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Application of Kramers–Kronig relations to time–temperature
superposition for viscoelastic materials

L. Rouleau a,b,⇑, J.-F. Deü a, A. Legay a, F. Le Lay b

a Structural Mechanics and Coupled Systems Laboratory, Conservatoire National des Arts et Métiers, 292 rue Saint-Martin, 75141 Paris, France
b Service Technique et Scientifique, DCNS Nantes-Indret, 44620 La Montagne, France

Dynamical mechanical analysis (DMA) is an experimental technique commonly used to study the frequency and temperature dependence 
of the mechanical properties of visco-elastic materials. The measured data are traditionally shifted by application of the time–

temperature superposition principle to obtain the master curves of the viscoelastic mate-rial. The goal of this work is to present a 
methodology to determine the horizontal and ver-tical shift coefficients to be applied to the isotherms of storage and loss moduli 
measured. The originality lies in the calculation of the shift coefficients by a method requiring fulfil-ment of the Kramers–Kronig relations 
conveying the causality condition. The computed vertical shift coefficients are compared to the coefficients predicted by the Bueche–
Rouse theory.

1. Introduction

Viscoelastic materials are extensively used in industrial

applications for noise and vibration reduction. A good rep-

resentation of their mechanical properties is required in

order to predict and optimise structures integrating such

materials. Viscoelastic materials present a temperature

and frequency dependence of their mechanical properties.

Dynamical mechanical analysis (DMA) is a common tech-

nique to characterise materials as a function of tempera-

ture and frequency, but due to the limitations of the

measurement instruments, only a reduced frequency range

can be investigated. To know the material behaviour on a

broader frequency range, the time–temperature superposi-

tion (TTS) principle is classically applied (Ferry, 1980;

Emri, 2005; Dealy and Plazek, 2009). It stipulates that for

some materials, termed as thermo-rheologically simple

(TRS), data at different temperatures T can be shifted verti-

cally and horizontally to obtain the master curves of the

material on a wide frequency range at a chosen reference

temperature T0. The temperature-dependent shift coeffi-

cients aTðT; T0Þ govern the horizontal shifts by multiplying

the frequency for each isotherm, while the temperature-

dependent shift coefficients bTðT; T0Þ, applied to the stor-

age and loss moduli, dictate the vertical shifts (see Eq.

(11) in Section 2.3).

The horizontal shift coefficients can be estimated by the

WLF (Williams–Landel–Ferry) equation which gives an

empirical expression of the temperature-dependent func-

tion aTðT; T0Þ (Williams et al., 1955). But they are usually

determined by ‘‘hand-shifting’’ (Ferry, 1980) or by curve fit-

ting techniques (Sihn and Tsai, 1999; Gergesova et al., 2011;

01dB-Metravib) in order to best superimpose the isotherms.

The former is subjective and lacks of precisionwhile the lat-

ter is more reliable since the procedure is automated. How-

ever, both techniques do not give any physical meaning to

the shift coefficients and are prone to errors due to fitting

procedures. Some authors have proposed other methods in

which the shift coefficients are identified along the parame-

ters of a viscoelasticmodel (Fowler and Rogers, 2004;Madi-

gosky et al., 2006; Guedes, 2011). This way, the calculated
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shift coefficients have a physical meaning since the visco-

elastic model is supposed to verify some conditions such

as causality (Pritz, 1999). However, it requires to set a priori

the material modulus function. If the chosen viscoelastic

model is not the most appropriate to model the frequency

dependence of themechanical properties of the viscoelastic

material, it may lead to significant discrepancies between

the experiments and the model. In Caracciolo et al. (2001)

and Chailleux et al. (2006), the horizontal shift coefficients

are determined thanks to the approximated Kramers–Kro-

nig relations described in Booij and Thoone (1982), linking

the storage and the loss moduli. In both cases, this method

gives satisfactory results but has limited use due to the as-

sumed approximations.

The vertical shift coefficients represent the tempera-

ture-dependence of the modulus. This dependence is usu-

ally weak and the coefficients are often taken as unity.

