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Abstract 

 

 The earlier research studies on real-time finite element modeling of soft tissue behavior 

for medical simulation and training applications have mainly focused on modeling and simulation 

of linear and nonlinear static (time-independent) tissue response. The real-time simulation of 

time-dependent viscoelastic behavior of soft tissues using finite element methods has been 

neglected due to the challenges in modeling and the high cost of computations. Moreover, most 

of the existing viscoelastic tissue models for simulating time-dependent effects are not realistic 

since they are not based on the measured material properties of live organ tissues. The lack of 

experimental data on viscoelastic material properties of live organ tissues has been a significant 

obstacle in the development of realistic models. This paper presents an end-to-end solution to 

real-time and realistic finite element simulation of viscoelastic tissue behavior based on the 

experimental data collected by a robotic indenter. First, we develop a viscoelastic finite element 



model for soft organ tissues using linear tetrahedral finite elements. This model is derived from 

the generalized Maxwell solid. Then, the viscoelastic material properties of pig liver, measured 

by a robotic indenter, are integrated into the model for realistic visual and haptic simulation. 

Finally, a pre-computation approach based on the superposition principle and a multi-layered 

computational architecture are implemented for real-time rendering of nodal displacements and 

interaction forces.  

 

 Keywords: surgical simulation, haptic feedback, finite element modeling, viscoelasticity, 

soft tissue characterization, superposition, pre-computation. 



 

1. Introduction 

 Virtual reality (VR) based surgical simulators that provide realistic visual and haptic 

feedback to its users is a promising technology for medical training [1]. The core component of a 

computer-based surgical simulation and training system is the development of realistic organ-

force models. An organ-force model must display physics-based behavior while handling various 

types of boundary conditions and constraints. Developing real-time and realistic organ-force 

models is challenging not only due to non-linearity, rate, and time dependence in material 

properties of organs but also due to layered and non-homogeneous structure of organ tissues.  

 Both linear and non-linear finite element methods (FEM) have been used for developing 

real-time organ-force models [see the list of references in 1 and 2]. Achieving a computationally 

fast and stable simulation is possible using a linear static FEM model since the global stiffness 

matrix of the system is constant and can be inverted before the real-time simulation. However, 

the assumption of linearity is not valid for soft tissues having a complex non-linear behavior. A 

linear FEM model cannot simulate large organ deformations accurately.  While non-linear FEM 

models display more realistic deformations than the linear ones, they have a greater 

computational complexity due to the non-constant stiffness matrix of the system.  

 FEM-based organ-force models can also be grouped as static and dynamic models based 

on whether inertial and viscous effects are taken into account or not. The static FEM models 

cannot simulate the time-dependent effects such as viscoelasticity. Due to the challenges in 

modeling and the high cost of real-time computations, only a few research groups have recently 

focused on the real-time simulation of viscoelastic tissue behavior. Debunne et al. [4] developed 

a robust, adaptive method for simulating dynamic deformations of a viscoelastic object in real-



time using an explicit finite element method. Instead of merging finite element equations in a 

large matrix system, explicit FEM solve each element independently through a local 

approximation, dramatically reducing the computational time. Hauth et al. [5] developed a 

viscoelastic finite element formulation for the visual simulation of viscoelastic deformable 

objects. They use a Maxwell solid with one memory parameter in their viscoelastic material 

model. To obtain a formulation for the shear relaxation function, they first assume a constant 

mechanical quality factor for the material and then find the parameters of the Prony series 

corresponding to the Maxwell model by matching their compliance functions while minimizing 

the relative error. They use mass lumping and nested tetrahedral meshes to reduce the number of 

real-time computations. Schoner et al. [6] introduced a method for simulating viscoelastic solids 

in real-time based on a parameter estimation method derived from physical measurements of real 

objects. To model the viscoelastic effects, they combine a DGFM (discrete Green's function 

matrix) with particle systems by replacing the spring-like relations in the DGFM with 

compositions of springs and dashpots. This provides the ability to simulate viscoelastic behavior 

while retaining the DGFM for the primary deformation calculations. Although they have 

achieved real-time update rates for visual display of deformations, they have chosen to use a 

quasi-static elastic model for calculating and reflecting interaction forces through a haptic device 

in real-time. Schwartz et. al. [7] developed a tensor–mass method for the finite element 

simulation of non-linear viscoelastic mechanical deformations in biological soft tissues. They 

introduce the material nonlinearity by locally modifying the stiffness tensors while keeping the 

strain tensor linear and adjusting the Lame constants. They use a Kelvin-Voigt viscoelastic 

element in their model and introduce a viscous force proportional to the deformation speed. The 

parameters of the simulation model are adjusted and validated by utilizing an experimental set-up 



designed to characterize the material properties of biological tissues through in-vitro 

experiments.  

