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A mathematical analysis of the Kakinuma model
for interfacial gravity waves.
Part I: Structures and well-posedness

Vincent Duchéne and Tatsuo Iguchi

Abstract

We consider a model, which we named the Kakinuma model, for interfacial gravity waves.
As is well-known, the full model for interfacial gravity waves has a variational structure
whose Lagrangian is an extension of Luke’s Lagrangian for surface gravity waves, that is,
water waves. The Kakinuma model is a system of Euler—Lagrange equations for approximate
Lagrangians, which are obtained by approximating the velocity potentials in the Lagrangian
for the full model. In this paper, we first analyze the linear dispersion relation for the
Kakinuma model and show that the dispersion curves highly fit that of the full model in the
shallow water regime. We then analyze the linearized equations around constant states and
derive a stability condition, which is satisfied for small initial data when the denser water is
below the lighter water. We show that the initial value problem is in fact well-posed locally
in time in Sobolev spaces under the stability condition, the non-cavitation assumption and
intrinsic compatibility conditions in spite of the fact that the initial value problem for the
full model does not have any stability domain so that its initial value problem is ill-posed
in Sobolev spaces. Moreover, it is shown that the Kakinuma model enjoys a Hamiltonian
structure and has conservative quantities: mass, total energy, and in the case of the flat
bottom, momentum.

1 Introduction

We are concerned with the motion of interfacial gravity waves at the interface between two layers
of immiscible waters in a domain of the (n+ 1)-dimensional Euclidean space in the rigid-lid case.
Let ¢ be the time, * = (z1,...,2,) the horizontal spatial coordinates, and z the vertical spatial
coordinate. We assume that the interface, the rigid-lid of the upper layer, and the bottom of the
lower layer are represented as z = ((x,t), z = hy, and z = —ha+b(x), respectively, where {(x,t)
is the elevation of the interface, A1 and hy are mean thicknesses of the upper and lower layers,
and b(x) represents the bottom topography. The only external force applied to the system is
the constant and vertical gravity, and interfacial tension is neglected. Moreover, we assume
that the waters in the upper and the lower layers are both incompressible and inviscid fluids
with constant densities p; and pa, respectively, and that the flows are both irrotational. See
Figure 1.1. Then, the motion of the waters is described by the velocity potentials ®; and ®o
and the pressures P; and P, in the upper and the lower layers, respectively, satisfying the basic
equations in the theory of fluid dynamics, which will be referred as the full model for interfacial
gravity waves throughout in this paper. As was shown by J. C. Luke [20], the basic equations
for the surface gravity waves, that is, the water wave problem has a variational structure, whose
Lagrangian is written in terms of the surface elevation of the water and the velocity potential,
and the Lagrangian density is given by the vertical integral of the pressure in the water region.
The full model for interfacial gravity waves has also a variational structure and the Lagrangian
density .Z (P, P2, ) is again given by the vertical integral of the pressure in both water regions.
T. Kakinuma [14, 15, 16] proposed a model for interfacial gravity waves and applied his model
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Figure 1.1: Interfacial gravity waves

to simulate numerically the waves. To derive the model, he approximated the velocity potentials
®; and P4 by

N
(1.1) QPP (@, 2,t) = Y Zi iz hi()) i, 1)
i=0

for k = 1,2, where {Z; ;} and {Z5 ;} are appropriate function systems in the vertical coordinate z
and may depend on hy (x) and Bg(m), respectively, which are thickness of the upper and the lower
layers in the rest state, whereas ¢ = (dk.0, P1,---,Pen) T, k = 1,2, are unknown variables.
Then, he derived an approximate Lagrangian density -Z2PP (¢, ¢p2,() = L(PPP, &3P () for
unknowns (¢1, @2, (). The Kakinuma model is a corresponding system of Euler—Lagrange equa-
tions for the approximated Lagrangian density .Z*PP(¢h1, ¢b2, (). Different choices of the function
systems {Z;;} and {Zy;} give different Kakinuma models and we have to carefully choose the
function systems for the Kakinuma model to provide good approximations for interfacial gravity
waves.