However, some materials exhibit a need for vertical shift-

ing. These shifting coefficients can be determined for best

visual superposition of the isotherms (Ferry, 1980; Fowler

and Rogers, 2006) or by identification of a viscoelastic

model (Guedes, 2011). The drawbacks of these methods

have already been cited. Another kind of method is an

application of the Bueche–Rouse theory of linear viscoelas-

ticity to estimate the vertical shift factors from measure-

ments of the temperature variation of the modulus or of

the density. For example, in Resh et al. (2009), the steady

state compliance of a polymer is measured at various tem-

peratures. The efficiency of this class of method relies on

the precision of the measurements.

The purpose of this work is to present an original meth-

od to generate master curves consistent with the principle

of causality, without requiring an a priori material’s mod-

ulus function. In a first step, horizontal coefficients are

determined with a classical least square method, and ver-

tical shift coefficients set to unity. After this initialisation,

the shift coefficients are optimised such that the Kra-

mers–Kronig relations are best verified. This method en-

sures that the built master curves fulfil the best the

Kramers–Kronig causality conditions. It is applied to

DMA measurements of Deltane 350, a polymer from Paul-

stra�. The vertical shift coefficients calculated with the

proposed method are compared to those predicted from

the Bueche–Rouse theory, calculated from measurements

of the density with temperature.

2. Theory of viscoelasticity

This first section recalls the definition and the calcula-

tion of the Kramers–Kronig relations, as well as the

time–temperature superposition principle, which are the

key points of the shifting method presented in the next

section. The Williams–Landel–Ferry equation and the

Bueche–Rouse theory which can be used to make a critical

study of the optimised shift coefficients are also exposed.

2.1. Kramers–Kronig causality relations

The frequency and temperature dependence of the vis-

coelastic material’s properties can be described by a com-

plex modulus G�ðxÞ:

G�ðxÞ ¼ G0ðxÞ þ iG00ðxÞ ¼ jG�ðxÞj expði/ðxÞÞ ð1Þ

where G0ðxÞ and G00ðxÞ are the storage and loss moduli,

jG�ðxÞj is the amplitude and /ðxÞ is the phase angle. In

the context of linear viscoelasticity, the constitutive law

which links the stress r to the strain � can be written in

its convolution integral form (Christensen, 2003):

rðtÞ ¼
Z t

�1

Gðt � sÞ
d�ðsÞ
ds

ds ð2Þ

If the initial strain is �ðtÞ ¼ 0 for t < 0, and the modulus

is written as:

GðtÞ ¼ Gðt ! 0Þ � hðtÞ; ð3Þ

the stress–strain relationship becomes:

rðtÞ ¼ Gðt ! 0Þ�ðtÞ �
Z t

�1

hðt � sÞ
d�ðsÞ
ds

ds ð4Þ

The causality condition requires the memory function

hðtÞ to be causal, i.e. hðtÞ ¼ 0; 8t < 0. The Fourier trans-

form of a real linear causal function hðtÞ that does not pos-

sess any singularity at t = 0 respects certain relations

between its real and imaginary parts (Champeney, 1973):

Rðh
�
ðxÞÞ ¼

2

p

Z 1

0

uIðh
�
ðuÞÞ

x2 � u2
du

Iðh
�
ðxÞÞ ¼

2x
p

Z 1

0

Rðh
�
ðuÞÞ

u2 �x2
du

ð5Þ

Using Eq. (1) and the Fourier transform of Eq. (3)

(G�ðxÞ ¼ G1 � h
�
ðxÞ) in Eq. (5) leads to the so-called Kra-

mers–Kronig relations linking the real and the imaginary

parts of the complex modulus (Kramers, 1927; Kronig,

1926; Silva and Gross, 1941):

