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To control the linear vibrations of structures partially filled with liquids is of prime importance in various industries such as aerospace, 
naval, civil and nuclear engineering. It is proposed here to investigate a linearized formulation adapted to a rational computation of the 
vibrations of such coupled systems. Its particularity is to be fully Lagrangian since it considers the fluid displacement field with respect 
to a static equilibrium configuration as the natural variable describing the fluid motion, as classically done in structural dynamics. As the 
coupled system considered here is weakly damped in the low frequency domain (low modal density), the analysis of the vibrations of 
the associated undamped conservative system constitutes the main objective of this paper. One originality of the present formulation is 
to take into account the effect of the pressurization of the tank on the dynamics of the system, particularly in the case of a compressible 
liquid. We propose here a new way of deriving the linearized equations of the coupled problem involving a deformable structure and an 
inner inviscid liquid with a free surface. A review of the classical case considering a heavy incompressible liquid is followed by an 
application to the new case involving a light compressible liquid. A solution procedure in the frequency domain is proposed and a 
numerical discretization using the finite element method is discussed. In order to reduce the computational costs, an appropriate 
reduced order matrix model using modal synthesis approach is also presented.

1. Introduction

The case of structures partially filled with liquids (propellants, cooling liquids, liquid natural gas, etc.) is very common

and many industrial domains are interested in this issue especially in the transport and aerospace industries (LNG vessels,

aircrafts, liquid propelled launchers, satellites, etc.). This scientific domain is very active, as shown by the continuous

interest in numerical and experimental investigations of this problem and the efforts invested in the coupling between

computational fluid dynamics (CFD) and computation structural mechanics (CSM) [1–10]. Many different approaches exist

to deal with this nonlinear fluid–structure interaction problem whose particularity is the interaction between the free

surface flow and the flexibility of the structure (a short but complete review of those different approaches is given in the
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introduction of [11]). Since most of these methods lead to an iterative resolution in time-domain, even the most efficient

and most commonly used ones, like the arbitrary Lagrange Euler (ALE) method [12], remain very CPU-time consuming

especially when applied to three-dimensional cases. Because, in many applications, conception engineers are concerned by

the frequency response of the system, they are still interested in linearized models which can give, in very short times, a

good estimation of the eigenfrequencies and eigenmodes characterizing the vibrational behavior of a fluid–structure

coupled system [13–15].

For modal analysis of fluid–structure problems, the choice of the unknown variable field for the homogeneous fluid is of

prime importance from a computational point of view. Generally, an Eulerian description of the fluid is adopted with the

fluid velocity as main unknown. However, since we are interested in the low frequency domain where the system behavior

can be characterized by its normal modes (which excludes from the analysis the medium and high frequency ranges), the

fluid will be considered in a first step as inviscid. With this assumption, the velocity (or displacement) field in the fluid,

supposed homogeneous at rest, is therefore irrotational and this irrotational constraint has to be imposed through a

particular numerical analysis [16] or with Lagrange multipliers [17]. In order to use the minimal number of unknowns for

the fluid, scalar fields, like pressure, have also been used as fluid variable, but this leads to nonsymmetric variational

formulations for compressible acoustic fluids [18] as for incompressible sloshing liquids. Various symmetrization

procedures have then been carried out [14,19–23].

The linearized fluid–structure formulation proposed here follows the methodology developed by Morand and Ohayon

[14]. Its particularity is to be fully Lagrangian and to consider the fluid displacement with respect to a static equilibrium

configuration as the natural variable describing the fluid motion, as classically done for the structure. As our main interest

is for weakly damped fluid–structure problems in the low frequency domain (low modal density), the study of the

conservative (undamped) associated system will be at the center of the discussion, and the fluid will be considered in a

first step as inviscid. Taking into account this assumption (and several other simplifying hypotheses specified in the first

section), the nonlinear local equations of the liquid–structure–gas system describing a closed tank containing a liquid with

a free surface will be reminded (Section 2). After a brief description of the static reference configuration (Section 3), the

linearization of the local equations will be carried out in the fourth section. We propose here a new derivation of these

linearized equations that provides a promising framework for future developments. Its application to the classical case

considering a heavy incompressible liquid (in Section 5) summarizes previous works of the same authors [24,25]. It will be

followed by an application (in Section 6) to a new case involving a light compressible liquid, that can represent a cryogenic

liquid for instance. One originality of the present formulation is to take into account the variations of the gas pressure pG in

the tank ullage in order to determine its effect on the dynamics of the system, particularly in the case of a compressible

liquid. Once the variational formulations are established, a resolution method in the Fourier frequency domain will be

proposed. A special care will be taken for the source terms associated to the initial conditions, in such a way that an inverse

Nomenclature

E Green–Lagrange strain tensor

g gravity field, g¼�giz
H tensor of Hooke elastic coefficients

H
1 Sobolev space

I identity tensor

ix,iy,iz Cartesian coordinate system defined with unit

vector iz colinear to g

L
1 integrable function space

L
2 square-integrable function space

nS normal vector external to the structure

nF normal vector external to the fluid

P fluid pressure

PG tank ullage gas pressure

P0 hydrostatic pressure in the fluid

Pext external pressure

S second symmetric Piola–Kirchhoff stress

tensor

uF fluid displacement field

uS structure displacement field

vF fluid velocity field

G liquid free surface

g heat capacity ratio of the gas

D scalar Laplacian operator

e linearized strain tensor

rF mass density of the fluid

rS mass density of the structure

Sf surface of application of external loads

Sg gas–structure interface

Si fluid–structure interface

Su boundary with a prescribed displacement

r Cauchy stress tensor

j fluid displacement potential field

OF fluid domain ðqOF ¼G [SiÞ

OG tank ullage ðqO0
G ¼G [ SgÞ

OS structural domain ðqOS ¼Si [ Sg [ Sf [SuÞ

9S9 area of surface S

9O9 volume of domain O

= nabla vector differential operator

DxðuÞ tensor of partial derivatives of vector u with

respect to vector coordinates x

Divx A divergence of a tensor A with respect to vector

coordinates x
tx matrix or vector transpose

xn matrix or vector conjugate transpose

x � y scalar product

tr A trace operator

A : B ¼ tr½tA B� ¼ tr½A tB�
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Fourier transform will allow to express the (linearized) transient response of the fluid–structure system in the time

domain. The integral equations will be finally solved numerically by a classical Rayleigh–Ritz finite element approach

(Section 7). A modal synthesis method applied to the fluid will be presented for the particular case of liquid sloshing in a

deformable tank (Section 8). The resulting matrix system will be in the same time symmetrized and drastically reduced in

size, which will ensure low computation times. Finally some extensions to capillarity effects for microgravity environ-

ments and some works in progress to introduce the fluid viscosity will be touched on (Section 9).

2. Local equations

We suppose that the referential is a Galilean frame. Thermo-mechanical coupling is not considered here, therefore all

mechanical parameters of the system are supposed given at a nominal temperature and are considered constant during the

observation time. The dynamic state of this coupled problem is characterized by the structure displacement field USðx,tÞ,

the fluid velocity field vF ðx,tÞ, the fluid pressure field Pðx,tÞ and the tank ullage gas pressure PGðx,tÞ, which are the unknown

fields of the problem. The description of the system is given by Fig. 1. Each domain will be designated with a 0 when it

refers to its time-dependent position.

2.1. Local equations of the fluid

We consider an inviscid heavy fluid with a free surface G inside a deformable structure. The tank ullage is filled by an

inert pressurized gas (no phase or chemical transformations are taken into account). Effects of capillarity are supposed

negligible.

rF dv
F

dt
¼�=xPþrFg in O0

F (1a)

drF

dt
þrF

=x � v
F ¼ 0 in O0

F (1b)

P¼ PG on G0 (1c)

vF � n0
FþvS � nS ¼ 0 on S0

i (1d)

Eq. (1a) is the balance momentum equation of the inviscid heavy fluid and Eq. (1b) expresses the mass conservation of

the fluid (continuity equation). Eq. (1c) is the equilibrium equation of the fluid free surface when capillarity forces are

neglected. Eq. (1d) yields the sliding condition on the structure wall for an inviscid fluid. In addition to this set of

differential equations, Cauchy’s initial conditions have to be added and they will be specified later on.