 We propose an end-to-end solution to real-time and realistic finite element modeling and 

simulation of viscoelastic soft tissue behavior. Our contributions include an efficient numerical 

scheme for the solution of a linear viscoelastic FEM model derived from the generalized 

Maxwell solid, methods for the measurement and integration of experimental data on 

viscoelastic material properties of soft tissues into the model for realistic display of visual 

deformations and interaction forces, and a pre-computation scheme and a multi-layer 

computational architecture for the real-time execution of the model with visual and haptic 

feedback to the user. The pre-computation approach has been suggested in the past for 

simulating linear FEM tissue models, but its extension to simulation of viscoelastic FEM models 

is by no means straightforward due to the rate and time-dependent effects.  

 In section 2, we provide a brief introduction to viscoelasticity and discuss the numerical 

solution of linear viscoelastic equations derived from the constitutive relation between stress and 

strain. We then introduce the formulations for a linear FEM model and then show its extension to 

modeling viscoelastic behavior. In section 3, we present methods for extracting viscoelastic 

material properties of soft tissues from the experimental data acquired by a robotic indenter.  In 

section 4, we propose a pre-computation approach based on the superposition principle for the 

real-time rendering of forces and displacements and discuss the implementation details. In 

section 5, we validate our viscoelastic FEM model and the proposed pre-computation approach 

using ANSYS finite element package. Finally, the results and the possible future extensions of 

our work are discussed in section 6. 

 



2. Linear viscoelasticity 

2.1. Definition 

 A viscoelastic material is characterized by both elastic and viscous behavior.  For elastic 

materials, Hooke’s Law applies. Therefore, the stress is proportional to the strain, and the elastic 

modulus is defined as the ratio of stress to strain. On the other hand, the stress is proportional to 

the rate of the strain for a purely viscous material, and the ratio of stress to strain rate is known 

as viscosity. All the other materials that do not fall into one of these classifications are called 

viscoelastic materials. In viscoelastic materials, an instantaneous elastic response is observed 

upon loading, and then a slow and continuous change in the response at a decreasing rate is 

obtained. The rate of straining or stressing is an important factor affecting the time-dependent 

response of a viscoelastic material. For example, the longer the time to reach the final value of 

stress at a constant rate of stressing, the larger is the corresponding strain. For this reason, 

viscoelastic materials are said to keep a record of their response history and possess a “memory” 

[9]. This memory effect can be seen in the constitutive relationship between the stress and strain 

tensors.  

One way of deriving a constitutive relationship for linear viscoelastic materials is to assume 

that a Boltzmann superposition of strain increments can be applied to viscoelastic materials. 

Consider an arbitrary strain input which is obtained through superposition of small strain 

increments 
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where s is any arbitrary past time between 0 and t, when a constant strain ε is applied. The strain 

increments up to time t are related to corresponding stress increments by Hooke’s law as follows 
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Each of these stress increments also relax according to the time dependency of stress relaxation 

function E(t). By taking the appropriate limit, we get the following constitutive law 
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 Viscoelastic materials are typically modeled by the generalized Maxwell solid [5, 9, 12] 

which is a combination of springs and dashpots. This type of model results in a Prony Series 

expression for the stress relaxation function in the form of 

 

∑
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

τ
−

∞ +=
N

1j

t

j
jeEE)t(E                                                   (4) 

 

where N is the number of Maxwell elements, Ej’s are the elastic coefficients (  is the long-

term elastic modulus corresponding to the steady state elastic response of the system) and τj’s are 

the relaxation times related to the damping coefficients of dashpots as η/ . 
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2.2. Numerical computation of linear viscoelasticity 

 Splitting the integral in Equation 3 into elastic and viscoelastic contributions [9] leads to 
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By defining the step size as ∆t = tn+1 – tn, where tn+1 and tn are the current and previous time 

steps, and substituting ∞= E(t)σε(t) 0  introduces a recursive formula for internal stress 

variables. The transition from differential coefficient to discrete time steps yields 
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where, 
∞

=
E
E j

jγ  is the jth normalized elastic modulus. If the above expression is integrated 

analytically, we obtain a recursive formula in 3D tensor representation given as 
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Using the internal stress variables defined by the above equation and the elastic contribution, the 

total stress of a linear elastic Maxwell-material is defined as 

 

∑
=

+++ +=
N

1j

1n
j

1n
0

1n hσσ                                                     (8) 

 

2.3. Linear static FEM formulation 

 A finite element representation of an organ can be constructed from 3-dimensional 

tetrahedral elements each having 4 nodes [8]. With known displacements within the element, U, 

the strains, ε, at any point can be determined by the following relation 

 

 BUε =                                                                    (9) 

 

where,  is a constant matrix defined by the shape functions. Assuming a linear elastic 

behavior, stress-strain relation is given by Hooke’s law as 

B
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where  is a symmetric material stiffness matrix. Using the definition of internal force, we 

obtain 
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where,  is defined as the element stiffness matrix and V is the volume of the 

element. Since internal and external forces balance each other within the element, Fint = Fext, we 

end up with the well-known linear finite element equation given as 

BVCBK elastic
T=

 

extFKU =                                                              (12) 

 

If the inverse of the stiffness matrix is calculated in advance, the static nodal displacements can 

be easily computed in real-time for the applied external forces ( ). The details of the 

linear FEM formulation utilizing tetrahedral elements for static tissue simulation are given in [8].  

