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Analysis of three-dimensional sound propagation in porous elastic media with the Finite Element (FE) method is, in general,
computationally costly. Although it is the most commonly used predictive tool in complex noise control applications, efficient
FE solution strategies for large-size industrial problems are still lacking. In this work, an original procedure is proposed for the
sorting and selection of the modes in the solution for the sound field in homogeneous porous domains. This procedure,
validated on several 2D and 3D problems, enables to reduce the modal basis in the porous medium to its most physically
significant components. It is shown that the size of the numerical problem can be reduced, together with matrix sparsity
improvements, which lead to the reduction in computational time and enhancements in the efficacy of the acoustic response
computation. The potential of this method for other industrial-based noise control problems is also discussed.

I. INTRODUCTION

Porous materials, as a passive solution for noise reduc-

tion in vehicles, have been widely investigated over the past

two decades. Their modeling, in acoustic applications, has

been particularly supported by the Biot-Allard theory of

wave propagation in sound absorbing porous materials, trac-

ing back to the early analyses by Biot for the modeling of a

homogenized medium consisting of a porous elastic skeleton

containing a viscous fluid,1,2 later extended to include anisot-

ropy as well as a refined description of viscoelastic and solid

dissipations.3 The refined theory has emerged as a reference

to describe the complex physics involved.4 Substantial

efforts have been carried out to propose efficient predictive

tools, a requirement to allow industrial applications to be

performed at a reasonable cost, i.e., time and computational

resources. Among these tools, the Finite Element (FE)

method has been used extensively, due to its ability to accu-

rately model a wide range of applications with complex

geometries. When used for porous materials modeling, it

however suffers from a high computational cost, both due

to the costly formulations, involving four5 to six6 degrees

of freedom (DOF) per node, and the need to refine the dis-

cretization with, e.g., increasing geometric complexity, or

frequency range. Furthermore, modeling poroelastic materi-

als requires particularly refined meshes, as shorter wave-

lengths need to be resolved as compared to more classic

conservative acoustic applications. In addition, the generated

system of linear equations is complex and frequency-

dependent, implying an increased amount of resources

needed to solve the problem, both in terms of computational

time and memory allocation. In an attempt to improve the

efficiency associated with FE modeling of sound absorbing

porous materials, recent contributions have been made on

the use of reduced order models, and particularly the use of a

modal approach. In Ref. 7, generalized complex modes were

used to reduce poroelastic domains, described with the

mixed displacement-pressure formulation. The method was

shown to be difficult to apply in an industrial context. The

solid phase and fluid phase displacements formulation6 was

used in Refs. 8 and 9 to iteratively derive an appropriate

porous modal basis, stating the estimated performance of the

respective methods in terms of number of dofs and precision

only. Recently, Dazel et al. used their 6-DOF-per-node

formulation to propose resolution methods based on normal

modes for the poroelastic equations.10,11 However, the asso-

ciated modal-based solutions proposed were either derived

under the assumption of neglected shear in the porous mate-

rial,10 or demonstrated on unidimensional applications, thus

not involving shear waves.11 In a previous contribution, the

authors introduced an original modal approach based on

standard real-valued porous modes, using the solid and fluid

phase displacements poroelastic formulation.6 While the

method proved to be efficient against the most widely used

formulations, and able to capture porous responses involving

shear waves, it was however shown that, for 3D applications,

the approach involved relatively large modal bases, the
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participation of which was uneven in the response, thus

resulting in an unnecessarily slow convergence rate.

In the present contribution, the authors present a substan-

tial enhancement to this modal approach, for the reduction of

porous domains, validated in the scope of poro-acoustic

applications. It aims at proposing a remedy to the previously

mentioned shortcoming of the method: An original mode

selection, sorting, and truncation procedure is proposed, in

order to extract the porous modes most significantly contrib-

uting to the physical content of the acoustic response. It

results in a further reduced model thus improving the efficacy

of the FE modeling of poro-acoustic problems. The first sec-

tion recalls, in a condensed way, the general poro-acoustic

problem used, as well as the main equations leading to the

corresponding FE formulation for time-harmonic excitations.

The next section briefly recalls the modal approach as

proposed in Ref. 12, and introduces the original sorting and

mode-selection procedure, based on the use of residual

vectors, which is presented in detail. The third section of

this work is dedicated to numerical applications. A small

bi-dimensional poro-acoustic example is first presented, in

order to illustrate the issues mentioned in Ref. 12, and the

improvements offered by the proposed approach. These

improvements are further illustrated on a more complex

bi-dimensional application, before quantifying its potential

and performance on the 3D example previously used in

Ref. 12. Complementary plots for the results presented in this

contribution can be found in Ref. 13. Perspectives to the

proposed approach are given in conclusion to the paper.

II. FINITE ELEMENT FORMULATION FOR
THE PORO-ACOUSTIC PROBLEM

A poro-acoustic problem is considered, whose descrip-

tion and notations are presented in Fig. 1. The formulation,

as presented in this paper, is based on previous research

published by the authors12,14 for poro-elasto-acoustic and

poro-acoustic applications. The acoustic fluid and the porous

medium occupy the domains XF and XP, respectively. The

compressible fluid is described using the pressure fluctuation

(p) as primary variable (Sec. II A 1), while fluid and solid

phases homogenized displacements (us, uf) are retained as

primary variables for the porous media (Sec. II A 2). The

boundaries of the domain are separated into contours of (1)

imposed Dirichlet boundary conditions denoted @1XF and

@1XP, (2) prescribed Neumann boundary conditions denoted

@2XF and @2XP, (3) coupling interface between acoustic fluid

and porous media (CFP).

