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1 SUMMARY
We gave in [11] and in [12] a model coupling adhesion to friction and unilateral contact, the
RCCM model (Raous-Cangémi-Cocou-Monerie). In that model the loss of adhesion is non
reversible. It has been used mainly for composite materials(ductile cracks, matrix/fiber inter-
faces, ...) and also for metal/concrete interfaces for reinforced concrete [8][13]. It is based on
the notion of intensity of adhesion introduced by Frémond [4][5]. In the cases previously con-
sidered, adhesion can only decrease, which means that once the adhesion is partially or totally
broken, it can not be regenerated.

In order to deal as well with surface forces (for example van der Waals forces for rubber or
polyurethane contact with glass) as with recoverable adhesion (for example self-adhesive tape
that can be used several times), a new class of models is presented where the intensity of ad-
hesion may increase after having decreased. Convenient thermodynamic potentials are chosen
and a new form of the differential equation controlling the evolution of the intensity of adhesion
β is obtained. Because of the non differentiability of these potentials, the state and the com-
plementary laws are written under the form of differential inclusions. These pseudo-potentials
include non convex parts.

Variational inequalities are used to formulate either the quasi-static or the dynamic problems.
The numerical methods previously developed by our group of Contact Mechanics at the LMA
are here extended in order to compute the solutions of problems based on the present model.

The interface behavior corresponding to the new model is illustrated on numerical examples
both for totally reversible adhesion and for partial recoverable adhesion i.e. for healing joining.

2 AN EXTENSION OF THE RCCM MODEL
The RCCM model developed at the LMA since several years couples adhesion to unilateral
contact with friction. Details on the mechanical aspects, on the mathematical analysis, on the
solvers and various applications can be found in [11][12][14][2]. It has been used in particular
for composite materials [12] or in civil engineering [8][13]. In these cases, the intensity of
adhesion was a strictly decreasing function that was convenient for the mechanical behaviors
under consideration.

In this paper, we extend the model to recoverable adhesion inorder to enlarge the field of ap-
plications considering notably: glued or self-adhesive supports elaborated for multiple use; van
der Waals forces for polymers or elastomers; Schallamach waves; etc. Fig.1 illustrates one
of our goals leading to the approximation of the van der Waalsforces: the Signorini condi-
tions will approximate the repulsive forces and the RCCM model with reversible adhesion will
approximate the attractive ones.

3 THE MODEL AND THE THERMODYNAMIC FORMULATION



Figure 1: Approximation of the van der Waals interaction
(dash line) by the recovering RCCM model (solid line).

3.1 Hypotheses and notations
We consider two linearly elastic solids which occupy the domainsΩα of IRd , d = 2 or 3,
with Lipschitz boundariesΓα = ∂Ωα, α = 1, 2. Deformations and displacements are assumed
to be small. LetΓα

U
, Γα

F
andΓα

C
be three sufficiently smooth open sets ofΓα such thatΓα =

Γ
α

U∪Γ
α

F∪Γ
α

C andmes(Γα
U
) > 0. We suppose that the solids are in unilateral contact with friction

and adhesion along the initial contact surfacesΓ1
C

andΓ2
C

. We denote byuα = (uα
1 , ..., u

α
d )

the displacement field,εα = (εij (uα)) the strain tensor and byσα =
(

σα
ij

)

the stress tensor
corresponding toΩα, α = 1, 2. Let f = (f 1,f 2) andF = (F 1,F 2) denote respectively the
given body forces inΩ1 ∪ Ω2 and the given tractions inΓ1

F
∪ Γ2

F
.

We adopt the following notations for the normal and tangential components of the displacement
vectors, of the corresponding relative displacement ones and of the stress vectors (wherenα is
the outward unit normal vector toΓα):

vα
N

= vα · nα, vα
T

= vα − vα
N

nα, [vN ] = −(v1
N

+ v2
N

), [vT ] = v2
T
− v1

T
,

σα
N = (σαnα) · nα, σα

T = σαnα − σα
Nnα, α = 1, 2,

3.2 Thermodynamic formulation
Let Aα = (Aα

ijkl) denotes the fourth-order tensor of elasticity satisfying the following classical
symmetry and ellipticity conditions:Aα

ijkl = Aα
jikl = Aα

klij ∈ L∞(Ωα), α = 1, 2, ∀ i, j, k, l =
1, . . . , d, ∃ αA > 0, Aα

ijklτijτkl ≥ αA τijτij,∀ τ = (τij) such that τij = τji, ∀ i, j =
1, . . . , d.