2.2. Local equations of the structure

The structure is supposed elastic (H denotes the tensor of elastic coefficients) and submitted to external surface forces,

including the external and internal pressures [26,27].

Divx rþrSg¼ rSa in OS (2a)

r¼He in OS (2b)

e¼ 1
2ðDxðU

SÞþ tD
x
ðUSÞÞ in OS (2c)

US ¼ 0 on S0
u (2d)

rnS ¼ text�PextnS on S0
f (2e)

Fig. 1. Structure partially filled with liquid.
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rnS ¼�PGnS on S0
g (2f)

rnS ¼�PnS on S0
i (2g)

Eq. (2a) is the local balance of momentum (in a fixed frame of reference) where a is the structure Eulerian acceleration.

Eqs. (2b) and (2c) yield the classical definition of Cauchy’s stress tensor r and strain tensor e, and their relation through

Hooke’s law. In Eq. (2e), Pext is the external pressure (the atmospheric pressure for instance) and text are additional local

surface loads (thrust or aerodynamic forces for instance).

2.3. Local equations in the gas

The tank ullage being supposed to be pressurized by a gas, a simple gas behavior model will be used to represent its

effect on the dynamics of the fluid–structure system. As the acoustic phenomena in the gas enclosed in the tank ullage are

generally decoupled from the low frequency fluid–structure vibrations which are the frequency range of interest of the

present paper, the acoustic field in the gas will be indeed represented by an uniform value PGðtÞ in O0
G and the isentropic

law of transformation of a perfect gas will be used:

PG9O0
G9

g
¼ PG

0 9O
0
G9

g
in O0

G (3)

where g is the heat capacity ratio of the gas. This approach has been used in previous works [28,24] to model the influence

of the tank ullage gas pressurization in the case of an elastic structure containing an incompressible liquid. In this paper, it

will be extended to the compressible case.

3. Reference configuration

The geometry of the reference state will be described by the variable X. In the reference configuration, the structure and

fluid are supposed at rest. The local equations defining this reference state are then:

vF0 ¼ 0 in OF (4a)

=XP0 ¼ rF
0g in OF (4b)

P0 ¼ PG
0 on G (4c)

vS0 ¼ 0 in OS (4d)

DivX r0þrS
0g¼ 0 in OS (4e)

r0 ¼HeXðu
S
0Þ in OS (4f)

eXðu
S
0Þ ¼

1
2ðDXðu

S
0Þþ

tDXðu
S
0ÞÞ in OS (4g)

uS
0 ¼ 0 on Su (4h)

r0nS ¼ text0 �PextnS on Sf (4i)

r0nS ¼�PG
0nS on Sg (4j)

r0nS ¼�P0nS on Si (4k)

where text0 is the stationary part of the external loads. The external pressure Pext is supposed to be a constant field. To solve

this problem, a nonlinear iterative procedure is generally needed since these equations are written on domains whose

position depends on the unknowns ðuS
0,u

F
0Þ [29].

4. Linearized local equations

The solution of the static problem (4) is supposed known and, from now on, the position x of a structural point or fluid

particle (located in X at the equilibrium) will be described with a Lagrangian point of view by xðX,tÞ ¼XþUðX,tÞ, where U

is either the fluid or the structure displacement with respect to this equilibrium position.

We are interested here in the small amplitude response of the coupled system around this static reference state. For

this purpose, we use a first order Taylor expansion of the nonlinear dynamic equations (1)–(3) around the equilibrium

position [30]. The linear terms are obtained by differentiation (Fréchet derivative) in the direction of a small perturbation

(uS, uF). In the following, d½h�ðuÞ will denote the Fréchet derivative of a function h with respect to the displacement U, at

the static position U¼ 0 and in direction u.
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4.1. Linearization of the fluid equations

To linearize Eq. (1a), we first need to differentiate the gradient term =xP which is a spatial derivative with respect to the

coordinates x of the deformed fluid domain, depending, by definition, on the displacement U since x¼XþU. Using the

following relation:

d½=xP�ðu
F Þ ¼=Xd½P�ðu

F Þ�=Xð=XP0 � u
F Þ (5)

and the value of =XP0 given by (4b), we finally obtain

d½=xP�ðu
F Þ ¼=XpLðu

F Þ�=Xðr
F
0g � uF Þ (6)

where pLðu
F Þ ¼ d½P�ðuF Þ is the Lagrangian pressure fluctuation in the liquid, i.e. the variation of the pressure observed when

following a fluid particle.

Since the linearization of the acceleration term classically gives

d
dvF

dt

� �
ðuF Þ ¼

q
2uF

qt2
(7)

the linearized version of Euler’s equation (1a) can be written as

rF
0

q
2uF

qt2
¼=X rF

0g:u
F�pLðu

F Þ
� �

þrF
L
ðuF Þg (8)

where rF
L
ðuF Þ ¼ d½rF �ðuF Þ is the Lagrangian density fluctuation in the liquid.

Using the classical expression of the Lagrangian derivative, the mass conservation equation (1b) can be written as

qrF

qt
þvF �=xr

FþrF
=x � v

F ¼ 0 (9)

The linearization of this equation can be achieved with the same approach as previously. Considering that vF0 ¼ 0 (since the

liquid is at rest in its equilibrium position), the differentiation of this relation simply yields

d½=x � v
F �ðuF Þ ¼=X �

quF

qt

� �
(10)

Then, the linearized form of Eq. (9) can be written as

qrF
L
ðuF Þ

qt
þ

quF

qt
�=Xr

F
0þvF0 � d½=xr

F �ðuÞþrF
L
ðuF Þ=X � vF0þrF

0=X �
quF

qt
¼ 0 (11)

If we suppose that the fluid density in the reference state is homogeneous1 ð=XrF
0C0Þ, the linearized mass conservation

equation can be finally written as

q

qt
ðrF

L
ðuF ÞþrF

0=X � uF Þ ¼ 0 (12)

The same approach applied to Eq. (1d) yields the following linearized equation:

q

qt
ðuF � nFþuS � nSÞ ¼ 0 (13)

We deduce therefore that the continuity of the normal displacement is satisfied at any time t as soon as it is satisfied by

the initial conditions uF ðt¼ 0Þ and uSðt¼ 0Þ. The linearized equations of the fluid around the reference state are finally

ð8t 2 R
þ
Þ:

rF
0

q
2uF

qt2
¼=Xðr

F
0g � uF�pLðu

F ÞÞþrF
L
ðuF Þg in OF (14a)

rF
L
ðuF ÞþrF

0=X � uF ¼ 0 in OF (14b)

pL ¼ pG on G (14c)

uF � nFþuS � nS ¼ 0 on Si (14d)

where pG ¼ d½PG�ðuF
,uSÞ is the pressure fluctuation in the gas when the fluid and structure are deformed. Eq. (12) has been

simplified by supposing that initial conditions satisfy this mass conservation equation ðrF
L
ðt¼ 0Þ ¼�rF

0=X � uF
iniÞ.