In the following, a condensed summary of the main

equations is given in order to establish the FE formulation,

which is presented for a stationary harmonic response at

angular frequency x. For completeness, further details of the

derivation can be found in Ref. 12.

A. Dynamic equations and constitutive laws

1. Compressible fluid (p)

The internal fluid within cavities is supposed to be com-

pressible, inviscid, and governed by the Helmholtz equation,

assuming x 6¼ 0,

Dpþ
x2

c20
p ¼ 0 in XF; (1)

where c0 is the constant speed of sound in the fluid, and p

the pressure fluctuation scalar field.

2. Porous media Biot theory (us; uf)

At angular frequency x, the poroelastic medium satis-

fies the following elastodynamic linearized equations, in XP,

derived in the Biot-Allard theory4 (see Table I for notations),

taking into account inertia and viscous coupling effects

between solid and fluid phases,

divrsþðqax
2� ix~bðxÞÞðus�ufÞþð1�/Þqsx

2us ¼ 0;

(2a)

divrf þ ðqax
2 � ix~bðxÞÞðuf � usÞ þ /qfx

2uf ¼ 0;

(2b)

where us and uf are, respectively, the solid phase and fluid

phase averaged displacements in the sense of the Biot

theory. ~bðxÞ (henceforth denoted ~b, where the tilde refers to

a complex-valued quantity) and qa are, respectively, the

complex frequency-dependent viscous drag and the inertia

coupling parameter,4 given by

~b ¼ r/2 1þ
4ixa21gqf

r2K2/2

" #1=2

; and qa ¼ /qfða1 � 1Þ:

rs and rf are the averaged stress tensors for the solid and

fluid phases, respectively. In Ref. 12, it was shown that they

FIG. 1. Description and notations of the poro-acoustic interaction problem.

TABLE I. Material parameters; notations and properties.

Notation and Description Mat. 1 Mat. 2

qs Frame material density ½kg m�3� 30

ðEs; �Þ Frame elastic properties ½kPa; ;� ð845; 0:3Þ ð270; 0:3Þ

qf Ambient fluid density ½kg m�3� 1:21

g Ambient fluid viscosity ½kN s m�2� 1.84� 10�5

P0 Ambient fluid standard pressure ½kPa� 101

c Ambient fluid heat capacity ratio ½;� 1:4

Pr Ambient fluid Prandtl number ½;� 0:71

/ Porosity ½;� 0:96 0:98

a1 Tortuosity ½;� 1:7 1:7

r Static flow resistivity ½kN s m�4� 32 13:5

K Viscous characteristic length ½lm� 90 80

K
0 Thermal characteristic length ½lm� 165 160
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satisfy the Lagrangian stress-strain relations developed by

Biot, rewritten in the following form using Voigt notation

rs ¼ ½Dð1Þ
s þ ð ~K f � P0ÞD

ð2Þ
s � eðusÞ

þ ½D
ð1Þ
sf þ ð ~K f � P0ÞD

ð2Þ
sf � eðufÞ; (3a)

rf ¼ ½D
ð1Þ
sf þ ð ~K f � P0ÞD

ð2Þ
sf � eðusÞ

þ ½D
ð1Þ
f þ ð ~K f � P0ÞD

ð2Þ
f � eðufÞ; (3b)

where eðusÞ and eðufÞ are the strain tensors associated with

the averaged displacements vector fields us and uf , respec-

tively. ~K fðxÞ is the effective bulk modulus of the fluid phase

(henceforth denoted ~K f); D
ð1Þ;ð2Þ
s , D

ð1Þ;ð2Þ
f , and D

ð1Þ;ð2Þ
sf are con-

stant real-valued constitutive matrices detailed in Ref. 12.

B. Fluid-structure interaction problem

1. Poro-acoustic coupling and boundary conditions

At external boundary of the acoustic domain, rigid walls

are considered, imposing a free pressure field (@1XF ¼ ;).
The time-harmonic source term is given by

grad p � n ¼ x2qFuFb on @2XF; (4)

where uFb is non-zero at the acoustic source location only

(see @2XF in Fig. 1).

Coupling at interface CFP is given by normal stress and

normal displacement continuity conditions between the

acoustic fluid and both fluid and solid phases of the porous

medium:

rs nþ ð1� /Þ p n ¼ 0 on CFP; (5a)

rf nþ / p n ¼ 0 on CFP; (5b)

uF � n� ð1� /Þus � n� /uf � n ¼ 0 on CFP; (6)

where / is the porosity of the porous material, i.e., the vol-

ume fraction of fluid.

No external force is applied to the outer boundary

of the porous medium except along interface CFP.

Therefore, @2XP ¼ ; in the considered problems. Finally,

at the external boundary @1XP, two types of boundary

conditions may be prescribed, as detailed in Ref. 12, the

porous material being considered either as sliding or

bonded to a rigid wall.

2. Finite element discretized problem

The test-function method is used to derive the varia-

tional formulation of the coupled problem. Details can be

found in Refs. 12 and 14. Thus, using the Helmholtz equa-

tion (1), the poroelastic dynamic Eqs. (2a) and (2b), the con-

stitutive expressions (3a) and (3b), as well as the excitation

and coupling conditions (4), (6), (5a) and (5b), the following

discretized system of equations arises:

KF 0 0

�ð1�/ÞAT
Fs Kð1Þ

ss K
ð1Þ
sf

�/AT
Ff K

ð1ÞT
sf K

ð1Þ
ff

2

6

6

4

3

7

7

5

0

B

B

@

þð ~K f �P0Þ

0 0 0

0 Kð2Þ
ss K

ð2Þ
sf

0 K
ð2ÞT
sf K

ð2Þ
ff

2

6

6

4

3

7

7

5

þ ix~b

0 0 0

0 Css Csf

0 CT
sf Cff

2

6

4

3

7

5

�x2

MF ð1�/ÞAFs /AFf

0 Mss Msf

0 MT
sf Mff

2

6

4

3

7

5

1

C

A

P

Us

Uf

2

6

4

3

7

5
¼

x2UFb

0

0

2

6

4

3

7

5
:

(7)

This non-symmetric formulation can be symmetrized by

dividing the acoustic equation by x2 (x 6¼ 0).