ext
1FKU −=

 
 
 
2.4. A numerical scheme for linear viscoelastic FEM formulation 

 To derive a similar expression for linear viscoelastic FEM formulation, we use the 

relations given in Equations 9 and 10 and the elastic contribution term 
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 Equation 8 can be written as 
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where,  
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Using the definition given in Equation 11, an internal force expression is derived from Equation 

14 
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where, KT is the constant tangent stiffness matrix, Un+1 and Un are the vectors of nodal 

displacements at current and previous time steps respectively,  is the history stiffness 

matrix, and Hn+1is the history matrix at current time step. If we consider the force balance at each 

time step, 

histK
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we end up with a general expression  for linear viscoelasticity 
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where internal load history vector of the object at current time step is 
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Solving Equation 18 for Un+1, we get an expression for the nodal displacements of a viscoelastic 

object under the influence of internal load history and the external load at current time step as 
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This expression is similar to the static finite element equation except the effect of time-

dependent history term. Using Equations 12 and 15, the tangent stiffness matrix of each element, 

 is derived as follows TK
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Turning back to Equation 20,  is obtained via assembly of the element load history vectors at 

current time step  

1n
histF +
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Hn+1 is the element history matrix at current time step, and represented as 
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where  for each element can be derived from Equations 7 and 13 as 1n
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Going back to Equation 22, Khist is the history stiffness matrix of each element and represented 

as 
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The numerical scheme for solving linear viscoelastic finite element equations is given in Figure 

1. Given an external load, the pseudo code in Figure 1 solves for the nodal displacements.  

 

*************** Figure 1 *************** 



 

3. Measurement and characterization of material properties of soft tissues 

 One of the main obstacles in the development of realistic organ-force models is the lack 

of data on material properties of live organ tissues. Measurement and characterization of in-vivo 

organ properties in a living body is a highly challenging task, but a requirement for realistic 

organ-force modeling. Organ-force models with incorrect material properties will result in 

adverse training effects in VR-based surgical simulator systems.  

 The research on tissue mechanics is extensive, but most of the earlier experiments have 

been performed in a laboratory environment (in-vitro studies) under well-defined boundary and 

loading conditions. Typically, tissue samples taken from an organ of interest are transferred to a 

laboratory in a chemical solution for measurements. Since the sample geometry and the 

experimental conditions are carefully decided in advance, stress and strain values are easily 

obtained from the measurement data. However, it is known that mechanical properties of soft 

tissues change with time and the results obtained through in-vitro measurements do not actually 

represent actual tissue properties.   

 We developed a robotic indenter for minimally invasive measurement of live tissue 

properties in a living body [3]. The system includes a robotic arm (Phantom Haptic Device, 

Model 1.0 from Sensable Tech. Inc.), a force sensor (Nano 17 from ATI Industrial Automation 

Inc.) and a long probe with a round tip of radius of 2 mm (Figure 2a). The force sensor is 

attached to the proximal end of the probe which is designed to be inserted through a surgical 

trocar (i.e. a port for inserting the surgical instruments to access the internal organs during a 

minimally invasive surgery). A PID controller was developed to command the robotic arm such 

that the probe tip followed the given path in 3D space with a desired velocity during the 



experiments. A graphical user interface (GUI) was developed to record current time, 

displacement and force data in a text file following each experiment. Using the robotic indenter, 

we conducted stress relaxation experiments with 3 pigs and successfully measured the 

viscoelastic material properties of pig liver under 4 different loading conditions. The liver of 

each pig was indented to the depths of  2, 4, 6, and 8 mms in one second and the indenter was 

held there for 30 seconds to record the force response of liver as a function of time (i.e. force 

relaxation function, F(t)). The viscoelastic material properties of pig liver was then estimated 

from the stress relaxation function. The stress relaxation function defined by the generalized 

Maxwell solid results in a Prony series representation given in Equation 4. The coefficients of 

the Prony series for N = 2 (i.e. viscoelastic material properties: 2121 ,,E,E,E ττ∞ ) were 

determined via curve fitting to the experimental relaxation data (Figure 2b). For this purpose, we 

first obtained the shear relaxation function, G(t), from the experimental force relaxation function, 

F(t), using the small deformation assumption [11] ( Rδδ16F(t)/3G(t) = δ, where  is the 

indentation depth and R is radius of the indenter tip) and then obtained the stress relaxation 

function using the relation )1)(t(G2)t(E ν+= , where, v is the Poisson’s ratio and equal to 0.5 

for soft tissue (Figure 2b). Finally, the normalized values of elastic moduli, ∞=γ EE jj , used in 

our numerical computations (see Figure 1) are obtained from the averaged values of short-term 

( and ) and long-term moduli ( ) of 3 pigs. The results of the stress relaxation 

experiments suggest that pig liver exhibit almost linear viscoelastic response. As shown in 

Figure 2c, the experimental stress relaxation data for different loading rates overlap each other. 

