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Coupled FEM/BEM for control of noise radiation and sound transmission
using piezoelectric shunt damping

W. Larbi a,⇑, J.-F. Deü a, R. Ohayon a, R. Sampaio b

aConservatoire National des Arts et Métiers (Cnam), Structural Mechanics and Coupled Systems Laboratory, Chair of Mechanics, case 353, 2 rue Conté, 75003 Paris, France
b PUC-Rio, Mechanical Engineering Department, Rua Marques de Sao Vicente, 225 Gavea, Rio de Janeiro, RJ CEP 22453-900, Brazil

In this paper, we present a coupled finite element/boundary element method (FEM/BEM) for control of noise radiation and sound transmission of 
vibrating structure by passive piezoelectric techniques. The system consists of an elastic structure (with surface mounted piezoelectric patches) coupled 
to external/internal acoustic domains. The passive shunt damping strategy is employed for vibration atten-uation in the low frequency range. The 
originality of the present paper lies in evaluating the classically used FEM/BEM methods for structural–acoustics problems when taking account smart 
systems at the fluid–structure interfaces.

1. Introduction

During the last two decades there has been an accelerating level
of interest in the control of noise radiation and sound transmission
from vibrating structures by passive piezoelectric techniques in the
low frequency range. In this context, resonant shunt damping tech-
niques have been recently used for interior structural–acoustic
problems ([1,2] references included). The present work concerns
the extension of this technique to internal/external vibroacoustic
problems using a finite-element/boundary-element method
(FEM/BEM) for the numerical resolution of the fully coupled
electro-mechanical-acoustic system.

The problem is analyzed in the frequency domain. More specif-
ically, the low-frequency range where the modal density is not
high. The linear acoustic equations are used for the internal and
external fluid (i.e. homogeneous, inviscid, compressible fluid,
neglecting gravity effects). For such situation, the structure with
the internal acoustic fluid is a resonant system while the external
acoustic fluid, which is the cause of radiation effect, involves
smooth operators as function of frequency. The radiation comes
from the Sommerfeld condition at infinity. That is why, for the
structure with the internal fluid, the FEM is used while the exterior
problem is treated by a BEM (see for example [3,4]). More specifi-
cally, concerning the exterior problems, Fischer and Gaul present

in [4] a coupling algorithm based on Lagrange multipliers for the
simulation of structure–acoustic field interaction. Finite plate
elements are coupled to a Galerkin boundary element formulation
of the acoustic domain. The interface pressure is interpolated as a
Lagrange multiplier, thus, allowing the coupling of non-matching
grids. A coupling scheme for fluid–structure interaction using a fast
multipole boundary element method and a finite element method
is presented in [5]. Special focus is set on partly immersed bodies,
where a free fluid surface exists. A special half-space fundamental
solution is applied, which allows to incorporate the Dirichlet
boundary condition on the half-space plane (using for instance a
mirror technique). In [6], the acoustic pressure distribution on
the surface of a three dimensional structure and the total acoustic
power radiated by the structure resulting from a known surface
velocity distribution is obtained by FEM and BEM. The pressure
distribution is computed by boundary integral equation. The sound
radiation power of structure is then expressed as a positive definite
quadratic form by impedance matrix.

For vibration and sound power reduction generated from
vibrating structures, piezoelectric materials have been introduced
since several years to overcome the trade-off in the width and
height limits and the temperature dependence of viscoelastic
materials. Most recently, piezoelectric materials have been used
with passive energy dissipation devices by using an electrical
impedance as a shunt. There are many kind of shunt damping
circuits such as resistor, resistor–inductor, and negative capacitor.
The passive shunt damping systems for reducing structural vibra-
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tion and noise from vibrating structure have been studied by many
researchers. Passive vibration schemes using piezoelectric devices
have been first presented by Hagood and Von Flotow [7]. A simple
inductor–resistor network, when applied as an electrical shunt
across the piezoelectric, produces a resonant device like a damped
vibration absorber to suppress a selected mode. Recently, several
researches have focused on modeling and implementing structures
with piezoelectric shunted system. We can refer to [8–10] for the
case of cantilever beam [11,12] for composite plate and [13,2] for
composite plate coupled to internal acoustic fluid.

