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Finite element formulation of smart piezoelectric composite plates coupled
with acoustic fluid
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In
 
the

 
context

 
of

 
noise

 
and

 
vibration

 
reduction

 
by

 
passive

 
piezoelectric

 
devices,

 
this

 
work

 
presents

 
the

 
theoretical

 
formulation

 
and

 
the

 
finite

 
element

 
(FE)

 

implementation
 
of

 
vibroacoustic

 
problems

 
with

 
pie-zoelectric

 
composite

 
structures

 
connected

 
to

 
electric

 
shunt

 
circuits.

 
The

 
originalities

 
of

 
this

 
work

 

concern
 
(i)

 
the

 
formulation

 
of

 
the

 
electro-mechanical-acoustic

 
coupled

 
system,

 
(ii)

 
the

 
implementation

 
of

 
an

 
accurate

 
and

 
inexpensive

 
laminated

 

composite
 
plate

 
FE

 
with

 
embedded

 
piezoelectric

 
layers

 
connected

 
to

 
resonant

 
shunt

 
circuits,

 
and

 
(iii)

 
the

 
development

 
of

 
an

 
efficient

 
fluid–structure

 

interface
 
element.

 
Var-ious

 
results

 
are

 
presented

 
in

 
order

 
to

 
validate

 
and

 
illustrate

 
the

 
performance

 
of

 
the

 
proposed

 
fully

 
cou-pled

 
numerical

 
approach.

1. Introduction

For noise and vibration reduction, various approaches can be

employed depending on the frequency range to attenuate. Gener-

ally, active or passive piezoelectric techniques are effective in the

low frequency range, while dissipative materials, such as viscoelas-

tic treatments or porous insulation, are efficient for higher fre-

quency domain. This work presents the theoretical formulation

and the finite element (FE) implementation of multilayer piezo-

electric plates coupled with acoustic fluid and connected to reso-

nant shunt circuits.

The modeling and analysis of laminated piezoelectric structures

is an active area of research as attested by the large number of pa-

pers published in the literature (see, e.g. [9,7] for beams and

[8,14,2,11] for plates). Careful analysis of the corresponding articles

indicates that approximate theoriesmainly differ by the simplifying

a priori assumptions concerning the piezoelectric effect representa-

tion, the directions of the electric field and the through-thickness

distributions of the mechanical displacements and electric poten-

tial. Hence, regarding these criteria, the various reported theories

can be separated into uncoupled and coupled ones, depending on

the presence or not of electric fundamental variables [1]. Available

models can also be classified into global or equivalent single-layer

models, and discrete layer or layerwise ones, depending on the

through-thickness variations of the mechanical and electric fields.

Even if the development of multilayer piezoelectric plate theories

has reached a relative maturity, computational modeling of struc-

tural–acoustic problems with piezoelectric elements is less studied

and represents an expanding research field. For noise and vibration

reduction applications in the low frequency range, active-control

using piezoelectric devices is an affective approach. In this context,

let us mention [16,19] where active controller designs are devel-

oped to reduce interior cabin noise levels and [27,25] where

active/passive constrained layer damping treatments are proposed

to control sound radiation from a vibrating thin structure into an

acoustic cavity. Structural–acoustic vibration reduction using pas-

sive (shunted) or semi-passive (switched) piezoelectric techniques

is also proposed in the literature [12,18]. For the modeling and de-

sign of such fluid–structure problems, FE method is generally used

[22,24,5]. Another approach consists in combining the FE method

for the dynamic analysis of the smart structure and the boundary

element method to evaluate the acoustic response of the enclosed

fluid. In such a case, the steady-state response of acoustic cavities

bounded by piezoelectric composite shell structures is proposed

in [15] and an active–passive control technique, based an output

feedback optimal controller design, is developed in [10].

In the first part of this paper, a non-symmetric finite element

formulation of the coupled system is derived from a variational

principle involving structural displacement, electrical voltage of

piezoelectric patches, and acoustic pressure in the fluid cavity. This

formulation, with only one couple of electric variables per patch, is

well adapted to practical applications since realistic electrical

boundary conditions, such that equipotential electrodes and pre-

scribed global electric charges, naturally appear. The global

charge/voltage variables are intrinsically adapted to include any

external electrical circuit into the electromechanical problem and

to simulate the effect of resistive or resonant shunt damping

techniques.
⇑ Corresponding author.
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The second part of this work is devoted to the development of (i)

an efficient finite element piezoelectric laminated plate, and (ii) an

appropriate interface element to ensure the interaction between

fluid and structure. The composite plate model, with piezoelectric

layers polarized along the thickness, combines an equivalent

single-layer approach for the mechanical behavior with a layerwise

representation of the electric potential in the thickness direction. A

four nodes finite element layered plate, with five degrees-of-free-

dom (dof) per node, is then developed. The in-plane displacements

are discretized by conforming bi-linear Lagrange shape functions,

while the transverse displacement and rotations are discretized

by nonconforming cubic Hermite shape functions. This choice is

proved to be efficient compared to other FE models and well

adapted to structural–acoustic applications. For the electric behav-

ior, only one degree-of-freedom per piezoelectric layer is used

allowing to including any shunt circuit connected to piezoelectric

patches in order to simulate the vibration attenuation.

