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Piezoelectric Shunt Vibration Damping of 
Structural-Acoustic Systems: Finite Element 

Formulation and Reduced-Order Model

For noise and vibration attenuation, various approaches can be employed depending on the frequency range to attenuate. 
Generally, active or passive piezoelectric techniques are effective in the low-frequency range, while dissipative materials, 
such as viscoelastic or porous treatments, are efficient for higher-frequency domain. In this work, a reduced-order model 
is developed for the approximation of a fully coupled electromechanical-acoustic system using modal projection 
techniques. The problem consists of an elastic structure with surface-mounted piezoelectric patches coupled with a 
compressible inviscid fluid. The piezoelectric elements, connected with resonant shunt circuits, are used for the vibration 
damping of the coupled system. Numerical examples are presented in order to illustrate the accuracy and the versatility of 
the proposed reduced-order model, especially in terms of prediction of attenuation.

1 Introduction

Over the past decade, a considerable amount of research has
been devoted to the development, testing, and modeling of noise
and vibration reduction techniques using passive and/or active
approaches. Classically, passive techniques are achieved by using
dissipative materials, such as viscoelastic treatments or porous
insulations. It is well known that these kinds of methods are quite
effective at high frequencies. In the low-frequency range, techni-
ques using piezoelectric materials are found to be an attractive
alternative or complementary tool. In this case, sensor and actua-
tor piezoelectric patches are surface-mounted or embedded in the
structure. These patches are capable of self-sensing and self-
actuation for active vibration and noise control [1,2]. For the nu-
merical modeling of active-control structural-acoustic problems in
the field of noise reduction applications, the finite element method
is one of most powerful approaches. In this context, let us mention
Refs. [3] and [4], where active controller designs are developed to
reduce interior cabin noise levels, and Ref. [5], where active/
passive constrained layer damping treatments are proposed to con-
trol sound radiation from a vibrating thin structure into an acoustic
cavity. Another numerical methodology consists of combining the
finite element approach for the smart structure and the boundary
element method to calculate the acoustic response of the enclosed

fluid. In such a case, a steady-state response of acoustic cavities
bounded by piezoelectric composite shell structures is proposed in
Ref. [6], and an active-passive control technique, based on an out-
put feedback optimal controller design, is developed in Ref. [7].
Other smart systems consist of connecting the piezoelectric ele-
ments to a passive electrical circuit, called shunts, which is
another way to dissipate the mechanical energy (see for example
Refs. [8]–[10]). We only consider in the present work resonant
shunt circuits (RL-shunt), which are known to be very efficient to
attenuate the vibration level at the resonances, although they pres-
ent the drawbacks of requiring large inductor value and precise
tuning. These drawbacks can be avoided by using electrical syn-
thetic components (requiring an external electric power) and/or
using semipassive devices, such as synchronized switch techni-
ques [10]. These two points have been discarded here, but the
computational models developed in this work can be adapted to
treat numerically such configurations. In the present paper, we
consider a physical system constituted of an elastic structure with
shunted surface-mounted piezoelectric patches coupled with a lin-
ear homogeneous acoustic fluid. The piezoelectric elements, con-
nected with RL-shunt circuits, are used for the vibration damping
of the fluid-structure system in the low-frequency range. Such a
type of problem has been already analyzed by the authors using
the finite element method based on an original fully coupled
electromechanical-acoustic formulation [11]. For multiphysics
complex systems, the use of direct finite element methods can
lead to a huge number of degrees-of-freedom and consequently to
a prohibitive cost of the simulations, especially for sensitivity and
optimization analyses. The challenge is therefore to construct an
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appropriate reduced-order model of the multiphysics coupled sys-
tem. Let us recall that, for structural-acoustic interior vibration
problems, without any piezoelectric treatment, various reduced-
order models have been widely discussed in literature. These
models depend of the initial variational formulation and the corre-
sponding unknown fields. For the fluid, the chosen variables can
be the displacement, the pressure, or the displacement or velocity
potential, leading to various symmetric or nonsymmetric formula-
tions [12–17]. The objective here is to derive an appropriate reduced-
order model for the fluid/structure/piezopatches coupled system.

