
HAL Id: hal-03177410
https://hal.science/hal-03177410

Submitted on 23 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Whole exome sequencing study identifies novel rare and
common Alzheimer’s-Associated variants involved in

immune response and transcriptional regulation
J. C. Bis, X. Jian, B. W. Kunkle, Y. Chen, K. L. Hamilton-Nelson, W. S.

Bush, W. J. Salerno, D. Lancour, Y. Ma, A. E. Renton, et al.

To cite this version:
J. C. Bis, X. Jian, B. W. Kunkle, Y. Chen, K. L. Hamilton-Nelson, et al.. Whole exome sequencing
study identifies novel rare and common Alzheimer’s-Associated variants involved in immune response
and transcriptional regulation. Molecular Psychiatry, 2018, 25 (8), pp.1859-1875. �10.1038/s41380-
018-0112-7�. �hal-03177410�

https://hal.science/hal-03177410
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Molecular Psychiatry (2020) 25:1859–1875
https://doi.org/10.1038/s41380-018-0112-7

ARTICLE

Whole exome sequencing study identifies novel rare and common
Alzheimer’s-Associated variants involved in immune response and
transcriptional regulation
This article has been corrected since Advance Online Publication and a correction is also printed in this issue

Joshua C. Bis1 et al ● Alzheimer’s Disease Sequencing Project

Received: 21 December 2017 / Revised: 1 May 2018 / Accepted: 14 May 2018 / Published online: 14 August 2018
© The Author(s) 2018. This article is published with open access

Abstract
The Alzheimer’s Disease Sequencing Project (ADSP) undertook whole exome sequencing in 5,740 late-onset Alzheimer
disease (AD) cases and 5,096 cognitively normal controls primarily of European ancestry (EA), among whom 218 cases and
177 controls were Caribbean Hispanic (CH). An age-, sex- and APOE based risk score and family history were used to select
cases most likely to harbor novel AD risk variants and controls least likely to develop AD by age 85 years. We tested ~1.5
million single nucleotide variants (SNVs) and 50,000 insertion-deletion polymorphisms (indels) for association to AD, using
multiple models considering individual variants as well as gene-based tests aggregating rare, predicted functional, and loss of
function variants. Sixteen single variants and 19 genes that met criteria for significant or suggestive associations after
multiple-testing correction were evaluated for replication in four independent samples; three with whole exome sequencing
(2,778 cases, 7,262 controls) and one with genome-wide genotyping imputed to the Haplotype Reference Consortium panel
(9,343 cases, 11,527 controls). The top findings in the discovery sample were also followed-up in the ADSP whole-genome
sequenced family-based dataset (197 members of 42 EA families and 501 members of 157 CH families). We identified novel
and predicted functional genetic variants in genes previously associated with AD. We also detected associations in three
novel genes: IGHG3 (p= 9.8 × 10−7), an immunoglobulin gene whose antibodies interact with β-amyloid, a long non-
coding RNA AC099552.4 (p= 1.2 × 10−7), and a zinc-finger protein ZNF655 (gene-based p= 5.0 × 10−6). The latter two
suggest an important role for transcriptional regulation in AD pathogenesis.

Introduction

Genomic studies have revealed that late-onset Alzheimer
disease (LOAD) is highly polygenic, with as many as
30 susceptibility loci identified through large-scale meta-
analysis of genome-wide association studies (GWAS), tar-
geted exome genotyping array, and several early whole
exome sequencing (WES) studies [1–12]. Although AD
susceptibility is highly heritable (h2= 0.58–0.79) [13],
much of its genetic architecture is still unknown and few
rare variants have been detected thus far [3, 6, 7, 14–19].
Discovery of rare variants in genomic studies, even those
with large sample sizes and examining highly heritable
diseases, remains challenging due to statistical power lim-
itations in detecting all but the most strongly associated
variants (odds ratio (OR) > 1.5) [20–23]. The protein coding
regions of the genome, or exome, are the best characterized
and most conserved portions of the genome and the source
of most variants identified to date that are responsible for
Mendelian diseases [24]; thus, the exome is a more
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attractive and less expensive target for identifying rare
variants of large effect on disease than the non-protein
coding portion of the genome.

The Alzheimer’s Disease Sequencing Project (ADSP) was
developed jointly by the National Institute on Aging (NIA)
and National Human Genome Research Institute (NHGRI) in
response to the National Alzheimer’s Project Act milestones
(https://aspe.hhs.gov/national-alzheimers-project-act) to fight
Alzheimer’s disease (AD) as an effort to analyze the genomes
of well-characterized individuals with and without AD. To
detect rare variants and genes associated with LOAD, we
performed single-variant and gene-based analyses, including
annotated loss-of-function analyses, on the ADSP Discovery
Phase Case-Control WES dataset, and attempted to replicate
associations in three independent WES datasets, a GWAS
dataset containing single nucleotide variants (SNVs) that were
imputed using the Haplotype Reference Consortium (HRC)
[25] reference panel, and the ADSP family-based whole
genome sequence dataset.

