived from Gromov’s theory. This work is extended in [5] by finding the optimal
trade-off between partial shape matching and similarity between these shapes embed-
ded in the same metric space. Recently in [16] a partial correspondence is performed
through a non-rigid alignment of one shape and its partial scan seen as points clouds
embedded in the same representation space. The non-rigid alignment is done with a
Siamese architecture network. This approach seems promising and is part of a comple-
tion framework, however it requires a huge amount of data to train the network.

Interestingly, the regularization cost can be seen as a distance between shapes itself
(as in [12]) by quantifying the deformation amount necessary to register one shape onto
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the other. This provides a complementary tool to the metrics used to quantify the shapes
dissimilarities.

A well established and versatile framework to compute meaningful deformations is
the Large Deformation Diffeomorphic Metric Mapping. It allows to see the difference
between shapes through the optimal deformations to register a source shape S onto a
target shape T . However, the data attachment metrics proposed so far aim to compare
the source and target shapes in their entirety ([9]), or look for explicit correspondences
between subparts of these shapes ([13]). In [20] the growth model presented introduces
a first notion of partial matching incorporated to the LDDMM framework, yet no ex-
plicit partial dissimilarity term was proposed.

We propose a new asymmetric dissimilarity term adapted as data attachment in the
LDDMM framework derived from the Varifold shape representation [10] to quantify the
partial shape matching. This term can be used in both continuous and discrete settings,
and applied to many discrete shape representations without requiring any point corre-
spondences. When combined with LDDMM, this approach allows to build meaningful
deformations while being adapted to the partial matching between shapes.

2 Partial Matching

We are interested in the problem of finding an optimal deformation to register a source
shape S onto an unknown subset of a target shape T , where S, T are assumed to be
finite unions of m-dimensional submanifolds of E = Rd, with either m = 1 (curves)
or m = d− 1 (hypersurfaces).

2.1 The varifold framework for shape matching

In this section we will quickly review the oriented varifold framework introduced in
[19], of which the varifold framework ([10]) is a particular case.

Let E = Rd, with d ≥ 2 the ambient space. Shapes S and T are assumed to be
compact m-rectifiable subsets of Rd. In particular at almost every point x ∈ S (resp.
y ∈ T ) is defined a unit tangent - for curves - or normal - for hypersurfaces - vector
τxS ∈ Sd−1 (resp. τyT ).

Let W be a Reproducing Kernel Hilbert Space (RKHS) of functions defined over
Rd × Sd−1, continuously embedded in C0(Rd × Sd−1). Its dual space W ′ is a space of
varifolds. The following proposition gives a practical way to define such a space:

Proposition 1 ([10], Lemma 4.1) Assume that we are given a positive-definite real
kernel ke on the space Rd such that ke is continuous, bounded and for all x ∈ Rd,
the function ke(x, .) vanishes at infinity. Assume that a second positive-definite real
kernel kt is defined on the manifold Sd−1 and is also continuous. Then the RKHS W as-
sociated to the positive-definite kernel ke ⊗ kt is continuously embedded into the space
C0(Rd × Sd−1).

In the following we assume that the reproducing kernel of W is of the form ke⊗kt,
with the assumptions of proposition 1. We also assume that ke and kt are non negative
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functions. In practice, we will use for ke : (Rd)2 → R a gaussian kernel ke(x, y) =

e−‖x−y‖
2/σ2

W , where σW is a scale parameter, and for kt : (Sd−1)2 → R the kernel
kt(u, v) = e〈u,v〉Rd

We associate with shape S the canonical function ωS ∈ W defined for all y ∈ Rd
and τ ∈ Sd−1 as follows:

ωS(y, τ) =

∫
S

ke(y, x)kt(τ, τxS)dx .

This function corresponds to the unique representer of the varifold µS ∈ W ′ via the
Riesz representation theorem. Similarly, we define the canonical function ωT associated
with shape T . Via this representation of shapes, one may express the scalar product
between the varifolds µS , µT , or equivalently between the canonical functions ωS , ωT
as follows:

〈µS , µT 〉W ′ = 〈ωS , ωT 〉W =

∫
S

∫
T

ke(x, y)kt(τxS, τyT )dx dy .

Finally, the shape matching distance as defined in [10] is the following:

dW ′(S, T )
2 = ‖ωS − ωT ‖2W = ‖µS − µT ‖2W ′
= 〈µS , µS〉W ′ − 2〈µS , µT 〉W ′ + 〈µT , µT 〉W ′ .