The outline of this paper is as follows:

(i) Firstly, a finite element formulation of an elastic structure
with surface-mounted piezoelectric patches and subjected
to pressure load due to the presence of an internal/external
fluid is derived from a variational principle involving
structural displacement, electrical voltage of piezoelectric
elements and acoustic pressure at the fluid–structure inter-
face. This formulation, with only one couple of electric vari-
ables per patch, is well adapted to practical applications
since realistic electrical boundary conditions, such that
equipotentiality on the electrodes and prescribed global
electric charges, naturally appear. The global charge/voltage
variables are intrinsically adapted to include any external
electrical circuit into the electromechanical problem and to
simulate the effect of resistive or resonant shunt techniques.
A reduced order model, based on a normal mode expansion
using the eigenmodes of the structure in vacuo with
short-circuited piezoelectric patches, is then presented. This
methodology reduces significantly the system size and auto-
matically shows the effective electromechanical modal cou-
pling factor (EEMCF), characterizing the energy exchanges
between the mechanical structure and the piezoelectric
patches.

(ii) Secondly, the direct boundary element method is used for
modeling the scattering/radiation of sound by the structure
coupled to an acoustic domain. The BEM is derived from
boundary integral equation involving the surface pressure
and normal acoustic velocity at the boundary of the acoustic
domain. The coupled FEM-BEM model is obtained by using a
compatible mesh at the fluid–structure interface.

(iii) Finally, the efficiency of the proposed coupling methodology
is examined on two numerical examples. First, the vibration
reduction of an elastic plate backed by a closed acoustic
cavity is considered. The second example is the simulation
of the attenuation of the sound field emitted from a
submerged simply-supported plate in a half-space acoustic
domain by means of a piezoelectric shunt system.

2. Finite element formulation of elastic structure with

piezoelectric shunt systems

2.1. System equations in the frequency domain

An elastic structure occupying the domain XE is equipped with
P piezoelectric patches and coupled to an inviscid linear acoustic
fluid occupying the domain XF (Fig. 1). Each piezoelectric patch
has the shape of a plate with its upper and lower surfaces covered
with very thin layer electrodes. The pth patch, p 2 1; . . . ; Pf g,
occupies a domain XðpÞ such that ðXE;X

ð1Þ; . . . ;XðPÞÞ is a partition
of the whole solid domain XS. In order to reduce the vibration
amplitudes of the coupled problem, a resonant shunt circuit made
up of a resistance RðpÞ and an inductance LðpÞ in series is connected
to each patch [7,1,14].

We denote by R the fluid–structure interface and by nS and nF

the unit normal external to XS and XF , respectively. Moreover, the

structure is clamped on a part Cu and subjected to (i) a given
surface force density Fd on the complementary part Cr of its
external boundary and (ii) to a pressure field p due to the presence
of the fluid on its boundary R. The electric boundary condition for
the pth patch is defined by a prescribed surface density of electric
charge Qd on C

ðpÞ
D .

The linearized deformation tensor is e ¼ 1
2 ruþrTu
� �

and the
stress tensor is denoted by r. Moreover, D denotes the electric
displacement and E the electric field such that E ¼ �rw where w

is the electric potential. qS is the mass density of the structure.
The linear piezoelectric constitutive equations write:

r ¼ ce� eT E ð1Þ

D ¼ eeþ �E ð2Þ

where c denotes the elastic moduli at constant electric field, e

denotes the piezoelectric constants, and � denotes the dielectric
permittivities at constant strain [15].

The local equations of elastic structure with piezoelectric
patches and submitted to an acoustic pressure are [16]

divrþx2qSu ¼ 0 in XS ð3aÞ

rnS ¼ Fd on Cr ð3bÞ

u ¼ 0 on Cu ð3cÞ

rnS ¼ pnF on R ð3dÞ

divD ¼ 0 in XðpÞ ð4aÞ

D � nS ¼ Qd on C
ðpÞ
D ð4bÞ

where x is the angular frequency.
For each piezoelectric patch, a set of hypotheses, which can be

applied to a wide spectrum of practical applications, are
formulated:

� the piezoelectric patches are thin, with a constant thickness,
denoted h

ðpÞ for the pth patch;
� the thickness of the electrodes is much smaller than h

ðpÞ and is
thus neglected;

� the piezoelectric patches are polarized in their transverse
direction (i.e. the direction normal to the electrodes).