Finally, some numerical examples are presented in order to val-

idate and demonstrate the effectiveness of the proposed fluid-pie-

zoelectric-structure finite element approach.

2. Variational formulation of internal structural–acoustic

coupled problems with piezoelectric shunt systems

We briefly recall in this section the variational formulation of

internal structural–acoustic coupled problems with shunted piezo-

electric patches connected to the vibrating structure. This formula-

tion is written in terms of structural mechanical displacement ui,

electric potential difference between the upper and the lower elec-

trode of each patch V ðpÞ ¼ wðpÞ
þ � wðpÞ

� and fluid pressure p (for more

details, we refer the reader to [17,5]).

An elastic structure occupying the domain XE is equipped with

P piezoelectric patches and completely filled with an internal invis-

cid linear acoustic fluid occupying the domainXF (Fig. 1). Each pie-

zoelectric patch has the shape of a thin plate with its upper and

lower surfaces covered with a very thin layer electrode. The pth

patch, p 2 {1, . . . ,P}, occupies a domain X(p) such that (XE,

X(1), . . . ,X(P)) is a partition of the all structure domain XS. In order

to reduce the vibration amplitudes of the coupled problem, a reso-

nant shunt circuit with a resistor R(p) and inductor L(p) in series is

connected to each patch [13,18].

We denote by R the fluid–structure interface and by nS
i and nF

i

the unit normal external to XS and XF, respectively. The structure

is clamped on a part Cu and subjected to a given surface force den-

sity Fd
i on the complementary part Cr of its external boundary and

to a pressure field p due to the presence of the fluid on its internal

boundary R.

The linearized deformation tensor is eij ¼ 1
2
ðui;j þ uj;iÞ and the

stress tensor is denoted by rij. Moreover, Di denotes the electric

displacement and Ei the electric field such that Ei = �w,i. The linear

piezoelectric constitutive equations write:

rij ¼ cijklekl � ekijEk ð1Þ
Di ¼ eiklekl þ �ikEk ð2Þ
where cijkl denotes the elastic moduli at constant electric field, ekij
the piezoelectric constants and �ik the dielectric permittivities at

constant strain.

For each piezoelectric patch, a set of hypotheses, which can be

applied to a wide spectrum of practical applications, are

formulated:

� The piezoelectric patches are thin, with a constant thickness,

denoted h(p) for the pth patch;

� The thickness of the electrodes is much smaller than h(p) and is

thus neglected;

� The piezoelectric patches are polarized in their transverse direc-

tion (i.e. the direction normal to the electrodes).

Under those assumptions, the electric field vector, of compo-

nents EðpÞ
k , can be considered normal to the electrodes and uniform

in the piezoelectric patch [28], so that for all p 2 {1, . . . ,P}:

EðpÞ
k ¼ �V ðpÞ

h
ðpÞ nk in XðpÞ ð3Þ

where V(p) is constant over X(p) and nk is the kth component of the

normal unit vector to the surface of the electrodes.

By considering successively each of the P + 2 subdomainsXF,XE

and (X(1), . . . ,X(P)), the variational formulation of the fluid/struc-

ture/piezoelectric-patches coupled system can be written in terms

of the structural mechanical displacement ui, the electric potential

difference V(p) constant in each piezoelectric patch, and the fluid

pressure p:

� Mechanical equation:

Z

XS

cijklekldeij dvþ
X

P

p¼1

V ðpÞ

h
ðpÞ

Z

XðpÞ
ekijnkdeij dvþ

Z

XS

qS

@2ui

@t2
dui dv

�
Z

R

p nF
i dui ds¼

Z

Cr

Fd
i dui ds 8dui 2C�

u ð4Þ

where qS is the mass density of the structure and where the

admissible space C�
u is defined by C�

u ¼ fui 2 Cu j ui ¼ 0 on Cug.
Cu being the admissible space of regular functions u in Xs.

� Electrical equation:

X

P

p¼1

dV ðpÞCðpÞV ðpÞ �
X

P

p¼1

dV ðpÞ

h
ðpÞ

Z

XðpÞ
eikleklni dv

¼
X

P

p¼1

dV ðpÞQ ðpÞ 8dV ðpÞ 2 R ð5Þ

where C(p) = �33S(p)/h(p) defines the capacitance of the blocked pth

piezoelectric patch (S(p) being the area of the patch and

�33 = �iknink the piezoelectric material permittivity in the direction

normal to the electrodes) and Q(p) is the global charge in one of the

electrodes (see [28]).