III. MODAL REDUCTION OF THE POROELASTIC
MEDIUM

A. Presentation of the typical poro-acoustic test case

The proposed modal-based reduction is applied to the po-

rous domain of a poro-acoustic problem, where the acoustic

domain is kept unreduced. Within the acoustic domain, the

degrees of freedom (dofs) are separated into internal ones

(subscript �I), and those at interface with the porous medium

(subscript I). These notations, consistent with previous works

by the authors,12,14 allow for an extension of the method to

problems with multiple interfaces, though considered out of

the scope of the present contribution. In addition, the solid and

fluid phase dofs (subscripts s and f, respectively) are further

denoted by a common set of porous dofs (subscript P), such

that the matrix system of equations (7) may be rewritten as

K�I �I � x2M�I �I K�I I � x2M�I I 0

KI�I � x2MI�I KII � x2MII �x2AIP

0 �AT
IP K

ð1Þ
P þ ð ~K f � P0ÞK

ð2Þ
P þ ix~bCP � x2MP

2

6

6

6

4

3

7

7

7

5

P�I

PI

UP

2

6

6

4

3

7

7

5

¼

x2U�Ib

0

0

2

6

6

4

3

7

7

5

; (8)

which can be symmetrized by dividing the acoustic equations

by x2 (x 6¼ 0), and where AIP is the coupling matrix between

the interface acoustic dofs (subscript I) and the porous dofs

(subscript P), given by AIP ¼ ½ ð1� /ÞAIs /AIf �.

3



B. Modal-based reduction of the homogeneous
porous domain

From the proposed expression of the porous media FE

problem, real-valued normal modes can be computed associ-

ated with the coupled poroelastic eigenvalue problem12

ðK
ð1Þ
P � x2MPÞ/ ¼ 0: (9)

It is supposed that the Dirichlet boundary conditions

imposed result in a nonsingular K
ð1Þ
P matrix, therefore

removing zero-frequency modes. A modal reduction basis

UPm is built, selecting the m lowest-frequency modes. They

are normalized with respect to the porous mass matrix MP so

that UT
PmMPUPm ¼ Im, and U

T
PmK

ð1Þ
P UPm ¼ Xm, where Im is

a unit matrix of dimension m, and Xm a diagonal matrix with

the m lowest eigenvalues of Eq. (9) on its diagonal. It was

shown in Ref. 12 that such a truncated modal basis exhibits

close to orthogonality properties with respect to the global

matrices K
ð2Þ
P and CP, implying sparsely populated associ-

ated matrices jm and fm, defined as U
T
PmCPUPm ¼ fm, and

U
T
PmK

ð2Þ
P UPm ¼ jm, respectively.

The transformation, leading to a reduced version of

system (8), keeping acoustic dofs uncondensed, is completed

by a set of linearly independent attachment functions, link-

ing the interface acoustic dofs to the porous dofs. They are

computed as the K
ð1Þ
P –static responses of the porous medium

to unit pressure successively imposed to each interface

acoustic dof, i.e., WPI ¼ K
ð1Þ�1

P AIP
T .

The corresponding change of basis, leaving acoustic

dofs uncondensed, is then

P̂�I

P̂I

ÛP

2

6

6

4

3

7

7

5

¼

I�I 0 0

0 II 0

0 WPI UPm

2

6

4

3

7

5

P̂�I

P̂I

âm

2

6

6

4

3

7

7

5

; (10)

where cð:Þ denotes an approximation of the original solution,

and âm is the vector of modal coordinates. When applied to a

symmetrized form of Eq. (8), the transformation leads to the

following reduced set of equations,

1

x2
K�I �I �M�I �I

1

x2
K�I I �M�I I 0

1

x2
KI�I �MI�I

1

x2
KII �MII �K

ð1Þ
PII
þ

ð ~K f � P0ÞK
ð2Þ
PII

þ ix~bCPII � x2MPII

ð ~K f � P0ÞK
ð2Þ
PIm

þ

ix~bCPIm � x2MPIm

0 ð ~K f � P0ÞK
ð2Þ
PmI

þ ix~bCPmI � x2MPmI Xm þ ð ~K f � P0Þ jm þ ix~bfm � x2Im

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

P̂�I

P̂I

âm

2

6

6

4

3

7

7

5

¼

UFb

0

0

2

6

6

4

3

7

7

5

;

(11)

where for porous matrices indexed by subscript P, i.e.,

BP 2 fK
ð1Þ
P ; K

ð2Þ
P ; CP; MPg, one has BPII ¼ W

T
PIBPWPI, and

BPIm ¼ W
T
PIBPUPm ¼ BT

PmI
. This reduced model for homoge-

neous poroelastic materials, proposed in Ref. 12, was shown

to be computationally efficient, especially considering the

fact that the modal coordinates associated with the linearly

independent poroelastic equations can be further condensed.

However, the two following issues were observed: (1) a large

amount of modes are required when following the rule of

thumb of 1.5 to 2.5 times the highest frequency of interest for

truncation, even though most seem to have little significant

contribution, and (2) the convergence is not smooth with

respect to the frequency when modes are added into the basis,

which suggests that the modes are not satisfyingly ordered if

sorted according to their eigenfrequencies. In the following,

after introduction of an a posteriori error estimator, a selec-

tion and sorting procedure is proposed in order to overcome

the obstacles presented by these two aspects.