1E 2E ∞E

 

*************** Figure 2 *************** 



 

4. Real-time simulation using pre-recorded displacement and force response  

4.1. Simulation environment 

 We simulate real-time behavior of a 3-dimensional linear viscoelastic organ model with 

visual and haptic feedback to a user. The hardware components of our simulation system include 

a computer monitor to display visual interactions between the model and a virtual pointer, and a 

haptic device (PHANToM Model 1.0 A from SensAble Technologies) for simulating force 

interactions (Figure 3a). While a 3-dimensional volumetric model (made of tetrahedral elements) 

of human liver is used in our finite element computations, a triangular surface representation 

constructed from the surface nodes of the volumetric model is used in our graphical simulations. 

The underlying code is written in MS Visual C++ environment, the graphical rendering of the 

object and the visual deformations are displayed using Open Inventor (a scene graph API), and 

the haptic feedback to the user is provided via PHANToM haptic device using GHOST v.4.0 

driver (Figure 3b). 

 

*************** Figure 3 *************** 

 

4.2. Haptic rendering 

 It is known that haptic rendering loop is much more demanding than the graphical 

rendering loop in displaying 3D objects. For rendering rigid objects, the interaction forces 

between a haptic probe and a 3D object must be updated at 1 kHz. For rendering deformable 

objects, this rate is lower, but still leaves a very short time for executing the underlying physics-

based model to calculate the nodal displacements and interaction forces. In haptic rendering of 



static FEM deformations, the nodal displacements can be calculated in real-time using the FEM 

equation ( ) assuming that the inverse of the stiffness matrix is stored in advance. 

However, in rendering viscoelastic deformations, one must consider the effect of loading history 

in displacement computations (see Equation 20). This small change in the FEM formulation 

results in a significant increase in the number of computations. In fact, the direct implementation 

of the pseudo-code given in Figure 1 is computationally too expensive to execute in real-time 

and not suitable for haptic simulation. In particular, the number of computations in Section C is a 

major bottleneck. For example, the pseudo-code given in Figure 1 executes the computation of 

nodal displacements of a 3D cube consisting of Nv = 51 vertices, Ndof = 153 degrees of freedom, 

and Ne = 136 tetrahedrons in approximately 1.8 seconds on a Pentium IV 2.4GHz dual-processor 

personal computer for an external force applied to the nodes on the top surface of cube for 1 

seconds ( = 1 msec). For a relatively finer model, consisting of Nv = 380 vertices, Ndof = 1140 

degrees of freedom, and Ne = 1659 tetrahedrons, the same computation takes 40 seconds. In 

particular, there is a complex multiplication of a Ndof x Ndof full matrix with a Ndof x 1 full vector 

in Section C.III, and that complexity is directly proportional to the number of vertices in the 

mesh. Overall, the number of computations is O(N2
dof). 

FKU -1=

t∆

 

4.3. Implementation details 

In order to calculate the nodal displacements and interaction forces in real-time, we take 

advantage of the linearity and the superposition principle. Before the real-time simulation, we 

record the displacement and force response of each surface node and its neighboring nodes to a 

unit step force and a unit step displacement respectively. During the real-time simulation, we use 

the pre-recorded responses of the contacted node and its neighboring nodes to calculate the 



resultant nodal displacements and interaction forces. While the pre-computation has been 

suggested and implemented for real-time simulation of static FEM in the past, the extension of 

this approach to a viscoelastic FEM simulation is not straightforward since the displacement and 

force response of nodes are rate and time-dependent. However, this rate and time-dependent 

behavior is important for displaying the true viscoelastic nature of the object. In our real-time 

simulations, for example, the user feels the force relaxation response of a viscoelastic model 

when the haptic probe penetrates into it and is held there for a while.  The user can also visually 

observe the slowly changing recovery displacements of the nodes when the probe is removed. To 

reduce the number of computations, we assume that the recovery response of the nodes lasts for 

30 seconds (In our animal experiments, we observed that the force relaxation response of pig 

liver for different loading rates lasts for approximately 30 seconds, see Figure 2c). In addition, 

only the nodes around the contacted node within a finite Radius of Influence (ROI) are assumed 

to be influenced by the loading. To calculate the displacement of a node at any time instant, the 

effect of all the past penetrations occurred up to that instant are superimposed. This requires to 

keep track of all previous contact events with their time of occurrence and simultaneously access 

the pre-recorded data of previously contacted nodes and their neighbors. This is a highly 

challenging task to accomplish in a single cycle of haptic loop. For this reason, at this stage, the 

displacement response of each surface node is calculated based on the superposition principle at 

a rate of 100Hz while the haptic loop is updated at 1 kHz. Between two consecutive cycles of the 

displacement calculations (∆t = 10 msec), we feed the haptic device with the pre-recorded force 

response of the contacted node for 10 msec.  