The outline of the paper is as follows. Firstly, we briefly recall
the finite element discretization of the coupled system derived
from a multifield variational principle involving structural dis-
placement, electrical voltage of piezoelectric elements, and acous-
tic pressure inside the fluid cavity [11]. This formulation, with
only a couple of electric variables per patch, is well adapted to
practical applications, since realistic electrical boundary condi-
tions, such that equipotentiality on the electrodes and prescribed
global electric charges, naturally appear. The global charge/
voltage variables are intrinsically adapted to include any external
electrical circuit into the electromechanical problem and to simu-
late the effect of resistive or resonant shunt-damping techniques.
Then, we develop an appropriate reduced-order model of the
coupled problem. This constitutes the main originality of the pa-
per. The proposed methodology, based on a normal mode expan-
sion, requires the computation of the eigenmodes of the structure
in vacuo with short-circuited piezoelectric patches and those of
the rigid acoustic cavity. It is shown that the projection of the full-
order coupled finite element model on the uncoupled bases leads
to a reduced-order model in which the main parameters are the
classical fluid-structure and electromechanical modal coupling
factors. Despite its reduced size, this model is proven to be very
efficient for simulations of harmonic vibration analyses of the
coupled structural-acoustic system with shunt damping. In the last
part of the paper, a three-dimensional numerical example is inves-
tigated. The problem consists of an elastic plate equipped with
two shunted piezoelectric elements and coupled with an acoustic
cavity. This example is analyzed in order to show that the
reduced-order model is able to capture the main characteristics of
the system dynamical behavior, in particular, in terms of
attenuation.

2 Finite Element Formulation of the Structural-
Acoustic Problem With Piezopatches

We briefly recall in this section the variational formulation of a
fluid/structure/piezopatches interaction problem in terms of struc-
tural mechanical displacement ui, electric potential w, and fluid
pressure p of the inviscid linear acoustic fluid (for more details,
we refer the reader to Refs. [11] and [18]). This coupled formula-
tion is adapted to the general case of an elastic structure equipped
with piezoelectric patches (see Fig. 1), as done for structural
vibrations in Ref. [19].

Notice that standard indicial notations are used throughout the
paper: subscripts i, j, k, and l denote the three-dimensional vectors
and tensor components and repeated subscripts imply summation.
In addition, a comma indicates a partial derivative and a super-
posed dot a time derivative.

2.1 Variational Formulation of the Fluid/Structure/Piezo-
patches Coupled System. We consider a piezoelectric structure
occupying the domain XS filled with an inviscid linear acous-
tic fluid occupying the domain XF. We denote by R the
fluid-structure interface and by nSi and nFi the unit normals
external to XS and XF, respectively. In Fig. 1, XS denotes the
total structural domain (elastic host structure and piezoelectric
patches).

The structure is clamped on a part Cu and subjected (i) to a
given surface force density Fd

i on the complementary part Cr of

its external boundary and (ii) to a pressure field p due to the pres-
ence of the fluid on its internal boundary R. The electric boundary
conditions are defined by a prescribed electric potential w,
denoted as wd , on a part Cw of the boundary of the structure and
by a surface density of electric charge q, denoted qd , on the
remaining part CD of the boundary of the structure. Thus, the total
structure boundary, denoted @XS, is such that @XS ¼ Cu [ Cr [ R

¼ CD [ Cw with Cu \ Cr \ R ¼ Cw \ CD ¼ 0=.
The linearized deformation tensor is eij ¼ 1

2
ui;j þ uj;i
� �

, and the
stress tensor is denoted by rij. Concerning the electric field varia-
bles, Di is the electric displacement verifying the electric charge
equation for a dielectric medium Di;i ¼ 0 in XS and the electric
boundary conditions Din

S
i ¼ �qd on CD. Ei denotes the electric

field vector such that Ei ¼ �w;i.
The linear piezoelectric constitutive equations are

rijðu;wÞ ¼ cijkleklðuÞ � ekijEkðwÞ (1)

Diðu;wÞ ¼ eikleklðuÞ þ eikEkðwÞ (2)

where cijkl denotes the elastic moduli at constant electric field, ekij
the piezoelectric constants, and eik the dielectric permittivities at
constant strain. Moreover, we denote by qS the mass density of
the structure.

Let us consider the special case of an elastic structure (domain
XE) equipped with P piezoelectric patches and completely filled
with an internal fluid (domain XF). Each piezoelectric patch
is covered on its upper and lower surfaces with a very thin layer
of conducting material to obtain electrodes. The pth patch,
p 2 1; � � � ;Pf g, occupies a domain X

ðpÞ such that ðXE;X
ð1Þ; � � � ;

X
ðPÞÞ is a partition of the all structural domain XS.
A set of hypotheses, which can be applied to a wide spectrum

of practical applications, are now formulated:

– The piezoelectric patches are thin, with a constant thickness
hðpÞ for the pth patch.