C. A posteriori error estimation

For a given approximation of the solution using a

reduced model, the error with respect to the unreduced

solution can be estimated from the residue associated with

the time-harmonic response. Thus, at a given angular fre-

quency x, the approximate solution, following the resolution

of a set of equations such as Eq. (11), is given by the trans-

formation of Eq. (10). From this approximate solution, using

the last set of equations in Eq. (8), a residual force vector for

the porous domain may be computed as

RFPðxÞ ¼AT
IPP̂I � ðK

ð1Þ
P þ ð ~K fðxÞ � P0ÞK

ð2Þ
P

þ ix~bðxÞCP � x2MPÞÛP: (12)

From this, a K
ð1Þ
P -residual displacement vector can be estab-

lished, RUP
ðxÞ ¼ K

ð1Þ
P

�1RFPðxÞ. It may then be used to con-

struct an error estimator, in analogy with the strain energy

error estimator used in structural dynamics,15 computed at

selected frequencies as

eðxÞ ¼
RT

UP
ðxÞK

ð1Þ
P RUP

ðxÞ

Û
T

PK
ð1Þ
P ÛP

¼
RT

UP
ðxÞRFPðxÞ

Û
T

PK
ð1Þ
P ÛP

: (13)

In the examples considered in this work, where the mean

quadratic pressure in the acoustic domains is used as a

response output, an estimated error lower than 0.1 has

4



proved to be a conservative limit achieving satisfying level

approximations for the frequency responses.

D. Sorting and filtering procedure of porous modal
contributions

Considering the localized and complex phenomena

within the poroelastic layer, making it highly dependent on

the excitation itself, the modes computed using a standard

eigenvalue solver clearly do not all have a relevant contribu-

tion to the response. Here, a selection based on the use of

residual forces is therefore proposed in order to generate a

more specific modal basis.

1. Modal contribution criterion using a residual force

One major advantage with the residual forces is that

they provide a very useful insight into the quality of the

reduced model, as they are directly linked to the approxima-

tion made.15 Therefore, in the context of modal reduction,

they have been used for different purposes. Among the main

possibilities, residual responses may be added, once ortho-

gonalized, in reduction bases that are built iteratively;16 they

may also be used to take into account additional terms not

included in the eigenvalue problem,17,18 or modified parame-

ters in an optimization procedure.19 In fact, the residue

provides a natural way to correct the reduction basis as it

includes missing components.16

In the present approach, where the aim is to determine a

suitable basis for a given frequency range, the residual force

is used to estimate the modal contribution of the modes. By

doing so, only the main components, properly describing the

specific problem at hand, are kept in a further reduced basis.

The residual force is computed, at a given angular frequency

x0, using the solution vector of a reduced model including

only the very low frequency modes, e.g., the first mode, fol-

lowing Eq. (11). Thus, a poor approximate solution, at x0, is

obtained after inverse transformation,

P̂�I

P̂I

ÛP

2

6

6

4

3

7

7

5

x0

¼

I�I 0 0

0 II 0

0 WPI UPLF

2

6

6

4

3

7

7

5

P̂�I

P̂I

â
LF

2

6

6

4

3

7

7

5

x0

; (14)

where UPLF consists of the lowest-frequency mode com-

puted by solving eigenvalue problem (9), and âLF is the

corresponding modal coordinate. Note that UPLF may

include the first few modes with an advantage yet to be

identified, but will be limited to the first mode in this manu-

script. A residual force vector for the porous domain,

RFPðx0Þ, may then be computed following Eq. (12), at

angular frequency x0, based on the approximate solution

vector of Eq. (14). The subsequent K
ð1Þ
P -residual displace-

ment vector is then given by RUP
ðx0Þ ¼ K

ð1Þ�1

P RFPðx0Þ.
The following step consists in comparing each mode shape

to the content of this residue. An indicator such as the

Modal Assurance Criterion (MAC) is an option that could

be used for comparison between a residual displacement

vector and the mode shapes, but does not carry significant

physical meaning and is likely to bring inconclusive results.

A concept such as the modal participation factors may bring

a more significant answer to the present request. Thus, the

participation factor of the ith mode shape UPi to the real

part of the K
ð1Þ
P -residual displacement vector corresponding

to the residual force RFj [e.g., RFPðx0Þ associated with UPLF

of Eq. (14)], is defined as

lij ¼
jUT

PiMPK
ð1Þ
P

�1<ðRFjÞj

jj<ðRFjÞjj
: (15)

For practical implementation purposes, it may be rewritten

without the need to calculate the residual displacement vec-

tor. Using the eigenvalue problem Eq. (9), Eq. (15) becomes

lij ¼
jUPi � <ðRFjÞj

xi
2jj<ðRFjÞjj

; (16)

where xi
2 is the eigenvalue corresponding to the eigenvector

UPi. An analogous definition can be given with respect to

the imaginary part of RFj . The procedure thereafter described

can also be applied to such an imaginary part participation

factor but has shown no additional interest in the considered

validation cases. It is recalled here that the eigenvector

expression UPi refers to a mass-normalized mode. This first

approach enables a proper sorting of the mode shapes

according to their modal participation to the residual vector.

