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1 SUMMARY

We gave in [11] and in [12] a model coupling adhesion to fartand unilateral contact, the
RCCM model (Raous-Cagkgi-Cocou-Monerie). In that model the loss of adhesion is non
reversible. It has been used mainly for composite matefhistile cracks, matrix/fiber inter-
faces, ...) and also for metal/concrete interfaces fofoeted concrete [8][13]. It is based on
the notion of intensity of adhesion introduced byfond [4][5]. In the cases previously con-
sidered, adhesion can only decrease, which means thatlumeehesion is partially or totally
broken, it can not be regenerated.

In order to deal as well with surface forces (for example van\Waals forces for rubber or
polyurethane contact with glass) as with recoverable adhgfr example self-adhesive tape
that can be used several times), a new class of models isnpedsehere the intensity of ad-
hesion may increase after having decreased. Convenientddgnamic potentials are chosen
and a new form of the differential equation controlling thelation of the intensity of adhesion
[ is obtained. Because of the non differentiability of thesteptials, the state and the com-
plementary laws are written under the form of differentradlusions. These pseudo-potentials
include non convex parts.

Variational inequalities are used to formulate either thagistatic or the dynamic problems.
The numerical methods previously developed by our group ot&m Mechanics at the LMA
are here extended in order to compute the solutions of pmableased on the present model.

The interface behavior corresponding to the new modelustilated on numerical examples
both for totally reversible adhesion and for partial recabde adhesion i.e. for healing joining.

2 AN EXTENSION OF THE RCCM MODEL

The RCCM model developed at the LMA since several years coupllessson to unilateral
contact with friction. Details on the mechanical aspectsthee mathematical analysis, on the
solvers and various applications can be found in [11][1Z]H]. It has been used in particular
for composite materials [12] or in civil engineering [8]]13In these cases, the intensity of
adhesion was a strictly decreasing function that was coeméefor the mechanical behaviors
under consideration.

In this paper, we extend the model to recoverable adhesiorder to enlarge the field of ap-
plications considering notably: glued or self-adhesivgpguits elaborated for multiple use; van
der Waals forces for polymers or elastomers; Schallamaatesyaetc. Fig.1 illustrates one
of our goals leading to the approximation of the van der Wéaises: the Signorini condi-
tions will approximate the repulsive forces and the RCCM mod#i reversible adhesion will
approximate the attractive ones.

3 THE MODEL AND THE THERMODYNAMIC FORMULATION



Figure 1: Approximation of the van der Waals interaction
(dash line) by the recovering RCCM model (solid line).

3.1 Hypotheses and notations

We consider two linearly elastic solids which occupy the doraQ® of RY , d = 2 or 3,
with Lipschitz boundarie§“ = 0%, a = 1, 2. Deformations and displacements are assumed
to be small. Let™, I'} anng be three sufficiently smooth open setsl8fsuch that™ =

T UT':UT; andmes(I'%) > 0. We suppose that the solids are in unilateral contact wiittidn

and adhesion along the initial contact surfaE%sand FQC. We denote by = (uf, ..., u3)

the displacement fields™ = (e;; (u®)) the strain tensor and by = (o¢}) the stress tensor
corresponding t62®, o = 1,2. Let f = (f', f*) andF = (F*, F?) denote respectively the
given body forces if2' U Q* and the given tractions ifil, UT? .

We adopt the following notations for the normal and tanggicomponents of the displacement

vectors, of the corresponding relative displacement ondéthe stress vectors (wheng is
the outward unit normal vector i¢"):

QA pgQ | gy [o N o N s U _ (! 2 2 a4l
vy =v*-n?, vl =0 —ven®, vyl = —(v, +03), (v = vl — v,
o = (6*n%) -n® o =0o'n* —oin®, a=1,2

3.2 Thermodynamic formulation

Let A" = (A;,) denotes the fourth-order tensor of elasticity satisfylmgfollowing classical
symmetry and ellipticity conditionsAs;,, = A%, = Ay, € L2(Q%), a=1,2, Vi, j, k, | =
1, ...,d, d oy > 0, A%k[Tikal > gy TijTij,\V/T = (Tij> such thatTij = Tji, V’L,j =

1,....d.