G0ðxÞ ¼ G1 þ
2

p

Z 1

0

uG00ðuÞ

x2 � u2
du ð6aÞ

G00ðxÞ ¼
2x
p

Z 1

0

G0ðuÞ

u2 �x2
du ð6bÞ

where G1 ¼ G�ðx ! 1Þ ¼ Gðt ! 0Þ is the unrelaxed mod-

ulus. Similar equations link the logarithm of the modulus’

amplitude to the phase angle:

lnðjG�ðxÞjÞ ¼ lnðjG1jÞ þ
2

p

Z 1

0

u/ðuÞ

x2 � u2
du ð7aÞ

/ðxÞ ¼
2x
p

Z 1

0

lnðjG�ðuÞjÞ

u2 �x2
du ð7bÞ

The Kramers–Kronig equations are a necessary and suf-

ficient condition for causality (Enelund and Olsson, 1999).

2.2. Numerical calculation of the Kramers–Kronig relations

Booij and Thoone (1982) propose a first approximation

of the Kramers–Kronig relations by making assumptions

on the monotony of the functions to be integrated:

G00ðxÞ �
p
2

dG0ðuÞ

d lnu

� �

u¼x

ð8aÞ
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G0ðxÞ � G0ð0Þ � �
xp
2

d½G00ðuÞ=u�

d lnu

� �

u¼x

ð8bÞ

/ðxÞ �
p
2

d ln jG�ðuÞj

d lnu

� �

u¼x

ð8cÞ

These approximated relations are used in Caracciolo

et al. (2001) to calculate the phase angle from measure-

ments of the amplitude of the modulus. But they do not

involve any integration, and in Parot and Duperray

(2007) it is shown that this approach is not good enough

to deal with experimental measurements since it intro-

duces important noise in the computed responses. In-

stead, Parot and Duperray (2007) propose a numerical

method to evaluate the exact Kramers–Kronig relations

of Eqs. (6) and (7). The outline of this method is exposed

here and the reader is referred to Parot and Duperray

(2007) for more details. Let us consider n measurements

of lnðjG�jÞ and / at the frequencies ðxiÞ1::n. The first step

is to average the logarithm of the modulus’ amplitude

and the phase angle over the next two neighbours to

obtain smooth functions lnðjG�jÞ and / evaluated at the

middle point measurement frequencies. The second step

is to extend these functions to continuous functions on

the domain of integration ½0;þ1½:

� lnðjG�jÞ is an even function that is assumed to be con-

stant at high and low frequencies to account for the

slow modulus’ variations observed in the rubbery pla-

teau and the glassy zone:

lnðjG�ðxÞjÞ ¼ lnðjG�ðx1ÞjÞ; 8x 2 ½0;x1�

lnðjG�ðxÞjÞ ¼ lnðjG�ðxnÞjÞ; 8x 2 ½xn;þ1½

� / is an odd function that is equal to zero at x ¼ 0 since

the complex modulus is real at x ¼ 0 (static modulus).

It is assumed to vary linearly on ½0;x1� and to be con-

stant on ½xn;þ1½. Although devoid of physical mean-

ing, these reasonable simple assumptions allow an

easy analytical integration of the Kramers–Kronig

relations:

/ðxÞ ¼ /ðx1Þ
x
x1

; 8x 2 ½0;x1�

/ðxÞ ¼ /ðxnÞ; 8x 2 ½xn;þ1½

The justification of these extensions are based on the

parity of the functions lnðjG�jÞ and /. The discretized inter-

val of integration is composed of the middle point mea-

surement frequencies, the limit of integration 0 and þ1,

and two added points x1=2 and xn þ ðxn �xn�1Þ=2 :

½X0 ¼ 0; X1 ¼
x1

2
; X2 ¼

x2 þx1

2
; . . . ; Xn

¼
xn�1 þxn

2
;Xnþ1 ¼ xn þ

xn �xn�1

2
;Xnþ2 ¼ þ1½

The functions lnðjG�jÞ and / are assumed to be linear on

each interval:

lnðjG�ðxÞjÞ ¼ aixþ bi; on ½Xi;Xiþ1�

/ðxÞ ¼ cixþ di; on ½Xi;Xiþ1�

�

ð9Þ

The diagrams in Fig. 1 explain the process of smoothing,

extension and linearisation of the functions lnðjG�jÞ and /

to be integrated. After numerical integration of Eqs. (7a)