� Acoustic equation:

1

qF

Z

XF

p;i dp;i dvþ
1

qFc
2
F

Z

XF

@2p

@t2
dpdvþ

Z

R

@2ui

@t2
nF
i dpds¼0

8dp2Cp ð6Þ

where cF is the constant speed of sound in the fluid, qF the mass

density of the fluid and Cp is the admissible space of regular func-

tions p defined in XF (see [22] for more details).
Fig. 1. Vibrating structure coupled with acoustic cavity and connected to RL shunt

circuits.
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After discretizing the variational formulation by the finite ele-

ment method and using the following additional relation between

electrical potential differences and electric charges due to the

shunt circuits:

L €Q þ R _Q þ V ¼ 0 ð7Þ

we find the following matrix system:

Mu 0 0

0 L 0

CT
up 0 Mp

2

6

4

3

7

5

€U
€Q
€P

2

6

4

3

7

5
þ

0 0 0

0 R 0

0 0 0

2

6

4

3

7

5

_U
_Q
_P

2

6

4

3

7

5

þ
Ku þ CuVK

�1
V CT

uV CuVK
�1
V �Cup

K�1
V CT

uV K�1
V 0

0 0 Kp

2

6

4

3

7

5

U

Q

P

2

6

4

3

7

5
¼

F

0

0

2

6

4

3

7

5
ð8Þ

where Q = (Q(1) Q(2) � � � Q(P))T and V = (V(1) V(2) � � � V(P))T are the col-

umn vectors of electric charges and potential differences; R = diag

(R(1) R(2) � � � R(P)) and L = diag (L(1) L(2) � � � L(P)) are the diagonal matri-

ces of the resistances and inductances of the patches; U and P are

the vectors of nodal values of ui and p; Mu and Ku are the mass

and stiffness matrices of the structure (elastic structure and piezo-

electric patches); CuV is the electric mechanical coupled stiffness

matrix; KV = diag (C(1) C(2) � � � C(P)) is a diagonal matrix filled with

the P capacitances of the piezoelectric patches; Mp and Kp are the

mass and stiffness matrices of the fluid; Cup is the fluid–structure

coupled matrix; F is the applied mechanical force vector.

3. FE implementation of the coupled problem

In this section, the coupled finite element formulation is applied

to the vibration analysis of an elastic/piezoelectric laminated plate

coupled with an acoustic fluid.

3.1. Finite element discretization of the composite plate

Consider a laminated composite plate having an arbitrary con-

stant thickness h and made N orthotropic elastic or piezoelectric

layers.

3.1.1. Strain–displacements relations

We consider that sections normal to middle plane of the plate

remain plane during deformation and the stress in the normal

direction is negligible (rzz = 0). With these two classical assump-

tions, the total state of deformation can be described by the

displacements u0, v0 and w0 of the middle surface (z = 0) and the

rotations hx and hy about the y and x axes, respectively (see

Fig. 2). Thus the local displacements in the directions of the x, y

and z axes are given by

u ¼ u0ðx; yÞ � zhxðx; yÞ ð9aÞ
v ¼ v0ðx; yÞ � zhyðx; yÞ ð9bÞ
w ¼ w0ðx; yÞ ð9cÞ

With these notations, the state of strain at any point x, y (on the

plate) and z (distance from the neutral surface), is equal to the sum

of the middle surface strain (membrane) and the strain due to the

changes of curvature. Denoting the middle surface extensional

strains in the x and y directions by �xx and �yy, the middle surface

changes in curvature by jxx and jyy, and the middle surface in-

plane shear and warping by �xy and jxy, the state of the in-plane

strain can be written as

exx ¼ �xx � zjxx ð10aÞ
eyy ¼ �yy � zjyy ð10bÞ
2exy ¼ �xy � zjxy ð10cÞ

where the middle surface extensional strain and curvatures are de-

fined by

�xx ¼
@u0

@x
; jxx ¼

@hx
@x

ð11Þ

�yy ¼
@v0

@y
; jyy ¼

@hy
@y

ð12Þ

�xy ¼
@u0

@y
þ @v0

@x
; jxy ¼

@hx
@y

þ @hy
@x

ð13Þ

For thin plates, the transverse shear components (cxz ¼ @w
@x

� hx

and cyz ¼ @w
@y

� hy) are neglected (cxz = cyz = 0) inducing these addi-

tional relations:

hx ¼
@w

@x
; hy ¼

@w

@y
ð14Þ

The strain components can be rewritten in the following matrix

form

e ¼ D

u0

v0

w

hx

hy

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

ð15Þ

z

1

k

N

x

z0

z1

zk-1

zk

zN-1

zNhk

z

h/2

h/2

z, w

y, v

x, u

θx

θy

u0

v0

(b)(a)

Fig. 2. Composite plate: (a) definitions of variables for plate approximations: displacements and rotations, and (b) cross section view of the layers.
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with e ¼ �xx �yy �xy jxx jyy jxy½ �T and the gradient operator

D ¼

@
@x

0 0 0 0

0 @
@y

0 0 0

@
@y

@
@x

0 0 0

0 0 0 @
@x

0

0 0 0 0 @
@y

0 0 0 @
@y

@
@x

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

ð16Þ

3.1.2. Degrees-of-freedom and shape functions

Consider a rectangular element of a plate coinciding with the xy

plane as shown in Fig. 3. Each node n (n = 1,2,3,4) has five degrees-

of-freedom to describe the middle surface displacements u0n, v0n
and wn along the x, y and z directions, the rotation hxn about the

y axis, and the rotation hyn about the x axis.