Methods

Sample selection and data preparation

Study participants were either European-American (EA) or
Caribbean Hispanic (CH) ancestry and were sampled in two
ways. To maximize contrast between cases and controls, and
power to discover novel associations, the majority of parti-
cipants were chosen using a risk score that included dosages
of the APOE ε2/ε3/ε4 alleles, sex and either onset age (for
cases) or age at last exam for controls (or pathology-based
adjusted age at death for neuropathology control) [26]. All
cases were at least 60 years old and met NINCDS-ADRDA
criteria for possible, probable or definite AD based on
clinical assessment, or had presence of AD (moderate or
high likelihood) upon neuropathology examination. To
maximize our ability to discover novel genetic associations,
we chose cases whose AD risk score indicated that their
disease was not well explained by age, sex, or dosages of the
APOE ε2/ε3/ε4 alleles. Conversely, cognitively healthy
controls were selected with the goal of identifying alleles
associated with the increased risk of or protection from late-
onset AD. At the time of last exam, all potential controls
were at least 60 years old and were either judged to be
cognitively normal or did not meet pathological criteria
[27, 28] for AD following brain autopsy. Controls were
selected for this study on the basis of the risk score indi-
cating that they were the least likely to develop AD by age
85 years. Applying the risk score resulted in a sample that
contained 2,220 AD cases (40%) and 752 controls (14%)
who were ε4 heterozygotes and 161 AD cases (3%) and 17
controls (<1%) who were ε4 homozygotes.

In addition, we sampled a set of “enriched” cases from
families having at least three affected members for whom
the diagnosis of AD was verified by direct examination or
review of cognitive testing data and medical records. Cases
from early-onset AD families or families with a known
PSEN1, PSEN2, or APP mutation were excluded. Within
each family, we selected only one AD case, typically the
member with the lowest a priori AD risk (based on the risk
score defined above), provided this person had sufficient
genomic DNA. In addition, because 172 of the “enriched”
cases described above were of CH ancestry, we also
selected a set of 171 age- and sex-matched cognitively
normal CH participants to serve as controls. Participant
characteristics are shown in Table 1A.

Procedures

Genotype calling and data processing

WES data were generated at the Broad Institute, the Baylor
College of Medicine’s Human Genome Sequencing Center,
and Washington University’s McDonnell Genome Institute.
An effort was made to assign all samples from a study of
origin to the same center and there was a relatively balanced
number of cases and controls at each center. Genotypes for
bi-allelic SNVs and insertion-deletion polymorphisms
(indels) were called using ATLAS2 using version Ch37/
hg19 of the reference genome. A coordinated effort was
implemented for centralized variant calling and quality
control (QC) efforts in order to create one batch of data for
analysis. Although there were differences in allele fre-
quencies across sequencing centers for some variants, it was
difficult to determine whether these represented technical
artifacts of different capture kits, variability in genetic
background among cohorts assembled for this study, or
chance differences that will often occur for infrequent or
rare variants. QC steps and methods for evaluating cryptic
relatedness, population substructure, differential missing-
ness, and variant annotation are described in the Supple-
mentary Materials.

Single-variant and gene-based association analyses

Statistical models & rationale for covariate adjustments

All models included adjustment for sequencing center and
population substructure. Before conducting the primary
analyses, we evaluated up to 20 PCs for association with
AD status. Only ancestry-specific PCs that significantly
associated with AD status (P<0.005) in at least one of the
three adjustment models were included as covariates (EA
subgroup: PC1, PC5, PC8, PC9, PC10, PC11, PC18;

1860 J. C. Bis et al.

https://aspe.hhs.gov/national-alzheimers-project-act


Hispanic analyses included PC1 and PC2). Because most
participants for the discovery study were sampled to max-
imize differences in cases and controls based on age, sex,
and APOE genotypes, we included only PCs and sequen-
cing center in our base adjustment model (Model 0). We
evaluated two other models that included several covariates
in addition to those in the base model: Model 1 adjusted for
sex and age at diagnosis or last follow-up; and Model 2
adjusted for APOE ε4 & ε2 dosages in addition to those
included in Model 1. All analyses were performed sepa-
rately by ancestry (EA and CH) using seqMeta (version 1.6)
[29]; the primary analysis is an inverse variance-weighted
meta-analysis of these two groups. Single variant tests were
limited to variants with at least 10 copies of the minor allele
across the total QCed sample (MAF~0.0005).

Gene-based association testing

Gene-based tests examine the aggregate effect of risk and
protective variants within a region defined by gene anno-
tations. We performed gene-based tests using SKAT-O,
which optimally combines SKAT and burden tests [30]. For
these analyses, the SKAT portion of the test included var-
iants with a MAF≤0.05; the burden component aggregated
variants with MAF≤0.01. The SKAT test used ‘Wu
weights’, defined by a beta density function with pre-
specified parameters a1= 1 and a2= 25, evaluated at the
sample minor allele frequency. The SKAT-O statistic, a
linear combination between a SKAT statistic (Qskat) and a
burden statistic (Qburden) equal to (1-ρ) Qskat + ρQburden, was
optimized across 11 values of ρ (0.1 increments), and

calculation of the significance took into consideration the
multiple values of ρ evaluated. In order to improve power
by removing variants predicted to have a low functional
impact on the translated protein, we filtered variants in each
gene on the basis of annotated function as described in
the Supplementary Materials. We performed SKAT-O
testing for genes with at least two qualifying variants con-
tributing to the test. The minimum number of aggregated
alleles (i.e., cumulative minor allele count or cMAC) for a
gene-based test was set at 10.