and (7b), using the relations (9), one gets:

lnðjG�ðxÞjÞ � lnðjG1jÞ ¼ �
2c0
p

X1 �
c0x
p

ln
X1 �x
X1 þx

�

�

�

�

�

�

�

�

�
X

n

i¼1

2ci
p

ðXiþ1 �XiÞ þ
cix
p

ln
ðXiþ1 �xÞðXi þxÞ

ðXiþ1 þxÞðXi �xÞ

�

�

�

�

�

�

�

�

�

þ
di

p
ln

X
2
iþ1 �x2

X
2
i �x2

�

�

�

�

�

�

�

�

�

�

#

/ðxÞ ¼
b0

p
ln

X1 �x
X1 þx

�

�

�

�

�

�

�

�

þ
X

n

i¼1

aix
p

ln
X

2
iþ1 �x2

X
2
i �x2

�

�

�

�

�

�

�

�

�

�

"

þ
bi

p
ln

ðXiþ1 �xÞðXi þxÞ

ðXiþ1 þxÞðXi �xÞ

�

�

�

�

�

�

�

�

�

þ
bnþ1

p
ln

Xnþ1 þx
Xnþ1 �x

�

�

�

�

�

�

�

�

ð10Þ

This method allows the calculation of the phase angle

from the amplitude of the modulus and vice versa. The

accuracy of the integrals’ calculation depends on the fre-

quency range on which is performed the integration, the

density and the repartition of measurement points. The

former must be large enough to justify the extensions

made on the functions lnðjG�jÞ and /. The latters have an

influence on the validity of the linear assumption made

on each interval of integration discretised. This method

will be used in Section 3.2 to compute the amplitude and

the phase angle from the Kramers–Kronig relations and

the horizontally shifted experimental data.

2.3. Time–temperature superposition principle

The classically applied time–temperature superposition

principle involves only the horizontal shift coefficients aT,

and gives an equivalence between the mechanical proper-

ties measured at a frequency f and a temperature T and the

mechanical properties at a reduced frequency fr and a ref-

erence temperature T0. However for some materials, the

introduction of vertical shift coefficients (denoted bT) is

necessary. In its general form, the time–temperature

superposition principle can be summarised as this:

fr ¼ aTðT; T0Þf

G0ðfr; T0Þ ¼ bTðT; T0ÞG
0ðf ; TÞ

G00ðfr; T0Þ ¼ bTðT; T0ÞG
00ðf ; TÞ

ð11Þ

where fr is the reduced frequency and T0 is the reference

temperature. Fig. 2 represents the time–temperature prin-

ciple. The time–temperature superposition principle ap-

plies when the material is said to be thermo-

rheologically simple, which means that the same shift fac-

tors are applied to all relaxation times, and when the tem-

perature dependence of the shift coefficients has a

reasonable form (Arrhenius, WLF) (Ferry, 1980). A good

indication of thermo-rheological simplicity is to look at

the Cole–Cole plot (Han and Kim, 1993) (loss modulus

G00ðxÞ versus storage modulus G0ðxÞ) or the wicket plot

(Van Gurp and Palmen, 1998) (loss angle /ðxÞ versus mod-

ulus’ magnitude jG�ðxÞj). As long as all data lie close to one

3
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curve, the requirements for thermo-rheological simplicity

are fulfilled. These plots also identify the need for vertical

shifting: if the plots exhibit a slight temperature depen-

dence like parallel isotherms, then vertical shifting is

necessary.

The Williams–Landel–Ferry equation (WLF) is an empiri-

cal equation (Williams et al., 1955) for the temperature-

dependent horizontal shift coefficients, based on the

assumption that the fractional free volume of polymers in-

creases with temperature:

logðaTðT; T0ÞÞ ¼
�C1ðT � T0Þ

C2 þ T � T0

ð12Þ

where C1 and C2 are empirical coefficients that are found of

the order of magnitude 10 and 100 respectively (Ferry,

1980; Williams et al., 1955). These values of C1 and C2 vary

fromonematerial to another, but the horizontal shift coeffi-

cientusually comply reasonablywellwith theWLFequation

(Madigosky et al., 2006; Fowler and Rogers, 2004; Guedes,

2011; Bossemeyer, 2001), and a good fit is commonly asso-

ciated to coherent values of the horizontal shift coefficients.