Considering the contact surfaces as material boundariesntwegluce a surface density of
internal energyly and a density of entropy on ', (with the choicel', = Fé). Then the
Helmholtz free energies can be writtén= £ — ST onl', andy = e—sT'in Q'UQ?, wheree

is the specific internal energythe specific entropy arfl the absolute temperature. According
to M. Fremond [4][5], we introduce also the internal state variablevhich represents the
intensity of adhesionq{ = 1 means that the adhesion is totdl,= 0 means that there is no
adhesion and < 3 < 1 is the case of partial adhesion). In the following, we wilheaer
only isothermic evolutions.

We choose the following state variables: the strain teeser (¢!,e?) = (e(u'),e(u?)) in
Q' U Q?, the relative displacementar|, [uy] and the intensity of adhesighonT' . Let(.)"
and(.)" denote the reversible and the irreversible parts. Let” be the thermodynamic force
associated witk. Let — R, — R}, whereR = o'n! = —a?n?, denote the thermodynamic



forces associated with the relative displacemémnts, [ur|, and G the adhesive thermody-
namic force associated with the internal variaBléVithin the domair2! U2, the free energy
1 and the classical state law are as follows, wherare the mass densities of bodies

1 «a a .« a\r aawa<€a)
:ﬁ‘Aijklgijgklv ()" =p T hea a=12 (1)

Now we focus on the contact boundaty, where the surface density of free eneigis chosen
under the form
Cy

W(funl furl, ) = T un?0 + LlllwrllP5” — wh + Ig-(ul) + 1p(3), @)

where P = {v; 0 <~ < 1}. The termw is the energy of decohesion.

1
Y (e”) = 2 A% e e

The state laws ol , can be written as
Ry € OuyV, Ry € OV, —Gp € 05V, (3)
whereod, denotes the subdifferential with respect to the variable
The two laws of thermodynamics give the following form of tBkausius-Duhem inequalities :
Pl < g% in QY a=1,2, U< Ryliy]+ Ry [ur] on Ty . (4)

The irreversible parts of the contact forces Big = Ry — Ry andR. = R — R);. The only
dissipative processes under consideratioi' grare related to the adhesion and to the friction.
To formulate the corresponding complementary laws such(#aare verified, we choose a
pseudo-potential of dissipatioh = ®([ir], 3; x) with x = (R, [un], [ur], 3), positive,
convex in([&7], ) and zero in(0,0), which constitutes an extension of standard generalized
materials. We adopt the following form for the pseudo-pb&of dissipation:

®([ir], 55 x) = (1 = B)| Ry — C [un] 5| ||[éer]]] + 232 — Orl|[ur]|[’85,  (5)

so that the healing process was allowed and was governedbgrtlye normal components.
The parameter is the friction coefficient of the Coulomb law, the paramétes the viscosity
associated with the intensity of adhesion. The complemgtdaavs are written as follows:

R?\? = 07 RZIC S a[uT](I)([uTLﬁa X) ) Gﬁ € aﬁq)([uT]vﬁv X) (6)
OnT', the following expression for the dissipatidhis obtained:
D = (Rr — R}) - [ur] + Gy = R - [iur] + G5 8 > 0, @)

which ensures that the third Clausius-Duhem inequality ph@ids.

3.3 Thecontact model
The contact constitutive laws are then obtained from thte $&avs (3) and the complementary
laws (6) with the choice (2) for the free energy and (5) forpgbéential of dissipation.

['LLN} > 0, —RN + CN [UN]ﬁZ > O, (—RN + CN [uN}ﬁ2) [UN] =0 on FC’
| Ry — Crlur]B?|] < (1 = B)p | By — Cnlun]6*| on T, and
|| Ry — Crlur]f? || < (1= B)u | Ry — Cnlun]f? | = [ur] = 0,
| Ry — Crlur]8? || = (1 = B)u | Ry — Cnlun]?| = 3N > 0, [ar] = A(Ry — Crlur]3?),

b3 =w — CyBluy> and B €[0,1] in T,



for all ¢ €]0, T'[, with the initial condition3(0) = 3, = 1on T',, and Ry = Ry, Rr = Rj.