Under those assumptions, the electric field vector EðpÞ can
be considered normal to the electrodes and uniform in the
piezoelectric patch [9], so that for all p 2 1; . . . ; Pf g:

Fig. 1. Vibrating structure with piezoelectric shunt systems coupled to an acoustic
domain.
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EðpÞ ¼ �
V ðpÞ

h
ðpÞ

nðpÞ in XðpÞ ð5Þ

where V ðpÞ is the potential difference between the upper and the
lower electrode surfaces of the pth patch which is constant over
XðpÞ and where nðpÞ is the normal unit vector to the surface of the
electrodes.

2.2. Variational formulation

By considering successively each of the P þ 1 subdomains
ðXE;X

ð1Þ; . . . ;XðPÞÞ, the variational formulation of the structure/
piezoelectric-patches coupled system can be written in terms of
the structural mechanical displacement u, the electric potential
difference V ðpÞ constant in each piezoelectric patch, and the fluid
pressure p at the fluid–structure interface:

Z

XS

ceðuÞ½ � : eðduÞdv þ
X

P

p¼1

V ðpÞ

h
ðpÞ

Z

XðpÞ
eðpÞTnðpÞ

: eðduÞdv �x2

Z

XS

qSu � dudv �

Z

R

pnF � duds

¼

Z

Cr

Fd � duds 8du 2 C�
u ð6Þ

where the admissible space C�
u is defined by

C�
u ¼ u 2 Cuju ¼ 0 on Cuf g. Cu being the admissible space of regular

functions u in XS.

X

P

p¼1

dV ðpÞCðpÞV ðpÞ �
X

P

p¼1

dV ðpÞ

h
ðpÞ

Z

XðpÞ
eðpÞ : eðuÞ
� �

� nðpÞdv

¼
X

P

p¼1

dV ðpÞQ ðpÞ 8dV ðpÞ 2 R ð7Þ

where CðpÞ ¼ �ðpÞ33 S
ðpÞ=h

ðpÞ defines the capacitance of the pth piezo-
electric patch (SðpÞ being the area of the patch and �ðpÞ33 the piezoelec-
tric material permittivity in the direction normal to the electrodes)
and Q ðpÞ is the global charge in one of the electrodes (see [9]).

2.3. Finite element formulation

After discretization of the previous variational formulation by
finite element method and using the following additional relation
between electrical potential differences and electric charges due
to the shunt circuits:

�x2LQ � ixRQ þ V ¼ 0 ð8Þ

we find the following matrix equation:

KuþCuVK
�1
V CT

uV CuVK
�1
V �Cup

K�1
V CT

uV K�1
V 0

" # U

Q

PR

2

6

4

3

7

5
� ix

0 0 0

0 R 0

� �
U

Q

PR

2

6

4

3

7

5
�x2 Mu 0 0

0 L 0

� �
U

Q

PR

2

6

4

3

7

5
¼

F

0

� �

ð9Þ

where Q ¼ ðQ ð1Þ;Q ð2Þ; . . . ;Q ðPÞÞ
T
and V ¼ ðV ð1Þ;V ð2Þ; . . . ;V ðPÞÞ

T
are the

column vectors of electric charges and potential differences;

R ¼ diag Rð1Þ;Rð2Þ; . . . ;RðPÞ
� �

and L ¼ diag Lð1Þ; Lð2Þ; . . . ; LðPÞ
� �

are the

diagonal matrices of the resistances and inductances of the patches;
U and PR are the vectors of nodal values of u and p;Mu andKu are the
mass and stiffness matrices of the structure (elastic structure and
piezoelectric patches); CuV is the electric mechanical coupled stiff-

ness matrix; KV ¼ diag Cð1Þ; Cð2Þ; . . . ;CðPÞ
� �

is a diagonal matrix filled

with the P capacitances of the piezoelectric patches; Cup is the fluid–
structure coupled matrix; F is the applied mechanical force vector.