Considering the contact surfaces as material boundaries, weintroduce a surface density of
internal energyE and a density of entropyS on ΓC (with the choiceΓC = Γ1

C
). Then the

Helmholtz free energies can be writtenΨ = E−ST onΓC andψ = e−sT in Ω1∪Ω2, wheree
is the specific internal energy,s the specific entropy andT the absolute temperature. According
to M. Frémond [4][5], we introduce also the internal state variableβ, which represents the
intensity of adhesion (β = 1 means that the adhesion is total,β = 0 means that there is no
adhesion and0 < β < 1 is the case of partial adhesion). In the following, we will consider
only isothermic evolutions.

We choose the following state variables: the strain tensorε = (ε1, ε2) = (ε(u1), ε(u2)) in
Ω1 ∪ Ω2 , the relative displacements[uT ], [uN ] and the intensity of adhesionβ onΓC . Let (.)r

and(.)ir denote the reversible and the irreversible parts. Let−σr be the thermodynamic force
associated withε. Let −Rr

N , −Rr
T , whereR = σ1n1 = −σ2n2, denote the thermodynamic



forces associated with the relative displacements[uN ], [uT ], and Gβ the adhesive thermody-
namic force associated with the internal variableβ. Within the domainΩ1∪Ω2, the free energy
ψ and the classical state law are as follows, whereρα are the mass densities of bodiesα:

ψα(εα) =
1

2ρα
A

α εα · εα =
1

2ρα
Aα

ijkl ε
α
ij ε

α
kl , (σα)r = ρα ∂ψ

α(εα)

∂εα
, α = 1, 2. (1)

Now we focus on the contact boundaryΓC , where the surface density of free energyΨ is chosen
under the form

Ψ([uN ], [uT ], β) =
CN

2
[uN ]2β2 +

CT

2
||[uT ]||2β2 − wβ + IIR+([uN ]) + IP (β), (2)

where P = {γ ; 0 ≤ γ ≤ 1}. The termw is the energy of decohesion.

The state laws onΓC can be written as

Rr
N ∈ ∂[uN ]Ψ , Rr

T ∈ ∂[uT ]Ψ , −Gβ ∈ ∂βΨ , (3)

where∂z denotes the subdifferential with respect to the variablez.

The two laws of thermodynamics give the following form of theClausius-Duhem inequalities :

ρα ψ̇α ≤ σα · ε̇α in Ωα , α = 1, 2, Ψ̇ ≤ RN [u̇N ] + RT · [u̇T ] on ΓC . (4)

The irreversible parts of the contact forces areRir
N = RN −Rr

N andRir
T = RT −Rr

T . The only
dissipative processes under consideration onΓC are related to the adhesion and to the friction.
To formulate the corresponding complementary laws such that (4) are verified, we choose a
pseudo-potential of dissipationΦ = Φ([u̇T ], β̇;χ) with χ = (Rr

N , [uN ], [uT ], β) , positive,
convex in([u̇T ], β̇) and zero in(0, 0), which constitutes an extension of standard generalized
materials. We adopt the following form for the pseudo-potential of dissipation:

Φ([u̇T ], β̇;χ) = µ(1 − β)|RN − CN [uN ]β2| ||[u̇T ]|| +
b

2
β̇2 − CT ||[uT ]||2ββ̇, (5)

so that the healing process was allowed and was governed onlyby the normal components.
The parameterµ is the friction coefficient of the Coulomb law, the parameterb is the viscosity
associated with the intensity of adhesion. The complementary laws are written as follows:

Rir
N = 0 , Rir

T ∈ ∂[u̇T ]Φ([u̇T ], β̇;χ) , Gβ ∈ ∂β̇Φ([u̇T ], β̇;χ). (6)

OnΓC the following expression for the dissipationD is obtained:

D = (RT − Rr
T ) · [u̇T ] +Gβ β̇ = Rir

T · [u̇T ] +Gβ β̇ ≥ 0, (7)

which ensures that the third Clausius-Duhem inequality of (4) holds.

3.3 The contact model
The contact constitutive laws are then obtained from the state laws (3) and the complementary
laws (6) with the choice (2) for the free energy and (5) for thepotential of dissipation.

[uN ] ≥ 0, −RN + CN [uN ]β2 ≥ 0, (−RN + CN [uN ]β2) [uN ] = 0 on ΓC ,

||RT − CT [uT ]β2 || ≤ (1 − β)µ |RN − CN [uN ]β2 | on ΓC and

||RT − CT [uT ]β2 || < (1 − β)µ |RN − CN [uN ]β2 | ⇒ [u̇T ] = 0,

||RT − CT [uT ]β2 || = (1 − β)µ |RN − CN [uN ]β2 | ⇒ ∃λ ≥ 0, [u̇T ] = λ(RT − CT [uT ]β2),

b β̇ = w − CN β [uN ]2 and β ∈ [0, 1] in ΓC ,



for all t ∈]0, T [, with the initial conditionβ(0) = β0 = 1 on ΓC and RN = R1
N , RT = R1

T .