Furthermore, being independent of the residual force norm,

the participation factors defined as such can be used to com-

pare the relative contributions of a mode shape to a set of

several residual force vectors computed at different frequen-

cies. In the following, it is supposed that for a given residual

force RFj , a set of N modes are ordered by decreasing

modal participation such that l1j > � � � > lij > � � � > lNj. In

order to establish a truncation criterion based on these partic-

ipation factors, they are normalized with respect to the

smallest contribution, for a given residual force,

8 i 2 ½1::N� �lij ¼
lij

lNj
P1: (17)

In practice, these factors can differ from one another by several

orders of magnitude, suggesting that a logarithmic scale would

be more appropriate for their representation than a linear scale,

as shown in Fig. 2. The logarithmic representation allows for a

straightforward identification of the significant contributions,

either by their contribution level, or by the change of the tan-

gent slope, as may be observed in Fig. 2. Therefore, several

selection criteria may be proposed, e.g., based on a threshold

value, a gradient-based limit, or a ratio of contribution. After

testing, the latter approach is presented in this work. Thus, a

selection of the n most significant modes in the truncated

modal basis is made using the following criterion, based on a

ratio of the cumulated logarithmic contributions,

vnj ¼

P

n

i¼1

logð�lijÞ

P

N

i¼1

logð�lijÞ

6 vmax; (18)

where vmax is an empirical limit, in the interval �0; 1�, typi-
cally found to be conservatively suitable when set to 0:4 in

the presented applications.
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2. Procedure and practical implementation

The mode sorting indicator presented in Eq. (16), to-

gether with the selection criterion Eq. (18), are used for fil-

tering mode shapes computed with the standard eigenvalue

problem. The quasi-orthogonality property of the modes

computed allows for them to be independently tested for

their participation to the response content. For a small-sized

problem involving the combination of a narrow frequency

band and a low spectral density, one residual vector may be

sufficient to select the proper modes. However, for applica-

tions with a broader frequency content, a selection based on

several residual vectors distributed in the frequency range of

interest is needed. Insofar as the numerical experiments con-

ducted by the authors have shown, a rule of thumb of at least

one residual vector per 400 porous modes, in 3D (ca. one per

250 to 300 porous modes in 2D), has proved to be sufficient

when evenly distributing these vectors in the frequency

range of interest. Two approaches may be considered, for a

mode selection procedure based on a set of residual vectors,

(1) the modes are ordered after a weighted average of their

participation to the different residual vectors, or (2) the

modes are successively selected according to their participa-

tion to the residual vectors ordered in increasing frequency.

The first possibility imposes a weighting to be assigned to

each residual vector, particularly in the aim of ordering the

modes in the modal basis according to their influence in the

frequency range. The second approach offers a natural

weighting of the residual vectors, provided each of them is

best suited for a frequency band centered on its frequency of

computation. The latter method is chosen, selecting a set of

modes with respect to the first residual vector, then com-

pleted by modes successively selected among the remaining

ones, using the additional residual vectors. The correspond-

ing procedure is detailed in Algorithm 1, outlined below.

IV. APPLICATIONS AND RESULTS

A. Illustration of the modal reduction limitations: A
small bi-dimensional application

1. Presentation and reference solution

The simplified bi-dimensional model, used to illustrate

the limitations of the direct modal approach, is presented in

Fig. 3. It consists of an acoustic domain bounded by rigid

walls, and treated with a porous layer on one wall (material

120 in Table I), having sliding boundary conditions on the

side walls and sticking to the back wall. The mesh, consist-

ing of 7� 5 linear elements both in the acoustic and porous

domains, is suitable for an analysis up to 1500Hz.

Algorithm 1: Procedure for selection of significant modes

1. Compute the truncated modal basis (eigenvalue problem)

2. Decompose K
ð1Þ
P

3. Retain NLF low frequency modes for residual vectors computation

(typically NLF ¼ 1)

4. Choose a set of xj for Nj residual vectors

5. Compute the corresponding RFj

6. Include the NLF low frequency modes in the new basis

7. for j ¼ 1 to Nj do

8. Compute lij contributions for the modes not selected

9. Sort modes in descending lij contribution

10. Compute the cumulated contributions vnj

11. Select modes for which vnj6 vmax

12. Add the sorted selected modes to the new basis

13. end for

The reference solution, with and without addition of the

porous layer, is given in Fig. 4, using the mean quadratic

pressure in the acoustic domain as a response quantity. For

the solution without the porous layer, the porous domain is

replaced by an acoustic domain in order to keep the dimen-

sions of the cavity unchanged.

Such a small problem, both in terms of dimensions and

frequency content, provides an insight into the convergence

issues of the modal reduction, keeping the number of neces-

sary modes reasonable.

2. Modal reduction and convergence enhancements

In a first step, the modal-based reduction as proposed in

Ref. 12 is applied. In an attempt to keep the basis as small as

possible, a satisfying convergence is achieved after a trunca-

tion of the modal basis to its 26 first contributions, i.e., up to

1343Hz, which is more restrictive than the rule of thumb

truncation criterion set to 1.5–2.5 times the highest fre-

quency of interest. The corresponding coupled porous mode

shapes are presented in Fig. 5.

From observation of these mode shapes, it is evident

that they will exhibit uneven contributions to the actual

response, hence the need for a filtering of the modal basis.

For instance, some coupled mode shapes, in the low fre-

quency range, show localized behavior more likely to be

observed at higher frequencies or for specific excitations,

e.g., modes 6, 8, 10, 11, 14, 19, 20, 22, 23 when compared to

FIG. 2. (Color online) Example of normalized modal participation factors,

logarithmic scale.

FIG. 3. (Color online) Mesh and dimensions of small 2D application.

6



modes such as 1, 2, 12, 15, 21. The convergence to the refer-

ence solution is presented in Figs. 7(a)–7(c).

It is thus found that (1) the convergence is relatively

slow with respect to the addition of modes in the basis, and

(2) the eigenfrequency-based sorting of the modes does not

necessarily match their frequency range of influence. For

instance, including the first 15 modes in the basis implies

precision improvements in the 500 and 900Hz regions

although the response is not yet converged below 400Hz.