 



4.3.1. Pre-recording phase. We first determine the neighbors of each surface node within a 

ROI. We then record two sets of data for each surface node of the model. The first set stores the 

force response of each surface node of the model and the displacement response of its 

neighboring nodes to a unit step displacement applied to it for 30 seconds. The second set stores 

the recovery displacement response of each surface node and its neighboring nodes for 30 

seconds when a unit step force is applied to it for 10 msec (recall that the pre-recorded 

displacements are superimposed at 100 Hz). During the real-time interactions, if there is a 

collision, we use both data sets to calculate the nodal displacements and reaction forces. If there 

is no collision, we use the second data set only to calculate and display the nodal relaxations.  

 To construct the first data set, we conduct virtual stress-relaxation experiments with the 

viscoelastic FEM model. In a typical stress-relaxation experiment conducted with an actual 

tissue sample, a step displacement is applied to the sample and the relaxation of force is recorded 

until a steady state force value is reached. Since the only input to our viscoelastic FEM model is 

force and the nodal displacements are returned as output (Equation 20), we perform a reverse 

operation to obtain the force relaxation response of each node to a unit step displacement. We 

individually apply the Prony series representation of the experimental force relaxation data to 

each surface node of the viscoelastic FEM model to calculate the corresponding step 

displacement profile at the applied node and its neighboring nodes. We then scale the force-

relaxation curve at the applied node such that its nodal displacement is exactly 1 mm (Figure 4a). 

The first 10 msec of the scaled force data is recorded as the force-response of the applied node 

and the constant-valued nodal displacements of its neighbors (less than 1 mm) are recorded as 

the displacement-response of the applied node.   



To construct the second data set, we conduct virtual creep experiments with the viscoelastic 

FEM model. We apply a unit step force to each surface node of the model for 10 msec and 

record the corresponding displacement response of the applied node and its neighboring nodes 

for 30 seconds as the recovery-displacement-response of the applied node (Figure 4b).  

 

*************** Figure 4 *************** 

 

4.3.2. Real-time computation phase.  Our real-time computational architecture for simulating 

linear viscoelasticity consists of three threads running asynchronously: Haptic Thread, Force-

Displacement Thread, and Visual Thread (Figure 5). The Haptic Thread, updated at 1 kHz, 

acquires the new position of the haptic probe as the user manipulates the probe. If a collision is 

detected, the Haptic Thread reflects the calculated interaction forces back to the user through the 

haptic device. The Force-Displacement Thread, updated at 100 Hz, performs collision detection 

and calculates the collision response based on the superposition principle. Finally, the Visual 

Thread, updated at 30 Hz, graphically renders the haptic interface point (HIP) and the 

deformations of the model. 

 

*************** Figure 5 *************** 

 

At each cycle of the Force-Displacement Thread, we first determine the current 

(deformed) state of the object. For that purpose, displacement of a node at the current time step 

is calculated by first scaling the recovery-displacement-responses of each penetration occurred 

in the past with the magnitude of reaction force calculated for that penetration and then 



superimposing the scaled displacement responses. Since we assume that recovery-displacement-

response of a node converges to a constant value after 30 secs and the Force-Displacement 

Thread is updated at 100Hz, the maximum number of superposition operations due to the past 

penetrations can be at most 3000.  

We then check the collisions between the current position of HIP and the current state of 

the object. If HIP is outside the object, no force is displayed to the user and the superimposed 

nodal displacements are sent to the Visual Thread for graphical rendering. If there is a collision, 

the penetration vector is calculated as the difference between the current positions of HIP and the 

contact-node (Our geometric database returns the nearest surface node of the undeformed model 

to the HIP as the contact-node). The reaction force for the next 10 msec is calculated by scaling 

the force-response of the contact-node by the penetration vector. This force profile is then sent to 

the Haptic Thread to be displayed to the user through the haptic device until the next cycle of the 

Force-Displacement Thread. To determine the nodal displacements due to the effect of current 

penetration only, the position of the contact-node is set to the current position of HIP and the 

displacement-response of the contact-node is scaled by the magnitude of penetration vector. To 

calculate the final displacements of neighboring nodes, their displacements due to the current 

penetration are added to their displacements due to the past penetrations (Figure 6). In addition, 

the information about the current penetration (i.e. contact-node, time of occurrence, reaction 

force) is added to the database of past penetrations to be used for future calculations in upcoming 

cycles. Finally, the nodal displacements are sent to the Visual Thread for graphical rendering. 

 

*************** Figure 6 *************** 

 



 Time complexity of our real-time computation phase is mainly governed by the nodal 

displacement calculations. Since the recovery-displacement-response of all penetrations 

occurred up to the current time step are superimposed, the complexity is O(number of 

penetrations x number of neighboring nodes of each penetration), where the number of 

neighbors of a node grows quadratically as the underlying mesh becomes finer.  