To these equations we add some initial Cauchy conditions such that

uF ðt¼ 0Þ ¼ uF
ini (14e)

vF ðt¼ 0Þ ¼ vFini (14f)

1 For an extension to a heterogeneous fluid (without tank pressurization), see [31].
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4.2. Linearization of the structural equation

The local equations of the structure (2) are now linearized using the same approach. However, to simplify the

derivation of the equations, before the differentiation, we use a Lagrangian transformation to write those equations in the

reference configuration, as follows:

DivXðFSÞ ¼ rS
0

d2
US

dt2
�rS

0g in OS (15a)

SðUSÞ ¼HEðuS
0þUSÞ (15b)

US ¼ 0 on Su (15c)

FSnS ¼ text detðFÞJtF
�1

nSJ�Pext detðFÞtF
�1

nS on Sf (15d)

FSnS ¼�PG detðFÞtF
�1

nS on Sg (15e)

FSnS ¼�P detðFÞtF
�1

nS on Si (15f)

In these equations, E is the (nonlinear) Green–Lagrange strain tensor and F is the transformation gradient tensor, defined

by F¼DXðxÞ. To differentiate these equations, we now need to express the following term:

d½FS� ðuSÞ ¼DXðu
SÞ HEðuS

0ÞþHd½E� ðuSÞ (16)

With the following notations:

r0 ¼HEðuS
0Þ (17)

e0ðu
SÞ ¼ d½E�ðuSÞ (18)

the linearized version of Eq. (15a) can then be written as

DivXðDXðu
SÞr0þHe0ðu

SÞÞ ¼ rS
0

q
2uS

qt2
(19)

For the differentiation of Eq. (15f), the following term has to be computed:

d½P detðFÞtF
�1

�ðuSÞ ¼ d½P�ðuSÞIþP0d½detðFÞ
tF

�1
�ðuSÞ (20)

In the first term of this expression, we recognize a Lagrangian fluctuation of the pressure on the fluid–structure interface

which is denoted by pS
L
ðuSÞ. Let us remark that this term is defined as a pressure fluctuation related to a structural point

and then is different from the Lagrangian pressure fluctuation pLðu
F Þ defined previously in Eq. (6) for a fluid particle. This

difficulty is a consequence of the sliding of the inviscid liquid on the structure wall.2

To explicit the second term of (20), we use the following expressions:

d½detðFÞ�ðuÞ ¼ Tr½DXu�I (21)

d½tF
�1

�ðuÞ ¼�tDXu (22)

Then, we obtain

d

dUS
ðdetðFÞtF

�1
Þ

����
0

ðuSÞ ¼ ð=X:u
SÞI�tDXðu

SÞ (23)

Using this relation in (20) yields the linearized expression of (15f):

ðDXðu
SÞr0þHe0ðu

SÞÞnS ¼�pS
L
ðuSÞnS�P0sðu

SÞ (24)

where the vector s is defined as

sðuSÞ ¼ ð=X � uSÞnS�
tDXðu

SÞnS (25)

The comparison of this expression with the following one, that we would have obtained by a direct differentiation of the

right-hand term of Eq. (2g):

d½�PnS dS
0�ðuSÞ ¼�pS

L
ðuSÞnS dS�P0d½nS dS

0�ðuSÞ (26)

shows that s can be interpreted as the linearization of the normal vector rotation:

sðuSÞ dS¼ d½nS dS
0�ðuSÞ (27)

2 This difference would disappear in case of a viscous liquid.

6



The same treatment can be applied to Eq. (15e). However, for Eq. (15d), we have to deal with the external force term text.

The differentiation of this term yields

d½text detðFÞJtF
�1

nSJ�ðu
SÞ ¼ d½text�ðuSÞþtext0 d½detðFÞJtF

�1
nSJ�ðu

SÞ (28)

A direct computation of the second term can be avoided if we remember that

d½detðFÞJtF
�1

nSJ�ðu
SÞdS¼ d½dS0�ðuSÞ (29)

where dS and dS0 are respectively the elementary surfaces on the reference and the actual geometries. Since, from (27), we

have sðuSÞ dS¼ d½n0 dS0�ðuSÞ ¼ d½n0�ðuSÞ dSþnd½dS0�ðuSÞ and n � d½n0�ðuSÞ ¼ 0, we can deduce from (25) that

d½detðFÞJtF
�1

nSJ�ðu
SÞ ¼ nS � sðu

SÞ ¼=X � uS�nS � DXðu
SÞnS (30)

Finally, the linearized expression of (15d) can be written as

ðDXðu
SÞr0þHe0ðu

SÞÞnS ¼ tdþd½text�ðuSÞþtext0 nS � sðu
SÞ�PextsðuSÞ (31)

where td ¼ textðU¼ 0Þ�text0 is the dynamic part of the external surface loads. Let us verify that if the external surface load

text is a pressure, i.e. text ¼�PtnS, then Eqs. (28) and (29) lead to coherent expressions of (31) and (24):

d½text� dSþtext0 nS � s dS¼ d½�PtnS� dS�Pt0nSd½dS
0� ¼ �d½Pt�nS dS�Pt0d½nS dS

0� (32)

By using (27), we denote then that expressions (24) and (31) are equivalent.

The linearized equations of the structure established in this section are summarized hereafter:

DivX sðuSÞ ¼ rS
0

q
2uS

qt2
in OS (33a)

sðuSÞ ¼DXðu
SÞr0þHe0ðu

SÞ in OS (33b)

uS ¼ 0 on Su (33c)

snS ¼ tdþd½text�ðuSÞþtext0 nS � sðu
SÞ�PextsðuSÞ on Sf (33d)

snS ¼�pGðuS
,uF Þ nS�PG

0sðu
SÞ on Sg (33e)

snS ¼�pS
L
ðuSÞnS�P0sðu

SÞ on Si (33f)

where (33c) has been obtained by a trivial differentiation of (2d).

To these equations, we add the following Cauchy conditions:

uSðt¼ 0Þ ¼ uS
ini (33g)

vSðt¼ 0Þ ¼ vSini (33h)

with

uS
ini � nSþuF

ini � nF ¼ 0 (33i)

and

vSini � nSþvFini � nF ¼ 0 (33j)

4.3. Linearization of the gas equations

The differentiation of the gas equation (3) yields

d½PG�ðuS
,uF Þ9O0

G9
g
þPG

0g9O
0
G9

g�1
d½9O0

G9�ðu
S
,uF Þ ¼ 0 (34)

Since the gas volume 9O0
G9 is defined by

9O0
G9¼

Z

O0
G

dO0
¼

Z

OG

detðFÞ dO (35)

Using the relation (21) and Stokes theorem, we obtain

d½9O0
G9�ðu

S
,uF Þ ¼

Z

OG

=X � u dO¼�

Z

Sg

uS � nS dS�

Z

G

uF � nF dG (36)
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Finally the linearized equation of the gas can be written as

pGðuS
,uF Þ ¼

PG
0g

9OG9

Z

Sg

uS � nS dSþ

Z

G

uF � nF dG

 !
in O0

G (37)

Eqs. (14), (33) and (37) form the coupled problem we want to solve. In these equations, all the spatial derivatives are

carried with respect to the coordinate vector X and then, for the sake of convenience, this subscript Xwill be omitted in the

following.

In the fluid equations (14a)–(14d), after the elimination of rF
L
using Eq. (14b), it remains only one Eq. (14a) which

contains two independent unknowns uF and pL. We must therefore specify now the constitutive equation of the fluid. Two

cases will be considered: the incompressible fluids and the barotropic compressible fluids.

5. Incompressible fluid under pressure

In the case of an incompressible fluid, the Lagrangian fluctuation of density in the fluid is zero:

incompressible fluid ) rF
L
¼ 0 (38)

From (14b), we have that

= � uF ¼ 0 (39)

which is the incompressibility condition expressed in terms of the fluid displacement.

Then Eq. (14a) is written as follows:

rF
0

q
2uF

qt2
¼=ðrF

0g � uF�pLðu
F ÞÞ (40)

Taking the curl of this vector equation, the following relation is obtained:

rF
0

q
2ð=4uF Þ

qt2
¼ 0 (41)

which shows that, if the initial conditions are such that =4uF
ini ¼ 0 and =4vFini ¼ 0, then the small displacements of an

incompressible (homogeneous and inviscid) fluid are irrotational. In this case, the fluid displacement field can be

represented3 by a scalar potential j defined by

=4uF ¼ 0 ) uF ¼=j (42)

However, this relation does not ensure the uniqueness of j. Therefore, it is necessary to specify an unicity condition on j,

generically written ‘ðjÞ ¼ 0, where ‘ is a linear form such that ‘ð1Þa0. This unicity condition will be chosen explicitly in

the following.