The Kakinuma model is an extension to interfacial gravity waves of the so-called Isobe—
Kakinuma model for the surface gravity waves, that is, the water waves. In the case of the
surface gravity waves, the basic equations are known to have a variational structure with Luke’s
Lagrangian density % uke(®, (), where ( is the surface elevation and @ is the velocity potential
of the water. The Isobe-Kakinuma model is a system of Euler-Lagrange equations for the
approximated Lagrangian density -Z*PP (¢, () = L uke(P*PP, (), where ®?PP is an approximate
velocity potential

N

(1.2) QPP (, 2,1) = > Zilz;b(x)) i, )

1=0

and ¢ = (¢o, ¢1,...,¢n)T are unknown variables. The model was first proposed by M. Isobe [12,
13] and then applied by T. Kakinuma to simulate numerically the water waves. We note that
a similar model was derived by G. Klopman, B. van Groesen, and M. W. Dingemans [18], and



used to simulate the water waves. See also Ch. E. Papoutsellis and G. A. Athanassoulis [25].
Recently, this model was analyzed from mathematical point of view. One possible choice of the
function system {Z;} is a set of polynomials in z, for example, Z;(z;b(x)) = (2 + h — b(x))P
with integers p; satisfying 0 = py < p1 < -+ < py. Under this choice of the function system
{Z;}, the initial value problem to the Isobe-Kakinuma model was analyzed by Y. Murakami and
T. Iguchi [22] in a special case and by R. Nemoto and T. Iguchi [23] in the general case. The
hypersurface ¢ = 0 in the space-time R™ x R is characteristic for the Isobe-Kakinuma model, so
that one needs to impose some compatibility conditions on the initial data for the existence of
the solution. Under these compatibility conditions and a sign condition —d,P?*PP > ¢5 > 0 on
the water surface, they showed the well-posedness of the initial value problem locally in time,
where P?PP is an approximate pressure in the Isobe—Kakinuma model calculated from Bernoulli’s
equation. Moreover, T. Iguchi [10, 11] showed that under the choice of the function system

(z + h)?% in the case of the flat bottom,

(z+h —b(x))" in the case of a variable bottom,

(13) Zi(zb(®)) = {

the Isobe-Kakinuma model is a higher order shallow water approximation for the water wave
problem in the strongly nonlinear regime. Furthermore, V. Duchéne and T. Iguchi [7] showed
that the Isobe—Kakinuma model also enjoys a Hamiltonian structure analogous to the one ex-
hibited by V. E. Zakharov [26] on the full water wave problem. Our aim in the present paper is
to extend these results on the surface gravity waves to interfacial gravity waves.

In view of these results on the Isobe—Kakinuma model, in the present paper we consider the
Kakinuma model under the choice of the approximate velocity potentials in (1.1) as

N
PP (w, 2,) = ) (=2 + )% pra(=,t),

(14) =0

QP (@, 2,t) = Y (2 + hy — b(@))Pidoi(w, 1),
i=0

where N, N* and pg,p1,...,pN+ are nonnegative integers satisfying 0 = pg < p1 < -+ < py*.
In applications of the Kakinuma model, it would be better to choose N* = N and p; = 27 in
the case of the flat bottom, and N* = 2N and p; = 7 in the case of a variable bottom. In the
case N = N* = 0, that is, if we choose the approximation ®;*"(x,z,t) = ¢p(x,t) for k = 1,2
the functions independent of the vertical coordinate z, then the corresponding Kakinuma model
is reduced to the shallow water equations. In the case N + N* > 0, the Kakinuma model is
classified into a system of nonlinear dispersive equations.