The elementary degrees-of-freedom vector Ue, of size (20 � 1),

is then defined in terms of the nodal dof vector Un by

Ue ¼

U1

U2

U3

U4

2

6

6

6

4

3

7

7

7

5

; with Un ¼

u0n

v0n

wn

hxn

hyn

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

; n ¼ 1;2;3;4 ð17Þ

The displacements u0 and v0 are assumed to vary linearly along

the axial co-ordinates x and y and they are discretized by Lagrange

bi-linear shape functions, while the transverse displacement w and

the rotations hx and hy are discretized by nonconforming cubic Her-

mite polynomial [21]. Thus, the elementary middle surface dis-

placements and rotations of the plate are given in terms of the

elementary degrees-of-freedom vector by

ue
0

v
e
0

we

hex

hey

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

¼ Nðx; yÞUe ð18Þ

where the interpolation matrix is defined by

N ¼ N1 N2 N3 N4½ � ð19Þ

and

Nn ¼

N‘
n 0 0 0 0

0 N‘
n 0 0 0

0 0 Nc1
n Nc2

n Nc3
n

0 0 @Nc1
n

@x
@Nc2

n

@x
@Nc3

n

@x

0 0 @Nc1
n

@y

@Nc2
n

@y

@Nc3
n

@y

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

; n ¼ 1;2;3;4 ð20Þ

with the linear N‘
n and cubic Nc1

n , Nc2
n and Nc3

n ðn ¼ 1; 2; 3; 4Þ shape

functions given in the reference element [29]

N‘
n ¼ 1

4
nngnðnþ nnÞðgþ gnÞ ð21aÞ

Nc1
n ¼ 1

8
ð1þ nnnÞð1þ ggnÞð2þ nnn þ ggn � n2 � g2Þ ð21bÞ

Nc2
n ¼ 1

8
nnðnnn � 1Þð1þ ggnÞð1þ nnnÞ2 ð21cÞ

Nc3
n ¼ 1

8
gnðggn � 1Þð1þ nnnÞð1þ ggnÞ

2 ð21dÞ

in which n ¼ x
a
and g ¼ y

b
are the elementary co-ordinates that varies

from �1 (when x = �a for n and y = �b for g) to 1 (when x = a for n

and y = b for g), and where nn ¼ xn
a
and gn ¼ yn

b
(xn and yn correspond-

ing to the co-ordinates of node n along the x and y directions as

shown in Fig. 3).

Moreover, the elementary strain vector e
e can be expressed by

e
e ¼ BUe ð22Þ
with the following discretized gradient operator

B ¼ DN ð23Þ

3.1.3. Elementary mass and stiffness matrices

The interpolations of displacements and strains presented in

the previous section are used to express the elementary mass

and stiffness matrices of the composite laminated plate.

The mass matrix is evaluated without neglecting rotational

inertia. Using its definition given in the variational formulation

ð
R

XS
qS

@2ui
@t2

dui dvÞ, and combining Eqs. (9) and (18), the elementary

mass matrix is defined by

Me
u ¼

Z 1

�1

Z 1

�1

NT INJsðn;gÞ dndg ð24Þ

where JS is the Jacobien determinant of the transformation and I is

the composite inertia matrix given by

I ¼

I0 0 0 �I1 0

0 I0 0 0 �I1

0 0 I0 0 0

�I1 0 0 I2 0

0 �I1 0 0 I2

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

ð25Þ

in which the zero I0, first I1 and second I2 mass moments of inertia

are given by

I0 ¼
X

N

k¼1

qk
Sðzk � zk�1Þ; I1 ¼ 1

2

X

N

k¼1

qk
S z2k � z2k�1

� �

;

I2 ¼ 1

3

X

N

k¼1

qk
S z3k � z3k�1

� �

In the same way, using its definition ð
R

XS
cijklekldeij dvÞ and com-

bining Eqs. (18) and (22), the elementary elastic stiffness matrix is

given by

Ke
u ¼

Z 1

�1

Z 1

�1

BTCBJsðn;gÞ dndg

where C is the elasticity matrix of the composite given by

ð26Þ

in which the extensional Aij, bending Dij, and extensional-bending

Bij coupling stiffness of the laminated composite are given by (see,

e.g. [23])

x

y
z

2a

2b

1 2

34

(-a, -b) (a, -b)

(-a, b) (a, b)

ξ

η

Fig. 3. A rectangular plate element.
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Aij ¼
X

N

k¼1

Q k
ijðzk � zk�1Þ; Bij ¼

1

2

X

N

k¼1

Q k
ij z

2
k � z2k�1

� �

;

Dij ¼
1

3

X

N

k¼1

Q k
ij z

3
k � z3k�1

� �

where i, j = 1,2,6 and Q k
ij represent the reduced material stiffness

constants for each layer k in the global coordinate system deduced

from the assumption of zero normal stress in the thickness

direction.

