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Abstract In thisworkwedealwith the exponential stability of the nonlinearKorteweg-
de Vries (KdV) equation on a finite star-shaped network in the presence of delayed
internal feedback. We start by proving the well-posedness of the system and some
regularity results. Then we state an exponential stabilization result using a Lyapunov
function by imposing small initial data and a restriction over the lengths. In this part
also, we are able to obtain an explicit expression for the rate of decay. Then we prove
the exponential stability of the solutions without restriction on the lengths and for
small initial data, this result is based on an observability inequality. After that, we
obtain a semi-global stabilization result working directly with the nonlinear system.
Next we study the case where it may happen that a control domain with delay is
outside of the control domain without delay. In that case, we obtain also a local expo-
nential stabilization result. Finally, we present some numerical simulations in order
to illustrate the stabilization.
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1 Introduction

The Korteweg-de Vries (KdV) equation DC + DG + DGGG + DDG = 0 was introduced in
[8] to model the propagation of long water waves in a channel. It has been widely
studied in the last years, in particular its controllability and stabilization properties,
see [3, 19] for a complete introduction to those problems.
From the stabilization point of view, we can refer to the work [22] where the boundary
exponential stabilization problemwas studied in the bounded spatial domain G ∈ (0,1).
It is well known that the length ! of the spatial domain plays an important role in
the stabilization and controllability properties of the KdV equation. For example
if ! = 2c it is possible to find a solution of the linearization around 0 of KdV
(D(C, G) = 1−cos(G)) which has constant energy. More generally if ! ∈ N whereN is
called the set of critical lengths defined by

N =

{
2c

√
:2 + :; + ;2

3
, :, ; ∈ N∗

}
,

we can find suitable initial data such that the solution of the linear KdV equation has
constant energy. In the case of internal stabilization it is proven in [17, 15] that for any
critical length by adding a localized damping we reach the local exponential stability
for the nonlinear KdV equation.

Adding a delay term allows to study the action of a device in a more real-life
setting. It is known that even the presence of small delays in internal feedback could
destabilize a system, see for example [6]. In the works [2] and [21] the problem of
robustness with respect to time delay for a KdV equation was studied with boundary
and internal stabilization respectively. Our contribution to this work is to study the
stabilization of a KdV equation posed on a Star Network in presence of internal time
delays. With respect to the KdV equation on Networks the first work introducing this
system was [1] where the stabilization and controllability problems were studied and
after that the boundary controllabilty results were improved in [4].

In this work we are interested in the stability properties of the Korteweg-de Vries
equation with internal input delay posed on a Star-Shaped Network. Let  = {: 9 : 1 ≤
9 ≤ #} be the set of the edges of a network T described as the intervals [0, ℓ 9 ] with
ℓ 9 > 0 for 9 = 1, · · ·# , the network T is defined by

T =
#⋃
9=1
: 9 .
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Fig. 1 Star Shaped Network for # = 3.

Specifically we are going to consider the next evolution problem for the KdV
equation with internal input delay on each edge.

mCD 9 (C, G) + mGD 9 (C, G) +D 9 (C, G)mGD 9 (C, G) + m3
GD 9 (C, G)

+0 9 (G)D 9 (C, G) + 1 9 (G)D 9 (C − ℎ 9 , G) = 0, G ∈ (0, ℓ 9 ), C > 0, 9 = 1, · · · , #,
D 9 (C,0) = D: (C,0), ∀ 9 , : = 1, · · ·#,∑#
9=1 m

2
GD 9 (C,0) = −UD1 (C,0) − #

3 D
2
1 (C,0), C > 0,

D 9 (C, ℓ 9 ) = mGD 9 (C, ℓ 9 ) = 0, C > 0, 9 = 1, · · · , #,
D 9 (0, G) = D0

9
(G), G ∈ (0, ℓ 9 ),

D 9 (C, G) = I0
9
(C, G), (C, G) ∈ (−ℎ 9 ,0) × (0, ℓ 9 ),

(KdVd)
where U ≥ #

2 and for all 9 = 1, · · · , # , ℎ 9 > 0 is the time delay on the edge 9 , 0 9 ,
1 9 ∈ !∞ (0, ℓ 9 ) are non-negative and supp 1 9 = l 9 is a nonempty, open subset of
(0, ℓ 9 ) such that

1 9 (G) ≥ 10 > 0, a.e on l 9 , (1.1)
there exists 20 > 0, such that 1 9 (G) + 20 ≤ 0 9 (G),∀G ∈ l 9 . (1.2)

The condition U > #
2 was firstly introduced in [1] in order to have a decreasing energy,

the case U = #
2 was studied in [4] from a controllability point of view. In our work

we consider U > #
2 in some cases and U ≥ #

2 in others. The conditions over the
damped terms with and without delay (1.1)-(1.2) are the analogues of the conditions
(1.2) − (1.3) presented in [21], similar conditions over the weight of the feedback
with and without delay can be founded in [2, 13, 12].

In order to study this system we need first a proper functional setting. We define
the following spaces

�BA (0, ℓ 9 ) =
{
E ∈ �B (0, ℓ 9 ),

(
d
dG

) 8−1
E(ℓ 9 ) = 0, 1 ≤ 8 ≤ B

}
, B = 1,2,

where the index A is related to the null right boundary conditions. The space HB4 (T )
will be the cartesian product of �BA (0, ℓ 9 ) including the continuity condition on the
central node (D 9 (0) = D: (0),∀ 9 , : = 1, · · · , #)

HB4 (T ) =
D = (D1, · · · , D# ) ∈

#∏
9=1
�BA (0, ℓ 9 ), D 9 (0) = D: (0),∀ 9 , : = 1, · · · , #

 , B = 1,2
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and

‖D‖2
H1
4 (T)

=

#∑
9=1
‖D 9 ‖2� 1 (0,ℓ 9 )

where the index 4 indicates that each edge belongs to �BA (0, ℓ 9 ).

L2 (T ) =
#∏
9=1
!2 (0, ℓ 9 ), L∞ (T ) =

#∏
9=1
!∞ (0, ℓ 9 ).

The space L2 (T ) is equipped with the inner product

(D, E)L2 (T) =
#∑
9=1

∫ ℓ 9

0
D 9E 93G, ∀D, E ∈ L2 (T ). (1.3)

We also define the space

B = � ( [0,)],L2 (T )) ∩ !2 (0,) ;H1
4 (T ))

endowed with the norm

‖D‖B = ‖D‖� ( [0,) ],L2 (T)) + ‖D‖!2 (0,) ;H1
4 (T)) = max

C ∈[0,) ]
‖D‖L2 (T) +

(∫ )

0
‖D(C, ·)‖2

H1
4 (T)

3C

)1/2
.

Note first (1.1) and (1.2) imply

l 9 = supp 1 9 ⊂ supp 0 9 , and 0 9 (G) ≥ 10 + 20 > 0, in l 9 . (1.4)

To deal with delays we introduce the following space

H = L2 (T ) × ©«
#∏
9=1
!2 ((−ℎ 9 ,0) × (0, ℓ 9 ))

ª®¬
endowed with

‖(D, I)‖2H =
#∑
9=1

(∫ ℓ 9

0
D 9 (G)23G +

∫ 0

−ℎ 9

∫ ℓ 9

0
b 9 (G)I2

9 (B, G)3G3B
)

where for all 9 = 1, · · · , # , b 9 is a non-negative function belonging to !∞ (0, ℓ 9 ) such
that supp b 9 = supp 1 9 = l 9 and

1 9 (G) + 20 ≤ b 9 (G) ≤ 20 9 (G) − 1 9 (G) − 20, in l 9 . (1.5)

For (KdVd), we define the energy

� (C) =
#∑
9=1

(∫ ℓ 9

0
D2
9 (C, G)3G + ℎ 9

∫
l 9

∫ 1

0
b 9 (G)D2

9 (C − ℎ 9 d,G)3d3G
)
. (1.6)

The above expression corresponds to the square norm of (D(C, ·), D(C + ·, ·)) inH ,
with the change of variable B = −ℎ 9 d for D 9 (C + B, G).
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Finally we denote L2 (Ω) =∏#
9=1 !

2 ((0,1) ×l 9 ), and let

� = L2 (T ) × ©«
#∏
9=1
!2 ((0,1) ×l 9 )

ª®¬ = L2 (T ) ×L2 (Ω)

with its inner product〈(
D

I

)
,

(
E

H

)〉
=

#∑
9=1

∫ ℓ 9

0
D 9 (G)E 9 (G)3G + ℎ 9

∫
l 9

∫ 1

0
b 9 (G)I 9 (d,G)H 9 (d,G)3d3G,

we denote by ‖ · ‖� its associated norm.

Our first main result is the following one, where local exponential stability of
(KdVd) is obtained for a restricted assumption over ! = max

9=1. · · · ,#
ℓ 9 , but an estimation

of the decay rate is given.

Theorem 1.1 Assume 0, 1 ∈ L∞ (T ) componentwise non-negative that satisfy (1.1)
and (1.2). Let U > #

2 and (ℓ 9 )#9=1 ⊂ (0,∞) such that ! <
√

3
2 c. Then there exists n > 0,

such that for every (D0, I0 (−ℎ·, ·)) ∈ � satisfying ‖(D0, I0 (−ℎ·, ·))‖� ≤ n , the energy
of (KdVd) defined by (1.6) decays exponentially. That is, there exist� > 0, W > 0 such
that

� (C) ≤ �� (0)4−2WC , C > 0,

where

W ≤ min


(
3`1c

2 + 2
3
!3/2n `1c

2− `14!2
)

8!2 ((1+ !`1))
, min
9=1, · · · ,#

`2
2ℎ 9 (`2 + ‖b 9 ‖!∞ (0,ℓ 9 ) )

 ,
(1.7)

� =

(
1+max

{
!`1,

`2
10

})
,

for `1 and `2 such that

0 < `1 < min
{
1,

1
#
(2U−#) min

9=1, · · · ,#

{
inf
l 9

20 9 − 1 9 − b 9
!1 9

, inf
l 9

b 9 − 1 9
!1 9

}}
,

0 < `2 < min
9=1, · · · ,#

inf
l 9

{
20 9 − 1 9 − b 9 − `1!1 9

}
.

This result will be proved in a constructive way by using a Lyapunov function, similar
to those used in [2, 21].

On the other hand, our second main result is obtained without restriction on the
lengths of T and gives us a local exponential stability.
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Theorem 1.2 Assume 0, 1 ∈ L∞ (T ) componentwise non-negative that satisfy (1.1)
and (1.2). Let (ℓ 9 )#9=1 ⊂ (0,∞), then there exists n > 0 such that for all (D0, I0 (−ℎ·, ·)) ∈
� with ‖(D0, I0 (−ℎ·, ·))‖� ≤ n the energy of (KdVd) decays exponentially, i.e, there
exists � > 0 and ` > 0 such that � (C) ≤ �� (0)4−`C for all C > 0.

The main difference between Theorem 1.1 and Theorem 1.2 is that Theorem 1.2 is
based on an observability inequality which is proved using a contradiction argument.
Thus we can not estimate the decay rate.

In our third main result, we proved a semi-global exponential stabilization by
working directly with the nonlinear system (KdVd).

Theorem 1.3 Assume 0, 1 ∈ L∞ (T ) componentwise non-negative that satisfies (1.1)
and (1.2). Let (ℓ 9 )#9=1 ⊂ (0,∞) and ' > 0. Then for all (D0, I0 (−ℎ·, ·)) ∈ � with
‖(D0, I0 (−ℎ·, ·))‖� ≤ ' then there exist � =� (') > 0 and ` = `(') > 0 such that the
energy of (KdVd) satisfies � (C) ≤ �� (0)4−`C for all C > 0.

The semi-global sense of this result arises from the fact that we can choose as we
want the parameter ' > 0 of the initial data but the decay rate depends on it.

In the last results presented, it is not possible to take 0 9 = 0 and 1 9 ≠ 0 for some
9 ∈ {1, · · · , #} (by (1.4) if 0 9 = 0 then 1 9 = 0). However this is only a technical part
of the proof and in the next result we deal with this problem in a more general case,
we suppose for this part that

l 9 = supp 1 9 ⊄ supp 0 9 , for 9 ∈ � ⊂ {1, · · · , #}. (1.8)

For this we write now the analogues of the condition (1.2) in the setting (1.8), take
�∗ = {1, · · · , #}\�,

there exists 20 > 0, such that 1 9 (G) + 20 ≤ 0 9 (G),∀G ∈ l 9 , for 9 ∈ �∗. (1.9)

Then we write our last result of stabilization when the internal delay is not necessarily
supported in the domain of 0 9 .

Theorem 1.4 Assume 0, 1 ∈ L∞ (T ) componentwise non-negative that satisfy (1.1)
and (1.9). Let U > #

2 , [ > 1 and (ℓ 9 )#9=1 ⊂ (0,+∞) such that ! <
√

3
2 c. Then there

exits X = X(U,[, !, ℎ) > 0 and n > 0, such that for every (D0, I0 (−ℎ·, ·) satisfying
‖1‖L∞ (T) ≤ X and ‖(D0, I0 (−ℎ·, ·))‖� ≤ n , the energy of (KdVd) decays exponentially
to 0.

The organization of this paper is the following:

Section 2 is devoted to the study of the well-posedness of (KdVd). More precisely
we consider the linearization around 0 of (KdVd) and using Semigroup Theory we
show the well-posedness of the linear system. Then using a fixed point argument
we obtain the well-posedness for the nonlinear system. In Section 3 we present our
stabilization results when the feedback terms 0, 1 ∈ L∞ (T ) satisfy (1.1) and (1.2). The
first one namely Theorem 1.1 is obtained following the same steps as [2, 21]. Then we



Delayed stabilization of the Korteweg-de Vries equation on a Star-shaped network 7

detail the proofs of Theorem 1.2 and Theorem 1.3 that are based on an observability
inequality. In Section 4, we study the case where (1.2) is not satisfied and we show the
proof of Theorem 1.4 using a suitable auxiliary system and a perturbation argument.
Some numerical simulations are presented in Section 5 in order to illustrate the results
obtained. Section 6 collects some concluding ideas and future research lines.

2 Well-posedness of a delayed KdV system

Our idea is the following, first we work with the linearization around 0 of (KdVd),
then we add a boundary source term at the central node 6(C) to consider the nonlinear
boundary condition −#

3
D2

1 (C,0)and secondly we add the internal source terms 5 9 to
consider after the term D 9mGD 9 . Finally to pass to the nonlinear (KdVd) we use a fixed
point argument.

2.1 Well-posedness of the linear case

We start by proving the well-posedness for the linearization of (KdVd) around 0, that
writes

mCD 9 (C, G) + mGD 9 (C, G) + m3
GD 9 (C, G) + 0 9 (G)D 9 (C, G)

+1 9 (G)D 9 (C − ℎ 9 , G) = 0, G ∈ (0, ℓ 9 ), C > 0, 9 = 1, · · · , #,
D 9 (C,0) = D: (C,0), ∀ 9 , : = 1, · · ·#,∑#
9=1 m

2
GD 9 (C,0) = −UD1 (C,0), C > 0,

D 9 (C, ℓ 9 ) = mGD 9 (C, ℓ 9 ) = 0, C > 0, 9 = 1, · · · , #,
D 9 (0, G) = D0

9
(G), G ∈ (0, ℓ 9 ),

D 9 (C, G) = I0
9
(C, G), (C, G) ∈ (−ℎ 9 ,0) × (0, ℓ 9 ).

(LKdVd)
We set I 9 (C, d, G) = D 9

��
l 9
(C − ℎ 9 d,G) G ∈ l 9 , d ∈ (0,1). Then we can check that


ℎ 9mC I 9 (C, d, G) + mdI 9 (C, d, G) = 0, G ∈ l 9 , d ∈ (0,1), C > 0,
I 9 (C,0, G) = D 9 (C, G), G ∈ l 9 , C > 0,
I 9 (0, d, G) = D 9

��
l 9
(−ℎ 9 d,G) = I0

9
(−ℎ 9 d,G), d ∈ (0,1).

(2.1)

Let us introduce the componentwise product .∗ as

©«
?1
...

?#

ª®®¬ . ∗
©«
@1
...

@#

ª®®¬ =
©«
?1@1
...