– The thickness of the electrodes is much smaller than hðpÞ and
is thus neglected.

– The piezoelectric patches are polarized in their transverse
direction (normal to the electrodes).

Under those assumptions, the electric field vector of compo-
nents Ek is normal to the electrodes and uniform in the piezoelec-
tric patch (i.e., Ek ¼ �ðVðpÞ=hðpÞÞnk in X

ðpÞ for all p 2 1; � � � ;Pf g,
where VðpÞ ¼ w

ðpÞ
þ � wðpÞ

� is the potential difference between the
upper and the lower electrode surfaces of the pth patch, which is
constant over XðpÞ, and nk is the kth component of the normal unit
vector to the surface of the electrodes.

By considering successively each of the Pþ 2 subdomains
ðXF;XE;X

ð1Þ; � � � ;XðPÞÞ, the variational formulation of the fluid/
structure/piezopatches coupled system can be written in terms of
structural displacement ui, electric potential difference VðpÞ in
each piezoelectric patch, and fluid pressure p:

Fig. 1 Fluid/structure/piezopatches coupled system
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– mechanical equation: 8dui 2 C�u,

ð

XS

cijklekldeijdvþqS

ð

XS

@2ui

@t2
duidvþ

X

P

p¼1

VðpÞ

hðpÞ

ð

X
ðpÞ
ekijnkdeijdv

�
ð

R

pnFi duids¼
ð

Cr

Fd
i duids (3)

where C�u is the admissible space of regular functions u
defined in XS and zero on Cu.

– electrical equation: 8dVðpÞ 2 R,

X

P

p¼1

dVðpÞCðpÞVðpÞ �
X

P

p¼1

dVðpÞ

hðpÞ

ð

X
ðpÞ
eikleklnidv ¼

X

P

p¼1

dVðpÞQðpÞ

(4)

where CðpÞ ¼ e33S
ðpÞ=hðpÞ defines the capacitance of the pth

piezoelectric patch (SðpÞ being the surface area of one elec-
trode and e33 ¼ eiknink the piezoelectric material permittivity
in the direction normal to the electrodes) and QðpÞ is the
global charge in one of the electrodes (see Ref. [19]).

– acoustical equation: 8dp 2 Cp,

1

qF

ð

XF

p;idp;idvþ
1

qFc
2
F

ð

XF

@2p

@t2
dpdvþ

ð

R

@2ui

@t2
nFi dpds ¼ 0

(5)

where Cp is the admissible space of regular functions p
defined in XF.

Equation (5) corresponds to the variational formulation of the
wave equation in the acoustic cavity p;ii ¼ ð1=c2FÞð@2p=@t2Þ in XF

together with the boundary condition p;in
F
i ¼ �qFð@2ui=@t

2Þ nFi
on R. This last relation expresses, in terms of p and u, the continu-
ity of the normal displacements of the fluid and the structure on R.
cF is the constant speed of sound in the fluid and qF the mass den-
sity of the fluid.

Thus, the variational formulation of the fluid/structure/
piezopatches coupled problem writes as follows: given
(Fd;wd; qd), find (ui 2 C�u, VðpÞ 2 R, p 2 Cp) such that Eqs. (3),
(4), and (5) are satisfied.
This formulation, with only a couple of electric variables per

patch, is well adapted to practical applications, since (i) realistic
electrical boundary conditions such that equipotentiality on the
electrodes and prescribed global charges naturally appear and (ii)
the global charge/voltage variables are intrinsically adapted to
include any external electrical circuit into the electromechanical
problem and to simulate shunted piezoelectric patches [11,19].

2.2 Finite Element Discretization of the Fluid/Structure/
Piezopatches Coupled System. Let us introduce U (of length Ns)
and P (of length Nf ), corresponding to the vectors of nodal values
of ui and p, respectively, and Q ¼ ðQð1ÞQð2Þ � � �QðPÞÞT and
V ¼ ðVð1ÞVð2Þ � � �VðPÞÞT the column vectors of electric charges
and potential differences. Thus, the variational Eqs. (3), (4), and
(5) for the fluid/structure/piezoelectric patches coupled problem
can be written, in discretized form, as the following unsymmetric
matrix system:

Mu 0 0

0 0 0

CT
up 0 Mp

2

6

6

4

3

7

7

5

€U

€V

€P

2

6

6

4

3

7

7

5

þ
Ku CuV �Cup

�CT
uV KV 0

0 0 Kp

2

6

4

3

7

5

U

V

P

2

6

4

3

7

5
¼

F

Q

0

2

6

4

3

7

5

(6)

where Mu and Ku are the mass and stiffness matrices of the struc-
ture; CuV is the electric mechanical coupled stiffness matrix;
KV ¼ diag Cð1ÞCð2Þ � � �CðPÞ� �

is a diagonal matrix filled with the P
capacitances of the piezoelectric patches; Mp and Kp are the mass
and stiffness matrices of the fluid; Cup is the fluid-structure
coupled matrix; and F is the applied mechanical force vector.
These submatrices correspond to the various linear and bilinear
forms involved in Eqs. (3), (4), and (5).
Note that Eq. (6) must be completed by appropriate initial con-

ditions and could be symmetrized as done in Ref. [14].

2.3 Structural-Acoustic Problem With Piezopatches
Connected to RL Series Shunt Circuit. The above discretized
formulation defined by Eq. (6) can be used for a wide range of
applications of mechanical structures with piezoelectric patches
coupled with acoustic domain. It is particularly adapted to the
case where the piezoelectric patches are shunted (i.e., connected
to a passive electrical network [8]). In this case, neither V nor Q
are prescribed by the electrical network, but the latter imposes a
relation between them. In the case of a resonant shunt connected
to the pth patch and composed of a resistance RðpÞ and an induct-
ance LðpÞ in series (Fig. 2), we have the following additional con-
straint between electrical potential differences V and the electric
charges Q:

L€Qþ R _Qþ V ¼ 0 (7)

where R ¼ diag Rð1ÞRð2Þ � � �RðPÞ� �

and L ¼ diag Lð1ÞLð2Þ � � �LðPÞ
� �

are diagonal matrices filled with the P resistances and inductances
of the shunt circuits.

Due to the direct piezoelectric effect, the piezoelectric patch
converts a fraction of the mechanical energy of the vibrating
structure into electrical energy, which can be dissipated through
the resistive components of the RL circuit. It is well known that
the damping effect due to this circuit is maximal when the reso-
nance circular frequency 1=

ffiffiffiffiffiffi

LC
p

of the shunt circuit is tuned in
the circular frequency of the structural-acoustic eigenmode to be
controlled. The resistance R and the inductance L can be adjusted
and properly chosen to maximize the damping effect of a particu-
lar mode (see, for example, Refs. [8], [20], and [21]). The optimal
resistance and inductance for the ith mode and for a series reso-
nant shunt are given by

Ropt ¼

ffiffiffiffiffiffiffiffiffiffiffi

2k2eff;i

q

Cxið1þ k2eff;iÞ
(8a)

Lopt ¼ 1

Cx2
i ð1þ k2eff;iÞ

(8b)

where xi is the short-circuit natural frequency and keff;i is the
effective electromechanical coupling coefficient given by

Fig. 2 Piezoelectric patch connected to RL-shunt circuit
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keff;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x̂2
i � x2

i

x2
i

s

(9)

x̂i being the open-circuit ith natural frequency.
Using the second row of Eq. (6), the degrees-of-freedom associ-

ated with the electrical potential difference V can be expressed in
terms of structural displacements U and electric charge Q as

V ¼ K�1
V CT

uVUþK�1
V Q (10)

Thus, after substituting this expression of V into Eq. (7) and using
Eq. (6), we get the following electromechanical-acoustic matrix
system:

Mu 0 0

0 L 0

CT
up 0 Mp

2

6

6

6

4

3

7

7

7

5

€U

€Q

€P

2

6

6

6

4

3

7

7

7

5

þ

0 0 0

0 R 0

0 0 0

2

6

6

4

3

7

7

5

_U

_Q

_P

2

6

6

6

4

3

7

7

7

5

þ

Ku þ CuVK
�1
V CT

uV CuVK
�1
V �Cup

K�1
V CT

uV K�1
V 0

0 0 Kp

2

6

6

6

4

3

7

7

7

5

U

Q

P

2

6

6

4

3

7

7

5

¼

F

0

0

2

6

6

4

3

7

7

5

(11)

This (U, Q, P) formulation is also well-suited for switched
shunt techniques [11]. Let us remark that no structural damping
has been introduced at this stage but will be considered under the
standard form of a modal damping in the reduced-order model
presented in Sec. 3.