3.2. Finite element discretization of the fluid domain

The aim of this section is to introduce the finite element discret-

ization of the fluid domain. The considered domain is discretized

with hexahedral elements. Each element is bounded by eight

nodes and the nodal pressure is considered as the only nodal un-

known variable.

The elementary pressure pe(x,y,z) can be expressed in terms of

the vector of nodal pressures Pe:

peðx; y; zÞ ¼ Npðx; y; zÞPe ð27Þ

where the interpolation matrix is defined by

Np ¼ N1 N2 N3 N4 N5 N6 N7 N8½ �
with the following linear shape functions, given in the reference

element:

Nn ¼ 1

8
nngnfnðnþ nnÞðgþ gnÞðfþ fnÞ; n ¼ 1; . . . ;8

in which n, g and f are the elementary co-ordinates that varies from

�1 to 1, and nn, gn and fn correspond to the co-ordinates of the node

n along the direction n, g and f, respectively, as shown in Fig. 4.

From its definition 1
qF c

2
F

R

XF

@2p

@t2
dp dv

� �

given in the variational

formulation, and using Eq. (27), the elementary mass matrix of

the fluid can be expressed by

Me
p ¼

1

qFc
2
F

Z 1

�1

Z 1

�1

Z 1

�1

NT
p NpJF dn dg df ð28Þ

where JF is the Jacobian determinant of the transformation from the

real to the reference element.

In order to compute the elementary stiffness matrix of the fluid,

we have to evaluate the pressure gradient using

rpeðx; y; zÞ ¼ Bpðx; y; zÞPe ð29Þ
with the following discretized gradient operators

Bpðx; y; zÞ ¼ @
@x

@
@y

@
@z

h iT

Npðx; y; zÞ ð30Þ

From definition 1
qF

R

XF
p;i dp;i dv

� �

, combining Eqs. (29) and

(30), and transforming the discretized gradient operator in the

reference coordinate system, the elementary stiffness matrix of

the fluid can be expressed by

Ke
p ¼

1

qF

Z 1

�1

Z 1

�1

Z 1

�1

BT
pBpJF dn dg df ð31Þ

3.3. Elementary fluid–structure coupling matrix

Using the appropriate interface conditions at the common

boundary between the fluid and the structure, the coupled fluid–

structure matrix is derived. In first approach, a compatible mesh

is considered at the interface so that the interface element can

be easily defined. The interface element is bounded by four nodes,

each having two degrees-of-freedom to describe the normal struc-

ture displacement we and the fluid pressure pe.

The elementary normal displacement we is discretized by cubic

shape functions and can be written, in terms of the nodal structure

degrees-of-freedom, by

we ¼ Nw1 Nw2 Nw3 Nw4½ �Ue ¼ NwU
e ð32Þ

where

Nwn ¼ 0 0 Nc1
n Nc2

n Nc3
n

� �

; n ¼ 1;2;3;4 ð33Þ

The elementary pressure pe is discretized by linear shape func-

tions and can be written, in terms of nodal fluid pressure located at

the interface, by

pe ¼ N‘
1 N‘

2 N‘
3 N‘

4

� �

p1

p2

p3

p4

2

6

6

6

4

3

7

7

7

5

¼ Npi

p1

p2

p3

p4

2

6

6

6

4

3

7

7

7

5

ð34Þ

Thus, the elementary coupling matrix of size (20 � 4), defined

from the term
R

R
p nF

i dui ds in the variational formulation, can

be written as

Ce
up ¼

Z 1

�1

Z 1

�1

NT
wNpiJSdn dg ð35Þ

3.4. Extension to piezoelectric plate

In this section, we present an extension of the laminated com-

posite plate to the case of piezoelectric layers with transverse

polarization. The chosen multilayer model combines an equivalent

single layer assumption for the mechanical displacement and a lay-

erwise representation of the transverse electric potential (the elec-

tric potential is assumed to vary linearly in the thickness of each

piezoelectric layer). The advantages of this mixed laminate theory

are linked to its effectiveness to model thin composite plates and

to capture the through-thickness electric heterogeneity induced

by the piezoelectric layers.

From the previous electric potential assumption and neglecting

the in-plane components, the electric field is defined, for each pie-

zoelectric layer k, by its transverse component Ek ¼ �Vk=hk. V
k is

the electrical potential difference between top and bottom surfaces

and hk is the layer thickness (hk = zk � zk�1). We use in the finite

element discretization only one degree of freedom to represent

the electric potential differences Vk constant in each layer. Thus,

the degrees-of-freedom of the plate element described in the pre-

vious section are augmented by the electric potential difference

(voltage) of each layer.