?# @#

ª®®¬ .
Then (LKdVd) can be written as{

*C (C) =A* (C), C > 0
* (0) =*0,

(2.2)
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where* =
(
D

I

)
,*0 =

(
D0

I0
��
l
(−ℎ·, ·)

)
and the operator A is defined by:

A* = ©«
−(DG (T ) +D3

G (T ))D− 0. ∗D− 1. ∗ Ĩ(1, ·)
−1
ℎ
. ∗Dd (T )I

ª®¬
for D = (D 9 )#9=1, 0 = (0 9 )

#
9=1, 1 = (1 9 )

#
9=1, ℎ = (ℎ 9 )

#
9=1,

(
1
ℎ

)
9

=
1
ℎ 9

and Ĩ(1, ·) =

( Ĩ 9 (1, ·))#9=1 in which Ĩ 9 (1, ·) ∈ !2 (0, ℓ 9 ) is the extension by 0 of I 9 (1, ·) outside
l 9 and the operators DG (T ) (resp. Dd (T )) acts like the derivative with respect to G
(resp d) componentwise as

DG (T )
©«
D1
...

D#

ª®®¬ =
©«
mGD1
...

mGD#

ª®®¬ , Dd (T )
©«
I1
...

I#

ª®®¬ =
©«
mdI1
...

mdI#

ª®®¬ .
The domain of A is the following

� (A) =

(
D

I

)
, D ∈ ©«

#∏
9=1
�3 (0, ℓ 9 )

ª®¬∩H2
4 (T ),

#∑
9=1

d2D 9

dG2 (0) = −UD1 (0),

I ∈
#∏
9=1
!2 (�1 (0,1) ×l 9 ), I 9 (0, G) = D 9

��
l 9
(G)

 .
Note that if

(
D

I

)
∈ � (A) then D ∈ H2

4 (T ) that implies D 9 (C, ℓ 9 ) = mGD 9 (C, ℓ 9 ) = 0.

Theorem 2.1 Assume 0,1 ∈ L∞ (T ) componentwise non-negative that satisfy (1.1)
and (1.2). Let*0 ∈ �. Then there exists a unique solution* ∈ � ( [0,∞);�) of (2.2).
Moreover if*0 ∈ � (A) then* is a classical solution and

* ∈ � ( [0,∞);� (A)) ∩�1 ( [0,∞);�).

Proof Let* =
(
D

I

)
∈ � (A), then
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〈A*,*〉 =
#∑
9=1

(∫ ℓ 9

0
(−m3

GD 9 (G) − mGD 9 (G) − 0 9 (G)D 9 (G))D 9 (G)3G

−
∫
l 9

1 9 (G)I 9 (1, G)D 9 (G)3G− ℎ 9
∫
l 9

∫ 1

0
b 9 (G)

1
ℎ 9
mdI 9 (d,G)I 9 (d,G)3d3G

)
=

#∑
9=1

(∫ ℓ 9

0
m2
GD 9 (G)mGD 9 (G)3G− m2

GD 9 (G)D 9 (G)
��ℓ 9
0 −

1
2
D2
9 (G)

��ℓ 9
0 −

∫ ℓ 9

0
0 9 (G)D2

9 (G)3G

−
∫
l 9

1 9 (G)I 9 (1, G)D 9 (G)3G−
1
2

∫
l 9

b 9 (G)I2
9 (d,G)

��1
03G

)
=

#∑
9=1

(
1
2
(mGD 9 (G))2

��ℓ 9
0 + m

2
GD 9 (0)D1 (0) +

1
2
D2

1 (0) −
∫ ℓ 9

0
0 9 (G)D2

9 (G)3G

−
∫
l 9

1 9 (G)I 9 (1, G)D 9 (G)3G−
1
2

∫
l 9

b 9 (G)I2
9 (1, G)3G +

1
2

∫
l 9

b 9 (G)I2
9 (0, G)3G

)
.

Thus,

〈A*,*〉 ≤ −1
2

#∑
9=1
(mGD 9 (0))2 +

(
#

2
−U

)
D2

1 (0) −
#∑
9=1

∫
(0,ℓ 9 )/l 9

0 9 (G)D2
9 (G)3G

+
#∑
9=1

∫
l 9

(
−0 9 (G) +

1 9 (G)
2
+
b 9 (G)

2

)
D2
9 (G)3G +

#∑
9=1

∫
l 9

(
1 9 (G)

2
−
b 9 (G)

2

)
I2
9 (1, G)3G.

(2.3)
Using (1.4), (1.5) and that U ≥ #

2 we conclude that 〈A*,*〉 ≤ 0, thusA is dissipative.
Easy calculations show that

A∗
(
E

H

)
=

©«
(DG (T ) +D3

G (T ))E− 0.∗E + b.∗H̃(0, ·)
1
ℎ
.∗Dd (T )H

ª®¬ ,
in which H̃ 9 (0, ·) ∈ !2 (0, ℓ 9 ) is the extension by 0 of H 9 (0, ·) outside l 9 and with

� (A∗) =

(
E

H

)
, E ∈ ©«

#∏
9=1
�3 (0, ℓ 9 )

ª®¬∩H1
4 (T ),

#∑
9=1

d2E 9

dG2 (0) = (U−#)E1 (0),

mGE 9 (0) = 0, ∀ 9 = 1, · · · , #, H ∈
#∏
9=1
!2 (�1 (0,1) ×l 9 ), H 9 (1, G) = −

1 9 (G)
b 9 (G)

E 9
��
l 9
(G)

 .
Note that

(
E

H

)
∈ � (A∗) then E ∈ H1

4 (T ) that implies E 9 (C, ℓ 9 ) = 0. Let + =
(
E

H

)
∈

� (A∗), then
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〈A∗+,+〉 =
#∑
9=1

(∫ ℓ 9

0
(m3
GE 9 (G) + mGE 9 (G) − 0 9 (G)E 9 (G))E 9 (G)3G

+
∫
l 9

b 9 (G)H 9 (0, G)E 9 (G)3G +
∫
l 9

ℎ 9

∫ 1

0
b 9 (G)

1
ℎ 9
mdH 9 (d,G)H 9 (d,G)3d3G

)
,

=

#∑
9=1

(
−
∫ ℓ 9

0
m2
GE 9 (G)mGE 9 (G)3G + m2

GE 9 (G)E 9 (G)
��ℓ 9
0 +

1
2
|E 9 (G) |2

��ℓ 9
0

−
∫ ℓ 9

0
0 9 (G)E2

9 (G)3G +
∫
l 9

b 9 (G)H 9 (0, G)E 9 (G)3G +
1
2

∫
l 9

b 9 (G) |H 9 (d,G) |2
��1
03G

)
≤

#∑
9=1

(
−1

2
|mGE 9 (G) |2

��ℓ 9
0 − m

2
GE 9 (0)E1 (0) −

1
2
E2

1 (0) −
∫ ℓ 9

0
0 9 (G)E2

9 (G)3G

+1
2

∫
l 9

b 9 (G)H2
9 (0, G)3G +

1
2

∫
l 9

b 9 (G)E2
9 (G)3G +

1
2

∫
l 9

b 9 (G) (H2
9 (1, G) − H2

9 (0, G))3G
)
,

≤ −1
2

#∑
9=1
|mGE 9 (ℓ 9 ) |2 +

(
#

2
−U

)
E2

1 (0) +
∫
l 9

(
−0 9 (G) +

b 9 (G)
2
+
12
9
(G)

2b 9 (G)

)
E2
9 (G)3G

−
∫
(0,ℓ 9 )/l 9

0 9 (G)E2
9 (G)3G−

1
2

∫
l 9

b 9 (G)H2
9 (0, G)3G.

Moreover we know that b 9 (G) > 1 9 (G) > 10 > 0, for G ∈ l 9 , then we have that
12
9
(G)

b 9 (G)
<

1 9 (G), for G ∈ l 9 and then

−0 9 (G) +
b 9 (G)

2
+
12
9
(G)

2b 9 (G)
< −0 9 (G) +

b 9 (G)
2
+
1 9 (G)

2
≤ 0, for G ∈ l 9 ,

thus as U ≥ #
2 ,A

∗ is dissipative. FinallyA andA∗ are dissipative, alsoA is densely
defined closed operator, thus A is the infinitesimal generator of a �0 semigroup of
contractions on � [16]. ut

As the systems (LKdVd) and (2.2) are equivalent we obtain the well-posedness
of (LKdVd). Let ((C), C ≥ 0 the semigroup of contractions associated with A. Next
result gives us some a priori estimates for (LKdVd).

Proposition 2.1 Assume 0, 1 ∈ L∞ (T ) componentwise non-negative that satisfy(1.1)
and (1.2). Then, the map

*0 = (D0, I0 (−ℎ·, ·)) ↦→ ((·) (D0, I0 (−ℎ·, ·)) (2.4)
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is continuous from� toB×� ( [0,)];L2 (Ω)) and for (D0, I0 (−ℎ·, ·)) ∈ � the following
estimates hold

#∑
9=1

∫ )

0

∫ ℓ 9

0
0 9 (G) (D 9 (C, G))23G3C +

∫ )

0

∫
l 9

(I 9 (C,1, G))23G3C

≤ �
(
‖D0‖2

L2 (T) + ‖I
0 (−ℎ·, ·)‖2

L2 (Ω)

)
,

(2.5)

‖D0‖2
L2 (T) ≤

(1+2) ‖0‖L∞ (T) +2) ‖1‖L∞ (T)
)

)
‖D‖2

!2 (0,) ;L2 (T))

+2
(
U− #

2

)
‖D1 (·,0)‖2!2 (0,) ) + ‖mGD(·,0)‖

2
!2 (0,) ) + ‖1‖L∞ (T) ‖I

0 (−ℎ·, ·)‖2
L2 (Ω) ,

(2.6)

‖I0 (−ℎ·, ·)‖2
L2 (Ω) ≤ ‖I(), ·, ·)‖

2
L2 (Ω) +

#∑
9=1

1
ℎ 9

∫ )

0

∫
l 9

|I 9 (C,1, G) |23G3C. (2.7)

Proof Taking (D0, I0 (−ℎ·, ·)) ∈ �, Theorem 2.1 gives us ((·) (D0, I0 (−ℎ·, ·)) = (D, I) ∈
� ( [0,)];�) and using that A generates a �0 semigroup of contractions, we get for
all C ∈ [0,)]

#∑
9=1

∫ ℓ 9

0
(D 9 (C, G))23G +

#∑
9=1
ℎ 9

∫
l 9

∫ 1

0
b 9 (G) (I 9 (C, d, G))23d3G

≤
#∑
9=1

∫ ℓ 9

0
(D0
9 (G))23G +

#∑
9=1
ℎ 9

∫
l 9

∫ 1

0
b 9 (G) (I0

9 (−ℎ 9 d,G))23d3G.
(2.8)

Let ? ∈
#∏
9=1
�∞ ( [0,)] × (0,1)) and @ ∈

#∏
9=1
�∞ ( [0,)] × (0, ℓ 9 )). Now multiplying

(LKdVd) by @ 9D 9 and (2.1) by ? 9 I 9 and integrating on (0, B) × (0, ℓ 9 ) and (0, B) ×
(0,1) ×l 9 we can obtain∫ ℓ 9

0
@ 9 (C, G) |D 9 (C, G) |23G

��B
0 −

∫ B

0

∫ ℓ 9

0
(mC@ 9 + mG@ 9 + m3

G@ 9 ) |D 9 |23G3C

+2
∫ B

0

∫ ℓ 9

0
0 9@ 9 |D 9 |23G3C +2

∫ B

0

∫ ℓ 9

0
1 9 (G)@ 9 (C, G)D 9 (C − ℎ 9 , G)D 9 (C, G)3G3C

+3
∫ B

0

∫ ℓ 9

0
|mGD 9 |2mG@ 93G3C =

∫ B

0

[
(@ 9 + m2

G@ 9 ) |D 9 |2 +2@ 9D 9m2
GD 9

−2mG@ 9D 9mGD 9 − @ 9 |mGD 9 |2
]
(C,0)3C,

(2.9)∫ 1

0

∫
l 9

(I 9 (C, d, G))2? 9 (C, d)3G3d
��B
0 −

1
ℎ 9

∫ B

0

∫ 1

0

∫
l 9

(ℎ 9mC ? 9 + md? 9 ) |I 9 |23G3d3C

+ 1
ℎ 9

∫ B

0

∫
l 9

(I 9 (C,1, G))2? 9 (C,1) − (D 9 (C, G))2? 9 (C,0)3G3C = 0.

(2.10)
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Taking B = ) and ? 9 = d in (2.10) we get∫ 1

0

∫
l 9

d

[
I 9 (), d, G)2− I0

9 (−dℎ 9 , G)2
]
3G3d− 1

ℎ 9

∫ )

0

∫ 1

0

∫
l 9

|I 9 |23G3d3C

+ 1
ℎ 9

∫ )

0

∫
l 9

I 9 (C,1, G)23G3d = 0.
(2.11)

Thus,
1
ℎ 9

∫ )

0

∫
l 9

I 9 (C,1, G)23G3d

≤ 1
ℎ 9

∫ )

0

∫ 1

0

∫
l 9

|I 9 |23G3d3C +
∫ 1

0

∫
l 9

dI0
9 (−dℎ 9 , G)23G3d.

and hence with (2.8) we get
#∑
9=1

∫
l 9

I 9 (C,1, G)23G3d ≤ �
(
‖D0‖2

L2 (T) + ‖I
0 (−ℎ·, ·)‖2

L2 (Ω)

)
. (2.12)

Then taking @ 9 = 1 in (2.9)
#∑
9=1

∫ ℓ 9

0
|D 9 (B, G) |23G +

∫ B

0

#∑
9=1
|mGD 9 (C,0) |23C + (2U−#)

∫ B

0
|D1 (C,0) |23C

+2
#∑
9=1

∫ B

0

∫ ℓ 9

0
0 9 |D 9 |23G3C +

#∑
9=1

2
∫ B

0

∫ ℓ 9

0
1 9D 9 (C − ℎ 9 , G)D 9 (C, G)3G3C

=

#∑
9=1

∫ ℓ 9

0
|D 9 (0, G) |23G.

Thus
#∑
9=1

∫ ℓ 9

0
|D 9 (B, G) |23G +

∫ B

0

#∑
9=1
|mGD 9 (C,0) |23C +

#∑
9=1

2
∫ )

0

∫ ℓ 9

0
0 9 |D 9 |23G3C

≤
#∑
9=1

∫ ℓ 9

0
|D 9 (0, G) |23G +

#∑
9=1

2
∫ )

0

∫ ℓ 9

0
1 9 |D 9 (C − ℎ 9 , G) | |D 9 (C, G) |3G3C.

Note now that

2
∫ B

0

∫ ℓ 9

0
1 9 (G) |D 9 (C − ℎ 9 , G) | |D 9 (C, G) |3G3C

≤
∫ B

0

∫ ℓ 9

0
1 9 (G) |D 9 (C − ℎ 9 , G) |23G3C +

∫ B

0

∫ ℓ 9

0
1 9 (G) |D 9 (C, G) |23G3C,

=

∫ B

0

∫ ℓ 9

0
1 9 (G) |D 9 (C, G) |23G3C +

∫ B−ℎ 9

−ℎ 9

∫
l 9

1 9 (G) |D 9 (C, G) |23G3C,

≤ 2
∫ B

0

∫ ℓ 9

0
1 9 (G) |D 9 (C, G) |23G3C +

∫ 0

−ℎ 9

∫
l 9

1 9 (G) |I0
9 (C, G) |23G3C,
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which implies

2
#∑
9=1

∫ B

0

∫ ℓ 9

0
1 9 (G) |D 9 (C− ℎ 9 , G) | |D 9 (C, G) |3G3C ≤ �

(
‖D0‖2

L2 (T) + ‖I
0 (−ℎ·, ·)‖2

L2 (Ω)

)
.

(2.13)
Thus, we have

#∑
9=1

∫ ℓ 9

0
|D 9 (B, G) |23G +

∫ )

0

#∑
9=1
|mGD 9 (C,0) |23C +

#∑
9=1

∫ )

0

∫ ℓ 9

0
0 9 (G) (D 9 (C, G))23G3C

≤ �
(
‖D0‖2

L2 (T) + ‖I
0 (−ℎ·, ·)‖2

L2 (Ω)

)
,

(2.14)
that brings (2.5) using (2.12).
Note also that

∑#
9=1 mGD 9 (·,0) ∈ !2 (0,)). Moreover integrating (2.14) with respect to

B over [0,)] we can obtain.