The modal basis refinement procedure proposed in this

paper is therefore applied to the 26-mode basis in order to

evaluate its potential. In this small application, one residual

vector is retained for the mode selection procedure. This re-

sidual vector is computed with the lowest frequency mode

included in the modal basis, and for an arbitrarily chosen

low frequency of 375 Hz. The upper bound for cumulated

contributions, vmax, is set to 0:4. The thus selected significant

modal contributions are the n modes satisfying vnj6 0:4.
The mode selection following the sorting procedure is

presented in Table II. The modal contribution associated with

the first mode, which is included in the modal basis for com-

putation of the residual vector, is given as an indication. It

emphasizes the expected orthogonality between the mode

shape and the residual vector computed with this mode

included in the modal basis. In addition, it further confirms the

established link, on which the selection procedure is based,

between the residual vectors and the content of the modal ba-

sis. The first 8 selected and sorted mode shapes extracted from

the complete modal basis (see Fig. 5) are presented in Fig. 6.

The convergence of the solution using a further reduced

modal basis is presented in Figs. 7(d)–7(f). The precision

achieved is already satisfactory when only the first 8 selected

modes are included in the modal basis, which means that an

upper bound of 0:38 for vmax was sufficient in this case.

Finally, when compared to the convergence of the solution

with unsorted modes in Figs. 7(a)–7(c), the proposed reor-

dering strategy exhibits a significantly smoother conver-

gence with respect to the frequency. For instance, using only

the first four sorted modes results in a converged solution for

more than the first half of the frequency range of interest.

While only snapshots of the convergence are presented, a

monotonic convergence was observed by adding each

selected mode successively into the basis.

The computational time improvement and sparsity per-

formance are not addressed in the 2D case. However, it can

be underlined that the unreduced porous domain consists of

144 dofs, which are reduced to at best 26 dofs using a rule of

thumb truncation of the complete modal basis. Use of the

proposed selection procedure produces a further reduced

poroelastic domain of at best 8 dofs, that is 5.5% of the origi-

nal problem size, or 18 times smaller.

B. Bi-dimensional validation case

1. Presentation and reference solution

The application presented in the previous section is delib-

erately chosen small, both in terms of size and frequency con-

tent, in order to allow a detailed check of the mode filtering

and sorting process, and thus to estimate the potential perform-

ance of the proposed criteria. However, due to its size, the

problem tested is still rather close to a 1D problem, which is

underlined by the selection of 1D mode shapes among the first

modes selected. In this section, the established selection crite-

rion is further tested on a larger 2D application, involving both

FIG. 5. (Color online) Two-dimensional porous mode shapes of modes 1–26: (top) solid and (bottom) fluid phases. Deformed mesh and magnitude of displace-

ment (MP-normalized modes).

FIG. 4. (Color online) Mean quadratic pressure in the acoustic domain.
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a broader frequency content and a proper 2D geometry. Its ge-

ometry, dimensions and mesh are presented in Fig. 8. The

mesh, consisting of 40� 13 linear elements in the acoustic do-

main and 40� 12 linear elements in the porous domain (mate-

rial 120 in Table I), is well suited for an analysis up to 2000Hz.

In order to induce more shear waves into the layer, which

should result in more modes to be selected in order to approxi-

mate the solution, all external porous boundaries are fixed, thus

involving a problem with 574 acoustic dofs and 1935 poroelas-

tic dofs. The acoustic domain is excited via a time-harmonic

excitation at a corner of the acoustic cavity, opposite the porous

layer. The reference solution, with and without the porous

layer, is given in Fig. 9, using the mean quadratic pressure in

the acoustic domain as an output (the porous domain is again

replaced by acoustic elements in the conservative case).

2. Modal reduction and enhancements

The reduction is first made using the complete set of

modes computed from the eigenvalue problem (9), with a rule

of thumb truncation of twice the highest frequency of interest,

i.e., for eigenfrequencies up to 4000 Hz. This involves 348

modes included in the basis. The convergence of the reduced

solution is presented in Figs. 10(a)–10(c) for a modal basis

truncated at significant steps including 91, 131, and 315 modes,

for which convergence is reached. The previously observed

convergence difficulties are exhibited, i.e., slow convergence

and uneven contributions of the modes included in the basis.

The mode sorting and selection method is applied follow-

ing the procedure in Algorithm 1. Considering the increased

frequency content of the problem compared to the previous

section, with more than 300 two-dimensional porous modes,

two residual force vectors are used. They are computed with

the lowest eigenfrequency mode included in the modal basis,

and at frequencies of 450 Hz and 1450 Hz. The upper bound

for cumulated contributions, vmax, is set to 0.4, in line with the

smaller bi-dimensional application. This produces a modal

basis downsized from 348 modes (315 modes if considering

the a posteriori convergence check) to 155 modes, i.e., less

than 50% of its original size, for which the convergence of the

solution at significant steps is presented in Figs. 10(d)–10(f).

Again, while snapshots of a noticeably smoother and faster

convergence are presented, monotonic convergence was

observed, e.g., producing a converged solution over more

than two thirds of the frequency range of interest with the first

131 sorted modes in the basis. Additionally, preliminary cal-

culations have shown that there is a strong influence of shear

waves in the porous layer in the 800–1000Hz region, which is

well captured by the mode selection procedure.

Regarding the performance of the proposed procedure,

although this matter is more specifically addressed in the fol-

lowing section, the original problem, consisting of 1915 porous

dofs, is downsized to 348 and 155 poroelastic dofs, using a trun-

cated modal basis and a further processed modal basis, respec-

tively. Therefore, at best, a reduction to 8% of the original size

of the porous domain is achieved using the proposed method.