In order to adapt this distance for partial matching, a first and intuitive way could be to
use half of the expression as follows:

∆(S, T ) = 〈µS , µT − µS〉2W ′ = 〈µS , µS − µT 〉2W ′ .

The intuition behind this definition is that if S is a subset of T , then µT −µS is the vari-
fold corresponding to T \S, which is disjoint from shape S and thus roughly orthogonal
to it from the varifold metric viewpoint.

Yet, if S = S1tS2, a mismatch of S1 into T , characterized by 〈µS2 , µS−µT 〉W ′ >
0, can be compensated by an overrated characterization of the inclusion S2 ⊂ T with
〈µS2

, µS − µT 〉W ′ < 0, which happens if the mass of T around S2 is larger than
the mass of S2. Hence, we introduce in this paper a localized characterization of the
inclusion.

2.2 Definition of the partial matching dissimilarity

To simplify the notation, we denote for x, x′ ∈ S, ~x = (x, τxS), ωS(~x) = ωS(x, τxS)
and k(~x, ~x′) = ke(x, x

′)kt(τxS, τx′S).

Definition 1 Let g : R 7→ R defined as g(s) = (max(0, s))2. We define the partial
matching dissimilarity as follows:

∆(S, T ) =

∫
S

g (ωS(~x)− ωT (~x)) dx

=

∫
S

g

(∫
S

k(~x, ~x′)dx′ −
∫
T

k(~x, ~y)dy

)
dx .
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With g(s) = s, we would retrieve 〈µS , µS − µT 〉W ′ . The threshold max(0, ·) prevents
the compensation of a local mismatch by an overrated match in another area.

Proposition 2 If S ⊂ T , ∆(S, T ) = 0.

Since ke and kt are assumed to be non negative functions, we have

∆(S, T ) =

∫
S

g

(∫
S

k(~x, ~y)dy −
∫
T

k(~x, ~y)dy

)
dx

=

∫
S

g

(
−
∫
T\S

k(~x, ~y)dy

)
dx = 0 . ut (1)

The next proposition highlights the local nature of the dissimilarity function ∆.

Proposition 3 If S′ ⊂ S, then ∆(S′, T ) ≤ ∆(S, T ). In particular, if
∆(S, T ) = 0 then for any subset S′ of S, ∆(S′, T ) = 0.

Since k ≥ 0, we have for any S′ ⊂ S and any ~y ∈ Rd × Sd−1

ωS′(~y) =

∫
S′
k(~x, ~y)dx ≤

∫
S

k(~x, ~y)dx = ωS(~y) .

Hence, since g is an increasing function

g (ωS′(~y)− ωT (~y)) ≤ g (ωS(~y)− ωT (~y))

and thus ∆(S′, T ) ≤
∫
S

g (ωS(~x)− ωT (~x)) dx = ∆(S, T ). ut
In the next proposition, we show that ∆ does not satisfies the property

∆(S, T ) = 0⇒ S ⊆ T .

Proposition 4 Consider the two following shapes. The source is a segment
Sε = {(s, ε) | s ∈ [−α, α]} slightly shifted by a step ε > 0 above a larger target
T = {(t, 0) | t ∈ [−β, β]}, with 0 < α < β. Since the tangent vectors are almost
all equal, we can ignore kt and consider a kernel ke defined by a decreasing function
ρ : R+ → R+ as follows ke(x, x′) = ρ(|x − x′|2). Then for any such ρ, there exists
(ε, α, β) such that ∆(Sαε , T

β) = 0 and Sαε ∩ T β = ∅.
We need to show that for any x0 ∈ S, ωS(x0) ≤ ωT (x0) where
ωS(x0) =

∫
S
ke(x0, x)dx and ωT (x0) =

∫
T
ke(x0, x

′)dx′. Denote x = (s, ε) ∈ S,
x0 = (s0, ε) ∈ S and x′ = (t, 0) ∈ T then ‖x−x0‖2 = ‖(s, ε)− (s0, ε)‖2 = (s− s0)2
and ‖x′ − x0‖2 = ‖(t, ε)− (s0, ε)‖2 = (t− s0)2 + ε2. We then obtain

ωS(x0) =

∫ α

−α
ρ((s− s0)2)ds, ωT (x0) =

∫ β

−β
ρ((s− s0)2 + ε2)ds .