‖D‖2
!2 (0,) ;L2 (T)) ≤ �)

(
‖D0‖2

L2 (T) + ‖I
0 (−ℎ·, ·)‖2

L2 (Ω)

)
. (2.15)

We are going to consider the following multiplier presented in [4], @ 9 (C, G) =
G (2ℓ 9−G)

ℓ2
9

,
this multiplier satisfies the next properties

– @ 9 (C,0) = 0, ∀C ∈ [0,)].
– 0 ≤ @ 9 (C, G) ≤ 1, ∀(C, G) ∈ [0,)] × [0, ℓ 9 ].
– 0 ≤ mG@ 9 (C, G) ≤ 2

ℓ 9
, ∀(C, G) ∈ [0,)] × [0, ℓ 9 ].

– m2
G@ 9 (C, G) = − 2

ℓ2
9

, ∀(C, G) ∈ [0,)] × [0, ℓ 9 ].

Taking @ 9 (C, G) =
G (2ℓ 9−G)

ℓ2
9

and B = ) in (2.9) we get

#∑
9=1

∫
0
ℓ 9@ 9 (C, G) |D 9 (),G) |23G +2

#∑
9=1

∫ )

0

∫
l 9

@ 9 (C, G)1 9 (G)D 9 (C − ℎ 9 , G)D 9 (C, G)3G3C

+2
∫ )

0
D1 (C,0)

#∑
9=1

2
ℓ 9
mGD 9 (C,0)3C +2

#∑
9=1

∫ )

0

∫ ℓ 9

0
@ 9 (C, G)0 9 (G) |D 9 (C, G) |23G3C

−
#∑
9=1

∫ )

0

∫ ℓ 9

0
mG@ 9 (C, G) |D 9 (C, G) |23G3C +3

#∑
9=1

∫ )

0

∫ ℓ 9

0
|mGD 9 (C, G) |2mG@ 9 (C, G)3G3C

=

#∑
9=1

∫
0
ℓ 9@ 9 (0, G) |D0

9 |23G−
©«
#∑
9=1

2
ℓ2
9

ª®¬
∫ )

0
|D1 (C,0) |23C.

and then recalling that ! = max
9=1. · · · ,#

ℓ 9 and taking ℓ = min
9=1. · · · ,#

ℓ 9
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2
!2 ‖D1 (·,0)‖2!2 (0,) ) ≤

2
ℓ2 ‖D‖

2
!2 (0,) ;L2 (T)) −2

∫ )

0
D1 (C,0)

#∑
9=1
mGD 9 (C,0)

2
ℓ 9
3C

−2
#∑
9=1

∫ )

0

∫
l 9

@ 9 (C, G)1 9 (G)D 9 (C − ℎ 9 , G)D 9 (C, G)3G3C + ‖D0‖2
L2 (T) .

(2.16)
Using Young’s inequality, (2.13) and (2.15) we get that D1 (·,0) ∈ !2 (0,)) and

‖D1 (·,0)‖2!2 (0,) ) ≤ �
(
‖D0‖2

L2 (T) + ‖I
0 (−ℎ·, ·)‖2

L2 (Ω)

)
.

Now, let us choose @ 9 = G and B = ) in (2.9)∫ ℓ 9

0
G |D 9 |23G

��)
0 3G−

∫ )

0

∫ ℓ 9

0
|D 9 |23G3C +2

∫ )

0

∫ ℓ 9

0
G1 9 (G)D 9 (C − ℎ 9 , G)D 9 (C, G)3G3C

+2
∫ )

0

∫ ℓ 9

0
0 9 (G)G |D 9 |23G3C +3

∫ )

0

∫ ℓ 9

0
|mGD 9 |23G3C =

∫ )

0
−2D 9 (C,0)mGD 9 (C,0)3C

Then

3
#∑
9=1

∫ )

0

∫ ℓ 9

0
|mGD 9 |23G3C ≤

(
1+2!‖1‖L∞ (T)

) #∑
9=1

∫ )

0

∫ ℓ 9

0
|D 9 |23G3C

+!‖1‖L∞ (T)
#∑
9=1

∫ 0

−ℎ 9

∫
l 9

|I0
9 (C, G) |23G3C + !

#∑
9=1

∫ ℓ 9

0
|D 9 (0, G) |23G

−2
#∑
9=1

∫ )

0
D1 (C,0)mGD 9 (C,0)3C

and hence

3
#∑
9=1

∫ )

0

∫ ℓ 9

0
|mGD 9 |23G3C ≤ �

(
‖D0‖2

L2 (T) + ‖I
0 (−ℎ·, ·)‖2

L2 (Ω)

)
,

that brings with (2.8) the continuity of the map (2.4) from � to B×� ( [0,)] : L2 (Ω)).
Now taking @ 9 = ) − C and B = ) in (2.9), we obtain,

−
∫ ℓ 9

0
) |D 9 (0, G) |23G +

∫ )

0

∫ ℓ 9

0
|D 9 |23G3C +2

∫ )

0

∫ ℓ 9

0
0 9 (G) () − C) |D 9 |23G3C

+2
∫ )

0

∫ ℓ 9

0
1 9 (G) () − C)D 9 (C − ℎ 9 , G)D 9 (C, G)3G3C =

∫ )

0

[
() − C) |D 9 (C,0) |2

+2() − C)D 9 (C,0)m2
GD 9 (C,0) − () − C) |mGD 9 (C,0) |2

]
3C,
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then

)

#∑
9=1

∫ ℓ 9

0
|D 9 (0, G) |23G =

#∑
9=1

(∫ )

0

∫ ℓ 9

0
|D 9 |23G3C ++2

∫ )

0

∫ ℓ 9

0
() − C)0 9 |D 9 |23G3C

+2
∫ )

0

∫ ℓ 9

0
1 9 (G) () − C)D 9 (C − ℎ 9 , G)D 9 (C, G)3G3C

)
+ (2U−#)

∫ )

0
() − C) |D1 (C,0) |23C

+
#∑
9=1

∫ )

0
() − C) |mGD 9 (C,0) |23C.

Finally we get (2.6), that is

‖D0‖2
L2 (T) ≤

(1+2) ‖0‖L∞ (T) +2) ‖1‖L∞ (T)
)

)
‖D‖2

!2 (0,) ;L2 (T))

+2
(
U− #

2

)
‖D1 (·,0)‖2!2 (0,) ) + ‖mGD(·,0)‖

2
!2 (0,) ) + ‖1‖L∞ (T) ‖I

0 (−ℎ·, ·)‖2
L2 (Ω) .

Lastly taking ? 9 = 1 and B = ) in (2.10)∫ 1

0

∫
l 9

|I 9 (), d, G) |23G3d−
∫ 1

0

∫
l 9

|I0
9 (−ℎ 9 d,G) |23G3d

+ 1
ℎ 9

∫ )

0

∫
l 9

[
|I 9 (C,1, G) |2− |D 9 (C, G) |2

]
3G3C = 0

and hence we obtain (2.7). ut

2.2 Extra boundary conditions

Following [1] we need now some regularity results for the linear delayedKdV equation
with extra boundary source term 6(C) at the central node

mCD 9 (C, G) + mGD 9 (C, G) + m3
GD 9 (C, G) + 0 9 (G)D 9 (C, G)

+1 9 (G)D 9 (C − ℎ 9 , G) = 0, G ∈ (0, ℓ 9 ), C > 0, 9 = 1, · · · , #,
D 9 (C,0) = D: (C,0), ∀ 9 , : = 1, · · ·#,∑#
9=1 m

2
GD 9 (C,0) = −UD1 (C,0) +6(C), C > 0,

D 9 (C, ℓ 9 ) = mGD 9 (C, ℓ 9 ) = 0, C > 0, 9 = 1, · · · , #,
D 9 (0, G) = D0

9
(G), G ∈ (0, ℓ 9 ),

D 9 (C, G) = I0
9
(C, G), (C, G) ∈ (−ℎ 9 ,0) × (0, ℓ 9 ).

(2.17)
Recall that I 9 (C, d, G) = D 9

��
l 9
(C − ℎ 9 d,G), for G ∈ l 9 , d ∈ (0,1) is solution of

ℎ 9mC I 9 (C, d, G) + mdI 9 (C, d, G) = 0, G ∈ l 9 , d ∈ (0,1), C > 0,
I 9 (C,0, G) = D 9 (C, G), G ∈ l 9 , C > 0,
I 9 (0, d, G) = D 9

��
l 9
(−ℎ 9 d,G) = I0

9
(−ℎ 9 d,G), d ∈ (0,1).

(2.18)

Define h =max 9=1, · · ·# ℎ 9 .
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Proposition 2.2 Assume 0, 1 ∈ L∞ (T ) componentwise non-negative that satisfy (1.1)
and (1.2). Let (*0, 6) ∈ � (A) ×�2

0 ( [0,)]) where �
2
0 ( [0,)]) := {i ∈ �2 ( [0,)]) :

i(0) = 0}. Then there exists a unique classical solution* =
(
D

I

)
∈� ( [0,)], � (A))∩

�1 ( [0,)];�) of (2.17)-(2.18).

Proof Let E = D−6q, where q is defined as

q 9 (G) =
(G− ℓ 9 )2

ℓ2
9

©«2
#∑
9=1
ℓ−2
9 +U

ª®¬
.

We can easily check that

q 9 (ℓ 9 ) = q′9 (ℓ 9 ) = 0, ∀ 9 = 1, · · · , #

q 9 (0) =
1

2
#∑
9=1
ℓ−2
9 +U

= q: (0), ∀ 9 , : = 1, · · ·#,

∑#
9=1 q

′′
9
(0) = 1−Uq1 (0), C > 0.

(2.19)

We extend 6 on [−h,0] by 6(C) ≡ 0 for C ∈ [−h,0]. Then E satisfies



mCE 9 (C, G) + mGE 9 (C, G) + m3
GE 9 (C, G) + 0 9 (G)E 9 (C, G)

+1 9 (G)E 9 (C − ℎ 9 , G) = 5 9 (C, G), G ∈ (0, ℓ 9 ), C > 0, 9 = 1, · · · , #,
E 9 (C,0) = E: (C,0), ∀ 9 , : = 1, · · ·#,∑#
9=1 m

2
GE 9 (C,0) = −UE1 (C,0), C > 0,

E 9 (C, ℓ 9 ) = mGE 9 (C, ℓ 9 ) = 0, C > 0, 9 = 1, · · · , #,
E 9 (0, G) = D0

9
(G), G ∈ (0, ℓ 9 ),

E 9 (C, G) = I0
9
(C, G), (C, G) ∈ (−ℎ 9 ,0) × (0, ℓ 9 ).

(2.20)
for 5 9 (C, G) =−q 9 (G)6′(C)− (q′9 +q′′′9 +0 9q 9 ) (G)6(C). Then, taking H 9 (C, d, G) = E 9

��
l 9
(C−

ℎ 9 d,G)


ℎ 9mC H 9 (C, d, G) + mdH 9 (C, d, G) = 0, G ∈ l 9 , d ∈ (0,1), C > 0,
H 9 (C,0, G) = E 9 (C, G), G ∈ l 9 , C > 0,
H 9 (0, d, G) = E 9

��
l 9
(−ℎ 9 d,G) = I0

9
(−ℎ 9 d,G), d ∈ (0,1).

(2.21)

Thus defining + =
(
E

H

)
, as −q6′ − (q′ + q′′′ + 0. ∗ q)6 ∈ �1 ( [0,)],L2 (T )), by the

classical semigroup theory and the well-posedness of the linear case, we deduce the
existence of a unique solution + of (2.20)-(2.21). Moreover + ∈ � ( [0,)], � (A)) ∩
�1 ( [0,)];�) and hence (2.17)-(2.18) admits a unique solution* ∈� ( [0,)], � (A))∩
�1 ( [0,)];�). ut
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Now, we study the same system but with less regular data.
Proposition 2.3 Assume 0, 1 ∈ L∞ (T ) componentwise non-negative that satisfy (1.1)
and (1.2). Let (*0, 6) ∈ � × !2 (0,)), then there exists a unique mild solution * ∈
B×�

(
[0,)];L2 (Ω)

)
of (2.17)-(2.18). Furthermore D1 (·,0) and mGD(·,0) belong to

!2 (0,)) and we have the following estimates

‖D‖2B ≤ �
(
‖6‖2

!2 (0,) ) + ‖D
0‖2L(T) + ‖I

0 (−ℎ·, ·)‖2
L2 (Ω)

)
. (2.22)

‖I‖2
� ( [0,) ],L2 (Ω)) ≤ �

(
‖D0‖2

L2 (T) + ‖I
0 (−ℎ·, ·)‖2

L2 (Ω) + ‖6‖
2
!2 (0,) )

)
. (2.23)

‖D0‖2
L2 (T) ≤

(1+2) ‖0‖L∞ (T) +2) ‖1‖L∞ (T)
)

)
‖D‖2

!2 (0,) ;L2 (T))

+‖1‖L∞ (T) ‖I0 (−ℎ·, ·)‖2
L2 (Ω) +�

(
‖D1 (·,0)‖2!2 (0,) ) + ‖6‖

2
!2 (0,) )

) (2.24)

‖I0 (−ℎ·, ·)‖2
L2 (Ω) ≤ ‖I(), ·, ·)‖

2
L2 (Ω) +

#∑
9=1

1
ℎ 9

∫ )

0

∫
l 9

|I 9 (C,1, G) |23G3C. (2.25)

Proof Those estimates are obtained in a similar way as Proposition 2.1 and for that
many calculations are omitted. First suppose that (*0, 6) ∈ � (A) ×�2

0 ( [0,)]) and
thus the solution of (2.17)-(2.18) satisfies* ∈ � ( [0,)];� (A) ∩�1 ( [0,)];�).

Multiplying (2.17) by D 9 and integrating on [0, B] × [0, ℓ 9 ] gives us

#∑
9=1

∫ ℓ 9

0
|D 9 (B, G) |23G +

∫ B

0

#∑
9=1
|mGD 9 (C,0) |23C + (2U−#)

∫ B

0
|D1 (C,0) |23C

+2
#∑
9=1

∫ B

0

∫ ℓ 9

0
0 9 |D 9 |23G3C +2

#∑
9=1

∫ B

0

∫ ℓ 9

0
1 9D 9 (C − ℎ 9 , G)D 9 (C, G)3G3C

=

#∑
9=1

∫ ℓ 9

0
|D 9 (0, G) |23G +2

∫ B

0
D1 (C,0)6(C)3C,

then using that

2
∫ B

0

∫ ℓ 9

0
1 9 (G)D 9 (C − ℎ 9 , G)D 9 (C, G)3G3C

≤ 2
∫ B

0

∫ ℓ 9

0
1 9 (G) |D 9 (C, G) |23G3C +

∫ 0

−ℎ 9

∫
l 9

1 9 (G) |I0
9 (C, G) |23G3C,

#∑
9=1

∫ ℓ 9

0
|D 9 (B, G) |23G +

∫ B

0

#∑
9=1
|mGD 9 (C,0) |23C + (2U−#)

∫ B

0
|D1 (C,0) |23C+

2
#∑
9=1

∫ B

0

∫ ℓ 9

0
(0 9 − 1 9 ) |D 9 |23G3C ≤ 2

∫ B

0
D1 (C,0)6(C)3C

+�
(
‖D0‖2L(T) + ‖I

0 (−ℎ·, ·)‖2
L2 (Ω)

)
.

(2.26)
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Note now that (2.16) still holds in this case and we can obtain

‖D1 (·,0)‖2!2 (0,) ) ≤ �
©«‖D‖2!2 (0,) ;L2 (T)) + ‖D

0‖2
L2 (T) +

#∑
9=1

∫ )

0
|mGD 9 (C,0) |23C

+‖I0 (−ℎ·, ·)‖2
L2 (Ω)

)
.