This new variable j can be substituted to uF in the fluid equations, in particular in (14a) which yields, after integration

with respect to X:

pL ¼ rF
0g �=j�rF

0

q
2j

qt2
þp (43)

where p is an integration constant which represents a uniform pressure in the fluid whose value depends on the choice of

the unicity condition ‘ðjÞ. The expression (43) of pL as a function of j allows to eliminate pL from the equations. However,

before establishing the variational formulation, we choose to introduce a scalar variable Z to describe the normal

component of the fluid free surface displacement4:

Z¼ uF � nF ¼=j � nF on G (44)

Since nF ¼ iz on G, the local equations of the boundary problem (14) are now written for an incompressible fluid in

terms of ðj,Z,p,pGÞ as follows:

Dj¼ 0 in OF (45a)

nF �=j¼ uS � nF on Si (45b)

nF �=j¼ Z on G (45c)

rF
0gZ¼�rF

0

q
2j

qt2
þp�pG on G (45d)

3 This result is given by Poincaré lemma for a simply connected domain OF .
4 To introduce Z in the formulation is not mandatory since j can be sufficient to describe the liquid behavior. However, the presence of Z allows to

generalize this formulation to liquid with surface tension more easily [32].
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pG ¼
PG
0g

9O0
G9

Z

Si[Sg

uS � nS dS in O0
G (45e)

‘ðjÞ ¼ 0 (45f)

jðt¼ 0Þ ¼jini (45g)

qj

qt
ðt¼ 0Þ ¼Cini (45h)

where jini and Cini are such that uF
ini ¼=jini, v

F
ini ¼=Cini and ‘ðjiniÞ ¼ ‘ðCiniÞ ¼ 0, and Eq. (45e) has been obtained from

(14c) and (37) by considering the following relation given by the integration of property (39) on the fluid domain:

0¼

Z

Si

uF � nF dSþ

Z

G

uF � nF dG (46)

Eq. (45e) shows that, due to the incompressibility of the fluid, pG is now a function depending only of the tank wall

deformation uS.

From the local equations (45a)–(45c), we can write the following variational formulation for the liquid, where C
‘
j is the

admissible space of solutions j defined by

C
‘
j ¼ fj 2 H

1ðOF Þ=‘ðjÞ ¼ 0g (47)

for t 2 R
þ
,( : j 2 C

‘
j such that 8dj 2 H

1ðOF Þ,

Fðj,djÞ�BðZ,djÞ ¼ Cðdj,uSÞ (48)

with

Fðj,djÞ ¼ rF
0

Z

OF

rj �rdj dO (49)

BðZ,djÞ ¼ rF
0

Z

G

Zdj dG (50)

Cðdj,uSÞ ¼ rF
0

Z

Si

uS � nFdj dS (51)

In this expression, F is the symmetric positive semi-definite bilinear form associated with the fluid kinetic energy and C is

the classical fluid–structure coupling operator.

Since it has been shown in [14] that the admissible space of (48) is the direct sum of two subspaces H
1ðOF Þ ¼ C‘

j �R,

(48) can be split into two variational equations: the first one has exactly the same expression as (48), except that dj
belongs to C‘

j and the second one is obtained by taking dj equal to a real constant. This latest yields a relation equivalent

to (46), which expresses the incompressibility of the fluid:

�BðZ,1Þ ¼ Cð1,uSÞ (52)

The variational formulation corresponding to the local equation (45d) is written as

for t 2 R
þ
,(Z 2 CZ such that 8dZ 2 CZ,

SgðZ,dZÞþB dZ,
q
2j

qt2

!
�
p

rF
0

BðdZ,1Þþ
pG

rF
0

BðdZ,1Þ ¼ 0 (53)

with

SgðZ,dZÞ ¼ rF
0g

Z

G

ZdZ dG (54)

where CZ is the admissible space for Z, defined as CZ ¼ fZ 2 L
2ðGÞg and Sg is the symmetric positive definite bilinear form

associated with the fluid gravity potential energy.

A final equation is obtained from the expression (45e) of pG:

wG p
G

rF
0

�BðZ,1Þ ¼ Cgð1,u
SÞ (55)

with

Cgðdj,uSÞ ¼ rF
0

Z

Sg

uS � nSdj dS (56)
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and

wG ¼
ðrF

0Þ
29OG9

PG
0g

(57)

6. Barotropic compressible fluid under pressure

Since the temperature is supposed constant during the observation time and consequently its dynamic influence on the

fluid–structure problem is supposed negligible, a barotropic model is suitable in case of a compressible fluid. This model

suggests that the pressure fluctuation pL in the fluid is directly proportional to the density fluctuation rF
L , and it can be

shown that, in this case, the proportionality coefficient is the square of the acoustic wave velocity in the fluid c:

pL ¼ c2rF
L ¼�rF

0c
2
= � uF (58)

Using this relation and Eq. (14b), pL and rF
L can be eliminated from Eq. (14a) which can be written as

rF
0

q
2uF

qt2
¼=ðrF

0g � uF�rF
0c

2
= � uF Þ�rF

0g= � uF (59)

By taking the curl of this vector equation, we obtain the following relation:

rF
0

q
2ð=4uF Þ

qt2
¼�rF

0=ð= � uF Þ4g (60)

which shows that, even if the displacement and velocity fields at the initial time are irrotational, this property is not

generally maintained in a compressible fluid, except in the particular case where the gravity effects in the fluid could be

neglected ðgC0Þ. In the following, we will do this assumption which can be justified by the fact that, in the case of

compressible fluids, the compressibility potential energy is generally much greater than the gravity potential energy and

then gravity effects can be neglected in a first approach.5 In this case, we speak about light fluids, by opposition to heavy

fluid, for which the gravity potential energy cannot be neglected.

barotropic compressible light fluid ðg ¼ 0Þ ) uF ¼=j (61)

By neglecting the terms in g, an integration of Eq. (14a) with respect to X yields the expression of pL:

pL ¼�rF
0

q
2j

qt2
þp (62)

This expression and (61) can be used in (58), (14c) and (14d) to eliminate pL from the fluid equations. Moreover, as we

did for the incompressible fluid, we introduce in the formulation the variable Z to describe the normal component of the

fluid free surface displacement. Finally, the local equations of the boundary problem (14) are now written for a

compressible light fluid in terms of ðj,Z,p,pGÞ:

Dj�
1

c2
q
2j

qt2
¼�

p

rF
0c

2
in OF (63a)

nF �=j¼ uS � nF on Si (63b)

nF �=j¼ Z on G (63c)

�rF
0

q
2j

qt2
þp¼ pG on G (63d)

pG ¼
PG
0g

9OG9

Z

Sg

uS � nS dSþ

Z

G

Z dG

!
in OG (63e)

‘ðjÞ ¼ 0 (63f)

with the initial conditions

jðt¼ 0Þ ¼jini (63g)

qj

qt
ðt¼ 0Þ ¼Cini (63h)

Let us remark that, in the case of the so-called light fluid, we consider here that the free surface and the tank ullage exist.

The case of a light acoustic fluid occupying the whole tank volume will not be treated here but can be found in [14].

5 A generalization to the case where both compressibility and gravity terms would be of same order can be found in [31,33].
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Using the boundary conditions (63b) and (63c), the variational formulation corresponding to Eq. (63a) is written as

for t 2 R
þ
, (j 2 C

‘
j such that 8dj 2 H

1ðOF Þ,

Fðj,djÞþSc
q
2j

qt2
,dj

!