The electric field of one multilayer piezoelectric plate element

can be written in the following form:

Ee ¼ �BVV
e ð36Þ

with Ee = [E1 � � � Ek � � � EN]T, V
e = [V1 � � � Vk � � � VN]T, and

BV ¼ diag 1
h1
� � � 1

hk
� � � 1

hN

� �

.

5 6

78

(-1, -1, 1) (1, -1, 1)

(-1, 1, 1) (1, 1, 1)

ξ
η

1 2

34

(-1, -1, -1) (1, -1, -1)

(-1, 1, -1) (1, 1, -1)

ζ

Fig. 4. Fluid hexahedric element.
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With these considerations, the elementary electromechanical

coupling stiffness matrix, given by
PN

n¼1
V ðnÞ

hðnÞ

R

XðpÞ ekijnkdeij dv in the

variational formulation, can be written by

Ce
uV ¼

Z 1

�1

Z 1

�1

BTEBV Jsðn;gÞ dndg ð37Þ

E being the membrane-electric and bending-electric coupling ma-

trix, defined by

ð38Þ

where �ek3jðj ¼ 1;2;6Þ are the reduced piezoelectric constants for

each layer k in the global coordinate system deduced from the

assumption of zero normal stress in the thickness direction.

Finally, from
PN

n¼1dV
ðnÞCðnÞV ðnÞ, the electric matrix is given by

KV = diag (C1 � � � Ck � � � CN) where Ck ¼ ��33S
k=hk is the capacitance

of the piezoelectric layer k (��k33 is the dielectric permittivity in

the thickness direction and Sk being the area of the layer).

4. Numerical examples

4.1. Free vibrations of a simply supported plate with surface-bonded

piezoelectric layers

In order to validate the proposed composite piezoelectric plate

finite element, we consider in this first example the free vibration

problem of a five layers simply supported square laminated plate

with surface-bonded piezoelectric layers. The geometrical data

are given in Fig. 5 (length a = 1m and total thickness h = a/

50 = 20 mm). The layered configuration consists of three layers

cross ply [0/90/0] graphite-epoxy and 2 layers of PZT-4. The thick-

ness of each ply is indicated in Fig. 5. The material data are given in

Table A.4 and the densities are considered to be unitary (1 kg m�3)

to allow comparisons with other available results. The assumed

boundary conditions are v =w = 0 on the edges x = 0, a and

u =w = 0 on the edges y = 0, a.

The first five fundamental frequency parameters, k ¼ fa
2

ffiffiffiffi

q
p

=h� 103 in Hz (kg/m)1/2 are calculated with the present finite

element model and compared in Table 1 to: (i) a Higher Shear

Deformation Theory using quadrilateral finite element with nine

nodes and 11� of freedom by node (Q9-HSDT 11P) [4], (ii) a Third

Order Shear Deformation Theory using quadrilateral finite element

with four nodes and 7 degrees of freedom by node (TDST) [11], and

(iii) an exact two-dimensionnal solution based on layerwise first-

order shear deformation theory and quadratic non-uniform electric

potential [1]. Two sets of electric boundary conditions are consid-

ered: short-circuited (SC) and open-circuited (OC).

The results obtained with the present element, with only 4

nodes and 5 dofs per node, are in good agreement with the other

solutions in particular with the more refined element Q9-HSDT

11P. As the solution with TSDT element, differences between

eigenfrequencies for piezoelectric layers in SC and OC conditions

occur only in symmetric modes, which seems reasonable since

asymmetric modes leads to asymmetric distribution of electric po-

tential on the electrodes of piezoelectric layers leading to a charge

cancelation effect [11]. For the first and fifth modes, as expected,

the natural frequencies are higher in the open-circuited case than

in the closed-circuited one. This weak difference should not be ne-

glected and might be used to assess the piezoelectric effect

through the so-called effective modal electromechanical coupling

coefficient [28].

4.2. Vibration reduction of a cantilevered beam using a resonant shunt

circuit

We consider in this second example a cantilever beam partially

covered with two collocated piezoelectric elements, polarized in

opposite directions (Fig. 6). The electrodes are connected in series

to a passive electrical circuit composed of a resistor R and an induc-

tor L, thus constituting a resonant shunt. The beam material is in

aluminum with Young’s modulus Eb = 74 GPa, Poisson’s ratio

mb = 0.34 and density qb = 2800 kg m�3. For the piezoelectric

patches, the following isotropic mechanical properties are used:

Young’s modulus Ep = 57 GPa, Poisson’s ratio mp = 0 and density

qp = 7800 kg m�3. These parameters are chosen in order to simplify

the comparison between the proposed plate model and the beam

model developed in [28]. FInally, the piezoelectric constants are

e31 = e32 = 13.222 C m�2 and e36 = 0, and the electrical permittivity

(in the polarization direction) is �33/�0 = 2400. The geometrical

data of the problem are given in Fig. 6.