Statistical significance thresholds for discovery stage
analyses

Within each analysis framework including individual var-
iants and gene-based aggregation of variants evaluated
under particular functional annotation criteria, suggestive
associations (p < 1/ # tests) were selected for follow-up
testing in independent samples and a Bonferroni-corrected
threshold was used to define experiment wide statistical
significance (p < 0.05 / # tests). We did not correct for the
three models and meta-analyses of the combined results of
the EA + CH populations because the results were highly
correlated across the covariate adjustment strategies (Sup-
plementary Figure S2).

Replication sample and analyses

Primary replication analyses for the SNVs / genes that we
identified to be genome-wide significant or suggestive in
any model were conducted in three independent WES

Table 1 Participant
Characteristics

A. Discovery Sample

AD Cases (N= 5,740) Cognitively Normal Controls
(N= 5,096)

Ancestry Sampling N Age
(mean)

Sex (%F) APOE E4
(%carrier)

N Age
(mean)

Sex (%F) APOE E4
(%carrier)

EA Case-Control 5,015 75.25 55.8% 40.6% 4,919 86.53 59.2% 14.4%

EA Enriched 507 83.61 63.3% 66.9% NA NA NA NA

Hispanic Case-Control 46 72.59 71.7% 43.5% 6 85.94 66.7% 16.7%

Hispanic Enriched 172 75.45 61.6% 39.5% 171 73.46 60.8% 39.2%

B. Replication Sample

AD Cases (N= 12,121) Cognitively Normal Controls (N= 18,789)

N Age
(mean)

Sex (%
F)

APOE ε4
(% carrier)

N Age
(mean)

Sex
(% F)

APOE ε4
(% carrier)

CHARGE WES 612 81 67% 54% 1,836 80 58% 24%

ADES-FR WES 1,142 74 64% 49% 1,104 80 58% 22%

FinnAD WES 1,024 74 62% -- 4,322 71 51% --

ADGC GWAS 9,343 74 54% 64% 11,527 75 54% 25%

Whole exome sequencing study identifies novel rare and common Alzheimer’s-Associated variants. . . 1861



datasets including CHARGE (612 cases and 1,836 con-
trols), ADES-FR (1,142 cases and 1,104 controls) [31], and
FinnAD (1,024 cases and 4,322 controls), as well as in the
Alzheimer’s Disease Genetics Consortium (ADGC) HRC-
imputed GWAS dataset (Table 1B, Supplementary Materi-
als, Supplementary Table S1). The ADGC dataset included
GWAS data on 9,343 cases and 11,527 cognitively normal
elders from 32 datasets for whom genotypes were imputed
using the Haplotype Reference Consortium (HRC) r1.1
reference panel (Supplementary Table S2) [25, 32].
CHARGE and ADGC participants selected for ADSP dis-
covery analyses were not included in the replication study.

Because we included all available cases and controls in
the replication datasets instead of applying the participant
selection criteria used for the discovery sample to maximize
difference in cases and controls, model 0 is not appropriate
in replication studies. Hence, single variant tests and gene-
based SKAT-O tests were performed using seqMeta for
models 1 and 2 only. Meta-analysis of summarized results
from the four samples was performed using seqMeta. We
also performed a meta-analysis of results across the ADSP
discovery and four replication cohorts for findings that were
at least “suggestive” (p < 1 / genes or variants) in the dis-
covery phase. In addition to models 1 and 2, we conducted a
meta-analysis of results obtained using model 0 in the
ADSP discovery data and model 1 in the replication cohorts
to verify our findings in ADSP model 0. Because the ADSP
discovery dataset includes CH participants and all replica-
tion cohorts consist of EA participants only, we performed
the meta-analysis with and without CH participants in
ADSP. We considered any variants or genes with two-stage
meta-analysis p-values < 0.05 / # tests to be significant per
the recommendation by Skol et al. that joint analysis is more
efficient than replication-based analysis for two-stage gen-
ome-wide association studies [33]. We acknowledge,
however, that additional replication in independent samples
is required.

The top findings in the discovery sample were also
followed-up in the ADSP whole-genome sequenced (WGS)
family-based dataset [34, 35]. This dataset includes 197
individuals sequenced in 42 EA families and 351 indivi-
duals in 67 CH families. Additional follow-up was also
performed using WGS information from 150 members of
another 48 CH families. Individual variants were assessed
by examining their co-segregation with AD status within
families. Gene-based association tests were performed using
the FSKAT software [36].