4 THE VARIATIONAL FORMULATION

4.1 The dynamic problem
The formulation of the dynamic problem is given here (whereρα = 1). The quasi-static prob-
lem can be easily deduced.

Problem P0: Find u = (u1,u2), β, R such thatu(0) = u0 = (u1
0,u

2
0), u̇(0) = u1 =

(u1
1,u

2
1) in Ω1 × Ω2 , β(0) = β0 = 1 and [uN ](0) = 0 on ΓC and

üα − div σα(uα) = fα, σα(uα) = A
αε(uα) in ]0, T [ × Ωα,

uα = 0 in ]0, T [ × Γα
U
, σαnα = F α in ]0, T [ × Γα

F
, α = 1, 2,

σ1n1 + σ2n2 = 0 in ]0, T [×ΓC ,

σ1n1 = R in ]0, T [ × Γ1
C
,

+ the contact law given in section 3.3

4.2 The variational formulation
Let us first introduce two Hilbert spaces(V , ‖.‖), (H , |.|), with the associated scalar product
denoted respectively by〈., .〉, (., .) , and the setK as follows:

V = V 1 × V 2, whereV α = {vα ∈ [H1(Ωα)]
d
; vα = 0 a.e. onΓα

U
},

H = [L2(Ω1)]
d
× [L2(Ω2)]

d
, K = {v = (v1,v2) ∈ V ; [vN ] ≥ 0 a.e. inΓC}.

We assume thatF α ∈ W 1,∞(0, T ; [L2(Γα
F
)]d), fα ∈ W 1,∞(0, T ; Hα), α = 1, 2, u0 ∈ K,

u1 ∈ V , µ ∈ L∞(ΓC), µ ≥ 0 a.e. onΓC . Let us define the bilinear, continuous and
symmetric mappinga(., .) onV × V → IR by

a(v,w) = a1(v1,w1) + a2(v2,w2), ∀v,w ∈ V ,

whereaα(vα,wα) =

∫

Ωα

A
αε(vα) · ε(wα) dx,

Using the previous hypotheses, we considerL as an element ofW 1,∞(0, T ; V ) such that

〈L,v〉 =
∑

α=1,2

∫

Ωα

fα · vα dx+
∑

α=1,2

∫

Γα

F

F α · vα ds ∀ v = (v1,v2) ∈ V , ∀ t ∈ [0, T ].

We define the mappingscN , cT , c andJ as follows:

cN : L∞(ΓC) × V 2 → IR, cN(β,u,v) =

∫

Γ
C

CN [uN ] [vN ] β2 ds,

cT : L∞(ΓC) × V 2 → IR, cT (β,u,v) =

∫

Γ
C

CT [uT ] · [vT ] β2 ds,

c = cT + cN , and J : L∞(ΓC) × V 2 → IR,

J(β,u,v) =

∫

Γ
C

(1 − β)µ |RN − CN [uN ]β2 | || [vT ] || ds ∀ β ∈ L∞(ΓC), ∀ u, v ∈ V .

We assume the following compatibility relation on initial conditions (no initial shocks):

∃ l ∈ H , (l,v) + a(u0,v) + c(β0,u0,v) + J(β0,u0,v) = 〈L(0),v〉 ∀ v ∈ V .



A variational formulation of the problemP0 is then given.

Problem P1: Find u ∈ W 1,2(0, T ; V ) ∩ C1([0, T ]; H−1/2), u(t) ∈ K for all t ∈ ]0, T [,
β ∈W 1,∞(0, T ;L∞(ΓC)) such thatu(0) = u0, u̇(0) = u1 in Ω, β(0) = β0 onΓC and

〈u̇(T ),v(T ) − u(T )〉
−1/2, 1/2 − (u1,v(0) − u0)

+

∫ T

0

{

−(u̇, v̇) + ||u̇||2 + a(u,v − u) + c(β,u,v − u) + J(β,u,v + u̇ − u) − J(β,u, u̇)
}

dt

≥

∫ T

0

〈L,v − u〉 dt ∀ v ∈ L∞(0, T ; V ) ∩ W 1,2(0, T ; H), v(t) ∈ K a.e.t ∈ ]0, T [,

b β̇ = w − CN β [uN ]2 and β ∈ [0, 1] a.e. onΓC , a.e.t ∈ ]0, T [.

where〈., .〉
−1/2,1/2 is the duality pairing betweenH−1/2 andH1/2 with

H1/2 = [H1/2(Ω1)]d × [H1/2(Ω2)]d.