From (2.26) we obtain

‖D1 (·,0)‖2!2 (0,) ) ≤ �
(
‖D0‖2

L2 (T) + ‖I
0 (−ℎ·, ·)‖2

L2 (Ω) +
∫ )

0
D1 (C,0)6(C)3C

)
and again by Young’s inequality

‖D1 (·,0)‖2!2 (0,) ) ≤ �
(
‖D0‖2

L2 (T) + ‖I
0 (−ℎ·, ·)‖2

L2 (Ω) + ‖6‖
2
!2 (0,) )

)
Thus D1 (·,0) ∈ !2 (0,)) and from (2.26) D(B, ·) ∈ L2 (T ) for B ∈ [0,)], mGD(·,0) ∈
!2 (0,)) and

max
B∈[0,) ]

‖D(B, ·)‖2
L2 (T) ≤ �

(
‖6‖2

!2 (0,) ) + ‖D
0‖2
L2 (T) + ‖I

0 (− · ℎ.·)‖2
L2 (Ω)

)
. (2.27)

Now multiplying (2.17) by GD 9 yields

∫ ℓ 9

0
G |D 9 |23G

��)
0 3G−

∫ )

0

∫ ℓ 9

0
|D 9 |23G3C +2

∫ )

0

∫ ℓ 9

0
G1 9 (G)D 9 (C − ℎ 9 , G)D 9 (C, G)3G3C

+2
∫ )

0

∫ ℓ 9

0
0 9 (G)G |D 9 |23G3C +3

∫ )

0

∫ ℓ 9

0
|mGD 9 |23G3C =

∫ )

0
−2D 9 (C,0)mGD 9 (C,0)3C.

Then

3
#∑
9=1

∫ )

0

∫ ℓ 9

0
|mGD 9 |23G3C ≤

(
1+2!‖1‖!∞ (T)

) #∑
9=1

∫ )

0

∫ ℓ 9

0
|D 9 |23G3C

+!
#∑
9=1

∫ ℓ 9

0
|D 9 (0, G) |23G + !‖1‖!∞ (T)

#∑
9=1

∫ 0

−ℎ 9

∫
l 9

|I0
9 (C, G) |23G3C

+‖D1 (·,0)‖2!2 (0,) ) + ‖mGD(·,0)‖
2
!2 (0,) )

and using (2.27) we deduce (2.22). Now multiplying (2.17) by () − C)D 9 yields

−
∫ ℓ 9

0
) |D 9 (0, G) |23G +

∫ )

0

∫ ℓ 9

0
|D 9 |23G3C +2

∫ )

0

∫ ℓ 9

0
0 9 (G) () − C) |D 9 |23G3C

+2
∫ )

0

∫ ℓ 9

0
1 9 (G) () − C)D 9 (C − ℎ 9 , G)D 9 (C, G)3G3C =

∫ )

0

[
() − C) |D 9 (C,0) |2

+2() − C)D 9 (C,0)m2
GD 9 (C,0) − () − C) |mGD 9 (C,0) |2

]
3C,
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then

)

#∑
9=1

∫ ℓ 9

0
|D 9 (0, G) |23G =

#∑
9=1

(∫ )

0

∫ ℓ 9

0
|D 9 |23G3C +2

∫ )

0

∫ ℓ 9

0
() − C)0 9 |D 9 |23G3C+

2
∫ )

0

∫ ℓ 9

0
1 9 (G) () − C)D 9 (C − ℎ 9 , G)D 9 (C, G)3G3C

)
+ (2U−#)

∫ )

0
() − C) |D1 (C,0) |23C

+
#∑
9=1

∫ )

0
() − C) |mGD 9 (C,0) |23C −2

∫ )

0
() − C)D1 (C,0)6(C)3C.

Finally we get

‖D0‖2
L2 (T) ≤

(1+2) ‖0‖L∞ (T) +2) ‖1‖L∞ (T)
)

)
‖D‖2

!2 (0,) ;L2 (T))

+‖1‖L∞ (T) ‖I0 (−ℎ·, ·)‖2
L2 (Ω) +�

(
‖D1 (·,0)‖2!2 (0,) ) + ‖6‖

2
!2 (0,) )

)
and hence (2.24). We can conclude that the estimates for (2.18) are the same as
Proposition 2.1. By density of � (A) in �, �2

0 ( [0,)]) in !
2 (0,)), we extend our

result to arbitrary data (*0, 6) ∈ � × !2 (0,)). ut

2.3 Extra source term

We add now a source term 5 9 (C, G) on each edge in our KdV problem.

mCD 9 (C, G) + mGD 9 (C, G) + m3
GD 9 (C, G) + 0 9 (G)D 9 (C, G)

+1 9 (G)D 9 (C − ℎ 9 , G) = 5 9 (C, G), G ∈ (0, ℓ 9 ), C > 0, 9 = 1, · · · , #,
D 9 (C,0) = D: (C,0), ∀ 9 , : = 1, · · ·#,∑#
9=1 m

2
GD 9 (C,0) = −UD1 (C,0) +6(C), C > 0,

D 9 (C, ℓ 9 ) = mGD 9 (C, ℓ 9 ) = 0, C > 0, 9 = 1, · · · , #,
D 9 (0, G) = D0

9
(G), G ∈ (0, ℓ 9 )

D 9 (C, G) = I0
9
(C, G), (C, G) ∈ (−ℎ 9 ,0) × (0, ℓ 9 ).

(2.28)
We set as in the previous cases I 9 (C, d, G) = D 9

��
l 9
(C − ℎ 9 d,G) G ∈ l 9 , d ∈ (0,1).

Then
ℎ 9mC I 9 (C, d, G) + mdI 9 (C, d, G) = 0, G ∈ l 9 , d ∈ (0,1), C > 0,
I 9 (C,0, G) = D 9 (C, G), G ∈ l 9 , C > 0,
I 9 (0, d, G) = D 9

��
l 9
(−ℎ 9 d,G) = I0

9
(−ℎ 9 d,G), d ∈ (0,1).

(2.29)

Proposition 2.4 Assume 0, 1 ∈ L∞ (T ) componentwise non-negative that satisfy (1.1)
and (1.2). Let (*0, 6, 5 ) ∈ � × !2 (0,)) × !1 (0,) ;L2 (T )) then there exists a unique

mild solution* =
(
D

I

)
∈ B×�

(
[0,)];L2 (Ω)

)
to (2.28)-(2.29). Furthermore we have

the following estimates,
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‖(D, I)‖2
� ( [0,) ],� ) ≤ �

(
‖D0‖2

L2 (T) + ‖I
0 (−ℎ·, ·)‖2

L2 (Ω) + ‖ 5 ‖
2
!1 (0,) ;L2 (T)) + ‖6‖

2
!2 (0,) )

)
,

(2.30)

‖mGD‖2!2 (0,) ;L2 (T)) ≤ � (1+))
(
‖D0‖2

L2 (T) + ‖I
0 (−ℎ·, ·)‖2

L2 (Ω)

+‖ 5 ‖2
!1 (0,) ;L2 (T)) + ‖6‖

2
!2 (0,) )

)
.

(2.31)

Proof The well-posedness of (2.28)-(2.29) follows from classical semigroup theory

and from the propositions given considering the source term
(
5

0

)
. Also this gives

us the first inequality, for the second one note that multiplying (2.28) by D 9 and
integrating we get

#∑
9=1

∫ ℓ 9

0
|D 9 (),G) |23G + (2U−#)

∫ )

0
|D1 (C,0) |23C +

#∑
9=1

∫ )

0
|mGD 9 (C,0) |23C

+2
#∑
9=1

∫ )

0

∫ ℓ 9

0
0 9 (G) |D 9 (C, G) |23G3C +2

#∑
9=1

∫ )

0

∫ ℓ 9

0
1 9D 9 (C, G)D 9 (C − ℎ 9 , G)3G3C

−2
∫ )

0
D1 (C,0)6(C)3C = 2

#∑
9=1

∫ )

0

∫ ℓ 9

0
5 9 (C, G)D 9 (C, G)3G3C + ‖D0‖2

L2 (T) .

Note that

2
#∑
9=1

∫ )

0

∫ ℓ 9

0
5 9 (C, G)D 9 (C, G)3G3C ≤ 2

#∑
9=1

∫ )

0
‖ 5 9 ‖!2 (0,ℓ 9 ) ‖D 9 ‖!2 (0,ℓ 9 )3C,

≤ 2
#∑
9=1
‖D 9 ‖� ( [0,) ],!2 (0,ℓ 9 ))

∫ )

0
‖ 5 9 ‖!2 (0,ℓ 9 )3C ≤ ‖D‖

2
� ( [0,) ],L2 (T)) + ‖ 5 ‖

2
!1 (0,) ;L2 (T)) .

Following the same steps as in Proposition 2.1 and Proposition 2.3 we can get
#∑
9=1

∫ ℓ 9

0
|D 9 (),G) |23G +

#∑
9=1

∫ )

0
|mGD 9 (C,0) |23C ≤ �

(
‖D‖2

!2 (0,) ;L2 (T)) + ‖(D
0, I0 (−ℎ·, ·))‖2�

+2
∫ )

0
D1 (C,0)6(C)3C + ‖D‖2� ( [0,) ],L2 (T)) + ‖ 5 ‖

2
!1 (0,) ;L2 (T))

)
.

Now multiplying (2.28) by @ 9D 9 for @ 9 =
G (2ℓ 9−G)

ℓ2
9

and using the last inequality we get

‖D1 (·,0)‖2!2 (0,) ) ≤ �
(
‖D0‖2

L2 (T) + ‖I
0 (−ℎ·, ·)‖2

L2 (Ω) + ‖6‖
2
!2 (0,) ) + ‖ 5 ‖

2
!1 (0,) ;L2 (T))

)
and we can also have

‖D1 (·,0)‖2!2 (0,) ) + ‖mGD(·,0)‖
2
!2 (0,) ) ≤ �

(
‖ 5 ‖2

!1 (0,) ;L2 (T)) + ‖6‖
2
!2 (0,) )

+‖(D0, I0 (−ℎ·, ·))‖2�
)
.
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Now multiplying (2.28) by GD 9 gives us

3
#∑
9=1

∫ )

0

∫ ℓ 9

0
|mGD 9 |23G3C +

#∑
9=1

∫ ℓ 9

0
G |D 9 (),G) |23G−

#∑
9=1

∫ )

0

∫ ℓ 9

0
|D 9 |23G3C

+2
#∑
9=1
G |D 9 |20 93G3C +2

#∑
9=1

∫ )

0

∫ ℓ 9

0
G1 9D 9 (C − ℎ 9 , G)D 9 (C, G)3G3C

= 2
#∑
9=1

∫ )

0

∫ ℓ 9

0
GD 9 5 93G3C −2

#∑
9=1

∫ )

0
D1 (C,0)mGD 9 (C,0)3C.

Hence

3‖mGD‖2!2 (0,) ;L2 (T)) ≤ ) ‖D‖
2
� ( [0,) ];L2 (T)) + !

(
‖D‖2

� ( [0,) ],L2 (T)) + ‖ 5 ‖
2
!1 (0,) ;L2 (T))

)
+# ‖D1 (·,0)‖2!2 (0,) ) + ‖mGD(·,0)‖

2
!2 (0,) ) .

ut

2.4 Well-posedness of nonlinear system

The aim of this section is to use the estimates obtained in the last sections to pass to
the nonlinear system. The following propositions are needed in order to deal with the
internal nonlinearity and boundary nonlinearity respectively.

Proposition 2.5 (Proposition 4.1, [18]) Let ) , ! > 0, and H ∈ !2 (0,) ;�1 (0, !)).
Then HHG ∈ !1 (0,) ;!2 (0, !)) and the map

H ∈ !2 (0,) ;�1 (0, !)) ↦→ HHG ∈ !1 (0,) ;!2 (0, !))

is continuous. Moreover we have

‖HHG ‖!1 (0,) ;!2 (0,!)) ≤ �‖H‖2!2 (0,) ;� 1 (0,!)) . (2.32)

Proposition 2.6 (Proposition 2.6, [1]) Let D ∈ B, then |D1 (C,0) |2 ∈ !2 (0,)) and the
map

D ∈ B ↦→ |D1 (C,0) |2 ∈ !2 (0,))
is continuous. Moreover, we have the estimate,

‖D2
1 (·,0)‖!2 (0,) ) ≤

1
√

2
‖D‖2B. (2.33)

Now we are ready to establish our well-posedness result of the nonlinear (KdVd) for
small initial data.

Theorem 2.2 Assume 0, 1 ∈ L∞ (T ) componentwise non-negative that satisfy (1.1)
and (1.2). Let (ℓ 9 )#9=1 ⊂ (0,+∞), ) > 0, there exists n > 0 and � > 0 such that for
all *0 = (D0, I0 (−ℎ·, ·)) ∈ � with ‖*0‖� ≤ n , the nonlinear equation (KdVd) has a
unique mild solution D ∈ B. Moreover it satisfy

‖D‖B ≤ �‖(D0, I0 (−ℎ·, ·))‖� .
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Proof Let *0 ∈ �, with ‖*0‖� < n , where n > 0 will be chosen later, D ∈ B and
consider the map Φ : B→ B defined by Φ(D) = E where E is solution of



mCE 9 (C, G) + mGE 9 (C, G) + m3
GE 9 (C, G) + 0 9 (G)E 9 (C, G)

+1 9 (G)E 9 (C − ℎ 9 , G) = −D 9 (C, G)mGD 9 (C, G), G ∈ (0, ℓ 9 ), C > 0, 9 = 1, · · · , #,
E 9 (C,0) = E: (C,0), ∀ 9 , : = 1, · · ·#,∑#
9=1 m

2
GE 9 (C,0) = −UE1 (C,0) −

#

3
(D1 (C,0))2, C > 0,

E 9 (C, ℓ 9 ) = mGE 9 (C, ℓ 9 ) = 0, C > 0, 9 = 1, · · · , #,
E 9 (0, G) = D0

9
(G), G ∈ (0, ℓ 9 ),

E 9 (C, G) = I0
9
(C, G), (C, G) ∈ (−ℎ 9 ,0) × (0, ℓ 9 ).

(2.34)
Clearly D ∈ B is solution of (KdVd) if D is a fixed point Φ. From Proposition 2.5 and
Proposition 2.6, we get for all D ∈ B

‖Φ(D)‖B = ‖E‖B ≤ �
(
‖*0‖� + ‖D‖2B

)
and for D, D̃ ∈ B

‖Φ(D) −Φ(D̃)‖B ≤ �
(
‖D‖B + ‖D̃‖B

)
‖D− D̃‖B

Let us choose ' > 0 to be defined later and consider Φ restricted to the closed ball
�B (0, '). Then, for any D, D̃ ∈ �B (0, '), we have

‖Φ(D)‖B ≤ � (n +'2)

‖Φ(D) −Φ(D̃)‖B ≤ 2�'‖D− D̃‖B.

Thus if ' < 1
2� and n > 0 such that � (n +'2) < ' we obtain the local well-posedness

result applying the Banach fixed point Theorem. ut

Remark 2.1 On a similar way as Theorem 2.1, we can obtain classical solutions by
taking*0 ∈ � (A).

3 Stabilization of delayed KdV system

3.1 Lyapunov stabilization of the delayed system

The aim of this part is to prove Theorem 1.1. As we said before this proof is developed
in a constructive manner by using a Lyapunov function.
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Proof of Theorem 1.1 :
Let D a regular enough solution of (KdVd) with *0 ∈ � (A) satisfying ‖*0‖� ≤ n ,
where n > 0 will be chosen later. Following [2, 21] we consider the next Lyapunov
candidate for (KdVd)

+ (C) = � (C) + `1+1 (C) + `2+2 (C). (3.1)

where � is defined by (1.6)

+1 (C) =
#∑
9=1

∫ ℓ 9

0
G |D 9 (C, G) |23G, and +2 (C) =

#∑
9=1
ℎ 9

∫
l 9

∫ 1

0
(1− d) |D 9 (C − ℎ 9 d,G) |23d3G.

Clearly

� (C) ≤ + (C) ≤
(
1+max

{
!`1,

`2
10

})
� (C).