Analysis of variants at previously established AD loci

To identify a set of variants related to AD risk in loci
previously associated with AD, we compiled a list of
genes containing variants with significant or suggestive

associations (p < 1 × 10−3) in either the published IGAP or
UKBB AD GWAS meta-analyses [9, 37]. Because many
signal variants from GWAS are in intergenic regions, we
used a combination of BEDOPS [38] and BEDTools [39]
operations to enlarge the genomic coordinates of these
associated variants by 50 Kb on each side, merging adjacent
regions that were overlapping and/or book-ended. Of the
resulting genomic regions, segments greater than 100 kb
were retained, shortened by 50 kb on each side, merged if
separated by 200 kb or less, and utilized to find overlapping
protein-coding genes, with gene boundaries as defined in
version 19 of the GENCODE gene set [40] and a 50 kb
buffer on each side. These parameters and sequence of
operations were chosen because they resulted in an algo-
rithm that satisfactorily captured the genomic interval of the
association landscape at each locus, as confirmed by visual
inspection of LocusZoom regional plots [41]. We queried
variant and gene level association statistics for the resulting
list of 299 putatively associated AD genes.

Results

Description of study samples after QC and filtering

After exclusions, 10,836 participants were available for
analysis (5,740 cases; 5,096 controls). This included 218
CH cases and 177 CH controls. The study included more
women than men, and, due largely to the selection criteria,
cases were younger on average than controls and were more
likely to carry one copy of the APOE ε4 allele. In total, the
data included 1,524,414 bi-allelic SNVs or short indels.
Most variants were rare, with 1,493,926 (98%) of variants
having minor allele frequency of less than 5% and 160,898
(11%) having a minor allele count (MAC) of at least 10
copies.

Single-variant SNV and short indels association
analysis

We performed single variant analyses for the 160,898 var-
iants with a combined minor allele count of at least 10
copies across all participants (Supplementary Figure S3).
Genomic inflation was moderate (λ < 1.1 in all models)
(Supplementary Figures S4–S7). Single variant association
testing identified three variants at an exome-wide sig-
nificance level (p < 3.1 × 10−7) and 14 variants at the sug-
gestive threshold (p < 6.1 × 10−6) outside of the APOE
region (Table 2, Fig. 1, Supplementary Table S3). The
significant associations included the rare missense R47H
variant in TREM2 (rs75932628, p= 4.8 × 10−12), a com-
mon variant in PILRA (rs2405442, p= 1.7 × 10−7), and a
novel rare variant in the long non-coding RNA AC099552.4

1862 J. C. Bis et al.
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(7:154,988,675, p= 1.2 × 10−7). These results were atte-
nuated when including age, sex, and APOE ε2/ε3/ε4 allele
as covariates.

Gene-based association analysis combining SNVs
and indels

We aggregated 918,053 variants with a combined MAF <
0.05 and annotated as high or moderate impact into gene-
based tests using SKAT-O. This corresponds to 17,613
genes with more than one variant and a cumulative minor
allele count (cMAC) of at least 10 copies. Applying more
stringent filtering, we limited to variants annotated as high
impact; aggregating 42,502 rare or uncommon (MAF <
0.05) variants into 4,634 genes (again, limiting to genes
with >1 variant and a cMAC ≥ 10). For the purposes of
identifying novel associations, we considered all genes or
variants within 250kb of APOE as part of the APOE locus.
Three known genes (ABCA7, TREM2 and CBLC in the
APOE region) and two novel genes (OPRL1 and GAS2L2)
achieved exome-wide statistical significance for their
respective tests in the discovery analyses (Table 3, Fig. 2).
Four additional genes (ZNF655, RHBDD1, SIRPB1, and
RPS16) reached suggestive significance across the nine
models (Fig. 2, Supplementary Table S4). Analyses filtered
to include only variants with CADD scores ≥ 15 or ≥ 20
produced most of the same top-ranked results as the VEP
gene-based results (Supplementary Table S5), noting that
the overall VEP High/Moderate and CADD≥15 results, as
well as the VEP High and CADD≥20 results, are only
moderately correlated (Spearman rank correlation r= 0.51)
(Supplementary Figure S8). Three novel genes (CACNB3,
HHIP-AS1, and RP11-68L1.1) were exome-wide statisti-
cally significant in the CH group in analyses restricted to

variants with CADD scores ≥ 20 (Supplementary Table S5),
however these are likely false positives because in each
instance the result is accounted for by a single variant that
was observed in one person only.

Loss-of-function (LOF) association analysis

Among 78,529 unfiltered high impact variants, 72,694 were
annotated as LoF and 68,121 were further deemed as high-
confidence, most of which were frameshift and stop-gained
(Fig. 3). As expected, over 90% of these high-confidence
LoF variants were singletons (53,120, 78%), doubletons
(6,579, 10%), or tripletons (2,222, 3%), and most of these
were observed in European Americans only. Association
analysis of 2,378 high-confidence LoF variants with MAC ≥
10 with adjustment for sequencing center and PCs revealed
one Bonferroni corrected significant p < 2.1 × 10−5) variant,
a previously reported frameshift deletion in ABCA7
(Table 3) [42]. Gene-based analysis of 32,863 high-
confidence LoF variants with MAF ≤ 5% mapping to
3,558 genes with at least two variants and cMAC ≥ 10
(Supplementary Table S4) also showed that ABCA7 with
adjustment for sequencing center and PCs (Model 0) and
GAS2L2 with adjustment for sequencing center, PCs, sex,
age, and APOE genotype (Model 2) reached experiment-
wide significance threshold p < 1.4 × 10−5).