2.4. Modal reduction

We present in this section a reduced-order formulation of
the discretized problem obtained in the previous section. This
formulation consists in expanding the structural displacement
over the in vacuo structure modes in short circuited configuration.

We introduce the normalized modal base of the structure
xs;Usf g truncated to Ns modes such that:

x
2
s ¼ diag x2

s1;x
2
s2; . . . ;x

2
sNs

� 	

; Us ¼ Us1; . . . ;UsNs½ � ð10Þ

and

U
T
sMuUs ¼ I; U

T
sKuUs ¼ x

2
s and U ¼ UsqsðtÞ ð11Þ

where I is the identity matrix of size Ns and the vector qs ¼

qs1; . . . ; qsNs

� �T
is themodal amplitudes of the structure displacement.

By projecting the first row of the matrix Eq. (9) on the truncated
modal basis of the structure, we obtain:

x
2
s þU

T
s CuVK

�1
V CT

uVUs U
T
sCuVK

�1
V �UT

sCup

K�1
V CT

uVUs K�1
V 0

" # qs

Q

PR

2

6

4

3

7

5

� ix
0 0 0

0 R 0

� �
qs

Q

PR

2

6

4

3

7

5
�x2 I 0 0

0 L 0

� �
qs

Q

PR

2

6

4

3

7

5
¼

U
T
s F

0

" #

ð12Þ

Using the effective electromechanical modal coupling factor
(EEMCF), characterizing the energy exchanges between the
mechanical structure and the piezoelectric patches and defined by:

k
2
eff ;i ¼

x2
si �x2

si

x2
si

ð13Þ

where xsi and xsi are, respectively, the short-circuit and open-cir-
cuit ith system natural frequencies, and the following relation dem-
onstrated in [9]

k
2
eff ;i ’

U
T
siCuVK

�1
V CT

uVUsi

x2
si

ð14Þ

Eq. (12) becomes

x
2
s þ k

2
effx

2
s U

T
sCuVK

�1
V �UT

sCup

K�1
V CT

uVUs K�1
V 0

" # qs

Q

PR

2

6

4

3

7

5

� ix
0 0 0

0 R 0

� �
qs

Q

PR

2

6

4

3

7

5
�x2 I 0 0

0 L 0

� �
qs

Q

PR

2

6

4

3

7

5
¼

U
T
s F

0

" #

ð15Þ

where k
2
eff ¼ diag k

2
eff ;1; k

2
eff ;2; . . . ; k

2
eff ;Ns

� �

.

This matrix equation represents the reduced order model of the
structure with piezoelectric shunt damping and submitted to an
acoustic pressure.

3. Boundary element formulation for external/internal acoustic

fluid

3.1. Equations in the frequency domain

In this section, the direct boundary element method for exte-
rior/interior acoustic domain is presented. The governing equa-
tions of the acoustic fluid are [17,3]

Dpþ k
2
p ¼ 0 in XF ð16aÞ

@p

@n
¼ 0 on CD ð16bÞ

@p

@n
¼ qFx

2u � nF on R ð16cÞ
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lim
r!1

r
@p

@r
þ ikp


 �

¼ h
1
r


 �

on C1 ð16dÞ

Eq. (16a) represents the Helmholtz equation where k ¼ x=c is the
wave number, i.e. the ratio of the circular frequency x and the
sound velocity c; Eq. (16b) is the rigid boundary condition on CD;
Eq. (16c) is the kinematic interface fluid–structure condition on
R; Eq. (16d) represents the Sommerfeld condition at infinity.

3.2. Boundary element formulation

The boundary element formulation for acoustic problems can
be used for the interior and exterior problems. The Helmholtz
equation is valid for the pressure p at the arbitrary collocation
point x within the acoustic domain XF . A weak form of this equa-
tion is obtained by weighting with the fundamental solution:

Gðx; yÞ ¼
eikjx�yj

4pjx� yj
ð17Þ

where jx� yj denotes the distance between an arbitrary point x and
the load source point y.