After some computations we have,

d
dC
� (C) ≤ −(2U−#) |D1 (C,0) |2−

#∑
9=1
|mGD 9 (C,0) |2−

#∑
9=1

∫
(0,ℓ 9 )/l 9

0 9 (G) |D 9 (C, G) |23G

+
#∑
9=1

∫
l 9

(−20 9 (G) + 1 9 (G) + b 9 (G)) |D 9 (C, G) |23G +
#∑
9=1

∫
l 9

(1 9 (G) − b 9 (G)) |D 9 (C − ℎ 9 , G) |23G,

d
dC
+1 (C) =

#∑
9=1

∫ ℓ 9

0
|D 9 (C, G) |23G−3

#∑
9=1

∫ ℓ 9

0
|mGD 9 (C, G) |23G−2D1 (C,0)

#∑
9=1
mGD 9 (C,0)

+2
3

#∑
9=1

∫ ℓ 9

0
D3
9 (C, G)3G−2

#∑
9=1

∫ ℓ 9

0
G0 9 (G) |D 9 (C, G) |23G−2

#∑
9=1

∫
l 9

G1 9 (G)D 9 (C, G)D 9 (C − ℎ 9 , G)3G

≤
#∑
9=1

∫ ℓ 9

0
|D 9 (C, G) |23G−3

#∑
9=1

∫ ℓ 9

0
|mGD 9 (C, G) |23G +

#

2
|D1 (C,0) |2 +

1
2

#∑
9=1
|mGD 9 (C,0) |2

+2
3

#∑
9=1

∫ ℓ 9

0
D3
9 (C, G)3G + !

=∑
9=1

∫
l 9

1 9 (G) |D 9 (C, G) |23G ++!
=∑
9=1

∫
l 9

1 9 (G) |D 9 (C − ℎ 9 , G) |23G,

and

d
dC
+2 (C) =

#∑
9=1

∫
l 9

|D 9 (C, G) |23G−
#∑
9=1

∫
l 9

∫ 1

0
|D 9 (C − ℎ 9 d,G) |23d3G.

Our idea now is to prove that for suitable choice of `1, `2, W > 0 we have that
d
dC+ (C) +2W+ (C) ≤ 0, which gives the exponential stability.
Using the following Poincaré’s inequality: If H ∈ �1 (0, !) and H(0) = 0 or H(!) = 0,
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we have ‖H‖!2 (0,!) ≤ 2!
c
‖mGH‖!2 (0,!) . We can check easily that for W > 0

d
dC
+ (C) +2W+ (C) ≤ −2

(
U− #

2
− `1

#

2

)
|D1 (C,0) |2 + (`1−1)

#∑
9=1
|mGD 9 (C,0) |2

+
#∑
9=1

∫
l 9

(−20 9 + 1 9 + b 9 + !`11 9 + `2) |D 9 |23G +
2
3
`1

#∑
9=1

∫ ℓ 9

0
(D 9 )33G

+
#∑
9=1

∫
l 9

(1 9 − b 9 + `1!1 9 ) |D 9 (C − ℎ 9 , G) |23G

+
[
4!2 (`1 +2`1W! +2W)

c2 −3`1

] #∑
9=1

∫ ℓ 9

0
|mGD 9 (C, G) |23G

+
#∑
9=1

∫
l 9

∫ 1

0
(2W`2ℎ 9 +2Wℎ 9b 9 − `2) |D 9 (C − ℎ 9 d,G) |23d3G.

For the term involving
∫ ℓ 9

0 D3
9
(C, G)3G, note that∫ ℓ 9

0
D3
9 (C, G)3G ≤ ‖D 9 ‖2!∞ (0,ℓ 9 )

∫ ℓ 9

0
|D 9 (C, G) |3G ≤ ‖D 9 ‖2!∞ (0,ℓ 9 ) ‖D 9 ‖!2 (0,ℓ 9 )

√
ℓ 9 .

By the injection of �1 (0, ℓ 9 ) into !∞ (0, ℓ 9 ) we know that ‖D 9 ‖!∞ (0,ℓ 9 ) ≤√
ℓ 9 ‖mGD 9 ‖!2 (0,ℓ 9 ) , then∫ ℓ 9

0
D3
9 (C, G)3G ≤ ‖D 9 ‖2!∞ (0,ℓ 9 ) ‖D 9 ‖!2 (0,ℓ 9 )

√
ℓ 9 ≤ ℓ 9 ‖mGD 9 ‖2!2 (0,ℓ 9 )

√
ℓ 9 ‖D 9 ‖!2 (0,ℓ 9 ) .

Recalling that ! = max 9=1, · · · ,# ℓ 9 and as the energy is not increasing we get
‖D 9 ‖!2 (0,ℓ 9 ) ≤ ‖*0‖� . Choosing ‖*0‖� ≤ n we get

2
3
`1

#∑
9=1

∫ ℓ 9

0
D3
9 (C, G)3G ≤

2
3
`1n!

3/2
#∑
9=1

∫ ℓ 9

0
|mGD 9 (C, G) |23G.

Now taking

0 < `1 < min
9=1, · · · ,#

inf
l 9

{
1,

20 9 − 1 9 − b 9
!1 9

,
b 9 − 1 9
!1 9

,
1
#
(2U−#)

}
,

0 < `2 < min
9=1, · · · ,#

inf
l 9

{
20 9 − 1 9 − b 9 − `1!1 9

}
.

Then −(2U−# − `1#) < 0 and (`1−1) < 0. Moreover for all 9 = 1, · · · , #

(−20 9 + 1 9 + b 9 + !`11 9 + `2) < 0, (1 9 − b 9 + `1!1 9 ) < 0

Finally joining the estimates
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d
dC
+ (C) +2W+ (C) ≤

[
4!2 (`1 +2`1W! +2W)

c2 −3`1 +
2!3/2n `1

3

]
‖mGD(C, G)‖2L2 (T)

+
#∑
9=1

∫
l 9

∫ 1

0
(2ℎ 9W(`2 + b 9 ) − `2) |D 9 (C − ℎ 9 d,G) |23d3G

and then as ! <
√

3
2 c, we can choose n < 3

2
(3c2−4!2)
c2!3/2 and then take W > 0 satisfying

(1.7) to obtain d
dC+ (C) +2W+ (C) ≤ 0.We get the desired exponential stability, by density

we can extend the result to any*0 ∈ �, with ‖*0‖� ≤ n . �

Remark 3.1 As in [2, 21] we obtain an estimation of the rate of decay. Also recall
that we can improve the result searching for a better Poincaré’s inequality, and as is
commented in [2, 21] looking for a new multiplier for the Lyapunov function +1, in
the sense that the restriction on the lengths, comes from the multiplier G.

Remark 3.2 Note that in absence of the feedback terms (with and without delay) this
result can be see as an alternative proof via Lyapunov theory of Theorem 3.4 [1] (in
our case with a more restrictive condition on the lengths).

3.2 Observability approach

In the previous section we obtained a stabilization result under the hypothesis that

! <

√
3

2
c, U > #/2 and for small initial data. Now we are going to prove a result

without restrictions on the lengths that holds for U ≥ #/2 and small initial data. The
idea is to obtain an observability inequality in the linear system. The proof is based on
a contradiction argument and hence we can not estimate the decay rate of the energy,
contrary to Theorem 1.1.

Theorem 3.1 Assume 0, 1 ∈ L∞ (T ) componentwise non-negative that satisfy (1.1)
and (1.2). Let (ℓ 9 )#9=1 ⊂ (0,∞) and ) > h, then there exists � > 0 such that for all
*0 = (D0, I0 (−ℎ·, ·)) ∈ � we have the following observability inequality

#∑
9=1

∫ ℓ 9

0
(D0
9 (G))23G +

#∑
9=1
ℎ 9

∫
l 9

∫ 1

0
b 9 (G) (I0

9 (−ℎ 9 d,G))23G3d

≤ � ©«
#∑
9=1

∫ )

0
(mGD 9 (C,0))23C +

#∑
9=1

∫ )

0

∫ ℓ 9

0
0 9 (G) (D 9 (C, G))23G3C

+
#∑
9=1

∫ )

0

∫
l 9

(I 9 (C,1, G))23G3C + (2U−#)
∫ )

0
(D1 (C,0))23C

ª®¬ ,
(Obs)

for
(
D

I

)
= ((·)*0, solution of (LKdVd).
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Proof We follow the classical approach presented in [18].

Suppose that (Obs) is false. Then we can find a sequence (*=0 )=∈N =
(D0,=, I0,= (−ℎ·, ·))=∈N ⊂ � such that

#∑
9=1

∫ ℓ 9

0
(D0,=
9
(G))23G +

#∑
9=1
ℎ 9

∫
l 9

∫ 1

0
b 9 (G) (I0,=

9
(−ℎ 9 d,G))23G3d = 1

and for (D=, I=) = ((D0,=, I0,= (−ℎ·, ·)) we have

#∑
9=1

∫ )

0
(mGD=9 (C,0))23C +

#∑
9=1

∫ )

0

∫ ℓ 9

0
0 9 (G) (D=9 (C, G))23G3C

+
#∑
9=1

∫ )

0

∫
l 9

(I=9 (C,1, I))23G3C + (2U−#)
∫ )

0
(D=1 (C,0))

2→ 0

(3.2)

when = → ∞. Now using (2.22) for 6 = 0 we get that (D=)=∈N is bounded in
!2 (0,) ;H1

4 (T )) and then as mCD=9 = −mGD=9 − m3
GD
=
9
− 0 9D=9 − 1 9 I=9 (1), we have that

(mCD=9 )=∈N is bounded in !2 (0,) ;�−2 (0, ℓ 9 )). Using the Aubin-Lions Lemma, we
can deduce that (D=)=∈N is relatively compact in !2 (0,) ;L2 (T )) and hence we can
assume that it is convergent in !2 (0,) ;L2 (T )).

Moreover for ) > h since I=
9
(C, d, G) = D=

9

��
l 9
(C − ℎ 9 d,G) we have∫

l 9

∫ 1

0
(I=9 (), d, G))23d3G =

∫
l 9

∫ 1

0
(D=9 () − dℎ 9 , G))23d3G

≤ 1
ℎ 9

∫
l 9

∫ )

0
(D 9 (C, G))23C3G.

Now thanks to (2.7)

‖I0,= (−ℎ·, ·)‖2
L2 (Ω) ≤ ‖I

= (), ·, ·)‖2
L2 (Ω) +

#∑
9=1

1
ℎ 9

∫ )

0

∫
l 9

|I=9 (C,1, G) |23G3C.

≤
#∑
9=1

1
ℎ 9

∫ )

0

∫
l 9

(D=9 (C, G))23G3C +
#∑
9=1

1
ℎ 9

∫ )

0

∫
l 9

|I=9 (C,1, G) |23G3C,

and hence (I0,= (−ℎ·, ·))=∈N is a Cauchy sequence in L2 (Ω) using (3.2). Moreover
using (2.6) and (3.2) we get that (D0,=)=∈N is a Cauchy sequence in L2 (T ).

Let *0 = (D0, I0 (−ℎ·, ·)) = lim=→∞ (D0,=, I0,= (−ℎ·, ·)) in � and (D, I) =
((·) (D0, I0 (−ℎ·, ·)). By Proposition 2.1 we have:
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#∑
9=1

∫ )

0

∫ ℓ 9

0
0 9 (G) (D=9 (C, G))23G3C +

#∑
9=1

∫ )

0

∫
l 9

1 9 (G) (I=9 (C,1, G))23G3C

−→
=→∞

#∑
9=1

∫ )

0

∫ ℓ 9

0
0 9 (G) (D 9 (C, G))23G3C +

#∑
9=1

∫ )

0

∫
l 9

1 9 (G) (I 9 (C,1, G))23G3C.

Thus

#∑
9=1

∫ ℓ 9

0
(D0
9 (G))23G +

#∑
9=1
ℎ 9

∫
l 9

∫ 1

0
b 9 (G) (I0

9 (−ℎ 9 d,G))23G3d = 1

and

#∑
9=1

∫ )

0

∫ ℓ 9

0
0 9 (G) (D 9 (C, G))23G3C +

#∑
9=1

∫ )

0

∫
l 9

1 9 (G) (I 9 (C,1, G))23G3C = 0.

As I 9 (C,1, G) = D 9 (C−ℎ 9 , G) = 0 in (0,)) ×l 9 , we can deduce that I0 = 0 and I = 0.
Moreover D 9 = 0 on (0,)) ×l 9 , and as D 9 is solution of mCD 9 +mGD 9 +m3

GD 9 = 0 thanks
to Holmgrem’s Theorem, D 9 = 0 in (0,)) × (0, ℓ 9 ). Thus (D, I) = (0,0) and we get a
contradiction which ends the proof. ut

Remark 3.3 Note that in the case U = #/2 the term of ‖D1 (C,0)‖2!2 (0,) ) disappear of
(Obs).

Now from the observability inequality (Obs), we can obtain the exponential sta-
bility of the linear system (LKdVd).

Theorem 3.2 Assume 0, 1 ∈ L∞ (T ) componentwise non-negative that satisfy (1.1)
and (1.2). Let (ℓ 9 )#9=1 ⊂ (0,∞), then for all (D0, I0 (−ℎ·, ·)) ∈ �, the energy of the
system (LKdVd) defined by (1.6) decays exponentially, i.e, there exists � > 0 and
` > 0 such that � (C) ≤ �� (0)4−`C for all C > 0.

Proof We follow [21, 10] (see also [17]). Note that for *0 ∈ � (A) the energy of
(LKdVd) satisfies for �1 > 0

3

3C
� (C) ≤ −�1

©«(2U−#)
∫ )

0
|D1 (C,0) |23C +

#∑
9=1

∫ )

0
|mGD 9 (C,0) |2

+
#∑
9=1

∫ ℓ 9

0
0 9 (G) |D 9 (C, G) |23G +

#∑
9=1

∫
l 9

|D 9 (C − ℎ 9 , G) |23G
ª®¬ .

(3.3)

Integrating between 0 and ) > h we have
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� ()) −� (0) ≤ −�1
©«(2U−#)

∫ )

0
|D1 (C,0) |23C +

#∑
9=1

∫ )

0
|mGD 9 (C,0) |23C

+
#∑
9=1

∫ )

0

∫ ℓ 9

0
0 9 (G) |D 9 (C, G) |23G3C +

#∑
9=1

∫
l 9

∫ )

0
|D 9 (C − ℎ 9 , G) |23G3C

ª®¬ .
The last expression can be rewritten as

(2U−#)
∫ )

0
|D1 (C,0) |23C +

#∑
9=1

∫ )

0

∫ ℓ 9

0
0 9 (G) |D 9 (C, G) |23G3C

+
#∑
9=1

∫ )

0
|mGD 9 (C,0) |23C +

#∑
9=1

∫
l 9

∫ )

0
|D 9 (C − ℎ 9 , G) |23G3C ≤

1
�1
(� (0) −� ())).

Using that the energy is non-increasing and (Obs) we get

� ()) ≤ � (0) ≤ � ©«(2U−#)
∫ )

0
|D1 (C,0) |23C +

#∑
9=1

∫ )

0

∫ ℓ 9

0
0 9 (G) |D 9 (C, G) |23G3C

+
#∑
9=1

∫ )

0
|mGD 9 (C,0) |23C +

#∑
9=1

∫
l 9

∫ )

0
|D 9 (C − ℎ 9 , G) |23G3C

ª®¬ ≤ �

�1
(� (0) −� ()))

which implies

� ()) ≤ W� (0), with W =

�

�1

1+ �
�1

< 1. (3.4)

Now as the system is invariant in time, we can repeat this argument on [(< −
1)),<)] for < = 1,2, · · · to obtain

� (<)) ≤ W� ((<−1))) ≤ · · · ≤ W<� (0).

Hencewe have � (<)) ≤ 4−`<) � (0) where ` = 1
)

ln( 1
W
) > 0. Let C > h. Then there

exists < ∈ N∗ such that (<−1)) < C ≤ <) , and then using again the non-increasing
property of the energy we get

� (C) ≤ � ((<−1))) ≤ 4−` (<−1)) � (0) ≤ 1
W
4−`C� (0).

By density of � (A) in � we can extend our result to any initial data in �. ut

Remark 3.4 Note that if U = #/2 the term of ‖D1 (C,0)‖2!2 (0,) ) disappears of (3.3)
which is consistent with Remark 3.3.