The Bueche–Rouse theory is explaining the polymer

chain motion of unentangled polymers in the context of

linear viscoelasticity (Dealy and Wissbrun, 1990; Bueche,

1954). This theory predicts that the relaxation modulus is

proportional to qT , where q and T are the density of the

polymer and the temperature respectively. Since the verti-

cal shift coefficients reflect the temperature dependence of

the modulus of the viscoelastic material, they can be ex-

pressed as (Dealy and Plazek, 2009):

Fig. 1. Smoothing, extension and linearisation of the functions lnðjG�jÞ (a) and / (b).

Fig. 2. Time–temperature superposition principle. (a), (b) Isotherms of the complex modulus amplitude and the phase angle on a limited frequency range

with T1 < T0 < T2 . (c), (d) Horizontal shifting of the isotherms of complex modulus amplitude and the phase angle with T0 the reference temperature. (e), (f)

Vertical shifting of the isotherms of complex modulus amplitude with T0 the reference temperature.

4
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bTðT; T0Þ ¼
T0q0

Tq
ð13Þ

where q0 refers to the density of the material at the refer-

ence temperature T0. Assuming that the mass of the mate-

rial remains constant during the DMA measurements leads

to the following expression of the vertical shift

coefficients:

bTðT; T0Þ ¼
T0

T
ð1þ aðT � T0ÞÞ

3 ð14Þ

where a is the linear thermal expansion coefficient of the

material. Knowing this coefficient, the Bueche–Rouse the-

ory can be applied to give an estimation of the vertical shift

coefficients.

3. Determination of the shift coefficients

In this section the optimisation procedure used to

determine both the horizontal and vertical shift coeffi-

cients is presented. The first step is to chose an appropriate

starting point for the algorithm. It is presented in Section

3.1. The second step is to optimise the coefficients by min-

imising a criterion based on the Kramers–Kronig relations.

This is developed in Section 3.2. The optimised coefficients

can be compared to those predicted by the known theories

presented in the previous section.

3.1. Starting point

The analytical integration of the Kramers–Kronig rela-

tions requires the modulus’ amplitude and the phase angle

to be continuous functions over a broad reduced frequency

range representative of the interval of integration ½0;þ1�

(the functions are then extended to ½0;þ1�). For that rea-

son, it is important that the starting shift coefficients pro-

duce almost superimposed isotherms. The starting

horizontal shift coefficients a0
T are taken as the set of

parameters minimising the norm of a cost function F0 rep-

resenting the deviation of the shifted experimental points

from a polynomial fitted curve:

a0
T ¼ x min

x

X

nf

i¼1

jF0ðx; f
i
r Þj

2

 !�

�

�

�

�

( )

ð15Þ

Experimental measurements of the modulus are per-

formed on the frequency range f ¼ ½f1; f2; . . . ; fnf � and the

temperature range T ¼ ½T1; T2; . . . ; TnT �. This leads to a cloud

of n ¼ nT � nf measurement points. For a given set of

parameters x ¼ ½aTðT1Þ; . . . ; aTðTnT Þ�, the time–temperature

superposition principle is applied to experimental data to

obtain shifted data:

f ir ¼ aTðT jÞfk

lnðjG�
shiftðx; f

i
r ðxÞÞjÞ ¼ lnðbTðT jÞÞ þ lnðjG�

expðT j; fkÞjÞ

/shiftðx; f
i
r ðxÞÞ ¼ /expðT j; fkÞ

ð16Þ

where i ¼ 1 . . .n; j ¼ 1 . . .nT and k ¼ 1 . . .nf . The shifted

data are then fitted by a polynomial. Since the storage

and loss moduli G0
shift and G00

shift are found to be more easily

fitted by a polynomial than lnðjG�
shiftjÞ and /shift, the cost

function is defined as:

F0ðx; f
i
r Þ ¼

G�shiftðx; f
i
r ðxÞÞ � G�

fitðx; f
i
r ðxÞÞ

G�
shiftðx; f

i
r ðxÞÞ

¼
G0shiftðx; f

i
r ðxÞÞ þ iG00

shiftðx; f
i
r ðxÞÞ � G0

fitðx; f
i
r ðxÞÞ � iG00

fitðx; f
i
r ðxÞÞ

G0
shiftðx; f

i
r ðxÞÞ þ iG00

shiftðx; f
i
r ðxÞÞ

ð17Þ

where G0
shift and G00

shift are the polynomial fit of G0
shift and

G00
shift respectively. The horizontal shift coefficient at the ref-

erence temperature aTðT0Þ is set to unity. For many mate-

rials the vertical shift coefficients are close to unity, and

are generally smaller than the horizontal shift coefficients

by at least one order of magnitude (Guedes, 2011; Fowler

and Rogers, 2006). So the starting coefficients are set to

unity. Another possibility would be to initialize the vertical

shift coefficients from Eq. (14), after measuring the thermal

expansion coefficient.

3.2. Optimisation process

According to the causality principle, the modulus’

amplitude and the phase angle of a linear viscoelastic

material are linked by the Kramers–Kronig relations. The

goal of the optimisation process is to find the shift coeffi-

cients producing the best master curves according to those

relations. The optimised shift coefficients are the ones min-

imising a cost function F representing the discrepancies

between the experimental shifted modulus and the modu-

lus computed by the Kramers–Kronig relations:

½aopt
T ;b

opt
T � ¼ x min

x

X

nf

i¼1

jFðx; f ir Þj
2

!�

�

�

�

�

( )

ð18Þ

For a given set of parameters

x ¼ ½aTðT1Þ; . . . ; aTðTnT Þ; bTðT1Þ; . . . ; bTðTnT Þ�, the time–tem-

perature superposition principle is applied to experimental

data to obtain shifted data as in Eq. (16). The functions

lnðjG�
shiftjÞ and /shift are first smoothed and extended on

the interval ½0;þ1½ (G�
intj and /int), then numerically inte-

grated in the Kramers–Kronig relationships, as described

in Section 2.2:

lnðjG�
KKðx; frÞjÞ ¼ lnðjG�

int1jÞ þ
2

p

Z 1

0

u/intðx;uÞ

f 2r � u2
du

/KKðx; frÞ ¼
fr
p2

Z 1

0

lnðjG�
intðx; uÞjÞ

u2 � f 2r
du

ð19Þ

Exact verification of the Kramers–Kronig relationship

corresponds to lnðG�
KKÞ ¼ lnðG�

shiftÞ. The cost function to be

minimised is defined as:

Fðx; f ir Þ¼
lnðG�

shiftðx; f
i
r ðxÞÞÞ� lnðG�

KKðx; f
i
r ðxÞÞÞ

lnðG�
shiftðx; f

i
r ðxÞÞÞ

¼
lnðjG�

shiftðx; f
i
r ðxÞÞjÞþ i/shiftðx; f

i
r ðxÞÞ� lnðjG�

KKðx; f
i
r ðxÞÞjÞ

lnðjG�
shiftðx; f

i
r ðxÞÞjÞþ i/shiftðx; f

i
r ðxÞÞ

�
i/KKðx; f

i
r ðxÞÞ

lnðjG�
shiftðx; f

i
r ðxÞÞjÞþ i/shiftðx; f

i
r ðxÞÞ

ð20Þ

Any viscoelastic model can then be identified on the ob-

tained master curves. This approach allows a simultaneous

and automatic determination of both horizontal and verti-

cal shift coefficients directly from DMA measurements.
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4. Results and discussion

4.1. DMA measurements

The viscoelastic material used in this study is Deltane

350, an amorphous polymer supplied by Paulstra�. DMA

measurements are carried out on a Metravib DMA 450+

with the testing configuration in the shear mode, as shown

on Fig. 3. Specimen of size 9 mm � 6 mm � 2 mm are first

excited at 10 Hz, over the temperature range �80 �C to

70 �C with a heating rate of 2 �C/min. This allows the deter-

mination of the glass transition temperature Tg ¼ �10 �C.