Applying Green’s second theorem, the Helmholtz equation can
be transformed into a boundary integral equation, which can be
expressed as follows

cðxÞpðxÞ ¼

Z

@XF

pðyÞ
@Gðx; yÞ

@ny

dS�
Z

@XF

@pðyÞ

@ny

Gðx; yÞdS ð18Þ

where

cðxÞ ¼

1 x in fluid domain
1
2 x on smooth boundary of fluid domain
XðxÞ

4p x on nonsmooth boundary of fluid domain

0 x outside fluid domain

8

>

>

>

<

>

>

>

:

ð19Þ

and

XðxÞ ¼ 4pþ

Z

@XF

@ðjx� yj�1Þ

@ny

dS

is the solid angle seen from x. Note that the value cðxÞ ¼ 1
2 is valid

if the surface @XF is assumed to be closed and sufficiently smooth,
i.e. there is a unique tangent to @XF at every x 2 @XF . For the gen-
eral case, where a non-unique tangent plane exists at x 2 @XF , we
use cðxÞ ¼ XðxÞ

4p (for example, when x is lying on a corner or an
edge).

The fluid boundary is divided into N quadrilateral elements
(@XF ¼

PN
j¼1Sj) and Eq. (18) is discretized. After using the relation

between the acoustic pressure and the fluid normal velocity
@p
@n

¼ �iqFxv (where v ¼ v
F � nF), the discrete Helmholtz equation

can be written for any point x defined by the node i as

cipi ¼
X

N

j¼1

Z

Sj

pjðyÞ
@Gðxi; yÞ

@ny

dSþ iqFx
X

N

j¼1

Z

Sj

v jðyÞGðxi; yÞdS ð20Þ

For each quadrilateral element j, the pressure pjðyÞ and the nor-
mal velocity v jðyÞ can be expressed as a function of their nodal
values

pjðyÞ ¼
X

4

k¼1

Nkp
k
j ¼ Npj; v jðyÞ ¼

X

4

k¼1

Nkv
k
j ¼ Nvj ð21Þ

and Eq. (20) becomes

cipi ¼
X

N

j¼1

X

4

k¼1

Z

Sj

Nk

@Gðxi; yjÞ

@ny

dSpk
j

þ iqFx
X

N

j¼1

X

4

k¼1

Z

Sj

NkGðxi; yjÞdSv
k
j ð22Þ

or in the following form

cipi ¼
X

N

j¼1

X

4

k¼1

Hk
ijp

k
j þ iqFx

X

N

j¼1

X

4

k¼1

Gk
ijv

k
j ð23Þ

where

Hk
ij ¼

Z

Sj

Nk

@Gðxi; yjÞ

@ny

dS; Gk
ij ¼

Z

Sj

NkGðxi; yjÞdS ð24Þ

We place now the point xi at each of nodal points on the bound-
ary yj successively, which is known as a ‘‘collocation point’’. We
obtain

cidijpj ¼
X

N

j¼1

X

4

k¼1

Hk
ijp

k
j þ iqFx

X

N

j¼1

X

4

k¼1

Gk
ijv

k
j ð25Þ

When the collocation scheme is repeated for all nodal points Nn

of the boundary element mesh, a set of Nn expressions in the nodal
field variables is obtained which can be assembled into the follow-
ing matrix equation

HP ¼ iqFxGv ð26Þ

where P and v are the vectors with sound pressure and velocity in
the normal direction to the boundary surface at the nodal position
of the boundary element mesh.

Irregular frequencies: Let’s remark that when the Boundary
Element method is applied to exterior problems, the solution
can be non-unique at some frequencies called irregular frequen-
cies. These frequencies do not represent any kind of physical res-
onance but are due to the numerical method, which has no
unique solution at some eigenfrequencies for a corresponding
interior problem. In order to remove these frequencies, many dif-
ferent approaches were proposed. Among them, the two most
popular categories are: (i) the Combined Helmholtz Integral
Equation Formulation (CHIEF) method originally proposed by
Schenck [18] and its variations, and (ii) the linear combination
of the Kirchhoff-Helmholtz integral equation and its normal
derivative originally proposed by Brakhage and Werner [19]. This
approach was adapted to the Neumann problem by Burton and
Miller [20]. We refer also to ([21,22] references included) for
alternative procedures in order to obtain symmetric BEM without
irregular frequencies.