�BðZ,djÞ�
p

rF
0

Scð1,djÞ ¼ Cðdj,uSÞ (64)

with

Scðj,djÞ ¼
rF
0

c2

Z

OF

jdj dO (65)

As previously done in Section 5, this variational formulation being valid for all dj in H
1ðOF Þ, it can be replaced by two

variational equations: the first one has exactly the same expression as (64), except that dj belongs to C‘
j and the second

one is obtained by taking dj equal to a real constant. This latest yields the following relation:

Sc
q
2j

qt2
,1

 !
�BðZ,1Þ�wF p

rF
0

¼ Cð1,uSÞ (66)

with

wF ¼
rF
09OF9
c2

(67)

The variational formulation corresponding to the local equation (63d) is written as

for t 2 R
þ
, (Z 2 CZ such that 8dZ 2 CZ,

B dZ,
q
2j

qt2

!
�
p

rF
0

BðdZ,1Þþ
pG

rF
0

BðdZ,1Þ ¼ 0 (68)

Finally, Eq. (63e) can be written as follows:

wG p
G

rF
0

�BðZ,1Þ ¼ Cgð1,u
SÞ (69)

7. Solution of the coupled fluid–structure problem

7.1. Variational formulation for the structure

From the local equations of the structure given in (33), a variational formulation for the structure can be written, where

C
0
u ¼ fuS 2 H

1ðOSÞ
3=uS ¼ 0 on Sug denotes the space of the kinematically admissible solutions. In the following, the fluid

pressure P0 in the reference configuration will be replaced by its expression obtained from (4b) and (4c):

P0ðXÞ ¼ PG
0 þrF

0g � X (70)

where O is a point of the liquid free surface. Let us remark that this expression is also valid for a light fluid, since with g¼ 0,

P0ðXÞ ¼ PG
0 .

Then the variational principle for the structure is written as

(uS 2 C
0
u such that 8du 2 C

0
u,

ðKEþKGþKPþKtÞðu
S
,duÞþM

q
2uS

qt2
,du

!
þ

pG

rF
0

Cgð1,duÞþ

Z

Si

pSLðu
SÞnS � duþðrF

0g � XÞsðuSÞ � du dS¼ f
ext

ðduÞ (71)

with

KEðu
S
,duÞ ¼

Z

OS

He0ðu
SÞ : DxðduÞ dO (72)

KGðu
S
,duÞ ¼

Z

OS

Dxðu
SÞr0 : DxðduÞ dO (73)

KPðu
S
,duÞ ¼

Z

Sf

PextsðuSÞ � du dSþ

Z

Sg[Si

PG
0sðu

SÞ � du dS (74)

Ktðu
S
,duÞ ¼�

Z

Sf

d½text�ðuSÞ � duþnS � sðu
SÞtext0 � du dS (75)
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MðuS
,duÞ ¼

Z

OS

rS
0u

S � du dO (76)

f
ext

ðduÞ ¼

Z

Sf

td � du dS (77)

where KE is the elastic stiffness operator of the structure deformed in its static configuration. If these initial deformations

uS
0 are small, e0 tends to e and KE is then the standard symmetric positive stiffness operator. M is the classical symmetric

positive definite operator associated to the mass of the structure and KG is the symmetric operator, due to the initial

prestress r0 in the structure, classically known as the geometric stiffness. KP is the stiffness operator arising from the

follower force effect of the initial pressures applied on the structure external and internal walls (the external pressure Pext

and the pressurization PG
0 ). Kt is a similar term due to the presence of a static external surface load text which can be also a

follower force. f ext is a linear form representing the dynamic part of this load.

We need now an expression of pSLðu
SÞ as a function of the unknowns uS and uF . This expression is obtained by

considering a fluid particle in contact with a structural point of the fluid interface in the reference configuration. At time t,

the pressure at this structural point is PðUSÞ and the pressure of the same fluid particle is PðUF Þ. The difference can be

written as follows:

PðUSÞ�PðUF Þ ¼=xP � ðUS�UF Þ (78)

By differentiating this expression at the reference configuration and in the direction ðuS
,uF Þ, we obtain

pSLðu
SÞ�pLðu

F Þ ¼=XP0 � ðu
S�uF Þ ¼ rF

0g � ðuS�uF Þ (79)

Since the expression of pL is given either by (43) for an incompressible fluid or by (62) for a barotropic light fluid, we can

write the following general expression (where g must be taken equal to 0 in case of a light compressible fluid):

pSLðu
SÞ ¼ rF

0g � uS�rF
0

q
2j

qt2
þp (80)

By introducing this relation into the previously given variational formulation of the structure, we obtain

(uS 2 C
0
u such that 8du 2 C

0
u,

KT ðu
S
,duÞþ

pG

rF
0

Cgð1,duÞ�
p

rF
0

Cð1,duÞþM
q
2uS

qt2
,du

 !
þC

q
2j

qt2
,du

!
¼ f

ext
ðduÞ (81)

with

KT ðu
S
,duÞ ¼ ðKEþKGþKPþKtþKgÞðu

S
,duÞ (82)

Kgðu
S
,duÞ ¼

Z

Si

ðrF
0g � uSÞnS � duþðrF

0g � XÞsðuSÞ � du dS (83)

where Kg is the stiffness operator related to the follower force effect of the fluid hydrostatic pressure on the structure wall

(it can be shown that this operator is symmetric). Obviously, this operator being proportional to g, it vanishes obviously in

the case of a light fluid.

7.2. Solution procedure in the frequency domain

The solution in the frequency domain will be carried out using the following Fourier transform:

bf ðoÞ ¼

Z 1

�1

f ðtÞe�iot dt (84)

in which f, defined at any time t in R, belongs to L1, and where bf ðoÞ is a complex valued function defined in R for any

circular frequency o.

After solving the problem in the frequency domain, the inverse Fourier transform will allow to recover the original

function, defined in the time domain, by

f ðtÞ ¼
1

2p

Z 1

�1

bf ðoÞeiot do (85)

The application of the Fourier transform to the equations of the problem requires to extend the functions uSðx,tÞ, uF ðx,tÞ,

pLðx,tÞ (as well as the auxiliary unknowns jðx,tÞ, Zðx,tÞ, pðtÞ,pGðtÞ, etc.), defined for tZ0 only, to extended functions ~u
S
ðx,tÞ

(respectively ~u
F
ðx,tÞ, ~pLðx,tÞ, etc.) defined 8t in R such that ~u

S
ðx,to0Þ ¼ 0 and ~u

S
ðx,tZ0Þ ¼ uSðx,tÞ (idem for ~u

F
ðx,tÞ, ~pLðx,tÞ,

etc.). Since, the extended functions are discontinuous at time t¼0, their derivative with respect to time t are defined, in

a distribution sense only, by

q ~u

qt
¼

q ~u

qt

	 

þuinid (86a)
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q
2 ~u

qt2
¼

q
2 ~u

qt2

( )
þuinid

0
þvinid (86b)

where d is the Dirac distribution, d0 its derivative (in the distribution sense) and fq=qtg denotes the derivative in the

function sense, defined for ta0 [34].

By using this approach, the time derivatives in Eqs. (14a), (33a), (45d) or (63a), which are defined for t40, can be

extended in the distribution sense on R by using relations (86). Since all the equations of the linearized coupled problem

are, by definition, linear, the Fourier transform of Eqs. (14), (33), (45) and (63) is easily obtained. Additional terms, given by

the initial Cauchy conditions, are expressed by considering that bd ¼ 1 and bd0 ¼ io:

ð14aÞ, ð14eÞ, ð14fÞ ) �o2rF
0û

F
¼=ðrF

0g � û
F
�p̂LÞþ r̂F

Lgþ iorF
0u

F
iniþrF

0v
F
ini (87)

ð33aÞ,ð33gÞ,ð33hÞ ) o2rS
0û

S
þDiv ŝ ¼�iorS

0u
S
ini�r

S
0v

S
ini (88)

ð45dÞ,ð45gÞ,ð45hÞ ) rF
0gẐ ¼o2rF

0ĵþ p̂
0
�p̂

G
þ iorF

0jiniþrF
0Cini (89)

63aÞ,ð63fÞ,ð63gÞ ) Dĵþ
o2

c2
ĵ ¼�

p̂
0

rF
0c

2
�io

jini

c2
�
Cini

c2
(90)

The new expressions of the variational formulations established from these local equations can be easily deduced (cf.

section 7.3). To simplify the notations, the symbol 4 will be dropped in the following, since, from now on, all the unknowns

will be the Fourier transform of their temporal counterpart. However, let us remind that they are now complex functions

and the operators constructed in the variational formulations must now be defined as sesquilinear Hermitian forms

(respectively antilinear forms) instead of bilinear symmetric forms (respectively linear forms) in order to be physically

associated to mechanical energies.