 

5. Validation 

 To validate our viscoelastic FEM model and the proposed pre-computation approach, we 

conducted simulation experiments with a 3D cube consisting of Nv = 51 vertices, Ndof = 153 

degrees of freedom, and Ne = 136 tetrahedrons. The nodes at the bottom surface of the cube are 

constrained to have zero displacements in the vertical y-direction. In order to validate our linear 

viscoelastic FEM, we performed three different compression tests with the 3D cube. We then 

repeated the same compression tests using ANSYS finite element package and compared the 

results (Figure 7). In the first test, we applied 2.0 N to the center node on the top surface of the 

cube. The displacement response calculated using our viscoelastic FEM model and the one 

calculated using ANSYS show a perfect agreement up to the second digit after the decimal point 

(Figure 7a). In the second test, we applied 1.0 N to all nodes on the top surface for 30 seconds. 

The resultant displacement responses of our viscoelastic FEM and the ANSYS model are shown 

in Figure 7b. In the third test, we applied 1 mm displacement to all nodes on the top surface for 

30 seconds using ANSYS to obtain their force relaxation response. Then, this response is applied 

to the same nodes of our viscoelastic FEM model to reconstruct their unit step displacement 

profiles (Figure 7c). The results of all compression tests conducted with our viscoelastic model 

perfectly match with that of ANSYS.  



 

*************** Figure 7 *************** 

 

 After demonstrating that our viscoelastic model works accurately, a real-time test with 

the haptic device was performed to validate the proposed pre-computation approach (Figure 8). 

First, the center node on the top surface of cube was indented to a certain depth using the haptic 

device and was held there for a while. Then, it was released and one of the neighboring nodes 

was indented.  The nodal displacements and the force response of all the nodes on the top surface 

were recorded (Figure 8a and 8b). In order to compare our pre-computation approach with the 

direct solution of linear viscoelastic FEM model, the reaction forces recorded during the real-

time interactions were supplied to our viscoelastic FEM model as an input to obtain the nodal 

displacements (Figure 8c). As it is shown in Figure 8d, the maximum error between the 

displacement values calculated through superposition approach and ones calculated through the 

direct solution of linear viscoelastic FEM model is less than one hundreds of a millimeter for 

nodal displacements of a few millimeters.  

 

*************** Figure 8 *************** 

 

6. Discussion 

There are only limited number of studies on real-time viscoelastic simulation of tissue 

behavior using finite elements for medical training applications. This is difficult because the 

displacement response of viscoelastic objects is time-dependent and influenced by the rate of 

loading. In addition, most of the existing viscoelastic soft tissue models are not realistic since 



they are not based on the measured material properties. This study aims to close the gap between 

the real-time simulation and realistic simulation of soft tissue behavior. In this paper, we 

presented an end-to-end solution to the real-time and realistic simulation of viscoelastic soft 

tissue behavior based on the experimental data acquired by a robotic indenter. The development 

of finite element formulations to simulate viscoelastic tissue behavior is by no means 

straightforward. We developed a linear viscoelastic finite element formulation derived from the 

generalized Maxwell model with N elements. We put the final viscoelastic FEM equation 

(Equation 20) in a form similar to the well-known static equation (Equation 12) to clearly show 

the effect of time-dependent terms. This formulation enables the integration of viscoelastic 

material properties obtained from the stress relaxation experiments into to the model for realistic 

simulation of tissue behavior. Since the integration of incorrect material properties into organ-

force models for simulating surgical procedures may result in adverse training effects, 

acquisition and characterization of material properties of soft tissue in a living body is an 

important and necessary step towards the development of realistic surgical simulators. Most of 

the existing organ-force models are optimized for real-time rendering and are not based on 

measurement data for realistic rendering. The lack of experimental data on viscoelastic material 

properties of live organ tissues has been a significant impediment in the development of realistic 

organ-force models. Most tissue characterization experiments conducted in the past have been 

performed in a laboratory environment outside the living body (in-vitro), but the recent studies 

show that the material properties obtained through in-vitro studies are different than the ones 

obtained through in-vivo studies. Our robotic measurement system is specifically designed to 

collect data from live organ tissues and it does not require any changes in the surgical procedures 

used for a minimally invasive surgery. Using this system, we conducted stress relaxation 



experiments with 3 pigs to characterize the viscoelastic material properties of pig liver [3]. The 

viscoelastic material coefficients of pig liver were determined via curve fitting to the 

experimental stress-relaxation data. The long-term elastic modulus obtained through this process 

(  = 12.879 ± 2.95 kPa) corresponds to the effective linear elastic modulus of pig liver and 

show a good agreement with the values obtained by Ottensmeyer [10]. However, we should 

emphasize that there is a significant variation in the material properties of pig liver reported in 

the literature [3]. One possible cause of this variation is the difference between the measurement 

devices (e.g. hand-held probes versus robotics-based approaches) and the techniques (e.g. in-

vitro versus in-vivo). The material properties of soft tissues obtained through in-vivo 

measurements are obviously closer to the actual properties, but the results should still be 

interpreted with caution since tissue response is location and direction dependent. In addition, 

the small indentation assumption used in our analysis affect the computation of viscoelastic 

material coefficients. Gefen and Marguilis argue that the small indentation assumption is valid 

up to 4 mm indentations made by a 2 mm radius round probe [11]. For this reason, we used the 

stress relaxation data of 4 mm indentations in our analysis and simulations. However, we 

observed that pig liver shows linear viscoelastic response (Figure 2c) and hence, the stress 

relaxation function corresponding to any other penetration depth could also have been used in 

our analysis and simulations. 