4. FE/BE formulation for the fluid–structure with shunt systems

coupled problem

The fluid boundary domain @XF is divided into two parts
including CD (where the rigid boundary condition is applied) and
the interface R (for the fluid–structure interface) such as
@XF ¼ CD [ R and CD \ R ¼£. The boundary conditions given in
Eqs. (16b) and (16c) can be expressed in discretized form

v ¼ 0 onCD ð27aÞ

v ¼ ixTU onR ð27bÞ

where T is the global coupling matrix that transforms the nodal
normal displacement of the structure to the normal velocity of
the acoustic fluid at the interface. Using a partitioning of P into
P ¼ PRPD½ �T , applying this partitioning to the matrix equation
(Eq. (26)) and introducing Eqs. (27) yields

H11 H12

H21 H22

� �

PR

PD

� �

¼
G11 G12

G21 G22

� �

�qFx
2TU

0

" #

ð28Þ

By combining Eq. (15) with Eq. (28), we find the following
coupled FE/BE matrix equation
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x
2
s þk

2
effx

2
s �x

2I U
T
s CuVK

�1
V �UT

s Cup 0

K�1
V CT

uVUs K�1
V � ixR�x2L 0 0

qFx
2G11TUs 0 H11 H12

qFx
2G21TUs 0 H21 H22

2

6

6

6

6

4

3

7

7

7

7

5

qs

Q

PR

PD

2

6

6

6

4

3

7

7

7

5

¼

U
T
s F

0

0

0

2

6

6

6

4

3

7

7

7

5

ð29Þ

Remarks: acoustic indicators

� The sound intensity I at every point Q on the vibrating surface
may be calculated from

I ¼
1
2
Re pðQÞv�ðQÞf g ¼

1
2
Re pðQÞðixuðQÞ � nSÞ

�
n o

ð30Þ

where Re denotes the real part of the expression in parentheses and
� denotes the complex conjugate.
� The intensity is the sound power radiated per unit area of the
transmission; the total radiated sound power P is found by
integrating the intensity over the surface R:

P ¼

Z

R

Ids ¼
x
2
Im U�TCupPR

n o

¼
x
2
Im q�T

s U
T
s CupPR

� 

ð31Þ

� The mean quadratic normal velocity V2
D E

is given by

V2
D E

¼
1
2R

Z

R

v
2 ds ¼

x2

2R
w�Muw ð32Þ

where w is the vector of nodal normal displacements of the struc-
ture and Mu is the structure mass matrix reduced to the dofs of
interest.
� The radiation efficiency, r, is the ratio of the sound power radi-
ated by a vibrating structure to the sound power that would be
radiated by an equivalent flat piston vibrating in an infinite
baffle:

r ¼
P

qFcR V2
D E ð33Þ

5. Numerical examples

In the first example, the vibration reduction using an inductive
shunt damping technique of an elastic plate backed by a closed
acoustic cavity is analyzed. For this example, the FEM/FEM modal
analysis of the electromechanical-acoustic problem is presented.
Then, the FEM/BEM frequency response of the coupled system in
short circuit and inductive shunt cases are compared in terms of
vibration attenuation. The second example concerns the
simulation of the attenuation of the sound field emitted from a
submerged plate in a half-space acoustic domain by means of a
piezoelectric shunt system.

5.1. Plate backed by a closed acoustic cavity

The first objective of this example is to compare the FEM [2] to
the BEM for the acoustic domain in an internal fluid–structure cou-
pled problem (the structure being represented by FEM reduced or-
der model obtained by projection on the first ten ‘‘in vacuo’’
structure modes). The second objective is to evaluate the effect
of the shunt system on the noise attenuation. Concerning the finite
element description of the internal acoustic fluid, a reduced order
model obtained by projection on the first ten acoustic modes in ri-
gid fixed cavity will be used [23,24]. Moreover, the effects of the
higher modes of each subsystem can be taken into account through
an appropriate so-called ‘‘static correction’’. This aspect is not con-
sidered here because the number of retained normal modes was
enough when comparing the results with those of the finite ele-
ment non-reduced analysis.