To end this part we give the proof of Theorem 1.2, inspired by [21, 3, 9].
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Proof of Theorem 1.2 :
Let (D0, I0 (−ℎ·, ·)) ∈ � with ‖(D0, I0 (−ℎ·, ·))‖� ≤ A for some A > 0 that will be chosen
after, then the solution D of (KdVd) can be decomposed into D = D̄ + D̃ respectively
solutions of



mC D̄ 9 (C, G) + mG D̄ 9 (C, G) + m3
G D̄ 9 (C, G) + 0 9 (G)D̄ 9 (C, G)

+1 9 (G)D̄ 9 (C − ℎ 9 , G) = 0, G ∈ (0, ℓ 9 ), C > 0, 9 = 1, · · · , #,
D̄ 9 (C,0) = D̄: (C,0), ∀ 9 , : = 1, · · ·#,∑#
9=1 m

2
G D̄ 9 (C,0) = −UD̄1 (C,0), C > 0,

D̄ 9 (C, ℓ 9 ) = mG D̄ 9 (C, ℓ 9 ) = 0, C > 0, 9 = 1, · · · , #,
D̄ 9 (0, G) = D0

9
(G), G ∈ (0, ℓ 9 ),

D̄ 9 (C, G) = I0
9
(C, G), (C, G) ∈ (−ℎ 9 ,0) × (0, ℓ 9 ).

(3.5)



mC D̃ 9 (C, G) + mG D̃ 9 (C, G) + m3
G D̃ 9 (C, G) + 0 9 (G)D̃ 9 (C, G)

+1 9 (G)D̃ 9 (C − ℎ 9 , G) = −D 9mGD 9 , G ∈ (0, ℓ 9 ), C > 0, 9 = 1, · · · , #,
D̃ 9 (C,0) = D̃: (C,0), ∀ 9 , : = 1, · · ·#,∑#
9=1 m

2
G D̃ 9 (C,0) = −UD̃1 (C,0) −

#

3
D2

1 (C,0), C > 0,
D̃ 9 (C, ℓ 9 ) = mG D̃ 9 (C, ℓ 9 ) = 0, C > 0, 9 = 1, · · · , #,
D̃ 9 (0, G) = 0, G ∈ (0, ℓ 9 ),
D̃ 9 (C, G) = 0, (C, G) ∈ (−ℎ 9 ,0) × (0, ℓ 9 ).

(3.6)
In simple words D̄ is solution of (LKdVd) with initial data (D0, I0 (−ℎ·, ·)) and D̃
is solution of (2.28) with null initial data and source terms 5 9 = D 9mGD 9 and 6 =
− #3 D

2
1 (C,0). Then using Proposition 2.5, Proposition 2.6 and Theorem 3.2, we have

‖D()), I())‖� ≤ ‖D̃()), Ĩ())‖� + ‖D̄()), Ī())‖�

≤ �
(
‖DmGD‖!1 (0,) ;L2 (T)) + ‖D2

1 (C,0)‖!2 (0,) )

)
+W‖*0‖� ≤ W‖*0‖� +�‖D‖2B,

where W < 1. Our plan now is to deal with the term ‖D‖2B. Multiplying (KdVd) by D 9
and integrating in (0, B) × (0, ℓ 9 ) we can get

‖D(B, ·)‖2
L2 (T) +

#∑
9=1

∫ B

0
|mGD 9 (C,0) |23B+ (2U−#)

∫ B

0
|D1 (C,0) |23B

+2
#∑
9=1

∫ B

0

∫ ℓ 9

0
(0 9 − 1 9 ) |D 9 |23G3B ≤ ‖D0‖2

L2 (T) + ‖I
0 (−ℎ·, ·)‖2

L2 (Ω) .

(3.7)

Now multiplying (KdVd) by @ 9D 9 with @ 9 =
G (2ℓ 9−G)

ℓ2
9

we can obtain

‖D1 (C,0)‖2!2 (0,) ) ≤ �‖*0‖2� +
2
3

#∑
9=1

∫ )

0

∫ ℓ 9

0
D3
9 (C, G)3G3C.
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As ∀ 9 = 1, · · · , # D 9 ∈ !2 (0,) ;�1 (0, ℓ 9 )) and �1 (0, ℓ 9 ) embeds into � ( [0, ℓ 9 ])
we get following [3, 17]

#∑
9=1

∫ )

0

∫ ℓ 9

0
|D 9 |33G3C ≤ �)1/2‖*0‖2� ‖D‖!2 (0,) ;H1

4 (T))

and then

‖D1 (C,0)‖2!2 (0,) ) ≤ �‖*0‖2� +�)1/2‖*0‖2� ‖D‖!2 (0,) ;H1
4 (T)) .

On a similar way multiplying (KdVd) by GD 9 and using the last inequality we
deduce

‖mGD‖2!2 (0,) ;L2 (T)) ≤ �
(
‖*0‖2� + ‖*0‖2� ‖D‖!2 (0,) ;H1

4 (T))

)
.

Using Young’s inequality, we can find � > 0 such that

‖mGD‖2!2 (0,) ;L2 (T)) ≤ �
(
‖*0‖2� + ‖*0‖4�

)
. (3.8)

Combining the estimates (3.7) and (3.8) we get

‖D()), I())‖� ≤ ‖*0‖�
(
W +�‖*0‖� +�‖*0‖3�

)
. (3.9)

Taking ‖*0‖� ≤ n for n small enough such that W +�n +�n3 < 1, then the proof
follows in the same way as Theorem 3.2. �

3.3 Semi-global Stabilization

The aim of this section is to prove Theorem 1.3, that is a semi-global result without
restriction on the lengths and for U ≥ #/2. The main idea is to obtain an observability
inequality as (Obs) working directly with the nonlinear system (KdVd). In this context
two main difficulties appears, the first one is to pass to the limit in the nonlinear term
and the second that Holmgrem’s Theorem does not apply in the nonlinear case.

Proof of Theorem 1.3 :
To prove this result we adapt the techniques of[3]. We need the next Unique Continu-
ation Property of Saut and Scheurer.

Theorem 3.3 (Theorem 4.2, [20]) Let ! > 0 and H ∈ !2 (0,) ;�3 (0, !)) be a solution
of

HC + HG + HGGG + HHG = 0,

such that H(C, G) = 0, for (C, G) ∈ (C1, C2) ×l, where l is a nonempty open subset of
(0, !). Then H(C, G) = 0, for (C, G) ∈ (C1, C2) × (0, !).
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First defining I 9 (C, d, G) = D 9
��
l 9
(C − ℎ 9 d,G) G ∈ l 9 , d ∈ (0,1), for D solution of

(KdVd), we can check that


ℎ 9mC I 9 (C, d, G) + mdI 9 (C, d, G) = 0, G ∈ l 9 , d ∈ (0,1), C > 0,
I 9 (C,0, G) = D 9 (C, G), G ∈ l 9 , C > 0,
I 9 (0, d, G) = D 9

��
l 9
(−ℎ 9 d,G) = I0

9
(−ℎ 9 d,G), d ∈ (0,1).

(3.10)

Multiplying (3.10) by I 9 and integrating on (0, B) × (0,1) ×l 9 we can obtain

‖I0 (−ℎ·, ·)‖2
L2 (Ω) ≤ ‖I(B, ·, ·)‖

2
L2 (Ω) +

#∑
9=1

1
ℎ 9

∫ )

0

∫
l 9

|I 9 (C,1, G) |23G3C.

Now integrating this relation on (0,))

) ‖I0 (−ℎ·, ·)‖2
L2 (Ω) ≤

#∑
9=1

∫ )

0

∫ 1

0

∫
l 9

|I 9 (C, d, G) |23G3d3C

+
#∑
9=1

)

ℎ 9

∫ )

0

∫
l 9

|I 9 (C,1, G) |23G3C.

Note now that for ) > h we have

∫ )

0

∫ 1

0

∫
l 9

|I 9 (C, d, G) |23G3d3C =
∫ )

0

∫ 1

0

∫
l 9

|D 9 (C − dℎ 9 , G) |23G3d3C

=

∫ )

0

∫ C

C−ℎ 9

∫
l 9

|D 9 (B, G) |23G3B3C ≤
)

ℎ 9

∫ )

−ℎ 9

∫
l 9

|D 9 (B, G) |23G3B

=
) − ℎ 9
ℎ 9

∫ )

−ℎ 9

∫
l 9

|D 9 (B, G) |23G3B+
)

ℎ 9

∫ )

) −ℎ 9

∫
l 9

|D 9 (B, G) |23G3B

≤ )

ℎ 9

∫ )

0

∫
l 9

( |D 9 (C, G) |2 + |D 9 (C − ℎ 9 , G) |2)3G3C

≤ �
(∫ )

0

∫
l 9

0 9 |D 9 |23G3C +
∫ )

0

∫
l 9

|I 9 (C,1, G) |23G3C
)
,

which gives us

) ‖I0 (−ℎ·, ·)‖2
L2 (Ω) ≤ �

©«
#∑
9=1

∫ )

0

∫
l 9

0 9 |D 9 |23G3C +
∫ )

0

∫
l 9

|I 9 (C,1, G) |23G3C
ª®¬ .
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Multiplying (KdVd) by D 9 and integrating on time and space, we have

‖D(B, ·)‖2
L2 (T) + (2U−#)

∫ B

0
|D1 (C,0) |23C +2

#∑
9=1

∫ B

0

∫ ℓ 9

0
0 9 |D 9 |23G3C

+
#∑
9=1

∫ B

0
|mGD 9 (C,0) |23C +2

#∑
9=1

∫ B

0

∫ ℓ 9

0
1 9D 9 (C − ℎ 9 , G)D 9 (C, G)3G3C = ‖D0‖2

L2 (T) .

Integrating again over (0,)) this relation, we get,

) ‖D0‖2
L2 (T) ≤

∫ )

0
‖D(C, ·)‖2

L2 (T)3C +)
∫ )

0

#∑
9=1
|mGD 9 (C,0) |23C

+(2U−#))
∫ )

0
|D1 (C,0) |23C +2)

#∑
9=1

∫ )

0

∫ ℓ 9

0
0 9 |D 9 |23G3C

+2)
#∑
9=1

∫ )

0

∫ ℓ 9

0
1 9D 9 (C − ℎ 9 , G)D 9 (C, G)3G3C.

Note now that ∫ )

0

∫ ℓ 9

0
1 9D 9 (C − ℎ 9 , G)D 9 (C, G)3G3C

≤ 1
2

∫ )

0

∫
l 9

1 9 |D 9 |23G3C +
1
2

∫ )

0

∫
l 9

1 9 |D 9 (C − ℎ 9 , G) |23G3C,

and then

) ‖D0‖2
L2 (T) ≤ �

(∫ )

0
‖D(C, ·)‖2

L2 (T)3C + (2U−#)
∫ )

0
|D1 (C,0) |23C

+
#∑
9=1

∫ )

0
|mGD 9 (C,0) |23C +

#∑
9=1

∫ )

0

∫ ℓ 9

0
0 9 |D 9 |23G3C

+
#∑
9=1

∫ )

0

∫
l 9

|I 9 (C,1, G) |23G3C
ª®¬ .

Joining the estimates for D0 and I0 we get

#∑
9=1

∫ ℓ 9

0
|D0
9 |23G +

#∑
9=1
ℎ 9

∫
l 9

∫ 1

0
b 9 (G) |I0

9 (−ℎ 9 , d, G) |23G3d

≤ �
(∫ )

0
‖D(C, ·)‖2

L2 (T)3C +
#∑
9=1

∫ )

0
|mGD 9 (C,0) |23C + (2U−#)

∫ )

0
|D1 (C,0) |23C

+
#∑
9=1

∫ )

0

∫ ℓ 9

0
0 9 |D 9 |23G3C +

#∑
9=1

∫ )

0

∫
l 9

|I 9 (C,1, G) |23G3C
ª®¬ .
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This inequality is quite similar to the observability inequality (Obs). Moreover to
prove our result it is enough to get that for any ) , ' > 0 there exists � = � (',)) > 0
such that for any solutions of (KdVd) with ‖*0‖� ≤ ' we have

∫ )

0
‖D(C, ·)‖2

L2 (T)3C ≤ �
©«
#∑
9=1

∫ )

0
|mGD 9 (C,0) |23C + (2U−#)

∫ )

0
|D1 (C,0) |23C

+
#∑
9=1

∫ )

0

∫ ℓ 9

0
0 9 |D 9 |23G3C +

#∑
9=1

∫ )

0

∫
l 9

|I 9 (C,1, G) |23G3C
ª®¬ .

Suppose that this inequality does not hold. Then there exists (D=)=∈N ⊂ B solution
of (KdVd) with ‖*=0 ‖� ≤ ' such that

lim
=→∞

∫ )
0 ‖D

= (C, ·)‖2
L2 (T)3C

‖mGD= (C,0)‖2!2 (0,) ) + (2U−#)‖D
=
1 (C,0)‖

2
!2 (0,) ) +

∑#
9=1

∫ )
0

∫ ℓ 9
0 0 9 |D=9 |23G3C +

∑#
9=1

∫ )
0

∫
l 9
|I=
9
(C,1, G) |23G3C

=∞.

Take _= = ‖D=‖!2 (0,) ;L2 (T)) , E= := D=

_=
and H=

9
(C, d, G) = E=

9

��
l 9
(C − ℎ 9 d,G) G ∈ l 9 ,

d ∈ (0,1). Then, E= satisfies



mCE
=
9
(C, G) + mGE=9 (C, G) + m3

GE
=
9
(C, G) + 0 9 (G)E=9 (C, G)

+1 9 (G)E=9 (C − ℎ 9 , G) +_=E=9 (C, G)mGE=9 (C, G) = 0, G ∈ (0, ℓ 9 ), C > 0, 9 = 1, · · · , #,
E=
9
(C,0) = E=

:
(C,0), ∀ 9 , : = 1, · · ·#,∑#

9=1 m
2
GE
=
9
(C,0) = −UE=1 (C,0) −_

= #

3
(E=1 (C,0))

2, C > 0,
E=
9
(C, ℓ 9 ) = mGE=9 (C, ℓ 9 ) = 0, C > 0, 9 = 1, · · · , #,
‖E=‖!2 (0,) ;L2 (T)) = 1.

(3.11)
and

‖mGE= (C,0)‖2!2 (0,) ) + (2U−#)‖E
=
1 (C,0)‖

2
!2 (0,) ) +

#∑
9=1

∫ )

0

∫ ℓ 9

0
0 9 |E=9 |23G3C

+
#∑
9=1

∫ )

0

∫
l 9

|H=9 (C,1, G) |23G3C→ 0.

(3.12)

Now multiplying (3.11) by E=
9
and integrating over (0,)) × (0, C) × (0, ℓ 9 ) we can

get

) ‖E= (0, ·)‖2
L2 (T) ≤ �

(∫ )

0
‖E= (C, ·)‖2

L2 (T)3C + ‖mGE
= (C,0)‖2

!2 (0,) ) + ‖E
= (−ℎ·, ·)‖2

L2 (Ω)

+(2U−#)‖E=1 (C,0)‖
2
!2 (0,) )

)
.

Now for ) > h,
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‖E= (−ℎ·, ·)‖2
L2 (Ω) =

#∑
9=1

∫
l 9

∫ 1

0
|E=9 (−ℎ 9 d,G) |23d3G =

#∑
9=1

1
ℎ 9

∫
l 9

∫ 0

−ℎ 9
|E=9 (C, G) |23C3G

≤
#∑
9=1

1
ℎ 9

∫
l 9

∫ ) −ℎ 9

−ℎ 9
|E=9 (C, G) |23C3G =

#∑
9=1

1
ℎ 9

∫
l 9

∫ )

0
|E=9 (C − ℎ 9 , G) |23C3G

=

#∑
9=1

1
ℎ 9

∫
l 9

∫ )

0
|H=9 (C,1, G) |23C3G.

These estimates show us that (E= (0, ·))=∈N is bounded in L2 (T ), also we can see
that from the well-posedness of (KdVd) we get

_= = ‖D=‖!2 (0,) ;L2 (T)) ≤ ) ‖*=0 ‖� ≤ )'.

Consequently in the same sense as (3.8) we can obtain

‖E=‖2
!2 (0,) ;H1

4 (T))
≤ �

(
‖*=0 ‖

2
� + ‖*=0 ‖

4
�

)
.

Thus (E=)=∈N ⊂ !2 (0,) ;H1
4 (T )) is bounded and

‖E=9 mGE=9 ‖!2 (0,) ;!1 (0,ℓ 9 )) ≤ ‖E
=‖� ( [0,) ],L2 (T)) ‖E=‖!2 (0,) ;H1

4 (T)) ,

what implies that (E=
9
mGE

=
9
)=∈N is subset of !2 (0,) ;!1 (0, ℓ 9 )).