4 THE VARIATIONAL FORMULATION

4.1 Thedynamic problem
The formulation of the dynamic problem is given here (whete= 1). The quasi-static prob-
lem can be easily deduced.
Problem Py: Findu = (u',v?), 5, R such thatu(0) = uy = (u,u?), w(0) = uy =
(up,ui)in Q' xQ*, 5(0)=pF, =1 and [uy](0) =0 on I';, and
u* —dive*(u®) = f*, o%(u®) = A% (u”) in |0,7] x Q°,
u®=01in J0,T[xT%, o°n®=F*in |0,T[xT%, a=1,2,
o'n'+0’n? =0 in |0, T[T,
o'n' =R in |0,T[ x Flc,
+ the contact law given in section 3.3

4.2 Thevariational formulation
Let us first introduce two Hilbert spacé¥’, ||.||), (H, |.|), with the associated scalar product
denoted respectively by, .), (., .) , and the seK as follows:

V =V!x V2 whereV® = {v* € [H(Q)]"; v* = 0 a.e. onl’? },
H = [L2(OQY)" x [L2(02)]", K = {v = (v",v?) € V; [uy] > 0a.e.inl}.
We assume thaf™* € Wh(0,T; [L*(T)]7), f* € Wh=(0,T; H®), a = 1,2, uo € K,

u, € V,p e L*(T,),p > 0ae. onl',. Letus define the bilinear, continuous and
symmetric mappingz(.,.) onV x V. — R by

a(v,w) = a' (v', w') + a*(v*, w?), Yv,weV,
wherea® (v, w®) = A%e(v?) - e(w?”) dx,
Qa
Using the previous hypotheses, we consiliexs an element dfi’:>°(0, T'; V') such that

(L,v) = Z fo-v%de + Z F*.v*ds Vv=(vv?)eV,Vtel0T].
Qo e

a=1,2 a=1,2
We define the mappingsy, c¢r, ¢ andJ as follows:
ey L2(T,) x V2 - R, cn(B,u,v) = / Cyluy] [vn] B ds,
FC
Cr LOO(FC) X V2 — R, CT<5,’U,7'U) = / CT[’U,T] . ['UT} ﬁQ d87
r
c=crtey, and J: L) x V2 — R,

J(ﬁ,u,’u):/ (1—PB)u| Ry — Cylun)B?] || [vr]|lds VB €L®T,), Vu,v € V.

T

We assume the following compatibility relation on initi@rditions (no initial shocks):

dl e H, (I,v) + a(ug, v) + ¢(Bo, wo, v) + J(Bo, wo, v) = (L(0),v) Yv e V.



A variational formulation of the problerR, is then given.

Problem Py: Findu € W2(0,T;V)n C'([0,T]; H/?), u(t) € K forall t €]0,T],
e Whe(0,T; L>(I',,)) such that(0) = ug, @(0) = u, inQ, 5(0) = F, onT', and

(u(T),v(T) = u(T))-1/2,1/2 = (u1,v(0) — uo)
—|—/0 {—(u,i;) + | * + a(u, v — u) + c(B,u, v —u) + J(B,u, v+ U —u) — J(ﬁ,u,d)}dt

> /T<L,'v —u)ydt YovelL®0,T;V)n Wh(0,T; H), v(t) € K a.e.t €]0,T],
0
b3 =w —CxfBluy]* and 3 €[0,1] a.e. onT,, ae.t €]0,7].
where(.,.) 1212 is the duality pairing betweeH ~'/* and H'/* with
H1/2 — [HI/Q(QI)]CZ % [H1/2<QQ)]d_

The formal equivalence between the variational problnand the classical problet, can
be easily proved by using Green’s formula and an integrdtjoparts on time.