The specimen are then tested in the frequency range 0–

400 Hz (nf ¼ 10 measurement points), and over the tem-

perature range �40 �C to 43 �C (nT ¼ 18 measurement

points) with a heating rate of 2 �C/min. A dynamic dis-

placement of 5 lm is applied to the specimen to remain

in the linear viscoelastic domain.

The validity of the time–temperature superposition

principle for Deltane 350 is checked by way of the wicket

plot, shown on Fig. 4, and the Cole–Cole plot, shown on

Fig. 5, obtained from the DMA measurements. Both figures

show a slight temperature dependence of the material’s

properties, which indicates a need for vertical shifting. It

is reminded that the wicket and the Cole–Cole plots remain

unaffected by a change in the horizontal shift coefficients.

4.2. Obtention of the master curves

The method presented above is applied to the DMA

measurements for Deltane 350 to determine the horizontal

and vertical shift coefficients. The reference temperature

chosen for the application of the time–temperature super-

position principle is the operating temperature T0 ¼ 12 �C.

The master curves obtained are given on Fig. 6. A reason-

ably good superposition is achieved although the points

corresponding to the three coldest isotherms do not super-

impose well with the others. The same observation can be

made by looking at Fig. 4. As the vertical shift coefficients

do not apply to the phase angle, the problem is transferred

on the master curves.

Fig. 7 compares the experimental modulus’ amplitude

and phase angle to their counterparts calculated by analyt-

ical integration of the Kramers–Kronig relations, at the first

step of the optimisation. The chosen starting shift coeffi-

cients give quite good results since the experimental val-

Fig. 3. DMA Metravib 450+ in a shear mode configuration. A sinusoidal displacement is applied to the sample and the shear stress is measured. The

environmental chamber allows to make measurements at different temperatures.
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Fig. 4. Wicket plot for Deltane 350.
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ues are close to the computed values. However, Fig. 7

shows differences in the static modulus (G�ðx! 0Þ) and

in the frequency and peak value of the phase angle.

The same comparison is made at the end of the optimi-

sation (see Fig. 8) and the results are greatly improved. The

good superposition between the two curves shows that the

master curves obtained at the end of the optimisation are

consistent with the Kramers–Kronig relations. The small

errors on the phase angle at low and high frequency are

due to border effects when integrating analytically the Kra-

mers–Kronig relations. This can be improved by investigat-

ing temperatures at colder and higher temperatures.

4.3. Analysis of the optimised shift coefficients

The horizontal and vertical shift coefficients computed

by the algorithm are plotted versus temperature in Figs. 9

and 10. The horizontal shift coefficients are fitted by the

WLF equation: the parameters C1 ¼ 6:71 and C2 ¼ 135:0

are found to lead to a very good fit. As shown in Fig. 9,

the optimised horizontal shift coefficients are really close
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Fig. 5. Cole–Cole plot for Deltane 350.
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Fig. 6. Master curves for Deltane 350 with a reference temperature of 12 �C.
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to the starting ones. So the errors observed in Fig. 7 are

mostly due to the starting vertical shift coefficients. In-

deed, Fig. 10 shows that the temperature dependence of

the vertical shift coefficients is not negligible and needs

to be taken into account when applying the time–temper-

ature superposition principle. The values of these coeffi-

cients are about one order of magnitude smaller than the

horizontal shift coefficients, which is coherent with results

from the literature (Guedes, 2011; Hatzikiriakos, 2000) and

follow a decreasing trend with some scattering. Similar re-

sults are obtained by initializing the vertical shift coeffi-

cient to those calculated from the Bueche–Rouse equation.