Replication analysis

Of the 16 single variants outside the APOE region tested in
the replication samples (Table 2, Supplementary Table S3),
the TREM2 R47H mutation and four variants in three other
previously known genes (one missense and one synon-
ymous variant in MS4A6A, a synonymous variant in PILRA,

Fig. 1 Manhattan plot showing genome-wide association results for
individual common variants. The plot shows the p-values from the
Discovery meta-analysis against their genomic position for association
with AD. Only variants with a combined minor allele count of ≥ 10
were included; the minimum p-value from the three adjustment models
for either the meta-analysis, European Ancestry (EA), or Caribbean

Hispanic (CH) is plotted for each variant. Genes containing the variant
are indicated above points that surpassed our significance threshold for
follow-up. The dotted line indicates the threshold for follow-up, p <
6.1 × 10−6, corresponding to (1 / #variants) tested. The dashed line
indicates the threshold for exome-wide significance, p < 3.1 × 10−7,
corresponding to (0.05 / #variants tested)
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and a missense variant in CR1) were significantly associated
with AD in the combined discovery and replication analysis
(Table 2). Associations with two variants in a novel gene
STAG3 (rs1043915, p= 5.5 × 10−6) were also replicated
and significantly associated with AD. We were unable to
assess replication with the novel AC099552.4 variant
because it was not observed or imputed in the replication
datasets. One of the IGHG3 variants (rs12890621) showed
borderline evidence for association in models 1 and 2 (p=
0.085 and 0.075, respectively), and evidence for association
was strengthened to near exome-wide significance (p=
9.8 × 10−7) in the combined discovery and replication
sample.

In total, 19 genes across the nine models were sig-
nificantly or suggestively associated with AD and were
tested in the replication stage (Supplementary Table S4).
Gene-based tests including high or moderate impact var-
iants showed evidence for replication and reached genome-
wide significance in the combined discovery and replication
analysis for three genes:TREM2 and two genes in the APOE
region (CBLC and BCAM) (Table 3, Supplementary
Table S6). The association with GAS2L2, the potential
novel gene identified in a model 2 SKAT-O test with high
impact SNVs in the discovery sample, was slightly above
the nominal significance level (p= 0.051 and p= 0.067,
respectively, in models 1 and 2) in meta-analysis across
four replication cohorts. However, this association was
only nominally significant in the meta-analysis combining

the discovery and replication cohorts (p= 0.029 for
model 2).

In gene-based tests including only high impact SNVs, the
known AD risk gene ABCA7 and the potential novel gene
ZNF655 reached the nominal p-value of 0.05 in meta-
analysis with replication cohorts as well as in a meta-
analysis of discovery and replication samples (Table 3,
Supplementary Table S6). These two genes were also
nominally significant in SKAT-O tests, limited to high
impact variants (ZNF655: p= 7.9 × 10−6; ABCA7:
p= 6.2 × 10−5) and LOF variants (ZNF655: p= 5.0 × 10−6).

Because PILRA, a previously established AD gene [43]
is proximate to STAG3 (159 kb) and ZNF655 (797 kb), we
performed conditional analysis in the discovery sample to
determine whether these novel association signals are
independent. These analyses demonstrated that the asso-
ciation with multiple rare variants ZNF655 in the gene-
based test is distinct from those with common variants in
PILRA (p= 1.08 × 10−4) and STAG3 (p= 7.75 × 10−5). In a
model containing both PILRA and STAG3 variants the
association with PILRA remains significant (p= 0.011) but
the association with STAG3 does not (p= 0.21) (Supple-
mentary Table S7).

Follow-up in ADSP family-based data

We also followed-up the significant and suggestive single-
variant and gene-based results from the discovery stage in the

Table 3 Gene-based Association Results

ADSP Discovery Meta All Replication Discovery + All Replication

Gene Variants b SNVs best P Model SNVs P Model 1 P Model 2 SNVs P Model 0 P Model 1 P Model 2