C. Performance estimation on a 3D test case

As a follow-up to the definition of the modal approach

in Ref. 12, the same 3D application as recalled in Fig. 11 is

used, with porous material 1, in order to provide perform-

ance indicators of the mode selection procedure in terms of

computational time, and sparsity of the system matrix. The

mesh, consisting of 8� 12� 15 and 8� 12� 5 eight-node

hexahedric acoustic and porous elements, respectively, is

considered best suited for frequencies up to 600 Hz. The

modal basis including modes up to twice the highest fre-

quency of interest is therefore composed of 800 eigenvec-

tors. It is recalled that among those, 386 are non-orthogonal

modes while the remaining 414 lead to linearly independent

equations. The corresponding convergence of the reduced

problem solution was presented in Ref. 12.

In a first attempt, the mode selection procedure is applied

using the previously found conservative value of vmax ¼ 0:4
(in the case of 2D applications) for the cumulated contribu-

tions indicator. One mode is included in the modal basis for

the computation of the residual vectors. Furthermore, two re-

sidual vectors are computed at 150Hz and 500Hz, respec-

tively. Applying the proposed sorting and filtering method

results in a modal basis of 158 eigenvectors of which 67 are

orthogonal. These imply 67 modal coordinates that can be fur-

ther condensed. A comparison of the computational times, for

this problem, is given in Fig. 12, where data for both the

porous-treated cavity and the rigid acoustic cavity (real-val-

ued problem) are given. The former one gives the reference

computational time to be improved for the considered

FIG. 6. (Color online) Porous 2D selected and sorted mode shapes 1, 2, 21, 15, 4, 12, 26, 16: (top) solid and (bottom) fluid phases. Deformed mesh and magni-

tude of displacement.

TABLE II. Significant modal contributions selection.

Mode Eigenfrequency (Hz) lij vnj

1 83 (0) (1)

2 161 12:9 0:06

21 1139 12:0 0:12

15 947 11:9 0:17

4 299 11:1 0:23

12 787 10:4 0:28

26 1343 10:3 0:32

16 951 9:8 0:37

7 468 9:2 0:4

8



problem, while the latter gives an unreachable lower bound

for a reduced solution. In between, the computational times of

the reduced problem using the complete set of 800 modes and

the reduced set of 158 selected eigenvectors are presented.

Each of these two results are completed with the correspond-

ing version where orthogonal modes are further condensed at

each frequency increment.

Several points can be noticed from the computational

time improvements. First, considering the offset at the initial

frequency increment for the reduced models, it appears clearly

that the selection procedure proposed is comparatively cost-

less. This is emphasized when compared to the time needed to

compute the original modal basis. Second, although not show-

ing reduction as spectacular as a 800- to 158-mode basis, the

computational time enhancement is shown to be very signifi-

cant, from 348 s for the original basis, to 250 s with the filtered

basis, representing a 28% improvement. Of course, the fact

that the 1872 acoustic dofs are kept unreduced has to be con-

sidered as a partial explanation. In addition, the reduction in

the number of modes has, at some point, relatively less impact

than keeping the number of attachment functions unchanged,

considering the fact that they fully couple the interface dofs

and the porous modal coordinates. This point is well illus-

trated when observing the sparsity of the unreduced and

reduced problems, as shown in Fig. 13. Finally, the condensa-

tion of modal coordinates corresponding to linearly independ-

ent porous equations appears less interesting as fewer modes

are included in the basis. In fact, for smaller systems to be

solved at each frequency, the efficiency of the condensation

becomes very dependent on the implementation of the matrix

manipulations involved at each actual solution.

The sparsity and the convergence issues are addressed

on a further reduced problem for which the previously found

conservative value of 0:4 for vmax is not respected. Thus, for

vmax set to 0:27, the precision achieved is similar up to

900Hz while slightly inferior above—it is recalled here that

the original mesh is best suited for a solution up to 600Hz.

This criterion involves 83 modes included in the basis, of

which 31 imply linearly independent porous equations.

The corresponding analysis of the system matrix sparsity

is presented in Figs. 13(a) and 13(c), comparing the sparsity

before and after application of the mode selection procedure.

It clearly shows, in this application, that the coupling involved

by the 117 attachment functions at the interface acoustic dofs

has a larger contribution to the solution cost than the

FIG. 7. (Color online) Convergence with modal superposition of non sorted modes (a)–(c) and sorted modes (d)–(f): (a) Mode 1; (b) Modes 1–15; (c) Modes

1–26; (d) Modes 1, 2, 21; (e) Modes 1, 2, 21, 15, 4; (f) Modes 1, 2, 21, 15, 4, 12, 26, 16.

FIG. 8. (Color online) Mesh and dimensions of larger 2D application. FIG. 9. (Color online) Mean quadratic pressure in the acoustic domain.
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remaining 83 porous modal dofs. This means that the use of a

reduced set of attachment functions, especially in the case of

large interfaces, is an important complement to the modal

reduction itself. Several contributions can be found in the lit-

erature on this topic,21,22 and applying interface condensation

techniques is considered as an extension to this work.

The sparsities corresponding to the porous modal coor-

dinates submatrices are further detailed in Figs. 13(b) and

13(d). These detailed views of the sparsity, after modal

transformation of the porous equations, underline its poten-

tial in the prospect of scaling the method to larger problems.

The further selection of significant modal contributions

allows both for a reduction of the computational time and

saves a substantial amount of memory allocated to the sys-

tem matrix. For instance, in the considered application, the

storage allocated to the porous subdomain after the modes

selection represents a little more than 10% of the original

reduction. It also illustrates the proportion of linearly inde-

pendent equations kept in the process, which is very benefi-

cial for the efficiency at larger scales.