In order to compare the optimised vertical shift coeffi-

cients with those predicted by the Bueche–Rouse theory,

measurements of the linear thermal expansion coefficient

at various temperatures are performed on a TMA 402 F3
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Fig. 7. Comparison between experimental data (crosses) and computed data from the Kramers–Kronig relations (circles) for Deltane 350, at the first

optimisation step.
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Fig. 8. Comparison between experimental data (crosses) and computed data from the Kramers–Kronig relations (circles) for Deltane 350, at the end of the
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Hyperion. The vertical shift coefficients calculated from Eq.

(14), and using the values of the thermal expansion coeffi-

cients measured are plotted on Fig. 10. Except at

T � Tref ¼ �52 K where the optimized vertical shift coeffi-

cient seems to clearly deviate from the theory, the coeffi-

cients computed by the proposed methodology are close

enough to those predicted by the Bueche–Rouse theory,

and the trend is respected. Experimental errors may be

responsible for the single deviation at T � Tref ¼ �52 K

and the scattering observed at other temperatures. The

limitations of the Bueche–Rouse when applied to filled

polymers such as Deltane 350 which contains about 28%

of mineral fillers and the possibility of slight non-lineari-

ties due to long chain branching which affects the temper-

ature sensitivity of the rheology (Van Gurp and Palmen,

1998; Hatzikiriakos, 2000; Greassley, 1982) are other po-

tential reasons for the scattering and the deviation at

T � Tref ¼ �52 K observed.

5. Conclusion

In this work, a method is proposed to calculate the hor-

izontal and vertical shift coefficients allowing the con-

struction of the master curves of a viscoelastic material

by application of the time–temperature superposition

principle. The originality of this work lies in the least

square method used to calculate the horizontal and verti-

cal shift coefficients, which involves the fulfilment of the
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Fig. 9. Horizontal shift coefficients at the first step (squares) and the last step (filled circles) of the optimisation. The optimised coefficients are fitted by the

WLF equation (circles).
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Kramers–Kronig relations conveying the causality condi-

tion. The method is applied to Deltane 350, a viscoelastic

material mostly used in aeronautic applications. The

resulting horizontal and vertical shift coefficient are found

consistent with the WLF equation, and with previous

works. Measurements of the linear thermal expansion

coefficients allow to estimate the values of the vertical

shift coefficients from the Bueche–Rouse theory. Compari-

son with the vertical shift coefficients computed by the

presented procedure show in general good agreement.

The proposed method presents some advantages over

existing methods. Firstly, it provides physical significance

to both shift factors, which is not the case in empirical

techniques such as hand-shifting and curve fitting tech-

niques. Secondly, it requires less assumptions than other

methods also providing physical meaning to the shift coef-

ficients, making it of more general use. For example, some

authors are applying methods based on the approximated

Kramers–Kronig relations described in Booij and Thoone

(1982), which were proved in Parot and Duperray (2007)

to introduce significant noise in the results. Another exam-

ple is the case of methods based on a viscoelastic model

(Fowler and Rogers, 2004; Madigosky et al., 2006; Guedes,

2011). This requires to set a priori the material modulus

function which might be inappropriate to represent the

frequency dependence of the mechanical properties of

some materials. Viscoelastic models are generally built to

ensure internal consistence, such as causality, so that the

master curves obtained by these methods are supposed

to verify the Kramers–Kronig relations. These methods

can then be seen as a restriction of the shifting procedure

presented in this article, since assumptions are made on

the material modulus function describing the viscoelastic

behaviour.

The temperature shifts applied could be further vali-

dated by comparing the master obtained by the presented

method to those obtained through other means. Tech-

niques such as broadband viscoelastic spectroscopy or res-

onant ultrasound spectroscopy allows measurements of

the viscoelastic properties over several decades of fre-

quency (Lakes, 2004). New viscoanalysers, making use of

piezoelectric actuators, are being developed in order to ex-

tend the frequency range of investigation (Renaud et al.,

2011) up to 3:5 kHz. This comparison is to be performed

in future studies.
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