∞E

We also implemented a pre-computation approach based on the superposition principle 

for the real-time simulation of the viscoelastic FEM model. The direct implementation of the 

pseudo-code given in Figure 1 is not feasible for the real-time haptic simulation since the 

number of computations is O(N2
dof). However, the complexity of the suggested pre-computation 

approach is proportional to the number of past penetrations times the number of neighboring 



nodes around the contact node of each penetration. The pre-computation approach has been 

applied to real-time static FEM simulation in the past, but, to our knowledge, it has not been 

extended to the real-time linear viscoelastic FEM simulation. The major difference from the 

static case is the inclusion of time and rate dependent effects which requires us to consider 

loading history of nodes in our displacement computations at each cycle of the simulation. For 

the implementation, we recorded the force and displacement responses of surface nodes of the 

viscoelastic FEM model to a unit step displacement and force respectively before the real-time 

simulation, and then use the pre-recorded data during the real-time simulation for the 

computation of time-dependent nodal displacements and forces. The developed model and the 

proposed pre-computation approach have been both validated using ANSYS finite element 

package. In the current implementation, we pre-calculate and record the displacement-response, 

force-response, and the recovery-displacement-response of each surface node in the form of 

individual data points. This consumes significant storage space in memory.  In the future, we 

plan to employ curve fitting methods to store the pre-recorded data as a set of coefficients rather 

than individual data points. 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

References 

1. Basdogan, C., De, S., Kim, J., Muniyandi, M., Srinivasan, M.A., (2004). “Haptics in 

Minimally Invasive Surgical Simulation and Training”, IEEE Computer Graphics and 

Applications, Vol. 24, No.2, pp. 56-64. 

2. Basdogan, C., Ho, C, and Srinivasan, M. A., (2001). “Virtual environments for medical 

training: Graphical and haptic simulation of common bile duct exploration,” IEEE/ASME 

Transactions on Mechatronics, Vol. 6, No. 3, pp. 267-285. 

3. Samur, E., Sedef, M., Basdogan, C., Avtan, L., Duzgun, O., (2005). “A Robotic Indenter 

for Minimally Invasive Characterization of Soft Tissues. Proceedings of the 19th 

International Conference on Computer Assisted Radiology and Surgery”, Vol. 1281 , pp. 

713-718 , June, Berlin. 

4. Debunne, G., Desbrun, M., Cani, M.P., Barr, A.H., (2001). “Dynamic real-time 

deformations using space & time adaptive sampling”, Proceedings of SIGGRAPH, ACM 

Press, pp. 31.36. 



5. Hauth, M., GroB, J., StraBer, W., (2003). “Interactive Physically Based Solid 

Dynamics”, Eurographics/SIGGRAPH Symposium on Computer Animation. 

6. Schoner J.L., Lang J, Seidel H.-P., (2004). “Measurement-Based Interactive Simulation 

of Viscoelastic Solids”, Proceedings of the Eurographics 2004, Vol. 23, No. 3. 

7. Schwartz J.-M., Denninger M., Rancourt D., Moisan C., Laurendeau D., (2005). 

“Modeling liver tissue properties using a non-linear visco-elastic model for surgery 

simulation”, Medical Image Analysis 9(2), pp. 103-112. 

8. Bro-Nielsen, M., Cotin, S., (1996). “Real-time volumetric deformable models for surgery 

simulation using finite elements and condensation”, Computer Graphics Forum, 

15(3):57-66 (Eurographics'96). 

9. Kaliske, M., Rothert, H., (1997). “Formulation and implementation of three-dimensional 

viscoelasticity at small and finite strains”, Computational Mechanics, Vol. 19, pp. 228-

239. 

10. Ottensmeyer, M.P., 2001. “Minimally invasive instrument for in vivo measurement of 

solid organ mechanical impedance”. Ph.D. Thesis, Dept. of Mechanical Engineering, 

MIT. 

11.  Gefen, A., Margulies, S.S., 2004. “Are in vivo and in situ brain tissues mechanically 

similar?”. Journal of Biomechanics, Vol. 37, pp. 1339-1352. 

12.  Fung, Y.C., 1993. Biomechanics: Mechanical properties of living tissues. 2nd ed. New 

York, Springer-Verlag. 

 



 



 

 

Figures: 

)(A

:,

:
)(

:
)(A

:

:,

:,

:

010
e

e

0
ext

1-
T

0

T
1-

T

T e
Ne

1eT

N

1j
jjeeelastic

T
ehiste

N

1j
jjeeelastic

T
eTe

e

t

t

j

0
je

e

n
ext

end

jj

UU          

N ..., 1,e for sembleB.VI.Disas    
FKU           

B.V.Solve    
KIK           

inverse B.IV.Take    
KK           

mbleB.III.Asse    

AVBCBK          

A1VBCBK          

N ..., 1,e for B.II.Form     

e1A           

N ..., 1,j for B.I.Form     
nscalculatio-Pre B.