TREM2 High-Mod 50 1.8E-11 0 33 9.3E-10 5.4E-09 65 2.0E-17 3.8E-11 6.0E-11

CBLC a High-Mod 44 1.1E-07 0 35 2.5E-20 6.7E-03 61 1.0E-27 6.1E-22 4.9E-02

OPRL1 High-Mod 42 2.6E-06 1 37 1.3E-01 3.0E-01 64 8.3E-03 5.4E-04 1.7E-03

CBX3 High-Mod 8 6.0E-05 0 10 1.3E-01 2.8E-01 17 4.9E-04 4.6E-02 6.1E-02

BCAM a High-Mod 90 5.2E-04 1 88 4.7E-19 3.7E-03 144 3.5E-27 2.8E-20 4.8E-02

GAS2L2 High 7 3.9E-06 2 5 5.1E-02 6.7E-02 10 4.5E-01 3.9E-02 2.9E-02

ZNF655 High 9 2.8E-05 0 6 3.2E-02 3.4E-02 13 7.9E-06 8.4E-04 3.4E-04

RHBDD1 High 2 3.2E-05 2 4 8.8E-01 9.8E-01 5 3.5E-01 4.8E-01 2.7E-01

SIRPB1 High 6 8.0E-05 2 3 9.2E-01 7.9E-01 8 6.4E-01 3.0E-01 2.6E-01

RPS16 High 5 1.6E-04 2 2 7.4E-01 4.2E-01 5 4.4E-02 7.7E-03 6.5E-03

ABCA7 LoF 43 2.1E-06 0 16 1.5E-01 1.1E-01 51 1.2E-04 1.2E-03 3.4E-04

GAS2L2 LoF 7 3.9E-06 2 3 3.9E-02 4.8E-02 8 5.2E-01 4.3E-02 2.5E-02

ZNF655 LoF 8 1.9E-05 0 4 3.9E-02 3.0E-02 10 5.0E-06 4.6E-04 2.0E-04

RPS16 LoF 3 1.6E-04 2 2 7.4E-01 4.2E-01 3 4.1E-02 7.9E-03 6.4E-03

Table shows genes with P-value < 5.7 × 10−5 (High-Mod), 2.2 × 10−4 (High), or 2.8 × 10−4 (LoF) in the total discovery sample. Results surpassing
discovery stage Bonferroni corrected significance thresholds -- P= 2.8 × 10−6 (High-Mod), 1.1 × 10−5 (High), and 1.4 × 10−5 (LoF) – are indicated
in bold.
alocated in APOE region
btype of functional variants included in gene-based test
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ADSP whole-genome sequenced (WGS) family-based data-
set. A rare missense variant (rs61756195, MAF= 0.001) in

STAG3 segregated with disease in three CH families
and trended toward association in the case-control study

Fig. 2 Manhattan plots showing exome-wide association results for
gene-based tests of rare functional variants. The plots show the gene-
based p-values from the Discovery meta-analysis against their geno-
mic position for association with AD. Each point represents a p-value
from SKAT-O test aggregating rare variants (MAF < 5%), by gene, on
the basis of predicted functional impact. Only genes with a cumulative
minor allele count of ≥ 10 were included; the minimum p-value from
the three adjustment models for either the meta-analysis, European
Ancestry (EA), or Caribbean Hispanic (CH) is plotted for each variant.

Genes are indicated above points that surpassed our significance
threshold for follow-up in tests aggregating only (a) moderate or high
impact variants, (b) high impact variants; (c) loss-of-function variants.
In each plot, the dotted line indicates the threshold for follow-up: (a)
p<5.5 × 10−5, (b) p<6.3 × 10−5, (c) p<2.8 × 10−4, each corresponding
to 1 / # genes tested. The dashed line indicates the threshold for
exome-wide significance: (a) p<2.7 × 10−6, (b) p<3.1 × 10−6, (c) p <
1.4 × 10−5, each corresponding to 0.05 / # genes tested
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(p= 0.052) (Supplementary Table S8). Gene-based testing
identified a nominal association for GAS2L2 (p= 0.049) in
EA families (Supplementary Table S9).

Rare variants in established genes from GWAS

We interrogated our individual variant and gene-based
aggregate association tests for 299 previously associated
AD genes. Among the SNVs and indels, a total of 1,172
variants with MAF < 0.05 and annotated as either HIGH or
MODERATE impact are located within 253 interrogated
AD genes (Supplementary Table S10). Five of these var-
iants were at least suggestively significant (p<8.9 × 10−4)
in single variant testing. The most significant
associations included the TREM2 R47H missense mutation
(p= 4.8 × 10−12) and ABCA7 frameshift mutation E709fs
(p= 4.3 × 10−6) which was previously associated with AD
in Belgian families [40]. Additional notable signals inclu-
ded variants in SORL1 A528T (p= 8.7 × 10−5), which was
previously associated with AD in a CH population [15], and
ACP2 D353E (p= 7.8 × 10−4). Perturbation of murine Acp2
causes lysosomal storage deficits, kyphoscoliosis, cerebellar
abnormalities, and ataxia [44, 45].

For gene-based tests, we aggregated variants on the
basis of annotated function, and examined only genes
with more than one contributing variant and a cMAC ≥
10. Of the 299 AD genes, tests were performed on 281
genes aggregating high or moderate impact variants
and 86 genes limited to high impact variants. Among
these, 13 unique genes surpassed suggestive significance
thresholds for high (p < 1.16 × 10−2) or high-moderate
(p= 3.56 × 10−3) impact variants. The strongest asso-
ciations were observed for moderate impact variants in
TREM2 (p= 4.81 × 10−12) and SORL1 (p= 8.68 × 10−5),
and a high impact variant in ABCA7 (p= 4.33 × 10−6).
Other noteworthy signals included moderate impact var-
iants in NUP88 (p= 4.63 × 10−4) and ACP2 (p=
7.80 × 10−4).

Discussion

Our WES study, the largest for AD conducted to date,
identified novel associations with variants in three genes not
previously implicated in AD including one common nearly
exome-wide significant variant each in IGHG3
(p= 9.8 × 10−7) and STAG3 (p= 8.8 × 10−7), and one rare
exome-wide significant variant in AC099552.4 (p= 1.2 ×
10−7). We also observed a gene-wide significant association
with ZNF655 in a gene-based test including nine high-
impact rare variants (p= 5.0 × 10−6). These results
remained significant after multiple test correction and were
confirmed in or strengthened by a replication sample com-
prised of four independent datasets, with the exception of
the variant in AC099552.4 which was invariant in the
replication samples. We also confirmed associations with
common and rare variants in several previously established
AD genes including ABCA7, APOE, HLA-DPA1, MS4A6A,
PILRA, SORL1 and TREM2.