With this we can see that mCE=9 = −(m3
GE
=
9
+mGE=9 +_=E=9 mGE=9 +0 9E=9 +1 9E=9 (C− ℎ 9 ))

is bounded in !2 (0,) ;�−2 (0, ℓ 9 )) and hence by Aubin-Lions Lemma we can deduce
that (E=)=∈N is relatively compact !2 (0,) ;L2 (T )) and hence we can assume that E=
converges strongly at E in !2 (0,) ;L2 (T )) with ‖E‖!2 (0,) ;L2 (T)) = 1. Furthermore,
passing to the limit on (3.12) we get

‖mGE(C,0)‖2!2 (0,) ) + (2U−#)‖E1 (C,0)‖2!2 (0,) ) +
#∑
9=1

∫ )

0

∫
l 9

|E 9 (C − ℎ 9 ) |23G3C

+
#∑
9=1

∫ )

0

∫ ℓ 9

0
0 9 |E 9 |23G3C ≤ liminf

(
‖mGE= (C,0)‖2!2 (0,) ) + (2U−#)‖E

=
1 (C,0)‖

2
!2 (0,) )

+
#∑
9=1

∫ )

0

∫ ℓ 9

0
0 9 |E=9 |23G3C +

#∑
9=1

∫ )

0

∫
l 9

|E=9 (C − ℎ 9 ) |23G3C
ª®¬ .

Thus E 9 (C, G) ≡ 0 in (−ℎ 9 ,)) ×l 9 and (2U−#)E 9 (C,0) = mGE 9 (C,0) = 0 in (0,))
for all 9 = 1, · · · , # . Also as (_=)=∈N is bounded, we can extract a convergent sub-
sequence such that _=→ _ ≥ 0, consequently E satisfies ‖E‖!2 (0,) ;L2 (T)) = 1 and the
following equation
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mCE 9 + mGE 9 + m3

GE 9 +_E 9mGE 9 = 0, ∀G ∈ (0, ℓ 9 ), C > 0, 9 = 1, · · · , #,
(2U−#)E 9 (C,0) = mGE 9 (C,0) = 0, ∀ 9 = 1, · · ·#,
E 9 (C, ℓ 9 ) = mGE 9 (C, ℓ 9 ) = 0, ∀ 9 = 1, · · ·#,∑#
9=1 m

2
GE 9 (C,0) = −UE1 (C,0) −_ #3 (E1 (C,0))2, C > 0,

E 9 (C, G) = 0 (C, G) ∈ (−ℎ 9 ,)) ×l 9 .

1. If _ = 0 the system satisfied by E is linear, then thanks Holmgrem’s Theorem E = 0,
that contradicts the fact that ‖E‖!2 (0,) ;L2 (T)) = 1.

2. If _ > 0. In this case we have to prove that E 9 ∈ !2 (0,) ;�3 (0, ℓ 9 )) in order to
apply Theorem 3.3. Consider F 9 = mCEC then



mCF 9 + mGF 9 + m3
GF 9 +_F 9mGE 9 +_E 9mGF 9 = 0, G ∈ (0, ℓ 9 ), C > 0, 9 = 1, · · · , #,

(2U−#)F 9 (C,0) = mGF 9 (C,0) = 0, ∀ 9 = 1, · · ·#,
F 9 (C, ℓ 9 ) = mGF 9 (C, ℓ 9 ) = 0, ∀ 9 = 1, · · ·#,∑#
9=1 m

2
GF 9 (C,0) = −UF1 (C,0) −_ 2#

3 F1 (C,0)E1 (C,0), C > 0,
F 9 (C, G) = 0 (C, G) ∈ (−ℎ 9 ,)) ×l 9 ,
F 9 (0, G) = −E′(0, G) − E′′′(0, G) −_E(0, G)E′(0, G), G ∈ (0, ℓ 9 ), 9 = 1, · · · , #.

Note that F 9 (0, G) ∈ �−3 (0, ℓ 9 ), with Lemma A.2 [3] we can get that F 9 (0, G) ∈
!2 (0, ℓ 9 ) andF 9 ∈� ( [0,)], !2 (0, ℓ;))∩!2 (0,) ;�1 (0, ℓ 9 )). Thus m3

GE 9 =−(mCE 9−
mGE 9 −_E 9mGE 9 ∈ !2 (0,) ;!2 (0,))) that implies E 9 ∈ !2 (0,) ;�3 (0, ℓ 9 )). Apply-
ing Theorem 3.3 we obtain that E 9 = 0 for all 9 = 1, · · · , # that contradicts the fact
that ‖E‖!2 (0,) ;L2 (T)) = 1.

Finally we obtain that (Obs) is valid for a solution (KdVd) with ‖*0‖� ≤ '. We
conclude as in the linear case.

�

Remark 3.5 We can observe that the semi-global character is given by the assumption
‖*0‖� ≤ ' which is necessary in our proof. Specifically it is used to show that
(_=)=∈N is bounded. An interesting open problem is the following: Is (KdVd) is
globally well-posed and globally exponentially stable?

4 Stabilization when not all damped terms are activated

It is known that to obtain exponential stability of a single KdV equation we only need
to add a damped term if the length is critical (! ∈ N ) [17]. In the network case, more
precisely in [1] Theorem 3.6, the authors consider damping terms 0 9 applying on the
critical lengths edges except at most on one edge.

Now we will prove Theorem 1.4 following closely Section 6 of [21] and [11]. First
note that if (1.8) holds the energy of (KdVd) defined by (1.6) satisfies
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d
dC
� (C) ≤ −(2U−#) |D1 (C,0) |2−

#∑
9=1
|mGD 9 (C,0) |2−2

∑
9∈�

∫
supp 0 9

0 9 |D 9 |23G

+
∑
9∈�

∫
l 9

(1 9 − b 9 ) |D 9 (C − ℎ 9 , G) |23G +
∑
9∈�

∫
l 9

(1 9 + b 9 ) |D 9 |23G

+
∑
9∈� ∗

∫
l 9

(−20 9 (G) + 1 9 (G) + b 9 (G)) |D 9 (C, G) |23G−
∑
9∈� ∗

∫
(0,ℓ 9 )/l 9

0 9 (G) |D 9 (C, G) |23G

+
∑
9∈� ∗

∫
l 9

(1 9 (G) − b 9 (G)) |D 9 (C − ℎ 9 , G) |23G.

From the last inequality we can see that in this case the energy of the system
(KdVd) is not decreasing in general, this by the action of the terms 1 9 + b 9 > 0 in l 9
for 9 ∈ �. Following [11] we consider the next auxiliary problem for which the energy
will be decreasing. This system is close to (KdVd)



mCD 9 (C, G) + mGD 9 (C, G) +D 9 (C, G)mGD 9 (C, G) + m3
GD 9 (C, G)

+0 9 (G)D 9 (C, G) + 1 9 (G)D 9 (C − ℎ 9 , G) +[1 9 (G)D 9 (C, G)1� ( 9) = 0, G ∈ (0, ℓ 9 ), C > 0, 9 = 1, · · · , #,
D 9 (C,0) = D: (C,0), ∀ 9 , : = 1, · · ·#,∑#
9=1 m

2
GD 9 (C,0) = −UD1 (C,0) − #

3 D
2
1 (C,0), C > 0,

D 9 (C, ℓ 9 ) = mGD 9 (C, ℓ 9 ) = 0, C > 0, 9 = 1, · · · , #,
D 9 (0, G) = D0

9
(G), G ∈ (0, ℓ 9 ),

D 9 (C, G) = I0
9
(C, G), (C, G) ∈ (−ℎ 9 ,0) × (0, ℓ 9 ).

(Aux)
where 1� ( 9) is the indicator function of the set � and [ > 0. Then we consider the
energy (1.6) with b 9 = [1 9 for 9 ∈ �, that is

� (C) =
#∑
9=1

∫ ℓ 9

0
|D 9 |23G +[

∑
9∈�
ℎ 9

∫
l 9

∫ 1

0
1 9 |D 9 (C − ℎ 9 d,G) |23G3d

+
∑
9∈� ∗

ℎ 9

∫
l 9

∫ 1

0
b 9 |D 9 (C − ℎ 9 d,G) |23G3d

(4.1)

where in this case for all 9 ∈ �∗, b 9 is a non-negative function belonging to !∞ (0, ℓ 9 )
such that supp b 9 = supp 1 9 = l 9 and

1 9 (G) + 20 ≤ b 9 (G) ≤ 20 9 (G) − 1 9 (G) − 20, in l 9 , for 9 ∈ �∗. (4.2)

Easy calculations show us that if [ > 1, then
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d
dC
� (C) ≤ −(2U−#) |D1 (C,0) |2−

#∑
9=1
|mGD 9 (C,0) |2−2

∑
9∈�

∫
supp 0 9

0 9 |D 9 |23G

+
∑
9∈�
(1−[)

∫
l 9

1 9 |D 9 |23G +
∑
9∈�
(1−[)

∫
l 9

1 9 |D 9 (C − ℎ 9 ) |23G

+
∑
9∈� ∗

∫
l 9

(−20 9 (G) + 1 9 (G) + b 9 (G)) |D 9 (C, G) |23G−
∑
9∈� ∗

∫
(0,ℓ 9 )/l 9

0 9 (G) |D 9 (C, G) |23G

+
∑
9∈� ∗

∫
l 9

(1 9 (G) − b 9 (G)) |D 9 (C − ℎ 9 , G) |23G ≤ 0.

The main idea to deal with the case when supp 1 9 ⊄ supp 0 9 is to show the
exponential stability of the linearization around 0 of (Aux) via a Lyapunov function
following Section 3.1 and then pass to (LKdVd) using a perturbation result.

More precisely we are going to use the following theorem.

Theorem 4.1 (Theorem 1.1, [16]) Let - be a Banach space and let � be a the
infinitesimal generator of a �0 semigroup ) (C) on - satisfying ‖) (C)‖ ≤ "4lC . If �
is bounded linear operator on - , then � + � is the infinitesimal generator of a �0
semigroup ((C) on - satisfying ‖((C)‖ ≤ "4 (l+" ‖� ‖)C) .

Remark 4.1 As we we said before we use a Lyapunov approach for the auxiliary
system, for that we expect that our result holds for ! <

√
3

2 c, U > =/2 and small initial
data. Also observing Theorem 4.1 we must require that ‖1‖L∞ (T) is small enough.

We start by proving the well-posedness of the linearization of (Aux) around 0. We
omitted the details because they are closely similar to Section 2,

mCD 9 (C, G) + mGD 9 (C, G) + m3
GD 9 (C, G) + 0 9 (G)D 9 (C, G)

+1 9 (G)D 9 (C − ℎ 9 , G) +[1 9 (G)D 9 (C, G)1� ( 9) = 0, G ∈ (0, ℓ 9 ), C > 0, 9 = 1, · · · , #,
D 9 (C,0) = D: (C,0), ∀ 9 , : = 1, · · ·#,∑#
9=1 m

2
GD 9 (C,0) = −UD1 (C,0), C > 0,

D 9 (C, ℓ 9 ) = mGD 9 (C, ℓ 9 ) = 0, C > 0, 9 = 1, · · · , #,
D 9 (0, G) = D0

9
(G), G ∈ (0, ℓ 9 ),

D 9 (C, G) = I0
9
(C, G), (C, G) ∈ (−ℎ 9 ,0) × (0, ℓ 9 ).

(LAux)
We set again I 9 (C, d, G) = D 9

��
l 9 (C − ℎ 9 d,G) G ∈ l 9 , d ∈ (0,1). Note that in this

case as b 9 = [1 9 the inner product defined for � in Section 2 becomes

〈(
D

I

)
,

(
E

H

)〉
�

=

#∑
9=1

∫ ℓ 9

0
D 9 (G)E 9 (G)3G +[

∑
9∈�
ℎ 9

∫
l 9

∫ 1

0
1 9 (G)I 9 (d,G)H 9 (d,G)3d3G

+
∑
9∈� ∗

ℎ 9

∫
l 9

∫ 1

0
b 9 (G)I 9 (d,G)H 9 (d,G)3d.
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Then (LAux) can be written as{
*C (C) =A0* (C), C > 0
* (0) =*0.

(4.3)

where,* =
(
D

I

)
,*0 =

(
D0

I0
��
l
(−ℎ·, ·)

)
and the operator A0 is defined by:

A0* =
©«
−(DG (T ) +D3

G (T ))D− 0. ∗D− 1. ∗ Ĩ(1, ·) −[1� . ∗D
−1
ℎ
. ∗Dd (T )I

ª®¬
in which

(1� ) 9 =
{
1 9 , 9 ∈ �,
0, 9 ∈ �∗.

and � (A0) = � (A).
Theorem 4.2 Assume 0, 1 ∈ L∞ (T ) componentwise non-negative that satisfy (1.1)
and (1.9). Let*0 ∈ � and [ > 1. Then there exist a unique solution* ∈ � ( [0,∞);�)
of (4.3). Moreover if*0 ∈ � (A) then* is a classical solution and

* ∈ � ( [0,∞);� (A0)) ∩�1 ( [0,∞);�).

Proof Let* =
(
D

I

)
∈ � (A0), then

〈A0*,*〉 ≤
(
#

2
−U

)
D2

1 (0) −
1
2

#∑
9=1
(mGD 9 (0))2−

∑
9∈�

∫
supp 0 9

0 9 |D 9 |23G

+1
2

∑
9∈�
(1−[)

∫
l

1 9 |D 9 |23G +
1
2

∑
9∈�
(1−[)

∫
l

1 9 |D 9 (C − ℎ 9 ) |23G

−1
2

∑
9∈� ∗

∫
(0,ℓ 9 )/l 9

0 9 (G) |D 9 (C, G) |23G +
∑
9∈� ∗

∫
l 9

(−0 9 (G) +
1 9 (G)

2
+
b 9 (G)

2
) |D 9 (C, G) |23G

+1
2

∑
9∈� ∗

∫
l 9

(1 9 (G) − b 9 (G)) |D 9 (C − ℎ 9 , G) |23G ≤ 0.

thus A0 is dissipative. Moreover

A∗0
(
E

H

)
=

©«
(DG (T ) +D3

G (T ))E− 0. ∗ E +[1. ∗ H̃(0, ·) −[1� . ∗ E
1
ℎ
. ∗Dd (T )H

ª®¬
� (A∗0) =


(
E

H

)
, E ∈ ©«

#∏
9=1
�3 (0, ℓ 9 )

ª®¬∩H1
4 (T ),

#∑
9=1

d2E 9

dG2 (0) = (U−#)E1 (0),

mGE 9 (0) = 0, ∀ 9 = 1, · · · , #, H ∈
#∏
9=1
!2 (�1 (0,1) ×F 9 ), H 9 (1, G) = −

1
[
E 9

��
l 9 (G)

for 9 ∈ � and H 9 (1, G) = −
1 9

b 9
E 9

��
l 9
(G) for 9 ∈ �∗

}
.
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Let + =
(
E

H

)
∈ � (A∗0), then

〈A∗0+,+〉 ≤ −
1
2

#∑
9=1
|mGE 9 (ℓ 9 ) |2 +

(
#

2
−U

)
E2

1 (0) −
#∑
9=1

∫
supp 0 9

0 9 |E 9 |23G

+
#∑
9=1

∫
l 9

(
−[

2
+ 2

2[

)
1 9 (G)E2

9 (G)3G +
∑
9∈� ∗

∫
l 9

(
−0 9 +

b 9

2
+
12
9

2b 9

)
|E 9 |23G

−
∑
9∈� ∗

∫
(0,ℓ 9 )\l 9

0 9 |E 9 |23G−
1
2

∑
9∈� ∗

∫
l 9

b 9 |H 9 (0, G) |23G ≤ 0

thus A∗0 is dissipative. ut

Now to prove the exponential stability of (LAux) we consider the following
Lyapunov function:

+ (C) = � (C) + `1+1 + `2+2 (4.4)

where `1, `2 > 0, � (C) is defined by (4.1),+1 (C) defined in (3.1) and+2 (C) is given by

+2 (C) =
∑
9∈�
ℎ 9

∫
l 9

∫ 1

0
(1− d)1 9 (G) |D 9 (C − ℎ 9 d,G) |23G3d

+
∑
9∈� ∗

ℎ 9

∫
l 9

∫ 1

0
(1− d) |D 9 (C − ℎ 9 d,G) |23G3d.