0  h          

:1, ..., N and j1, ..., N e Zero, forA.IV.    
F           

:0, ..., T nGiven, for A.III.    
 and            

:N ..., 1,j for Given, A.II.    
t           

Given A.I.     
tionsInitializa A.

j

j

−

=

=

=

∆

∆
−

=

=
=

=

=

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

=

−
=

=

←

==

=

=
∆

∑

∑

γ

γ

τγ

τ

τ

 

[ ]

( )

n Next     
*************************************     

UUBCAγheh          

1, ..., N and j1, ..., Nate, for eC.V.Calcul     
UU          

N ..., 1,e for sembleC.IV.Disas    
FFKU           

eC.III.Solv    
FF           

bleC.II.Assem    
UKHF          

heBVH          

N ..., 1,e for ate,C.I.Calcul     
*************************************     

1  0, ..., Tn     
nscalculatio loop step-Time C.

n
e

1n
eeelasticjj

n
je

t
1n

je

e

1n11n
e

e

1n
hist

1n
ext

1-
T

1n

1n
hist e

Ne
1e

1n
hist

n
ehiste

1n
e

1n
histe

N

1j

n
je

t 
T

ee
1n

e

e

end

j

j

−+=

==
=

=
−=

=

−=

=

=

−=

+

∆
−

+

+−+

+++

+
=

+

++

=

∆
−

+ ∑

τ

τ

:
)(A

:,

:
)(A

:

:

 

Figure 1. 

 

 



 

 

 

 

 

 

 

     

 

 

   

 

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Time (sec)

E 
( k

Pa
 )

Trocar

Robotic Arm

Indenter

Pig

(a)

(b)

(c)

0 5 10 15 20 25 30
5

10

15

20

25

30

Time (sec)

E 
( k

Pa
 )

δ0=4 mm
δ0=6 mm
δ0=8 mm

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Time (sec)

E 
( k

Pa
 )

Trocar

Robotic Arm

Indenter

Pig

(a)

(b)

(c)

0 5 10 15 20 25 30
5

10

15

20

25

30

Time (sec)

E 
( k

Pa
 )

δ0=4 mm
δ0=6 mm
δ0=8 mm

 

Figure 2. 
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Figure 4a. 
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Figure 4b. 
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Figure 5. 
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Figure 6. 
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Figure 8. 

 

 



 

Figure Captions: 

 

Figure 1. The pseudo code for calculating the nodal displacements of our linear viscoelastic 

finite element model. 

 

Figure 2. a) The components of our robotic system for minimally invasive measurement and 

characterization of soft tissue behavior. b) The stress relaxation behavior of pig liver for the 

indentation depth of 4 mm. The red colored curve is the Prony series approximation of the 

experimental data. c) The stress relaxation function for different depths and loading rates. 

 

Figure 3. a) The components of the simulation system include a computer monitor for displaying 

visual deformations and a haptic device for displaying reaction forces. b) A series of snapshots 

showing the viscoelastic relaxation of liver model in response to the force applied briefly to a 

node on the surface. 

 

Figure 4. a) The Prony series representation of the experimental force relaxation data is scaled 

and applied to a surface node of a 3D cube such that its displacement response is exactly 1 mm 

(bottom). b) A unit step force is applied to the same node for 10 sec (top) and then its resultant 

recovery displacement and that of neighboring nodes are obtained (bottom). The largest 

displacement is naturally observed at the applied node. Note that the force is applied for 10 sec 

instead of 10 msec to display the creep response more clearly in the figure. 



 

Figure 5. The flow-chart of our pre-computation approach. 

 

Figure 6. The reaction force displayed to the user (middle) is computed by scaling the force-

response of the contact-node with magnitude of the applied step displacement (top). Recovery 

effects of past penetrations are scaled by the magnitude of the reaction force and superimposed 

to each other to compute the displacement history of the contact-node (bottom). 

 

Figure 7. a) The first test: we applied 2.0 N to the center node on the top surface of a 3D cube. 

The displacement response calculated using our viscoelastic finite element model and the one 

obtained using ANSYS show a perfect agreement up to the second digit after the decimal point 

(5.26 mm). b) The second test: the cube was compressed by applying unit step force to the nodes 

on the top surface (top). The displacement response of Node 13 calculated using our viscoelastic 

FEM and the response obtained using ANSYS shows a perfect agreement (bottom). c) The third 

test: the cube was compressed by applying unit step displacement to the nodes on the top surface 

in ANSYS (bottom). The force response data of Node 13 was recorded and then supplied to our 

viscoelastic FEM as an input to reconstruct the step displacement profile (bottom) which shows a 

perfect agreement with the step displacement profile given to ANSYS.    

 

Figure 8. To validate the pre-computation approach, external forces were applied to the nodes 

13 and 48 of the cube using the haptic probe during the real-time simulations (a). The 



displacement response obtained by the superposition approach (b) and the one obtained directly 

from the viscoelastic FEM (c) are compared to quantify the modeling error (d). 
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