We consider a 3D hexahedric acoustic cavity of size
A = 0.3048 m, B = 0.1524 m and C = 0.1524 m along the directions
x; y, and z, respectively. The cavity is completely filled with air
(density q ¼ 1:2 kg=m3 and speed of sound c = 340 m/s). The cavity
walls are rigid except the top one, which is a simply-supported
along its edges flexible aluminum plate of thickness 1.63 mm.
The density of the plate is 2690 kg=m3, the Young modulus is
70 GPa and Poisson ratio 0.3. On the top surface of the plate, a
PIC 151 patch is bonded, whose in plane dimensions are
0:0762� 0:0508 m2 along x and y and 0.5 mm thick (see Fig. 2).
The mechanical characteristics of the piezoelectric material PIC
151 are given in [2].

Concerning the structural FEM/acoustic FEM discretization, we
have used, for the structural part, 72 four nodes plate elements.
The portion of the plate covered by the piezoelectric patch and
the patch itself has been modeled according to laminated theory
[2]. Moreover, only one electrical degree of freedom is used to
represent the electrical charge Q in the patch. The acoustic cavity
is discretized using 12 � 6 � 6 hexahedric elements. The structural
and acoustic meshes are compatible at the interface, and the fluid–
structure coupling is realized through the Cup matrix. Full details of
this formulation are published by the authors in [2].

For the structural FEM/acoustic BEM formulation, besides the FE
discretization of the plate, only the boundary R of the fluid domain
is discretized with boundary elements. Notice that the BE nodes on
this part must coincide with FE nodes.

Table 1 presents the first ten eigenfrequencies in three cases: (i)
the 3D rigid acoustic cavity, (ii) the plate with the patch in short
and open circuited cases and (iii) the plate/acoustic-cavity coupled
system in the short circuited case. All results are computed with
the finite element formulation presented in [2]. The fourth and
ninth frequencies of the coupled system are associated with the
first two acoustics modes in the rigid cavity lower than
1128.2 Hz, while the other frequencies correspond to the first eight
vibration modes of the structure. This can be confirmed by com-
paring the mode shapes in case (iii) with those obtained in case

Fig. 2. Electromechanical-acoustic coupled system: geometrical data.
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(i) or case (ii), which are not shown here for the sake of brevity.
Moreover, as expected, the natural frequencies of the coupled
modes (structure dominated) are lower than those for the struc-
ture in vacuum (except for the first mode) due to the added-mass
effect of the fluid.

The plate is now excited by an unit distributed time harmonic
pressure load. In addition, mechanical damping was introduced
through a modal damping coefficient n ¼ 0:001 for all eigenmodes
in the selected reduced modal basis.

As can be seen in Fig. 3, the sound pressure level is calculated on
the plate center. The results for the two methods are very similar at
sound level peaks (resonance frequencies), which enable us to
check the validity of the BEM formulation. For this particular
example, the comparisons of computational times (using an
implementation of the two methods in the Matlab software)
showed that the FEM for the internal fluid is much more faster
than BEM technique (the CPU time ratio is about 10).

In order to achieve maximum vibration dissipation of the third
coupled mode (Fig. 4), the patch is tuned now to an RL shunt
circuit. The resistance R and the inductance L can be adjusted
and properly chosen to maximize the damping effect of a particular
mode. The optimal resistance and inductance of the ith mode for a
series resonant shunt are given by [7]:

Ropt ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

2k2eff;i

q

Cxið1þ k
2
eff;iÞ

ð34aÞ

Table 1

Computed frequencies (Hz) of the structural–acoustic coupled system.