ZNF655 is expressed in brain and encodes the Vav-
interacting Krüppel-like factor 1 [46]. Krüppel-like factors
(KLFs) are zinc finger-containing transcription factors that
regulate diverse biological processes, including prolifera-
tion, differentiation, growth, development, survival, and
responses to external stress [47]. Several KLFs have been
shown to participate in neuronal morphogenesis and to
control the regenerative capacity of neurons in the central
nervous system. AC099552.4 is a long non-coding RNA, an
abundant class of RNA sequences which regulate gene
transcription and expression [48] and impact neuronal
development, neuroplasticity, and cognition [49]. Non-
coding RNA-dependent regulation affecting AD-related
processes has been demonstrated for SORL1 [50] and in a
triple transgenic model of AD [51].

IGHG3 encodes immunoglobulin heavy constant gamma
3 and is a member of the IgG family for which antibodies
have been shown to cross-react with fibril and oligomer
amyloid-β aggregates [52] leading to speculation that
Immunoglobulin GM (γ marker) genes contain functional
risk and protective factors for AD [53]. The anti-
amyloidogenic activity of IgG appears to be an inherent
property of free human IgG heavy chains [54]. Recent
analysis of structural variants in whole genome sequence
data for 578 members of 101 families with multiple AD
subjects included in the ADSP [26] yielded additional evi-
dence supporting IGHG3 as an AD risk locus. A total of
nine distinct deletions in the IGH region were identified as
disproportionately represented in AD cases compared to
controls. One of these is a 188 bp deletion that was
observed in 35 AD cases and 8 controls and is located 592
bp from the AD-associated SNV (rs12890621) in this study.
This deletion eliminates a large portion of IGHG3 intron 2
and exon 3 (reference transcript ENST00000390551), and is

Fig. 3 Distribution of high impact, LoF and high-confidence LoF
variants grouped by predicted consequence
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predicted to have high impact on the encoded product. It is
unlikely that the deletion and rs12890621 tag the same
effector of AD risk because the deletion is rare, whereas
rs12890621 is more common (MAF= 0.0475 in EA sub-
jects according to the ExAC database). Of note, a nearby
pseudogene in the IgG family, IGHV1-67, located
approximately 350 kb from IGHG3, has been previously
reported in a gene-wide association study conducted by the
International Genetics of Alzheimer’s Project (IGAP) [1].

The association with the common synonymous variant in
STAG3 (rs1043915, MAF= 0.26) is not independent of the
finding with a common SNV in PILRA, a previously
reported AD-associated gene [43] located in an established
AD locus [9]. However, rare variants in STAG3 identified
by WGS showed evidence of co-segregation with AD in
CH families suggesting the possibility that STAG3 has a
distinct mechanistic role in AD. STAG3, stromal antigen 3,
encodes a subunit of the cohesin complex which regulates
the cohesion of sister chromatids during cell division.
Whether the association with AD observed here is mediated
at least in part through STAG3 function or simply reflects
linkage disequilibrium with other causal variants/genes in
the region remains to be established. Rare coding STAG3
variants have been identified in primary ovarian insuffi-
ciency [55]. Although STAG3 is expressed in the brain, its
role remains unclear. Interestingly, data from GTEx show
that the associated variant is an eQTL for multiple genes in
various brain tissues, including STAG3, AGFG2, GAL3ST4,
GATS, and PVRIG. In a mouse model of diabetes, micro-
vascular damage in the neurovascular unit of the retina was
associated with alteration in STAG3 expression [56].

A variant in NSF showed nominally significant evidence
of association in the replication sample (p= 0.014) in the
model adjusting for age, sex, and APOE ε4 status, whereas
the result in the discovery sample was observed in the
model without these covariates. NSF encodes N-
ethylmaleimide sensitive factor, vesicle fusing ATPase is
involved in membrane trafficking of proteins and neuro-
transmitter release [57], and has been observed in brain
homogenates of cases of familial neuronal intranuclear
inclusion disease [58]. NSF SNVs have been associated
with cocaine dependence [59] and its expression is reduced
in prefrontal cortex in schizophrenia patients [60]. Vesicular
trafficking has an important role in AD exemplified by
genetic and biological evidence for neuronal sorting pro-
teins including SORL1 [61–63].

We were unable to replicate variants at five loci that
showed significant association in the discovery sample
(p ≤ 5.0 × 10−6). Failure to replicate findings for the
OPRL1 and DTNBP1 variants may be due to their lower
MAF and, hence, uncertainty in the imputation quality and
lack of imputed indels in the ADGC GWAS replication
sample. Nonetheless, both of these genes are potentially

attractive biological candidates. Opioid related nociceptin
receptor 1 modulates a variety of biological functions and
neurobehavior, including learning and memory, and
inflammatory and immune functions [64, 65]. DTNBP1
encodes the dystrobrevin binding protein 1 which has been
genetically linked to multiple psychiatric disorders, as well
as cognitive and memory functions in healthy human
subjects [66, 67].