3 Reduced-Order Model

In this section, we introduce a reduced-order formulation of the
variational Eqs. (3), (4), and (5) by a Ritz–Galerkin projection on
two bases spanning the admissible spaces C�u and Cp. Note that the
chosen reduction concerns only the mechanical variables U and P.
The electrical unknown field Q is not concerned by the reduction
because the dimension of this vector corresponds to the number of
piezopatches and therefore is very small compared to the mechan-
ical finite element degrees-of-freedom (i.e., pressure in the fluid
and displacement in the host structure and the piezopatches). For
C�u, we use the in vacuo structural modes in short-circuit configu-
ration, which can be computed using a standard elastic formula-
tion. Concerning Cp, the basis is formed by the eigenmodes of the
Helmholtz equation p;ii ¼ ðx2=c2FÞp, in which x is the circular
frequency, with the boundary condition ð@p=@nFÞ ¼ 0 corre-
sponding to the fixed rigid cavity.

3.1 Remark on the Physical Static Acoustic Problem. The
physical acoustic modes in a rigid fixed cavity are such that their
mean value over the acoustic domain XF is zero (i.e.,
Ð

XF
pdv ¼ 0). In effect, for harmonic vibrations, the variational

Eq. (5), restricted to a rigid fixed cavity (i.e., uin
F
i ¼ 0 on R)

writes, for p 2 Cp and 8dp 2 Cp,
ð

XF

p;idp;idv�
x2

c2F

ð

XF

pdpdv ¼ 0 (12)

This Eq. (12) shows that x ¼ 0 and p ¼ C0 (C0 being a con-
stant over XF) is an eigensolution. The orthogonality between this
eigenmode (x ¼ 0) and any other eigenmode (x 6¼ 0) writes
Ð

XF
pC0dv ¼ 0 and then

Ð

XF
pdv ¼ 0. It is important to note that

the eigensolution (x ¼ 0, p ¼ C0) is not physical, because it does
not correspond to any interpretation of rigid body motion—as it is
the case for free-free structural vibration—the wall being rigid

and fixed. Nevertheless, in the variational formulation in Eq. (5),
the admissible space Cp must include this particular solution in
order to have a complete basis. Alternatively, the formulation in
Eqs. (3), (4), and (5) can be regularized for zero frequency situa-
tion (i.e., valid for a static problem) by adding the following con-
straint: qFc

2
F

Ð

R
uinidsþ

Ð

XF
pdv ¼ 0 (see Ref. [15] for details).

When doing this, on one hand the static pressure is defined pre-
cisely by ps ¼ �ðqFc2F=jXFjÞ

Ð

R
uinids and, on the other hand, the

reduced-order formulation will be carried only by projection on
the physical acoustic modes. This alternative formulation is not
used in this paper but is the subject of further investigations.

3.2 Eigenmodes of the Structure In Vacuo With Short-
Circuited Patches. In a first step, the first Ms eigenmodes of the
structure in vacuo with all patches short-circuited are obtained
from the following equation:

Ku � x2
siMu

� �

Usi ¼ 0 for i 2 1; � � � ;Msf g (13)

where ðxsi;UsiÞ are the natural frequency and eigenvector for the
ith structural mode. These modes verify the following orthogonal-
ity properties:

U
T
siMuUsj ¼ dij and U

T
siKuUsj ¼ x2

sidij (14)

where dij is the Kronecker symbol and Usi have been normalized
with respect to the structure mass matrix. Note that the structure is
fixed on Cu, which eliminates any rigid body motion.

3.3 Eigenmodes Associated With the Rigid Acoustic
Cavity. In a second step, the first Mf eigenmodes of the acoustic
cavity with rigid boundary conditions are obtained from the fol-
lowing equation, corresponding to the finite element discretization
of Eq. (12):

Kp � x2
fiMp

� �

Ufi ¼ 0 for i 2 1; � � � ;Mf

� �

(15)

where ðxfi;UfiÞ are the natural frequency and eigenvector for the
ith acoustic mode. Referring to the first paragraph of this section,
we have xf 1 ¼ 0 and Uf 1 ¼ C01, where 1 is an identity vector.
These modes verify the following orthogonality properties:

U
T
fiMpUfj ¼ dij and U

T
fiKpUsj ¼ x2

fidij (16)

where Ufi have been normalized with respect to the fluid mass
matrix.