The combined analysis of the computational time and the

sparsity of the reduced matrices illustrates the very promising

performances of the two-step reduction method proposed. This

has been further verified by the authors on a larger scale prob-

lem supporting these results. Though not included in this work

for conciseness purposes, they are available in Ref. 13.

Furthermore, two aspects are emphasized with the aim to fur-

ther improve the reduction procedure: First, the number of

attachment functions has to be kept small, as previously men-

tioned; then, the initial computation of the modal basis is a

drawback for further improvements, especially in the scope of

larger applications. Regarding this second aspect, using

efficient strategies such as the Automated Multi-Level

Substructuring (AMLS) method,23 to generate approximate

FIG. 11. (Color online) Acoustic cavity mesh and dimensions for 3D problem.

FIG. 12. (Color online) Computation time comparison for 3D problem—

vmax ¼ 0:4.

FIG. 10. (Color online) Convergence with modal superposition of non sorted modes (a)–(c) and sorted modes (d)–(f): (a) 91 modes; (b) 131 modes; (c) 315

modes; (d) 91 sorted modes; (e) 131 sorted modes; (f) 155 sorted modes.
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eigenvectors, could bring substantial improvements. Another

possibility is to consider a more specific way of computing the

needed eigenvectors, thus reducing the initial number of modes

in the basis. Load-dependent Ritz vectors generated iteratively

could possibly be one way to further enhance this initial step.24

Finally, the convergence issue, which is however less crit-

ical than the precision and efficiency aspects, is addressed for

this 3D example. Figure 14 illustrates the reduced solution

obtained with (1) porous material 1 (see Table I)20 and vmax

set to 0:27, (2) porous material 2 (see Table I)20 and vmax set

to 0:3, respectively, compared to their reference solution, at

significant steps of the convergence. For the latter case, using

material 2, 971 modes were included in the original basis to

cover twice the highest frequency of interest, thus implying

three residual vectors for the mode selection procedure, calcu-

lated at 150, 500, and 750Hz. When compared to convergence

issues demonstrated in Ref. 12, the results confirm what is

observed for the 2D applications: The mode selection proce-

dure improves the mode sorting, yielding a smoother conver-

gence with respect to the frequency. The convergence was

further checked and found to be monotonic. The direct impli-

cation of these observations is that if the selection upper bound

vmax was to be chosen too small (as is the case when choosing

vmax ¼ 0:27 in Fig. 14), this would only have consequences

for the higher frequency range of the considered problem.

Truncation-wise, this places the proposed modal reduction for

sound absorbing porous domains in the same context of use as

traditional modal-based methods for conservative media.

V. CONCLUSION

The present work has been focused on possible remedies

to the limitations raised in Ref. 12 by the authors, regarding

convergence issues for the use of a modal approach to reduce

FIG. 14. (Color online) Convergence with modal superposition of selected modes for vmax ¼ 0:27, porous material 1: (a) 2 modes; (b) 58 modes; (c) 83 modes;

and for vmax ¼ 0:3, material 2: (d) 45 modes; (e) 78 modes; (f) 141 modes.

FIG. 13. (Color online) Sparsity of the system matrix and detailed sparsity corresponding to the modal DOF, before and after mode selection procedure: (a

and b) 800 modes, (c and d) 83 modes.
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poroelastic domains. For this purpose, an original sorting pro-

cedure was proposed for the modes previously selected in a

truncated modal basis using a standard real-valued eigenvalue

problem. This procedure is based on the modes participation to

the content of a poroelastic residual force calculated from a

poor approximate solution. This poor approximate solution is

the outcome of a reduced model typically including the first

mode in the basis. An extension to more complex problems,

including a broader dynamic behavior and frequency range,

was suggested and tested. It involves a procedure based on

multiple residual forces calculated at different frequencies in

the spectrum. The procedure was shown to properly sort the

modes according to their contribution in the frequency range of

the response.

Furthermore, an empirical truncation criterion was

introduced, thus defining a two-step truncation procedure to es-

tablish a suitable modal basis. The first truncation, based on the

standard rule of thumb stipulating that the modes whose eigen-

frequencies are lower than 1.5 to 2.5 times the highest fre-

quency of the response should be selected, ensures that the

dynamic content is included in the basis. The second trunca-

tion, after applying the sorting procedure, reduces the basis to

its most significant components. A validation case, including a

performance analysis on a 3D academic problem, demonstrated

the potential of the proposed approach: The procedure is cost-

less when compared to the calculation of the modes, and exhib-

its promising performances in terms of storage and

computational efficiency. A complementary larger scaled prob-

lem, to be found in Ref. 13, was tested in order to show the

potential of the approach in its further extension to more com-

plex applications. Furthermore, the modal basis thus estab-

lished, being equivalent to the modal bases used in component

mode synthesis techniques for conservative problems, can ben-

efit from all the proposed modulations in the literature, among

which are the following: Choice of different combinations of

normal modes and interface functions, use of corrections to

improve the convergence, use in a flexibility approach, etc.

There are however a few points that were addressed only

as perspectives to the present work, using methods proposed in

the literature. First and most importantly, the initial step, which

consists in solving the eigenvalue problem, remains a drawback

for extension to larger and more complex applications. For this

purpose, an iterative approach could offer a possible improve-

ment in the construction of the optimal basis. Second, porous

materials are usually included into sound packages involving

multilayer setups. Therefore, the reduction of the number of

interface functions is of prime importance in order not to lose

the benefits of the proposed approach in high surface-to-vol-

ume ratio configurations. The latter point, identified as the pri-

mary extension to be made to this contribution, concerns the

applicability to more complex and industrial-like cases, which

is currently under investigation after the validations proposed

in this work on small 2D and 3D poro-acoustic applications.
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