The formal equivalence between the variational problemP1 and the classical problemP0 can
be easily proved by using Green’s formula and an integrationby parts on time.

4.3 The solvers
The numerical methods given in [7] are extended here for solving problemP1. Those are based
on the Non Smooth Contact Dynamics method developed by J.J. Moreau and M. Jean [10] [6]
and implemented in the LMGC code (Dubois [3]).

For quasi-static problem, the implementation has been donein the GYPTIS code that is a finite
element code developed at the LMA by Latil and Raous [9]. Various solvers are used: Gauss-
Seidel; conjugate gradient methods; mathematical programming methods.

5 AN EXTENSION TO PARTIAL RECOVERING ADHESION
In the model presented in section 3, the adhesion is totally reversible. It fits for example the
approximation of surface forces as the van der Waals ones. Weconsider now phenomena where
the adhesion can be only partially recovered. That could be the case of some self-adhesive tape
which can be used several times but of which the efficiency decreases after every use. This new
model can be also useful in the study of healing cracks. A new thermodynamic variableβs is
introduced and defined as follows, where(β̇)− denotes the negative part ofβ̇:

βs(t) = 1 − α

∫ t

0

(β̇)−dτ (8)

whereα is a weakening factor ( 0≤ α ≤ 1) and the condition 0 ≤ β ≤ βs is imposed.
Example 2 presented in the next section illustrates this behavior.

6 TWO EXAMPLES ILLUSTRATING THE RECOVERABLE ADHESION
6.1 Indentation and sliding on a polyurethane block (reversible adhesion)
This example is related to an ongoing research on the Schallamach waves. When a glass sphere
is pressed and pushed horizontally on a polyurethane block,propagation of no-contact waves is
observed. The global movement of the sphere is governed by the propagation of these waves.
No sliding zones are observed [1][15]. We present here the finite element simulation with re-
versible adhesion of the alternate normal indentation of the block by the sphere. The computa-
tions have been conducted here in viscoelasticity (Kelvin-Voigt behavior) by using the LMGC



code and the MaTliB library. In that case the formulation of the unilateral contact has been
generalized in order to take into account an initial gapg between the two solids and the initial
condition onβ is no moreβ(0) = 1 but a conditionβ(0) ≤ 1 depending on the values of the
gapg. That is the case for the point O (see in Fig.2) for which the evolution of β is given in
Fig.4. We give in Fig.3 the evolution of the contact zone and of its totally adhesive part.
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Figure 2: Initial configurations and prescribed displacement for indentation of a
Polyuŕethane block by a glass sphere.

Figure 3:Adhesion radius (solid line) and contact radius (dot line).

6.2 Cycling loads with partial recovering adhesion
This is a simple one dimensional Matlab simulation (with a small value ofb) of the classical
RCCM model and of the new models first when the adhesion recovering is total (reversible
adhesion) and secondly when it is partial (α = 0.5). The normal displacement is prescribed as
presented in Fig.5 : loading, unloading and a reloading. Thebehavior is given in Fig.6. When
an unloading is prescribed at the pointA of the curve of Fig.6:
- the RCCM model gives a direct elastic return with a small stiffness (dot line),
- the partial recoverable model gives first some increase ofβ until the pointB was reached and
then an elastic return (solid line)
- the reversible model follows the same way back as for the loading (not discernible from the
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Figure 4:Intensity of adhesion at point O.

loading curve on the figure).
Fig.7 and Fig.8 show the evolution ofβ versus time and versus the normal displacement in the
three cases. The dash zone corresponds to the energy dissipated by adhesion (part related toα).
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Figure 5:Prescribed displacement versus time.
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Figure 6:Normal behavior (for unloading: dot
line=RCCM/ solid line=recoverable adhesion).
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Figure 7:Evolution ofβ versus time (dot line
=RCCM/ solid line=recoverable adhesion/ thin
line=reversible adhesion).

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Normal displacement

be
ta

A 

B 

un 

Figure 8: Evolution of β versus normal dis-
placement (for unloading: dot line=RCCM/
solid line=recoverable adhesion).



7. REFERENCES

[1] M. Barquins, Sliding Friction of Rubber and Schallamach Waves - A Review.Materials
Science and Engineering, 73, 45-63, 1985.

[2] M. Cocou, M. Raous, Adhesive contact and implicit evolution variational inequalities.
In Nonsmoooth/nonconvex Mechanics with Applications in Engineering (eds. C.C. Ban-
iotopoulos), Ziti Publisher, Thessalonoki, 167-174, 2002.

[3] F. Dubois and M. Jean, LMGC90 une plateforme de développement d́edíee à la
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