Denote these integrals Iα(s0) =
∫ α
−α ρ((s−s0)

2)ds and Iβ(s0, ε) =
∫ β
−β ρ((s−s0)

2+

ε2)ds. The integrands are symmetric with respect to s = s0 and since ρ is decreasing,
we have the following inequalities:

for any s0 ∈ [−α, α], Iα(α) ≤ Iα(s0) ≤ Iα(0), (2)
for any s0 ∈ [−α, α], for any ε > 0, Iβ(α, ε) ≤ Iβ(s0, ε) ≤ Iβ(0, ε). (3)



6 P. Antonsanti et al.

Let us now show that there exist (ε, α, β) such that Iα(0) ≤ Iβ(α, ε) that is∫ α
−α ρ(s

2)ds ≤
∫ β
−β ρ((s− α)

2 + ε2)ds.

For α small enough and β large enough,
∫ β
−β ρ((s−α)

2 + ε2)ds ≥
∫ 2α

−2α ρ(s
2 + ε2)ds.

This last integral tends to
∫ 2α

−2α ρ(s
2)ds when ε tends to 0 and this limit is strictly

larger than Iα(0) (with α small enough, ρ(α) > 0). Thus, for ε small enough, we have
Iα(0) < Iβ(α, ε).
Thanks to eq. (2) and (3), we deduce that for any x0 ∈ S, ωS(x0) ≤ ωT (x0). ut

This example shows that if the mass of the target is larger than the mass of the source
then this excess of mass can compensate the lack of alignment between the shapes. For
this reason, we introduce a normalized dissimilarity term.

2.3 Normalized partial matching dissimilarity

Assume that x0 ∈ S and y0 ∈ T are two close points. If around these points, the mass of
T is twice the mass of S, i.e. ωS(~x0) ≈ 1

2ωT (~y0), then the local embedding of S in T is
characterized by ωS(~x0) ≤ 1

2ωT (~x0) and more generally by ωS(~x0) ≤ ωS(~x0)
ωT (~y0)

ωT (~x0).
Conversely, if the mass of S is twice the mass of T , then we consider that locally S  T
(e.g. two branches of a tree should not match the same branch of a target). Hence, the
criterion of Definition 1 should be preserved : ωS(~x0) ≤ ωT (~x0) is not satisfied. These
observations lead to a new dissimilarity term that encompasses these two cases.

Definition 2 Using the same threshold function g as in Definition 1, we define the par-
tial matching normalized dissimilarity as follows:

∆(S, T ) =

∫
S

g

(
ωS(~x)−

∫
T

minε

(
1,
ωS(~x)

ωT (~y)

)
k(~x, ~y)dy

)
dx

where minε(1, s) =
s+1−

√
ε+(s−1)2
2 with ε > 0 small, is used as a smooth approxima-

tion of the min(1, ·) function.

2.4 Use in the LDDMM setting

The framework we propose is sufficiently flexible to be embedded in a variety of inexact
registration methods; in this paper, we focus on the LDDMM model described in [3].
In this model, diffeomorphisms are constructed as flows of time-dependent square inte-
grable velocity fields t ∈ [0, 1] 7→ vt, each vt belonging to a predefined Hilbert space V
of smooth vector fields. In the following we will denote φv1 the diffeomorphism of Rd,
solution at t = 1 of the flow equation ∂tφvt = vt ◦ φvt with initial condition φv0 = id.

Proposition 5 Let λ > 0 be a fixed parameter. The partial matching problem, which
consists in minimizing over L2

V the function :

J(v) = λ

∫ 1

0

‖vt‖2V dt+∆(φv1(S), T ) ,

has a solution.
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From [14], theorem 7, the proof boils down to showing that the mapping v 7→ A(v) =
∆(φv1(S), T ), is weakly continuous on L2

V . Let (vn) be a sequence in L2
V , weakly

converging to some v ∈ L2
V . We need to show that ∆(φvn1 (S), T ) −→ ∆(φv1(S), T ).

To simplify we denote Sn = φvn1 (S), S∗ = φv1(S) and for any ~x ∈ Rd × Sd−1,

fn(~x) = ωSn(~x)−
∫
T

minε

(
1,
ωSn(~x)

ωT (~y)

)
k(~x, ~y)dy and f∗(~x) likewise for S∗.