The orthogonality relationship in Eq. (16) with respect to the
constant vector writes

C01
TMpUfj ¼ 0 for j 2 2; � � � ;Mf

� �

(17)

This equation corresponds to the finite element discretized of the
zero mean value of the physical pressure p over the acoustic do-
main XF. This is taken into account inside the eigenvalue algo-
rithm of the finite element code (for instance, if an iteration
method is used).

3.4 Reduced-Order System in Terms of (qs, Q, qf ). By
introducing the matrices Us ¼ Us1 � � �UsMs

½ � of size Ns �Ms and
Uf ¼ Uf 1 � � �UfMf

	 


of size Nf �Mf corresponding to the two
bases previously defined, U and P are sought as

U ¼ UsqsðtÞ and P ¼ Ufqf ðtÞ (18)

where the vectors qs ¼ qs1 � � � qsMs
½ �T and qf ¼ qf 1 � � � qfMf

	 
T
are

the unknown coordinates.
By applying the Ritz–Galerkin projection method, which con-

sists of substituting relations in Eq. (18) into Eq. (11) and
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premultiplying the first row by UT
s and the third one by UT

f , we
obtain the reduced matrix system,

U
T
sMuUs 0 0

0 L 0

U
T
f C

T
upUs 0 U

T
f MpUf

2

6

6

6

4

3

7

7

7

5

€qs

€Q

€qf

2

6

6

6

4

3

7

7

7

5

þ

0 0 0

0 R 0

0 0 0

2

6

6

4

3

7

7

5

_qs

_Q

_qf

2

6

6

6

4

3

7

7

7

5

þ

U
T
s Ku þ CuVK

�1
V CT

uV

� �

Us U
T
sCuVK

�1
V �UT

sCupUf

K�1
V CT

uVUs K�1
V 0

0 0 U
T
f KpUf

2

6

6

6

4

3

7

7

7

5

�

qs

Q

qf

2

6

6

6

4

3

7

7

7

5

¼

U
T
s F

0

0

2

6

6

4

3

7

7

5

This matrix equation represents the reduced-order model of the
structural-acoustic problem with piezoelectric shunt-damping
treatments. If only few modes are kept for the projection, the size
of this reduced-order model (Ms � P�Mf ) is much smaller than
the initial one (Ns � P� Nf ).

Equation (19) can be also written in the following form of
coupled differential equations:

–Ms mechanical equations

€qsi þ 2nixsi _qsi þ x2
siqsi þ

X

P

p¼1

X

Ms

k¼1

c
ðpÞ
i c

ðpÞ
k

CðpÞ qsi þ
X

P

p¼1

c
ðpÞ
i

CðpÞ Q
ðpÞ

�
X

Mf

j¼1

bijqfj ¼ Fi (20)

– P electrical equations

LðpÞ €QðpÞ þ RðpÞ _QðpÞ þ QðpÞ

CðpÞ þ
X

Ns

i¼1

ci
CðpÞ qsi ¼ 0 (21)

–Mf acoustical equations

€qfi þ x2
fiqfi þ

X

Ms

j¼1

bijqsj ¼ 0 (22)

where FiðtÞ ¼ UT
siF is the mechanical excitation of the ith

mode, bij ¼ UT
siCupUfj are the fluid structure coupling coeffi-

cients, and ci ¼ UT
siCuV the electromechanical coupling

factors.

Note that the modal damping coefficients ni have been added in
Eq. (20) but not in Eq. (19), in order to take into account the struc-
tural damping, which can be measured experimentally. This is
mandatory in order to quantify the attenuation due to the shunt at
the resonance (of course, without damping, the amplitude of the
response at the resonance is theoretically infinite).

The formulation in terms of physical variables (U, Q, P) has
been replaced by the reduced formulation in terms of hybrid coor-
dinates (qs, Q, qf ). Its major interest, and especially the choice of
the short-circuit eigenmodes as the expansion basis, is that the
above computations of the parameters necessitate only a modal
analysis of an elastic problem. This operation can thus be done

using any standard finite element code. In Sec. 4, as our purpose is
to verify the reliability and the precision of the reduced model, we
carried out numerical experimentation. The problem of mode
truncation is analyzed through several computations obtained by
varying the number of structural and acoustic modes in relation
with the frequency band of interest. The acceleration of conver-
gence by using appropriate static corrections has not been
included in the following example but will be the subject of fur-
ther investigations.