Table 2 presents the first flexural natural frequencies of the can-

tilever structure in short-circuit and open-circuit conditions. The

results obtained with the developed plate element are compared

with those computed with a laminated piezoelectric finite element

beam developed in [28]. This element has three mechanical de-

grees of freedom (axial displacement v, transverse displacement

w and fiber rotation h) and one electric degree of freedom per pie-

zoelectric patch representing the uniform voltage in each patch.

This beam model does not include any torsion which explains

Fig. 5. Five layers simply supported square laminated plate: geometrical data.
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the absence of these modes in Table 2. For the first five flexural

modes, a very good agreement between the twomodels is obtained

for the two electric boundary conditions. As in the previous exam-

ple, the natural frequencies are slightly higher in the open circuited

case than in the short circuited case due to the electromechanical

coupling.

The beam is now excited by a normal sinusoidal force applied at

its tip. The vibration output is detected at the excitation point,

where the displacement reaches a maximum. The frequency re-

sponses, in the short-circuited and shunted cases are plotted and

compared in Fig. 7. In this example, the resonant shunt is tuned

in order to achieve maximum energy dissipation of the second

mode. The optimal values of the resistor and inductor, calculated

through the formulas given in [13,3], are R = 8000X and L = 15 H.

Fig. 7 shows that the resonant magnitude of the second mode

has been significantly reduced. In fact, the strain energy contained

in the piezoelectric material is converted into electrical energy and

hence dissipated into heat using the RL shunt device.

4.3. Vibration reduction of an elasto-acoustic coupled system

We present in this last example the analysis of an interior

damped structural–acoustic systems using an inductive shunt

damping technique, according to the finite element formulation

described in this paper. First, the modal analysis of the electrome-

chanical-acoustic problem is presented. Then, the frequency

response of the coupled system in short-circuited and shunted

cases are compared in terms of vibration amplitude and radiated

sound power level.

We consider a 3D hexaedric acoustic cavity of size A = 0.5 m,

B = 0.3 m and C = 0.4 m along the directions x, y, and z, respectively.

The cavity is completely filled with air (density q = 1.2 kg/m3 and

speed of sound c = 340 m/s). The cavity walls are rigid except the

top one, which is a flexible aluminum plate of thickness 1 mm

clamped at its four edges. The density of the plate is 2700 kg/m3,

the Young’s modulus is 72 GPa and Poisson ratio 0.35. On the top

surface of the plate, a PIC 151 patch is bonded, whose in plane

dimensions are 0.1 � 0.06 m2 along x and y and 0.5 mm thick

(see Fig. 8). The mechanical characteristics of the piezoelectric

material PIC 151 are given in Table A.4 in the Appendix A.

Table 1

First five frequency parameters k ¼ fa
2 ffiffiffiffi

q
p

=h� 103 Hz (kg/m)1/2.

Mode Short circuited Open circuited

Present Q9-HSDT 11P TSDT Exact 2D Present Q9-HSDT 11 TSDT Exact 2D

1 231.42 230.46 225.98 246.07 236.60 250.50 239.41 246.07

2 521.88 520.38 542.29 559.62 521.88 583.19 542.29 559.62

3 667.91 662.91 680.11 693.60 667.91 695.70 680.11 693.61

4 909.34 908.46 906.09 967.14 909.34 980.36 906.09 967.48

5 1027.22 1022.09 1099.05 1091.46 1030.47 1145.41 1100.94 1091.48

Fig. 6. Cantilever beam partially covered with two collocated piezoelectric elements: geometrical data.

Table 2

Natural frequencies in Hz for short-circuit and open-circuit boundary conditions:

comparison between plate and beam finite element formulations.

Mode Short circuited Open circuited

Present Beam model Present Beam model

1 Flex. F1 69.0 69.0 69.8 69.8

2 Flex. F2 414.2 414.0 419.2 418.9

3 Flex. F3 1110.8 1108.0 1122.0 1119.3

4 Flex. F4 2081.7 2070.7 2093.6 2082.7

5 Flex. F5 3343.6 3312.5 3348.3 3317.4
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Concerning the finite element discretization, we have used, for

the structural part, 100 plate elements. The portion of the plate

covered by the piezoelectric patch and the patch itself has been

modeled according to the presented laminated theory. Moreover,

only one electrical degree-of-freedom is used to represent the elec-

trical charge Q in the patch. The acoustic cavity is discretized using

10 � 10 � 10 hexahedric elements. The structural and acoustic

meshes are compatible at the interface.

Table 3 presents the eigenfrequencies in three cases: (i) the 3D

rigid acoustic cavity, (ii) the clamped plate with the patch in short-

and open-circuited cases and (iii) the plate/acoustic-cavity coupled

system in the short circuited case. Some results are compared with

those given by the finite element code Nastran using the same

mesh. The results presented in Table 3 show the excellent perfor-

mance of our finite element model compared to Nastran and en-

ables us to check the validity of the fluid–structure proposed

formulation. The first nine coupled frequencies are associated with

the first vibration modes of the structure lower than 345 Hz, and

the last coupled frequency corresponds to the first acoustic mode

in the rigid cavity. This can be confirmed by comparing the mode

shapes in case (iii) with those obtained in case (i) or case (ii), which

are not shown here for the sake of brevity. Moreover, as expected,

the natural frequencies of the coupled modes (structure domi-

nated) are lower than those for the structure in vacuum (except

for the first mode) due to the added-mass effect of the fluid.