We then have

∆(Sn, T )−∆(S∗, T ) = µSn
(g ◦ fn)− µS∗(g ◦ f∗) . (4)

The area formula

µφ(S)(ω) =

∫
S

ω(φ(x), dxφ(τxS))
∣∣∣dxφ|τxS∣∣∣ dx,

leads to∣∣∣µSn(g ◦ fn)− µS∗(g ◦ f∗)
∣∣∣ ≤ ∫

S

∣∣∣g ◦ fn(φn(x), dxφn(τxS)) · ∣∣∣dxφn|τxS∣∣∣
− g ◦ f∗(φ(x), dxφ(τxS)) ·

∣∣∣dxφ|τxS∣∣∣ ∣∣∣dx
≤
∫
S

∣∣∣g ◦ fn(φn(x), dxφn(τxS)) · ∣∣∣dxφn|τxS∣∣∣− g ◦ fn(φ(x), dxφ(τxS)) · ∣∣∣dxφ|τxS∣∣∣
+ g ◦ fn(φ(x), dxφ(τxS)) ·

∣∣∣dxφ|τxS∣∣∣− g ◦ f∗(φ(x), dxφ(τxS)) · ∣∣∣dxφ|τxS∣∣∣ ∣∣∣dx
≤
∫
S

|g ◦ fn|∞ ·
∣∣∣ ∣∣∣dxφn|τxS∣∣∣− ∣∣∣dxφ|τxS∣∣∣ ∣∣∣+ |dxφ|∞ |g ◦ fn − g ◦ f∗|∞ dx .

Since dxφn converge to dxφ, uniformly on x ∈ S ([14]), we only need to show that
|g ◦ fn − g ◦ f∗|∞ → 0. We first show that |fn − f∗|∞ → 0. For any ~x ∈ Rd × Sd−1

fn(~x)− f∗(~x) =ωSn
(~x)− ωS∗(~x) (5)

+

∫
T

k(~x, ~y)

[
minε

(
1,
ωSn(~x)

ωT (~y)

)
−minε

(
1,
ωS∗(~x)

ωT (~y)

)]
dy . (6)

Since W is continuously embedded in C2
0 (Rd × Sd−1), there exists cW such that for

any n, |ωSn − ωS∗ |∞ ≤ cW |ωSn − ωS∗ |W . Moreover, since vn weakly converges to v,
Corollary 1 from [7] ensures that |ωSn − ωS∗ |W → 0.
Regarding the integral, since R 3 s 7→ minε(1, s) is Lipschitz, there exists cε > 0 such
that∣∣∣∣∫

T

k(~x, ~y)

[
minε

(
1,
ωSn

(~x)

ωT (~y)

)
−minε

(
1,
ωS∗(~x)

ωT (~y)

)]
dy

∣∣∣∣ (7)

≤
∫
T

k(~x, ~y)

|ωT (~y)|
cε|ωSn

(~x)− ωS∗(~x)|dy ≤ cεcW |ωSn
− ωS∗ |W

∫
T

k(~x, ~y)

ωT (~y)
dy (8)

Since T is compact and ωT is continuous and strictly positive on ~T = {(y, τyT ) | y ∈

T}, we have cT = inf ~T ωT (~y) > 0 so that
∫
T

k(~x, ~y)

ωT (~y)
dy ≤ ωT (~x)

cT
≤ cW |ωT |W

cT
<
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+∞. This shows that |fn − f∗|∞ → 0. Now, since f∗ is bounded, there exists M > 0
such that for any n, |f∗|∞ + |fn|∞ ≤ M and since g is locally Lipschitz, we deduce
that |g ◦ fn − g ◦ f∗|∞ → 0 . ut

Discrete formulation. The discrete versions of the partial matching dissimilarities can
be derived very straightforwardly, following the same discrete setting described in [9]
for varifold matching. We omit its complete description here. The LDDMM registration
procedure is numerically solved via a geodesic shooting algorithm [21], optimizing on a
set of initial momentum vectors located at the discretization points of the source shape.

3 Experiments

In order to evaluate the proposed dissimilarity terms, we conducted three experiments
on two different types of data : two on sets of 3D-curves (one synthetic and one real)
and one on surfaces. In all the following experiments, we initialize the registration by
aligning objects barycenters since no prior positioning is known in our applications. To
model non-rigid deformations, we define the reproducing kernelKV of V to be a sum of
Gaussian kernels KV (x, y) =

∑
s exp

(
−‖x− y‖2 / (σ0/s)2

)
, where s ∈ [1, 4, 8, 16]

and σ0 is about half the size of the shapes bounding boxes. For each set of experi-
ments we use the same hyperparameters (σ0, σW , λ) to compare the influence of the
data attachment terms. Our Python implementation makes use of the libraries PyTorch
[23] and KeOps [8], to benefit from automatic differentiation and GPU acceleration of
kernel convolutions.

./CurvesSynthetic/source_blue_target.png

(a)

./CurvesSynthetic/varifold_blue.png

(b)

./CurvesSynthetic/partial_varifold_blue.png

(c)

./CurvesSynthetic/partial_varifold_normalized_blue.png

(d)

Fig. 1: Diffeomorphic registrations of a trimmed tree (blue) onto a richer one (red). (a)
Initial Positions; (b) Varifold registration; (c) Partial matching registration (Eq. 1); (d)
Normalized partial matching registration (Eq. 2).