Proposition 4.1 Assume 0, 1 ∈ L∞ (T ) componentwise non-negative that satisfy (1.1)
and (1.9). Let U > #

2 , [ > 1 and (ℓ 9 )#9=1 ⊂ (0,+∞) such that ! <
√

3
2 c. Then for every

*0 ∈ �, the energy of (LAux) defined by (4.1) decays exponentially, that is, there
exists � > 0, W > 0 such that

� (C) ≤ �� (0)4−2WC .

where

W ≤ min
{
(3`1c− `14!2)
8!2 (1+ !`1)

,min
9∈�

`2
2ℎ 9 ([+ `2)

,min
9∈� ∗

`2
2ℎ 9 (b 9 + `2)

}
,

� =

(
1+max

{
!`1,

`2
[
,
`2
10

})
.

(4.5)

for `1 and `2 such that

0 < `1 <

{
1,
[−1
!

,
1
#
(2U−#) ,min

9∈� ∗

{
inf
l 9

b 9 − 1 9
!1 9

, inf
l 9

20 9 − 1 9 − b 9
!1 9

}}
0 < `2 < min

{
[−1− !`1,min

9∈� ∗
20 9 − 1 9 − b 9 − !`11 9

}
.
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Proof Let D be a regular solution of (LAux) with *0 ∈ � (A0). Clearly with this
definition of + (C) we have that

� (C) ≤ + (C) ≤
(
1+max

{
!`1,

`2
[
,
`2
10

})
� (C).

Now, integrating by parts we get

d
dC
� (C) ≤ (# −2U) |D1 (C,0) |2−

#∑
9=1
|mGD 9 (C,0) |2−2

∑
9∈�

∫
supp 0 9

0 9 |D 9 |23G

+(1−[)
∑
9∈�

∫
l 9

1 9 |D 9 |23G + (1−[)
∑
9∈�

∫
l 9

1 9 |D 9 (C − ℎ 9 , G) |23G

+
∑
9∈� ∗

∫
l 9

(−20 9 + 1 9 + b 9 ) |D 9 |23G−
∑
9∈� ∗

∫
supp 0 9\l 9

0 9 |D 9 |23G

+
∑
9∈� ∗

∫
l 9

(1 9 − b 9 ) |D 9 (C − ℎ 9 , G) |23G,

together with

d
dC
+1 (C) =

#∑
9=1

∫ ℓ 9

0
|D 9 |23G−3

#∑
9=1

∫ ℓ 9

0
|mGD 9 |23G−2

#∑
9=1
D1 (C,0)mGD 9 (C,0)

−2[
∑
9∈�

∫
l 9

G1 9 |D 9 |23G−2
#∑
9=1

∫
supp 0 9

G0 9 |D 9 |23G−2
#∑
9=1

∫
l 9

G1 9D 9 (C, G)D 9 (C − ℎ 9 , G)3G,

d
dC
+2 (C) =

∑
9∈�

∫
l 9

1 9 |D 9 |23G +
∑
9∈� ∗

∫
l 9

|D 9 |23G−
∑
9∈�

∫
l 9

1 9

∫ 1

0
|D 9 (C − ℎ 9 d,G) |23d3G

−
∑
9∈� ∗

∫
l 9

∫ 1

0
|D 9 (C − ℎ 9 d,G) |23d3G.

Using integrations by parts and Poincaré’s inequality, we can easily check that for
W > 0

d
dC
+ (C) +2W+ (C) ≤ (# −2U+ `1#) |D1 (C,0) |2 + (`1−1)

#∑
9=1
|mGD 9 (C,0) |2

+
∑
9∈�

∫
l 9

1 9 (1−[+ `2 + `1!) |D 9 |23G +
∑
9∈�

∫
l 9

1 9 (1−[+ `1!) |D 9 (C − ℎ 9 , G) |23G

+
∑
9∈� ∗

∫
l 9

(−20 9 + 1 9 + b 9 + `2 + !`11 9 ) |D 9 |23G
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+
∑
9∈� ∗

∫
l 9

(1 9 − b 9 + `1!1 9 ) |D 9 (C − ℎ 9 ) |23G

+
∑
9∈�

∫
l 9

∫ 1

0
(2Wℎ 9 (`2 +[) − `2) |D 9 (C − ℎ 9 d,G) |23G

+
∑
9∈� ∗

∫
l 9

∫ 1

0
(2Wℎ 9 (`2 + b 9 ) − `2) |D 9 (C − ℎ 9 d,G) |23G

+
[
4!2 (`1 +2`1W! +2W)

c2 −3`1

] #∑
9=1

∫ ℓ 9

0
|mGD 9 (C, G) |23G.

Taking

0 < `1 <

{
1,
[−1
!

,
1
#
(2U−#) ,min

9∈� ∗

{
inf
l 9

b 9 − 1 9
!1 9

, inf
l 9

20 9 − 1 9 − b 9
!1 9

}}
0 < `2 < min

{
[−1− !`1,min

9∈� ∗
20 9 − 1 9 − b 9 − !`11 9

}
,

and using that ! >
√

3
2 c we can take

W ≤ min
{
(3`1c− `14!2)
8!2 (1+ !`1)

,min
9∈�

`2
2ℎ 9 ([+ `2)

,min
9∈� ∗

`2
2ℎ 9 (b 9 + `2)

}
.

With this
d
dC
+ (C) +2W+ (C) ≤ 0 which implies

� (C) ≤
(
1+max

{
!`1,

`2
[
,
`2
10

})
�04

−2WC .

By density we can extend the result to*0 ∈ �. ut

Now we will obtain a stability result of (LKdVd) using a perturbation argument.
Note first that the operator A introduced in Section 2 and associated with (LKdVd)
can be written as

A =A0 +B,
where � (A) = � (A0) and B is the bounded operator on � defined by

B* =
(
[1� . ∗D

0

)
, * =

(
D

I

)
∈ �.

Proposition 4.2 Assume 0, 1 ∈ L∞ (T ) componentwise non-negative that satisfy (1.1)
and (1.9). Let U > #

2 , [ > 1 and (ℓ 9 )#9=1 ⊂ (0,+∞) such that ! <
√

3
2 c, then for every

*0 ∈ � there exists a unique mild solution* ∈� ( [0,∞), �) for (LKdVd). Moreover if
*0 ∈ � (A) then the solution is classical and* ∈ � ( [0,∞);� (A)) ∩�1 ( [0,∞), �).
Furthermore there exists X = X(U,[, !, ℎ) > 0 such that if

‖1‖L∞ (T) ≤ X,
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then for every*0 ∈ �, the solution of (LKdVd) satisfies

� (C) ≤ �� (0)4−WC , C > 0,

for �, W > 0 defined in Proposition 4.1.

Proof It is enough to apply Theorem 4.1. We note that ‖B‖ ≤ [‖1‖L∞ (T) and then
remark that

−W
2
+
√
�[‖1‖L∞ (T) < 0⇐⇒ ‖1‖L∞ (T) <

W

2[
√
�
.

ut

Finally, we obtain the local exponential stability for (KdVd) in the casewhen supp 1 9 ⊄
supp 0 9 , for 9 ∈ �∗ ⊂ {1, · · · , #} stated in Theorem 1.4.

Proof of Theorem 1.4 :
We just adapt the proof of Theorem 2.2 and Theorem 1.2 to obtain the exponential
stability of the nonlinear case using the stability of (LAux) and small initial data. �

5 Numerical Simulations

The purpose of this section is to illustrate the stabilization results obtained in this
work. For that we are going to present some numerical simulations adapting the
schemes used in [2, 5, 14]. We choose a final time ) and for simplicity we take
ℓ 9 = ! and 0 9 , 1 9 constant on their support for all 9 = 1, · · · , # . We build a uniform
spatial and time discretization of #G + 1 and #C + 1 points respectively, separated
by the steps ΔG = !/#G and ΔC = )/#C . To deal with the delay term we choose
the delay step Δd = 1/#d. Now we introduce the notation D 9 (=ΔC, 8ΔG) = D=9,8 and
I 9 (=ΔC, :Δd, 8ΔG) = I=9,8,: for 8 = 0, · · · , #G , : = 0, · · · , #d and = = 0, · · · , #C . We use
the following approximation for the derivatives:

D+GH8 =
H8+1− H8
ΔG

, D−G H8 =
H8 − H8−1
ΔG

, DGH8 =
H8+1− H8−1

2ΔG
, D+d4: =

4:+1− 4:
Δd

.

In order to approximate the term of third order m3
G we use D+GD+GD−G . Now, to consider

the nonlinear terms we use explicit approximation H=
8
D+GH=8 and for the nonlinear

boundary condition we use a forward approximation for the second derivative which
gives(

1
(ΔG)2

+U
)
D=+19 ,0 −

2
(ΔG)2

D=+19 ,1 +
1
(ΔG)3

D=+19 ,2 =−
1
3
(D=9,0)

2, 9 = 1, · · · , #, = = 1 · · · , #C .

Note now that by the boundary conditions we have that D=
9,#G

= D=
9,#G−1 = 0, D=

9,0 = D
=
:

for all = = 0, ·, # 9 and 9 , : = 1 · · · , # . Now we define �l 9 , the set of index such that
8 ∈ �l 9 if 8ΔG ∈ l 9 . Then taking C = D+GD+GD−G +DG our scheme can be seen as
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(
1

(ΔG)2 + U
)
D=+1
9,0 −

2
(ΔG)2 D

=+1
9,1 +

1
(ΔG)3 D

=+1
9,2 = − 1

3 (D
=
9,0)

2, 9 = 1, · · · , # , = = 1 · · · , #C ,

D=+1
9,8
−D=
9,8

ΔC
+ (CD=+1

9
)8 + 0 9D=+19

+1 9 I 9,8,#d +D=9,8D
+
GD
=
9,8
= 0, 8 ∈ �l 9 , 8 ≠ 0, 9 = 1, · · · , # ,

D=+1
9,8
−D=
9,8

ΔC
+ (CD=+1

9
)8 +D=9,8D

+
GD
=
9,8
= 0, 8 ∈ {1, · · · , # }\�l 9 , 8 ≠ 0,

9 = 1, · · · , # ,

ℎ 9
I=+1
9,8,:
−I=
9,8,:

ΔC
+ (D+dI=+19,8

): = 0, : = 1, · · · , #d ,
D=
9,#G

= D=
9,#G−1 = 0 9 = 1, · · · , # ,

D=
9,0 = D

=
:

9 , : = 1, · · · , # ,
I=
9,8,0 = D

=
9,8
, 8 ∈ �l 9 , 9 = 1, · · · , # ,

D0
9,8
= D0

9
(8ΔG) 8 = 1, · · · , #G , 9 = 1, · · · , # ,

I0
9,8,:

= I0
9
(:Δd, 8ΔG) , : = 1, · · · , #d , 8 ∈ �l 9 , 9 = 1, · · · , # .

(5.1)

Now we use this scheme with the following parameters, # = 4, ! = 2 and
U = 3, for the discretization we use #G = 100, #d = 100, the initial conditions are
D0
9
= (1− cos(2cG/!)) and I0

9
= (1− cos(2cG/!)) cos(2cdℎ 9 ). As we say before

we consider that the feedback terms are constant on their support, and we take
l1 = (0, !/2), l2 = (0, !/4), l3 = (0, !/2) and l4 = (0, !/4).

For Figure 2 we use ) = 5, #C = 100 and delay ℎ1 = 1, ℎ2 = 0.5, ℎ3 = 1 and
ℎ4 = 1. We can see that when there is not feedback terms (0 9 = 1 9 = 0), the energy
is exponentially decreasing and if we only activate the feedback term without delay,
the energy decays more quickly. If we activate both feedback terms with and without
delay the energy still decrease exponentially but slowly. Similar case happen if we not
activate a feedback term without delay but we consider a feedback term with a small
delay (04 = 0, 1 9 = 0.5). Finally if we consider only the action of delay feedback terms
we can observe that in this case the energy decays very slowly.

Fig. 2 Time-evolution of C ↦→ ln(� (C)) for different values of feedback terms.
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For Figure 3 we use ) = 10, #C = 200, 0 9 = 0 for 9 = 1, · · ·4. In this figure we can
observe that in the case 0 9 = 0 the energy decays exponentially if the feedback terms
with delay are small enough. Also we can see that if the delay is bigger the feedback
term with delay has to be smaller as written in Theorem 1.4.

Fig. 3 Time-evolution of C ↦→ ln(� (C)) for different values of feedback with delay term.

For Figure 4 we consider ) = 2, #C = 100, delays ℎ1 = 0.1, ℎ2 = 0.2, ℎ3 = 0.3 and
ℎ4 = 0.4, feedback terms 01 = 2, 02 = 4, 03 = 6, 04 = 8, 11 = 0.5, 12 = 1.5, 13 = 2.5 and
14 = 3.5. We show ln(� (C)) for different initial conditions D0

9
= \ (1− cos(2cG/!))

and I0
9
= \ (1− cos(2cG/!)) cos(2cdℎ 9 ), for \ = 0.5, 2, 5. We show the graphics of

ln
(
� (C)
� (0)

)
in order to normalize the energy. Here we can see that the decay rate does

not seem to depend of the initial data.

Fig. 4 Time-evolution of C ↦→ ln
(
� (C )
� (0)

)
for different values of \ > 0.
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To end we consider ) = 2, #C = 100, delays ℎ1 = 0.1, ℎ2 = 0.2, ℎ3 = 0.3 and
ℎ4 = 0.4, feedback terms 01 = 2, 02 = 4, 03 = 6, 04 = 8, 11 = 0.5, 12 = 1.5, 13 = 2.5
and 14 = 3.5. We calculate the theoretical decay rate given by Theorem 1.1, we
get ln(� (C)) ≤ 2.9283− 1.2143 · 10−17C. Now we make a linear regression for the
numerical obtained data and we get ln(� (C)) ≈ 4.1129−12.766C. From here we can
see that the theoretical decay rate given by Theorem 1.1 is much smaller than the one
obtained numerically.

6 Conclusions

In this paper, was studied the well-posedness and exponential stability of a KdV
equation on a Star Shaped Network with internal delayed feedback terms. The well-
posedness was addressed including a new variable in order to take into account
the delay and then studying the linearization around 0 of our system we obtain the
local well-posedness for the nonlinear equation using the Banach fixed-point theorem.

First was considered the case where the support of delayed terms 1 9 are included
in the support of the feedback terms without delay 0 9 . In this was possible obtain the
local exponential stability using a Lyapunov functional, this result holds for restricted
lengths ! <

√
3

2 c, U >
#
2 and gives us an estimation of the decay rate. This estimation

of the decay rate depends strongly on the Lyapunov Function used. Secondly using a
contradiction argument an observability inequality for the linear system was derived
that gives the exponential stability of the non linear system without restrictions on the
lengths and U ≥ #

2 . On a similar way working directly with the nonlinear system a
semi-global stabilization result was obtained.

In the last stabilization results the case where non necessarily the support of de-
layed terms 1 9 are included in the support of the feedback terms without delay 0 9
has been considered. If this is the case and if the feedback delayed term 1 9 is small
enough, the local exponential stability for ! <

√
3

2 c and U > #
2 has been obtained.

Finally some numerical simulations have been presented. We showed how feed-
back delayed terms affects the stability (see Figure 2 and Figure 3). Also we observe
that numerically in the case 0 9 = 0 if the feedback delayed terms 1 9 is big enough
the system becomes unstable. Besides, we showed that the decay rate given by Theo-
rem 1.1 is smaller than those obtained in simulations.

To conclude we present some open questions to be investigated:

1. As was said in Remark 3.1 the restriction on ! comes from the multiplier G in
+1. Finding a new multiplier in order to obtain a result less restrictive is an open
problem.

2. In this paper was considered that the delay acts internally. We are working on a
delay term acting on the central node.
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3. The tools used in this work are inspired by [9]. For that a future research could be
to study a KdV equation with a saturated control on a Star Shaped Network.

4. Typically the KdV equation is globally well-posedness in a bounded domain, the
main difficulty to reach global well-posedness in the network case is Proposi-
tion 2.6. A global well-posedness of the KdV equation in a Star Shaped Network
is an open problem.

5. In [7] a stabilization problem for the linear Kuramoto-Sivashinsky with delayed
boundary control was studied. Studying a Kuramoto-Sivashinky equation on net-
works with or without delay is also a possible future work.
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