7.3. Finite element discretization and matrix form

The classical Rayleigh–Ritz finite element method can be applied to discretize the space part of the unknown fields. We

consider here compatible meshes for the structure and the fluid. Since uS belongs to C
0
u and j to C

‘
j, the kinematic

conditions uS ¼ 0 on Su and ‘ðjÞ ¼ 0 have to be taken into account in strong form. For uS ¼ 0 the procedure is classic but for

‘ðjÞ ¼ 0 it is more unusual. One way to do is to choose ‘ðjÞ such that one component i of j is equal to 0 (‘ðjÞ ¼ui ¼ 0).

Then, all the row and columns associated to these zero values are removed from the matrix system. To simplify the

notations, vectors of non-discarded nodal values will be denoted by the same letter as the associated continuous variable

uSðx,oÞ, jðx,oÞ and Zðx,oÞ. In the same way, the (non-discarded part of) matrix operators6 associated to the sesquilinear

forms will be denoted by the same capital letter, and the linear and antilinear forms by a lower case letter, as for example

BðdZ,jÞ ) dgnBu and BðdZ,1Þ ) dgnb (91)

7.3.1. Matrix equation in case of an incompressible heavy fluid

A Fourier transform and a finite element discretization of Eqs. (81), (48), (53), (52) and (55) lead to the following matrix

system:

KT 0 0 �c cg

�
tC F �B 0 0

0 0 Sg �b b

�tc 0 �
t
b 0 0

tcg 0
t
b 0 �wG

2

66666664

3

77777775

�o2

M C 0 0 0

0 0 0 0 0

0 tB 0 0 0

0 0 0 0 0

0 0 0 0 0

2

6666664

3

7777775

0

BBBBBBB@

1

CCCCCCCA

uS

u

g

p=rF
0

pG=rF
0

0

BBBBBBB@

1

CCCCCCCA

¼

f
ext

0

0

0

0

0

BBBBBB@

1

CCCCCCA
þ

M C

0 0

0 tB

0 0

0 0

2

6666664

3

7777775

vSiniþ iouS
ini

Ciniþ iojini

!
(92)

6 It can be shown that matrix operators obtained by the finite element discretization of sesquilinear Hermitian forms are real and symmetric [23].
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7.3.2. Matrix equation in case of a compressible light fluid

The same transformations applied to Eqs. (81), (64), (68), (66) and (69) yield the following matrix system

KT 0 0 �c cg

�
tC F �B �sc 0

0 0 0 �b b

�tc 0 �
t
b �wF 0

tcg 0
t
b 0 �wG

2

66666664

3

77777775

�o2

M C 0 0 0

0 Sc 0 0 0

0 tB 0 0 0

0 tsc 0 0 0

0 0 0 0 0

2

6666664

3

7777775

0

BBBBBBB@

1

CCCCCCCA

uS

u

g

p=rF
0

pG=rF
0

0

BBBBBBB@

1

CCCCCCCA

¼

f
ext

0

0

0

0

0

BBBBBB@

1

CCCCCCA
þ

M C

0 Sc

0 tB

0 tsc
0 0

2

6666664

3

7777775

vSiniþ iouS
ini

Ciniþ iojini

!
(93)

The solutions ðuS
,u,g,p,pGÞ of Eqs. (92) and (93) can be obtained7 for all o in R by direct resolutions of these linear

systems, however, the inversion of the dynamic stiffness matrices for each circular frequency8 can be very costly and a

modal synthesis method will be proposed in the next section in order to reduce the computational costs.

8. Application to liquid sloshing in an elastic tank

In order to compute the vibrations of a pressurized elastic structure containing an inviscid incompressible liquid with a

free surface, one has to solve Eq. (92) in the frequency domain (and then obtain the time response by an inverse Fourier

transform). To reduce the computing times, a modal synthesis method is proposed here. It is based on the projection of the

liquid equation onto its sloshing eigenmodes. This approach has already been applied to the standard ðuS
,jÞ formulation

(without pressurization) in previous works [14,25]. It is extended here to the new ðuS
,j,Z,p,pGÞ formulation presented in

this paper.

8.1. Liquid sloshing modes

The harmonic vibrations of an incompressible heavy fluid in a rigid motionless cavity are called sloshing modes. They are

the solutions ðja,Za,pa,p
G
a Þ cosðoatÞ of (45) for uS ¼ 0:

Dja ¼ 0 in OF (94a)

nF �=ja ¼ 0 on Si (94b)

nF �=ja ¼ Za on G (94c)

rF
0gZa ¼ rF

0o
2
ajaþpa on G (94d)

pGa ¼ 0 in OG (94e)

‘ðjaÞ ¼ 0 (94f)

The associated variational formulation is obtained directly from (48), (53) and (52):

(ðja,Za,paÞ 2 C
‘
j � CZ �R such that 8ðdj,dZÞ 2 C

‘
j � CZ,

Fðja,djÞ ¼ Bðdj,ZaÞ (95a)

SgðZa,dZÞ�o
2
aBðdZ,jaÞ�

pa
rF
0

BðdZ,1Þ ¼ 0 (95b)

BðZa,1Þ ¼ 0 (95c)

And after discretization by the finite element method, the associated eigenvalue matrix system is written as

F �B 0

0 Sg �b

0 �
t
b 0

2

64

3

75�o2
a

0 0 0
tB 0 0

0 0 0

2

64

3

75

0

B@

1

CA

ua

ga
pa=rF

0

0

B@

1

CA¼

0

0

0

0

B@

1

CA (96)

Since one row and one column of the matrix F have been dropped when the condition ‘ðjÞ ¼j1 ¼ 0 has been applied

(cf. Section 7.3), F becomes invertible9 and the first row of Eq. (96) can yield an expression of ua in function of ga:

ua ¼ F�1Bga (97)

7 Let us remind that the solutions uS and u of Eqs. (92) and (93) have to be completed by zero values to be reextended to their original size as

explained previously in Section 7.3.
8 Due to the absence of dissipation in the model, the dynamic matrix of the system is not invertible for circular frequencies o corresponding to the

eigenfrequencies of the coupled problem. The introduction of a damping model for the structure (and eventually for the fluid) can solve this issue [35].
9 Despite operator F is semi-definite, it has been shown in [14] that matrix F becomes invertible as soon as at least one of its rows and columns has

been eliminated.
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The substitution of this relation in Eq. (96) yields

Sg �b

�
t
b 0

" #
�o2

a

tBF�1B 0

0 0

" # !
ga

pa=rF
0

!
¼

0

0

� �
(98)

If the matrix tBF�1B is denoted by MG, we deduce that the sloshing eigenmodes of the liquid are only described by their

free surface normal displacement ga which are the solutions of the eigenvalue problem

Sgga ¼o2
aMGga with t

bga ¼ 0 (99)

where Sg is the gravity potential energy operator, MG is the mass operator of the liquid in a rigid motionless cavity,

condensed on its free surface, and p has the role of a Lagrange multiplier associated to the incompressibility condition
t
bga ¼ 0 (which represents the fluid volume invariance). Since Sg and MG are symmetric, the eigenmodes ga are real,

orthogonal and form a basis for the liquid free surface deformations. Let us also remark that Sg being nonsingular, there is

no zero-frequency sloshing modes.