Synthetic experiment. A first experiment was conducted to validate our approach on
synthetic trees of 3D-curves. The target is composed of six 3D-curves (red tree in
Fig.1.(a)), while the source (blue colored tree in Fig.1.(a)) is a trimmed version of the
target. Then we apply to the source a random diffeomorphic deformation ψ that we will
try to retrieve by registration.

We have shown in Fig.1 that the classic distance aims at registering the entire source
onto the entire target. This leads to abnormal distortions of the source curves that can
be observed in the light blue stretched curve in Fig.1.(b). On the contrary, both partial
dissimilarity terms successfully guide the registration of the source onto a subset of the

https://www.kernel-operations.io/keops/index.html
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./CurveImages/source_tree_view2.png

(a)

./CurveImages/target_tree_view2.png

(b)

./CurveImages/tree_varifold_view2.png

(c)

./CurveImages/tree_normalized_partial_varif_oriented_view2.png
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./CurveImages/target2.png

(e)

./CurveImages/varif_tree2.png

(f)

./CurveImages/partial_oriented_normalized_tree2.png

(g)

Fig. 2: (a) Template composed of different arteries of interest. (b),(e) Real vascular
trees. (c),(f) Varifold registrations. (d),(g) Normalized partial matching registrations
(Eq. 2).

target. The main difference between these two terms can be seen in the bifurcations’
neighborhoods : the partial matching dissimilarity fails to register the source curves
when the normalized partial matching doesn’t fall into a flat local minima. The excess
of mass in the target at the bifurcation has no negative effect with the normalization.

Registration of a template onto a real vascular tree. Now that we have illustrated
the potential of our method on a toy example, we continue on entire vascular trees
extracted from real patients datasets. Finding correspondences between the annotated
template and a raw target is of great interest in clinical applications such as interven-
tional radiology, and could provide automatic partial annotation of the imaged vascular
tree. Because of the high topological variability of the vasculature, there is no perfect
template of all the patients, and a simpler template seems suited. The target tree (Fig.2.
(b), (e)) is obtained by automatic centerlines extraction from an injected CBCT inspired
from the fast marching method ([11]) that have been labeled by a clinical expert. The
source tree (Fig.2.(a)) is a manually simplified template in which arteries of interest
have been selected.

This experiment is particularly difficult in the classic LDDMM framework, and the
partial normalized dissimilarity term introduces a meaningful deformation of the sim-
ple template onto a subset of the target despite the wide topological difference.

Liver Surface registration with truncation. In the third experiment, we register a
truncated liver surface manually segmented from a CBCT onto a complete liver surface
manually segmented from a CT scan. In CBCT exams, the livers are usually larger than
the field of view, causing the truncation of the surface. Both acquisitions come from the
same patient and are separated in time by one month.

We show in Fig. 3 the registrations results of the LDDMM associated to the dis-
tance in the space of Varifolds and to the normalized partial dissimilarity term. The
deformed shapes are colored by the determinant of the Jacobian of the deformation,
that can be seen as its intensity. As expected the Varifold distance leads to unrealistic
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Fig. 3: Registration of a truncated liver’s surface from a CBCT (a) onto a complete
liver’s surface from a CT (b). The deformed surfaces are colored by the determinant of
the Jacobian. (c) Varifold registration; (d) Partial normalized registration (2) (d).

deformation that tends to fill the holes in the source shape to cover the entire target.
From the anatomical and medical point of view this is misleading. On the contrary the
partial matching allows a coherent deformation of the source.

4 Conclusion

In this paper we adapted the scalar product of Hilbert spaces of Varifolds to guide
partial shape matching and registration. We applied this new data attachment to the
registration of a template vascular tree onto real cases. We also showed that it is suitable
for the registration of a truncated surface onto a complete one. This data term is suited
to different shapes comparison such as unions of curves or surfaces.

The main bottleneck of our approach is the risk of shrinkage when no easy regis-
tration is possible. A promising lead to tackle this issue would be to also find a subset
of the target to include in the source, such as [5]. The dissimilarity term introduced can
be modified to fit the problem of registering a complete shape onto a truncated one.
In further work we would also like to extend this dissimilarity term to other space of
representations such as the Normal Cycles or the functional Varifolds.

Acknowledgement We would like to thank Perrine Chassat for her early work on the
partial matching , allowing us to easily adapt the new data fidelity terms to the real case
of liver surfaces registrations.
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