Analysis of rare variants in the regions of genes pre-
viously identified as related to AD by GWAS revealed
genome-wide significant or suggestive evidence of asso-
ciation in established genes including TREM2, SORL1, and
ABCA7. In addition, notable associations were observed
with other genes in these regions not previously linked to
AD including TREML4, SPPL2A, and AP4M1 (Supple-
mentary Table S10). TREML4 is located near TREM2 and
encodes a TREM family receptor that, similar to TREM2, is
expressed on the surface of myeloid cells and participates in
the phagocytic clearance of dead cells [68]. SPPL2A
encodes an endosomal-lysosomal protease and presenilin
homolog that regulates B-cell homeostasis in vivo [69].
Homozygous mutations in AP4M1, located in the region
including PILRA and STAG3, cause spastic tetraplegia,
intellectual disability, and white matter loss [70]. Its enco-
ded protein is a component of the AP-4 trafficking complex
that regulates APP processing and beta-amyloid secretion in
cell models [71]. Further studies are needed to conclude
whether the association findings in this latter group of genes
are robust and warrant experiments to determine their
functional relevance to AD.

Notably, there is little overlap of our results with findings
of large GWAS focused on common variants [1, 2, 9]. This
is due in part to our focus on only infrequent or rare variants
(MAF < 0.05) that are functionally-annotated to be of at
least moderate impact and may not have been well covered
by GWAS arrays or imputation. With the notable exception
of APOE, common variants associated with AD have very
modest effect on risk (OR < 1.3) [9], and all but a few of
these associations [4, 5, 8, 10, 12] required a sample
between two and nearly seven times larger than the sample
in this study to have sufficient power to detect them
[1, 2, 9].

Our study has several notable strengths and limitations.
The ascertainment scheme for this sample is optimal for
detection of association with both risk and protective var-
iants for AD [26]. Specifically, the AD cases were selected
to have relatively early onset (with a minimum age of 65)
and a lower frequency of the APOE ε4 allele with the
expectation that they were likely to be more enriched for
rare high-penetrant AD risk-variants compared to most late-
onset AD cases. Controls were selected to be as old as
possible with preference given to those having at least one
APOE ε4 allele to enrich this group for protective variants.
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However, this scheme introduced confounding between age
and AD status which reduced power for detecting associa-
tions. To overcome this limitation, we included a model
without age adjustment which yielded the largest number of
new association findings including several that were repli-
cated in independent datasets which were analyzed with age
adjustment. Thus, it was important to include models which
did or did not include a covariate for age in order to account
for confounding with AD status as well as age-dependent
effects of the genetic factor. Despite simulations showing
that this sample had sufficient power to detect associations
with variants whose frequencies were as low as 0.005 and
an effect size greater than 1.8 [26], the number of novel rare
variant findings were few. We also acknowledge that p-
value thresholds did not account for the number of models
tested, however the models are highly correlated (Supple-
mentary Table S2).

The inclusion of CH participants who were a pivotal
portion of a multi-ethnic sample leading to the discovery of
common variant associations in other AD loci, most notably
SORL1 [62], but for rare variant discovery these samples
may have reduced power by increasing genetic hetero-
geneity of the total sample. This conclusion is consistent
with observations of few novel findings in this WES study
showing discernable contributions by the CH dataset and by
discovery of novel rare variant associations in a whole
genome sequence study that were unique to EA and CH
families, respectively [34, 35]. Nonetheless, the non-
Hispanic portion of our sample was sufficiently large to
detect multiple novel associations. Our findings suggest that
additional large and ancestrally diverse cohorts with deep
sequence data will need to be examined for replication and
to provide a larger discovery sample.

Successful replication of only some of the most sig-
nificant findings in novel genes not in the APOE region (4/8
individual variants in Table 2, 1/18 genes in Table 3) is
somewhat concerning but highlights the difficulty of
designing well-powered replication studies of sequencing
findings. Although it is possible that some of these findings
are false positives, we acknowledge that the size of the
WES replication samples combined (2,778 AD cases, 7,262
controls) was inadequate. In addition, many rare variants
were not well-imputed or, in the case of most indels, not
imputed at all in the ADGC GWAS dataset, despite the use
of the HRC reference panel which contains haplotypes
derived from whole genome sequence data for more than
30,000 individuals who were not ascertained for AD
research. Thus, additional large WES samples will need to
be studied to obtain definitive evidence about findings that
did not replicate.

In summary, our significant association findings with
functional rare variants in novel genes provide further
support for the roles of neuroinflammation (IGHG3) and

transcriptional regulation (AC099552.4 and ZNF655) in
AD. In addition, we identified many novel associations with
rare functional variants in previously established AD genes.
In most cases, these rare variants do not explain association
signals that were previously identified by GWAS with
common and predominantly non-functional variants. Hence,
many of our findings will provide insight into disease
mechanisms and targets for biological experiments to gain
further understanding about the role of these genes in AD
pathogenesis. However, other deep sequencing approaches
(e.g., whole genome, target gene resequencing) will be
needed to identify variants which account for association
signals in non-coding regions and the contribution of
structural variants (e.g., larger insertions and deletions, copy
number variants, etc.) to AD risk.
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