The orthogonality conditions between two sloshing modes can be obtained by writing relations (95a) and (95b) for two

distinct modes ðja,ZaÞ and ðjb,ZbÞ with ðdZ,djÞ equal respectively to ðjb,ZbÞ and ðja,ZaÞ. We then obtain the following

relations, 8ða,bÞ 2 N
n2:

Fðja,jbÞ ¼ BðZa,jbÞ ¼ BðZb,jaÞ (100)

SgðZa,ZbÞ ¼o2
aBðZb,jaÞ ¼o2

bBðZa,jbÞ (101)

If Fðja,jaÞ is denoted by ma, the following orthogonality relations can be deduced:

Fðja,jbÞ ¼ madab ¼ BðZa,jbÞ ¼ BðZb,jaÞ (102a)

SgðZa,ZbÞ ¼o2
amadab (102b)

where dab is the Kronecker symbol.

8.2. Liquid static response

Since the sloshing modes span the space of the liquid movements in a rigid motionless cavity, it is necessary to

complete this basis with a quasi-static response of the liquid corresponding to a tank wall static deformation. One

possibility is to consider the static response ðj0,Z0,p0,p
G
0 Þ of the liquid to the displacement uS, i.e. the static solution of

Eqs. (45) which satisfies

Dj0 ¼ 0 in OF (103a)

nF �=j0 ¼ uS � nF on Si (103b)

nF �=j0 ¼ Z0 on G (103c)

rF
0gZ0 ¼ p0�pG0 on G (103d)

pG0 ¼
PG
0g

9OG9

Z

Si[Sg

uS � nS dS in OG (103e)

‘ðj0Þ ¼ 0 (103f)

The variational equations (48), (53) and (52) can then be written for ðj0,Z0Þ:

(ðj0,Z0Þ 2 C
‘
j � CZ such that 8ðdj,dZÞ 2 C

‘
j � CZ,

Fðj0,djÞ�BðZ0,djÞ ¼ Cðdj,uSÞ (104)

SgðZ0,dZÞ�
p0

rF
0

BðdZ,1Þþ
pG0
rF
0

BðdZ,1Þ ¼ 0 (105)

�BðZ0,1Þ ¼ Cð1,uSÞ (106)

Since p and pG are scalar values, Eq. (103d) shows that Z0 is constant on G. Then, Eq. (106) yields

Z0 ¼�
1

rF
09G9

Cð1,uSÞ (107)
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Using the variational relations (104) and (105), we can derive the conjugate relations between ðj0,Z0Þ and ðjb,ZbÞ. For this
purpose, dj and dZ are chosen equal to jb and Zb. By using (95c), we obtain after some algebraic manipulations:

8b 2 N
n
, Fðj0,jbÞ ¼ Cðjb,u

SÞ�
1

rF
09G9

Cð1,uSÞBð1,jbÞ (108)

SgðZ0,ZbÞ ¼ 0 (109)

8.3. Construction of a fluid reduced matrix model

In a first step, we write j and Z as follows10:

jðoÞ ¼j0ðuðoÞÞþ
XN

a ¼ 1

qaðoÞja (110a)

ZðoÞ ¼ Z0ðuðoÞÞþ
XN

a ¼ 1

kaðoÞZa (110b)

where the coefficients qa and ka represent the participation of each of the N selected sloshing modes to the liquid dynamic

response.

In a second step, we introduce these decompositions in the first variational equation (48), and choosing dj equal to

each mode jb, we obtain after simplifications due to the orthogonality relations (102):

8b 2 N
n
, Fðj0,jbÞþqbmb�BðZ0,jbÞ�kbmb ¼ Cðjb,u

SÞ (111)

Using relation (104) applied to dj¼jb, we then obtain

8b 2 N
n
, qb ¼ kb (112)

which shows that the modal participation coefficients are the same for j and Z.
The same derivation is now applied to the second variational equation (53). By choosing dZ equal to a each mode Zb, the

following expression is obtained after some simplifications due to relations (102) and (109):

ðo2
b�o

2Þmbqb ¼o2BðZb,j0ÞþBðZb,Ciniþ iojiniÞ (113)

Eq. (95a) with dj¼j0 and conjugate relation (108) allow to express BðZb,j0Þ as follows:

BðZb,j0Þ ¼ Fðj0,jbÞ ¼ Cðjb,u
SÞ�

1

rF
09G9

Cð1,uSÞBð1,jbÞ (114)

By introducing the function j defined by

8j 2 Cj, j ¼j�
1

9G9

Z

G

j dG (115)

the following relation can be easily deduced from (95c):

BðZb,Ciniþ iojiniÞ ¼ BðZb,Ciniþ iojiniÞ (116)

and then, we deduce from (113) the following reduced equation of the fluid:

8b 2 N
n
, ðo2

b�o
2Þmbqb ¼o2Cðjb,u

SÞþBðZb,Ciniþ iojiniÞ (117)

Taking dZ¼ 1 in Eq. (53), we obtain an expression of p0 which can be simplified by considering that

SgðZ0,1Þ ¼

Z

G

rF
0gZ0 dG¼ gBðZ0,1Þ ¼�gCð1,uSÞ (118)

8a 2 N
n
, SgðZa,1Þ ¼

Z

G

rF
0gZa dG¼ gBðZa,1Þ ¼ 0 (119)

It finally yields

rF
09G9

p

rF
0

¼ rF
09G9

pG

rF
0

�o2Bð1,j0Þ�o
2
XN

a ¼ 1

qaBð1,jaÞ�gCð1,uSÞ�Bð1,Ciniþ iojiniÞ (120)

10 In theory, the sum on the sloshing modes should be infinite but practically, only a small number N of sloshing modes is necessary to obtain a good

representation of the solution.
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The decomposition (110) of Z is then used in Eq. (55), together with (95c) and (106), and yields the value of pG:

wG p
G

rF
0

¼ Cgð1,u
SÞ�Cð1,uSÞ (121)

Concerning the structure, the influence of the fluid model reduction on the structure variational equation is obtained by

introducing (110) in (81):

(uS 2 C
0
u such that 8du 2 C

0
u,

KT ðu
S
,duÞþ

pG

rF
0

Cgð1,duÞ�
p

rF
0

Cð1,duÞ�o2MðuS
,duÞ�o2Cðj0,duÞ

� � � �o2
XN

a ¼ 1

qaCðja,duÞ ¼ f
ext

ðduÞþMðvSiniþ iouS
ini,duÞþCðCiniþ iojini,duÞ (122)

Relation (104) applied to uS ¼ du and dj¼j0ðu
SÞ yields, using (107), the following expression of Cðj0,duÞ:

Cðj0ðu
SÞ,duÞ ¼ Fðj0ðu

SÞ,j0ðduÞÞþ
1

rF
09G9

Cð1,duÞBð1,j0ðu
SÞÞ (123)

Using this relation and replacing p0 by its expression (120), the variational equation of the structure is written as

(uS 2 C
0
u such that 8du 2 C

0
u,

KT ðu
S
,duÞþ

g

rF
09G9

Cð1,uSÞCð1,duÞþ
pG

rF
0

ðCgð1,duÞ�Cð1,duÞÞ

� � � �o2ðMþMF
0Þðu

S
,duÞ�o2

XN

a ¼ 1

qaCðja,duÞ ¼ f
ext

ðduÞ

� � � þMðvSiniþ iouS
ini,duÞþCðCiniþ iojini,duÞ (124)

with

MF
0ðu

S
,duÞ ¼ Fðj0ðu

SÞ,j0ðduÞÞ (125)

where MF
0 is called the fluid hydrostatic added mass matrix.

After discretization by the finite element method, Eqs. (124), (117) and (121) of the fluid–structure coupled problem are

written as

KTþ
g

rF
0
9G9

ctc 0 cg�c

0 !X
2 0

tcg�
tc 0 �wG

2

6664

3

7775�o
2

MþMF
0 CU 0

t
U

tC ! 0

0 0 0

2

64

3

75

0

BBB@

1

CCCA

uS

q

pG=rF
0

0

B@

1

CA¼

f
ext

0

0

0

B@

1

CAþ

M C

0 tNtB

0 0

2

64

3

75
vSiniþ iouS

ini

Ciniþ iojini

!