The plate is now excited by a normal mechanical force of inten-

sity 1 N (see Fig. 8). In order to obtain maximum vibration attenu-

ation of the second coupled mode, the patch is tuned to an RL shunt

circuit. The optimal values of the electrical circuit are R = 750X

and L = 10.85 H. The vibratory response is calculated with a modal

reduction approach using the first 10 in vacuo structural modes

and the first 10 acoustic modes of the fluid in rigid cavity [6].

The mean quadratic normal velocity of the plate hV2i and the

radiated sound power in the closure P are used as the indicators

for this example:

hV2i ¼ x2

2AB
w�Muw ð39Þ

and

P ¼ 1

2
real½w�CupPw� ð40Þ

where x is the angular frequency, w is the vector of nodal normal

displacements of the plate, Pw is the vector of nodal pressures on

the fluid–structure coupling surface. Note that Mu and Cup are the

plate mass matrix and fluid–structure coupling matrix reduced to

the dofs of interest.

The Figs. 9 and 10 present the mean quadratic normal velocity

of the plate and the radiated sound power in the cavity with and

without shunt. These figures show that resonant magnitude for

the second mode has been significantly reduced due to the shunt

damping effect.

5. Conclusion

This paper describes the variational formulation and the finite

element implementation of vibroacoustic problems with piezo-

electric shunt damping. The system under study consists of a mul-

tilayer piezoelectric structure (described by its displacement field

and the electric potential differences of each piezoelectric layers)

coupled with an acoustic fluid (described by its pressure field)

and connected to resonant shunt circuits. The variational formula-

tion of the fully coupled problem and the corresponding FE matrix

equations are first presented. Then, an efficient finite element pie-

zoelectric laminated plate and an appropriate fluid–structure

interface element are developed. Finally, numerical examples areFig. 8. Electromechanical-acoustic coupled system: geometrical data.

Table 3

Computed frequencies (Hz) of the structural–acoustic coupled system.

Fluid Structure Fluid–structure

Nastan Present Nastran

SC

Present

SC

Present

OC

Nastran Present

341.40 341.40 70.04 70.40 70.43 78.46 76.23

426.75 426.75 99.94 100.45 100.80 98.76 99.30

546.51 546.51 156.18 156.71 156.93 155.94 156.04

569.00 569.00 180.32 180.56 180.56 178.97 179.07

663.56 663.56 204.17 204.55 204.69 203.15 203.21

691.23 691.23 234.56 232.96 233.24 233.36 231.40

711.25 711.25 249.01 251.93 252.10 248.17 250.62

788.94 788.94 317.31 318.66 319.02 316.76 317.44

812.35 812.35 343.82 334.91 336.69 341.25 333.55

864.04 864.04 347.19 346.86 346.99 342.71 341.49
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presented in order to validate the FE implementations and to show

the effectiveness of the proposed approach for the simulation of

structural–acoustic vibration reduction problems by passive piezo-

electric shunt damping techniques. In particular, the efficiency of

the developed laminated piezoelectric plate element (relatively

to the small number of degrees of freedom per node) has been

highlighted and the passive inductive shunt damping techniques

has been shown very effective for vibration attenuation of low fre-

quency modes in structural–acoustics. To broaden the effective-

ness of these inductive shunt systems on a wider frequency band

and to avoid a very precise tuning of the electrical parameters, fur-

ther investigations concern the extension of this work to switching

shunt damping [12].

Appendix A

Table A.4.
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Fig. 10. The radiated sound power in the cavity with and without shunt system.

Table A.4

Properties of graphite-epoxy, PZT-4 and PIC151 materials (electric permittivity of air

�0 = 8.85 � 10�12 F m�1).

Properties Graphite-epoxy [26] PZT-4 [1] PIC 151 [20]

E11 (GPa) 132.38 81.3 66.71

E22 (GPa) 10.76 81.3 66.71

E33 (GPa) 10.76 64.5 48.81

G23 (GPa) 3.61 25.6 19.63

G13 (GPa) 5.65 25.6 19.63

G12 (GPa) 5.65 30.6 24.89

m12 (GPa) 0.24 0.33 0.34

m13 (GPa) 0.24 0.43 0.4223

m23 (GPa) 0.24 0.43 0.4223

e15 (C m�2) 0 12.72 11.778

e24 (C m�2) 0 12.72 11.778

e31 (C m�2) 0 �5.2 �9.270

e32 (C m�2) 0 �5.2 �9.270

e33 (C m�2) 0 15.08 18.678

�11/�0 3.5 1475 1182

�22/�0 3 1475 1182

�33/�0 3 1300 905

q (kg m�3) 1578 7600 7800
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