4 Numerical Example

We consider a 3D acoustic cavity completely filled with air
(density qF ¼ 1:2 kg/m3; speed of sound cF ¼ 340 m/s). The cav-
ity walls are rigid except the top one, which is a flexible aluminum
plate of thickness 1mm clamped at its four edges. This particular
configuration has been chosen because it gives preliminary results
concerning noise and vibration in a usual shape of a demonstrator
(small size mock-up of an automobile). More precisely, the cho-
sen system can be checked experimentally without being too
costly, because the geometry is constituted by an assembly of sim-
ple subsystems, namely, an elastic plate and rigid rectangular
walls. It should be noted that similar but more complex configura-
tions have been used for structural-acoustic analyses in various
references (see, for example, Refs. [17] and [22]). The density of
the plate is 2700 kg/ m3, the Young modulus 72GPa, and the Pois-
son ratio 0.34. On the top surface of the plate, two identical piezo-
electric patches of thickness 0.5mm are bonded. For the
mechanical characteristics of the piezoelectric material PIC151,
the reader can be referred to Ref. [19]. The geometrical data and
the finite element mesh are presented in Fig. 3.

Concerning the finite element discretization, we have used for
the structural part 200 four-node plate elements based on Mindlin
theory with five degrees-of-freedom per node (i.e., Ns ¼ 1155).
The portions of the plate covered by the piezoelectric patches
have been modeled according to the first-order shear deformation
laminated theory [23]. As discussed in Secs. 1–3, only one electri-
cal degree of freedom is used to represent the electrical charge Q
in each patch. The acoustic cavity is discretized using 2600 hexa-
hedric elements with one degree-of-freedom per node, corre-
sponding to the acoustic pressure (i.e., Nf ¼ 3234). Note that the
structural and acoustic meshes are compatible at the interface.
The frequency range considered in this example is 0–500Hz.

4.1 Modal Analysis of the Acoustic/Structure/Piezopatches
Coupled Problem. Table 1 presents the eigenfrequencies in three
cases: (i) the 3D rigid acoustic cavity; (ii) the clamped plate with
the two patches short-circuited; and (iii) the plate/acoustic-cavity
coupled system in the short-circuit case. All coupled frequencies,
except the sixth, are associated with the vibration modes of the
structure lower than 450Hz. The sixth frequency of the coupled
problem corresponds to the first acoustic mode in rigid cavity.
This can be confirmed by comparing the mode shapes in case (iii)
with those obtained in cases (i) or (ii), which are not shown here
for sake of brevity. Moreover, let us remark that the natural fre-
quencies of the coupled modes (where the structural deformation
is predominant) are lower than those for the structure in vacuo,
except for the first mode, which is also the most affected by the
presence of the fluid cavity. For illustration purpose, Fig. 4 shows
the deformed plate and the pressure field for the first ten vibration
modes in the coupled case. Moreover, direct frequency response
functions without damping and with short-circuited patches are
calculated using Eq. (6) written in the frequency domain. The
obtained curves, presented in Fig. 5, show the resonances of the
coupled system, which are in perfect correlation with the eigenfre-
quencies of the coupled problem (see the third column of Table 1).
The mechanical transverse displacement in the plate is evaluated
at the point of coordinates (x¼ 0.14m, y¼ 0.06m, z¼ 0.3m) and
the sound pressure level in the acoustic cavity at the point of coor-
dinates (x¼ 0.15m, y¼ 0.09m, z¼ 0.1m). It should be noted that

5



the responses are not infinite (at it should be theoretically, due to
the absence of damping) because the calculations are made by a
frequency sweeping.

4.2 Dynamic Response of the Acoustic/Structure/
Piezopatches Coupled Problem. In this part, shunt systems con-
nected with two piezoelectric patches (see Fig. 6) are used in

order to get a multimodal damping of the coupled system. The
chosen objective is to attenuate the second and fourth modes of
the plate. For this purpose, the patches are tuned independently
and simultaneously using Eqs. (8a) and (8b). The optimal values
of the shunt electrical parameters are then, respectively, R1 ¼ 632
X and L1 ¼ 9.5H for the second mode and R2 ¼ 735 X and
L2 ¼ 3.2H for the fourth mode. The two modes being well sepa-
rated within the frequency band (shift around 90 Hz, as it can be

Table 1 Computed frequencies (in Hz) of the structural-
acoustic coupled system

Fluid in a
rigid cavity

Structure in
vacuo

Coupled
modes Typea

297.94 77.93 85.40 S
561.56 123.64 122.53 S
569.00 194.29 192.79 S
614.82 212.29 211.94 S
642.29 237.12 236.14 S
681.94 316.11 298.31 F
799.44 346.32 315.59 S
837.71 383.89 346.24 S
875.22 434.73 382.23 S
881.62 451.03 433.61 S

aS for structure predominant modal shape and F for fluid predominant
modal shape.