4.3 Thesolvers

The numerical methods given in [7] are extended here foisgiproblempP;. Those are based
on the Non Smooth Contact Dynamics method developed by Jxgad@nd M. Jean [10] [6]
and implemented in the LMGC code (Dubois [3]).

For quasi-static problem, the implementation has been ohoie GYPTIS code that is a finite
element code developed at the LMA by Latil and Raous [9]. \{&isolvers are used: Gauss-
Seidel; conjugate gradient methods; mathematical progiiagmmethods.

5 AN EXTENSION TO PARTIAL RECOVERING ADHESION

In the model presented in section 3, the adhesion is totallgrsible. It fits for example the
approximation of surface forces as the van der Waals onesow&der now phenomena where
the adhesion can be only partially recovered. That coulthéease of some self-adhesive tape
which can be used several times but of which the efficiencyedeses after every use. This new
model can be also useful in the study of healing cracks. A m@rmtodynamic variablg, is
introduced and defined as follows, whér~ denotes the negative part f

Bs(t) =1 - a/ot(ﬂ)_dT (8)

wherea is a weakening factor ( & o < 1) and the condition0 < § < [, is imposed.
Example 2 presented in the next section illustrates this\ieh

6 TWO EXAMPLESILLUSTRATING THE RECOVERABLE ADHESION

6.1 Indentation and sliding on a polyurethane block (reversible adhesion)

This example is related to an ongoing research on the Somadlawaves. When a glass sphere
is pressed and pushed horizontally on a polyurethane bpwokagation of no-contact waves is
observed. The global movement of the sphere is governedebgrtipagation of these waves.
No sliding zones are observed [1][15]. We present here tlite fslement simulation with re-
versible adhesion of the alternate normal indentation@bilbck by the sphere. The computa-
tions have been conducted here in viscoelasticity (KeWaigt behavior) by using the LMGC



code and the MaTIiB library. In that case the formulation lué unilateral contact has been
generalized in order to take into account an initial gagetween the two solids and the initial
condition ong is no more’(0) = 1 but a condition3(0) < 1 depending on the values of the
gapg. That is the case for the point O (see in Fig.2) for which thelwion of § is given in
Fig.4. We give in Fig.3 the evolution of the contact zone ahitsdotally adhesive part.
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Figure 2: Initial configurations and prescribed displacement for indentation of a
Polyuiéthane block by a glass sphere.
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Figure 3:Adhesion radius (solid line) and contact radius (dot line).

6.2 Cyclingloadswith partial recovering adhesion

This is a simple one dimensional Matlab simulation (with aBmalue ofb) of the classical
RCCM model and of the new models first when the adhesion recayéesitotal (reversible
adhesion) and secondly when it is partial£ 0.5). The normal displacement is prescribed as
presented in Fig.5 : loading, unloading and a reloading. Bétevior is given in Fig.6. When
an unloading is prescribed at the poihbf the curve of Fig.6:

- the RCCM model gives a direct elastic return with a small st (dot line),

- the partial recoverable model gives first some increasgeuwftil the pointB was reached and
then an elastic return (solid line)

- the reversible model follows the same way back as for thditmp(not discernible from the



value of B

4. 6
time (s)

8 10

Figure 4:Intensity of adhesion at point O.

loading curve on the figure).

Fig.7 and Fig.8 show the evolution gfversus time and versus the normal displacement in the

three cases. The dash zone corresponds to the energy tiddiyadhesion (part relateddd.

Normal displacement

0 5 10 15 20 25 30 35 40
time t

Figure 5:Prescribed displacement versus time.

beta

Figure 7:Evolution of 3 versus time (dot line
=RCCM/ solid line=recoverable adhesion/ thin
line=reversible adhesion).
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Figure 6:Normal behavior (for unloading: dot
line=RCCM/ solid line=recoverable adhesion).

2 4 .6 8 10 12
Normal displacement un

Figure 8: Evolution of 3 versus normal dis-
placement (for unloading: dot line=RCCM/
solid line=recoverable adhesion).
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