Fluid Structure SC Structure OC Fluid–structure Typea

559.3 210.6 210.7 215.1 S
1128.1 329.5 330.9 327.1 S
1128.3 540.6 544.4 538.9 S
1128.5 722.2 722.2 561.7 F
1259.1 828.4 830.6 719.4 S
1259.5 834.3 834.7 826.5 S
1595.5 1023.8 1024.7 832.1 S
1595.6 1204.7 1204.7 1021.0 S
1595.7 1296.1 1296.7 1128.1 F
1690.8 1567.0 1567.0 1129.9 S

a S for structure predominant modal shape and F for fluid predominant modal
shape.
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Fig. 3. Sound pressure level on plate center: comparison between FEM/FEM and
FEM/BEM approaches.

Fig. 4. Third fluid–structure coupled mode: fluid pressure level in the cavity and
plate total displacement.
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Fig. 5. Sound pressure level at the plate center with and without shunt system.

Fig. 6. Flexible plate in a half-space acoustic domain.
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Lopt ¼
1

Cx2
i ð1þ k

2
eff ;iÞ

ð34bÞ

where xi is the short circuit natural frequency of the ith mode and
keff;i is the effective electromechanical coupling coefficient given in
Eq. (13). For the third coupled mode, these parameters are taken
R = 348X and L = 0.61 H.

The system vibratory response is obtained with the BEM
approach. Fig. 5 presents the sound pressure level at the
plate center with and without shunt system. This figure shows
that the resonant magnitude for the third mode has been
significantly reduced due to the shunt effect. In fact, the strain
energy present in the piezoelectric material is converted into
electrical energy and hence dissipated into heat using the RL shunt
device.

5.2. Vibrating plate in a half-space acoustic domain

In this example, we consider the radiation of the previous plate
in a half-space acoustic domain (Fig. 6). As before, the plate is
excited by an unit distributed time harmonic pressure load. The
mean quadratic normal velocity of the plate and the radiated
sound power are used as indicators for this example.

As in the first example, the structure is represented by FEM
reduced order model obtained by projection on the first ten ‘‘in
vacuo’’ structure modes (Eq. (29)) and mechanical damping was
introduced through a modal damping coefficient n ¼ 0:001 for all
eigenmodes in the selected reduced modal basis. The external fluid
is described by BEM.

The results are compared with those obtained with the avail-
able free software, ADNR@. This free software can calculate the

acoustic and vibration response of an elastic baffled and simply
supported rectangular plate mechanically or acoustically excited.
It uses a semi-analytical method based on the variational approach
and on the Rayleigh–Ritz method to calculate the plate movement
equation.

The results (mean quadratic normal velocity of the plate and the
radiated sound power) presented in Fig. 7 show the accuracy of the
BEM procedure described in the paper for external problems com-
pared to the semi-analytical method results given by ADNR@.

The series single-mode shunt damping circuit is performed to
damp the third bending mode of the plate, as presented in the pre-
vious section. The damping performances of the shunted piezo-
electric can be observed in Fig. 8 by comparing the mean
quadratic normal velocity and the radiated sound power of the
plate with and without shunt. The peak amplitude of the third
mode was reduced by 38 dB.

6. Conclusions

In this work, a coupled finite element/boundary element meth-
od (FEM/BEM) for control of noise radiation and sound transmis-
sion of vibrating structure by active piezoelectric techniques is
analysed. The passive shunt damping strategy is employed for
vibration attenuation in the low frequency range. A reduced order
model for the structure/piezoelectric shunt system with introduc-
tion of the effective electromechanical modal coupling factor is
developed.

Numerical examples show that for interior acoustic problems,
the use of reduced order model for the fluid is recommended,
but for the external domain the BEM is more efficient even if costly
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Fig. 7. The mean quadratic normal velocity and radiated sound power of the plate: comparison between the proposed FEM/BEM formulation and ADNR@ results.
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Fig. 8. The mean quadratic normal velocity and radiated sound power of the plate with and without shunt system.
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(the use of recent fast multipole method should improve the con-
vergence [5]).

The more complex system constituted of structure equipped
with shunted piezoelectric patches and coupled with an interior
and exterior acoustic fluid is the subject of present and future
investigations from computational and experimental aspects.
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