Fig. 4 First ten fluid-structure coupled modes: fluid pressure
level in the cavity and plate total displacement

Fig. 5 Displacement and pressure responses of the full-order
model without damping: (a) mechanical transverse displacement
in the plate and (b) sound pressure level in the acoustic cavity

Fig. 3 Geometrical data and finite element mesh of the acous-
tic/structure/patches system: (a) geometrical data and (b) finite
element mesh
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seen in Table 1 or Figs. 8 and 9), we consider that there is only a
weak interference between them. Each patch is then connected to
one shunt for the attenuation of one mode. The plate is excited by
a mechanical force of intensity 1N located at (x ¼ 0:14 m,
y ¼ 0:06 m, z ¼ 0:3 m). A constant structural damping ratio has
been used in the simulation (ni ¼ 0:5%). Note that no damping
has been introduced in the acoustic fluid due to the limited fre-
quency range of interest [24].

The system vibratory response is obtained with the modal
reduction approach defined by Eq. (19). In order to evaluate the
number of structural and acoustic modes to keep in the modal pro-
jection, various simulations have been performed. Three cases are
then analyzed: (i) Ms ¼ 100 and Mf ¼ 100, which corresponds to
a frequency range much beyond 0–500Hz; (ii) Ms ¼ 12 (515Hz)
andMf ¼ 3 (562Hz), which corresponds approximately to the fre-
quency of interest; and (iii) Ms ¼ 30 (1297Hz) and Mf ¼ 15
(1072Hz), which is slightly higher than the double of the fre-
quency of interest. We recall that, in the three cases, the constant
mode at zero frequency for the fluid corresponds to the first one.
We consider that Ms ¼ 30 and Mf ¼ 15 is satisfying in compari-
son with the case Ms ¼ 100 and Mf ¼ 100 (see Fig. 7). The dis-
crepancies observed at the antiresonances do not play an
important role here because we are only interested in the attenua-
tion at the resonances and do not perform an active control of the

Fig. 6 Structural-acoustic coupled problem with two piezo-
electric patches connected to RL-shunt circuits

Fig. 7 Influence of the structural and acoustic mode trunca-
tion on the response of the reduced-order model with structural
damping: (a) mechanical transverse displacement in the plate
and (b) sound pressure level in the acoustic cavity

Fig. 8 Frequency response function: transverse displacement
amplitude in dB at the excitation point within the frequency
band 0–500 Hz (a) and 0–250Hz (b)
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system. A deep study of truncation effects, acceleration of conver-
gence, and error estimation, using, for example, various static cor-
rections, is presently under investigation but outside the scope of
this paper.

Figures 8 and 9 present the frequency response functions of the
reduced-order model with and without shunt (at the same struc-
tural and fluid points as in the full-order model of Sec. 4.1). Refer-
ring to the preceding analysis, these results are obtained using 30
structural modes (Ms ¼ 30) and 15 acoustic modes (Mf ¼ 15).
These figures show that the modal resonant magnitude for each
considered mode has been significantly reduced (around 20 dB).
In fact, the strain energy present in the piezoelectric material is
converted into electrical energy and then efficiently dissipated
into heat by the RL-shunt devices.

5 Conclusion

In this work, an original reduced-order formulation of
structural-acoustic problems with piezoelectric patches is pre-
sented. This formulation, involving only a couple of electric varia-
bles by patch, allows taking into account naturally realistic
electric boundary conditions. The proposed methodology requires
the computation of the eigenmodes of the structure with short-

circuited piezoelectric patches and the rigid acoustic cavity. It is
shown that the projection of the full-order coupled finite element
model on the subspace spanned by the uncoupled bases leads to a
reduced-order model in which the main parameters are the classi-
cal fluid-structure and electromechanical modal coupling factors.
Despite its reduced size, this model is proven to be very efficient
for simulations of steady-state analyses of structural-acoustic
coupled systems with shunt damping. Further investigations will
concern symmetrization, acceleration of convergence, as well as
introduction of additional passive dissipation in the fluid and at
the interface.
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