(126)

where each column of matrices U and N is one of the N selected sloshing modes (with zero-mean value on G) represented

respectively by ua and ga. On the other hand, diagonal matrices ! andX contain respectively the N sloshing modal masses

ma and circular frequencies oa.

With this modal synthesis approach, the fluid model size has been drastically reduced with respect to the full system

(92) since dimðqÞ ¼N5dimðuÞþdimðgÞ, and the matrices of Eq. (126) are now symmetric. However, as we can see, this

reduced model has one drawback since a new full stiffness matrix ctc must be assembled. One way to remove this

drawback and to avoid its construction is to introduce an additional variable l defined by

l¼
1

wG

Z

Si

uS � nF dS (127)

with

wG ¼
rF
09G9
g

(128)

We then obtain the following matrix system:

KT 0 cg�c c

0 !X
2 0 0

tcg�
tc 0 �wG 0

tc 0 0 �wG

2

66664

3

77775
�o2

MþMF
0 CF 0 0

t
U

tC ! 0 0

0 0 0 0

0 0 0 0

2

66664

3

77775

0

BBBB@

1

CCCCA

uS

q

pG=rF
0

l

0

BBB@

1

CCCA¼

f
ext

0

0

0

0

BBBB@

1

CCCCA
þ

M C

0 tNtB

0 0

0 0

2

6664

3

7775
vSiniþ iouS

ini

Ciniþ iojini

!
(129)

Concerning MF
0, it can be computed by considering Eqs. (104) and (107):

Fu0ðu
SÞ ¼ tC�

1

rF
09G9

btc

 !
uS (130)
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Applying the condition ‘ðjÞ ¼u1 ¼ 0, the matrix F is invertible and u0ðu
SÞ can be obtained by solving a linear algebraic

symmetric system. The same relation can be applied to calculate u0ðduÞ and finally, from the definition of MF
0 (125), the

expression of MF
0 is given by

MF
0 ¼ C�

1

rF
09G9

c
t
b

!
F�1 tC�

1

rF
09G9

btc

!
(131)

The solution of Eq. (129) can now be obtained either by a direct inversion of the matrix system or, if the size of the reduced

model is still large, by a modal synthesis approach using the real fluid-¼structure coupled eigenmodes (which are the

solution of the associated homogeneous equation) [14].

Finally, let us remark that the problem solving strategy illustrated here for the incompressible fluid case can be

extended to the compressible equations (93) by using the liquid acoustic modes instead of its sloshing modes.

8.4. Application examples

Several examples of application of the linearized fluid–structure formulation presented here have been published

during the past few years. The possibility to predict the coupling between the vibrations of the structure and the liquid

sloshing using this formulation has been illustrated on test cases and on some more realistic examples [25,36] and then

validated by comparison with experimental results [24]. For a study of the convergence of the reduced model (129) as a

function of the number of selected sloshing modes, we refer the reader to [37]. An application to the specific case of free

structures containing liquids and a validation by comparison with some benchmark results have been published in [38].

The nonlinear effect of the hydrostatic pressure on the hydroelastic vibrations of a plate has also been analyzed in [29].

Application examples concerning the effect of tank pressurization are in progress and will be published in a future paper.

9. Conclusions and perspectives

This paper presents a new way of deriving the linearized variational formulation for fluid–structure problems involving

a deformable structure and an internal inviscid liquid with a free surface. It proposes a systematic approach by

differentiation of the coupled nonlinear local equations around the static equilibrium solution. The complex prestress

effects due to the fluid hydrostatic pressure on the structure are then automatically obtained. This approach gives a solid

framework for future extensions of this formulation to more complicated problems (stationary flow in the liquid, spinning

tanks, meniscus in microgravity, etc.). One contribution of this paper was, for instance, to show how the formulation

initially developed for incompressible heavy liquids could be generalized to the case of light compressible liquids.

Moreover, the effect of the tank ullage pressurization on the dynamics of the coupled system was also easily added in both

cases of incompressible or compressible liquids. Another specificity of the formulation proposed here is to keep the fluid

free surface normal displacement in the state variables of the problem, with the aim of developing a model compatible

with an extension to liquids with capillarity effects for which the free surface normal displacement is the main physical

variable [39,32].

Finally, a numerical solution procedure in the frequency domain has been proposed with an appropriate finite element

discretization. This makes the versatility of this approach which can be used for any arbitrary tank geometries, whereas

many semi-analytical approaches are restricted to specific tank shapes (cylindrical, spherical, etc.) [40]. To reduce the

computational costs, a modal synthesis approach has been proposed and has been illustrated on a particular application

but could be generalized to other configurations in future works.

The introduction of the damping aspects in the fluid model is also a work in progress. As it has been seen, contrary to

the case of an external fluid, there is no dissipation introduced by an internal liquid in the model when it is supposed

inviscid (since the liquid domain is bounded). However, we could introduce in this formulation an a posteriori damping

model for the liquid by affecting to each sloshing mode a damping coefficient that can be evaluated experimentally or

numerically. It is known that the energy dissipation in a liquid is due mainly to four physical phenomena [41]: (i) the

viscous dissipation in the boundary layers at the interface with the structure, (ii) the viscous dissipation at the liquid free

surface due to a possible contamination by impurities (surfactants, etc.), (iii) the viscous dissipation in the bulk of the fluid

and (iv) the capillary hysteresis due to the wetting phenomenon at the contact line between the liquid free surface and the

structure. A simple model of each of these dissipation sources might be used to quantify numerically the energy DEa
dissipated during a vibration period of the system and then, a damping coefficient za associated to each sloshing mode

could be deduced by [42,43]

zaC�
DEa

2pmao
2
a

(132)

By introducing this damping model in the fluid–structure equations, the coupled modes become complex but we can still

use a modal synthesis approach to compute the frequency response (or the linearized time response) of the system to

external excitations. These aspects will be developed in future publications [35].
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[39] M. El-Kamali, J.-S. Schotté, R. Ohayon, Computation of the equilibrium position of a liquid with surface tension inside a tank of complex geometry

and extension to sloshing dynamic cases, Computational Mechanics 46 (1) (2010) 169–184.
[40] I. Gavrilyuk, M. Hermann, I. Lukovsky, O. Solodun, A. Timokha, Natural sloshing frequencies in rigid truncated conical tanks, Engineering

Computations 25 (6) (2008) 518–540.
[41] D.M. Henderson, J.W. Miles, Surface-wave damping in a circular cylinder with a fixed contact line, Journal of Fluid Mechanics 275 (1994) 285–299.
[42] W. Wang, J. Li, T. Wang, Damping computation of liquid sloshing with small amplitude in rigid container using FEM, Acta Mechanica Sinica 22 (2006)

93–98.
[43] W. Wang, J. Li, T. Wang, Modal analysis of liquid sloshing with different contact line boundary conditions using FEM, Journal of Sound and Vibration

317 (2008) 739–759.

19


	Linearized formulation for fluid-structure interaction: Application to the linear dynamic response of a pressurized...
	Introduction
	Local equations
	Local equations of the fluid
	Local equations of the structure
	Local equations in the gas

	Reference configuration
	Linearized local equations
	Linearization of the fluid equations
	Linearization of the structural equation
	Linearization of the gas equations

	Incompressible fluid under pressure
	Barotropic compressible fluid under pressure
	Solution of the coupled fluid-structure problem
	Variational formulation for the structure
	Solution procedure in the frequency domain
	Finite element discretization and matrix form
	Matrix equation in case of an incompressible heavy fluid
	Matrix equation in case of a compressible light fluid


	Application to liquid sloshing in an elastic tank
	Liquid sloshing modes
	Liquid static response
	Construction of a fluid reduced matrix model
	Application examples

	Conclusions and perspectives
	References