It is well-known that in the case of the flat bottom b = 0, the dispersion relation of the
linearized equations to the full model around the flow ({,®1,®2) = (0,u; - @, uy - ) with

constant horizontal velocities u; and us is given by

(p1 coth(h1€]) + p2 coth(hs|€]))w”
+ 2(p1&€ - ug coth(h1|&]) + p2€ - ug coth(hal€|))w
+ p1(& - u1)? coth(h1|€]) + pa(€ - u2)? coth(ha|€]) — (p2 — p1)glé| =0,

where £ € R" is the wave vector, w € C the angular frequency, and g the gravitational constant.
It is easy to see that the roots w of the above equation are always real for any wave vector
£ € R" if and only if w; = us and ps > p;. Otherwise, the roots of the above equation have the
form w = w,(|€]) £ iw;(|€]) satisfying w;(|§]) — +o0 as || — +oo, which leads to an instability



of the interface. The instabilities in the case po > p; and u; # us and in the case p2 < p; and
u1 = uy are known as the Kelvin—Helmholtz and the Rayleigh—Taylor instabilities, respectively.
For more details, see for example P. G. Drazin and W. H. Reid [6]. In the following of this
paper, we are interested in the situation where

(p2 — p1)g > 0,

that is, the denser water is below the lighter water. In the case u; = us = 0, the linear dispersion
relation is written simply as

e (P2 — p1)gl€
p1 coth(hi|€]) + pa coth(hgl€])”

We denote the right-hand side by wyw(€)2. Then, the phase speed cpwy(§) of the plane wave
solution related to the wave vector £ is given by

o Wlw(é) _ (pQ _ pl)g
(15) cw(8) = = i\/ prl€] coth(

€] h1l€]) + p2|€] coth(hz|€])°
As a shallow water limit hq|€], ho|&| — 0, we have
(p2 = p1)ghihs
1.6 e (€) = oy = 4y [ L2 PUINZ
(1.6 w(E) = o \/ 5ty

where cgyw is the phase speed of infinitely long and small interfacial gravity waves. In Section 3,
we will analyze the linear dispersion relation of the Kakinuma model and calculate the phase
speed ck (&) of the plane wave solution related to the wave vector £&. Under the choice N* = N
and p; = 2i, or N* = 2N and p; = ¢ in the approximation (1.4) of the velocity potentials, it
turns out that

(L.7) lerw () — e (€)’] S (hal€] + hal€))*Y 2,

which indicates that the Kakinuma model may be a good approximation of the full model for
interfacial gravity waves in the shallow water regime h;|€|, hol|€| < 1. We note that Miyata—
Choi-Camassa model derived by M. Miyata [21] and W. Choi and R. Camassa [3] is a model for
interfacial gravity waves in the strongly nonlinear regime and can be regarded as a generalization
of the Green—Naghdi equations for water waves into a two-layer system. Let cycc(€) be the phase
speed of the plane wave solution related to the wave vector £ for the linearized equations of the
Miyata—Choi—Camassa model around the rest state. Then, we have

e (€)* = ence(€)?] S (hal€] + hal€l)*,

so that the Kakinuma model gives a better approximation of the full model than the Miyata—
Choi—Camassa model in the shallow water regime, at least, at the linear level. A rigorous
analysis for the consistency of the Kakinuma model in the shallow water regime will be analyzed
in the subsequent paper V. Duchéne and T. Iguchi [8]. On the other hand, in the deep water
limit we have

CK(£)2 > 07

lim
hi1|€|,hal€|—00

which is not consistent with the limit of the full model

cIW(£)2 =0.

lim
hi|€],ha|€|—00

4



We notice that the Miyata—Choi—Camassa model is only apparently consistent with the full
model in this deep water limit since

Chvice (5)2 =0,

lim
h1|€|,h2|é]—0c0

but we note also that )
CIW(E)

h1l€|;h2]§| =00 Cumcc (5)2

We refer to V. Duchéne, S. Israwi, and R. Talhouk [9] for further discussion and the derivation
of modified Miyata—Choi-Camassa models having either the same dispersion relation as the full
model, or the same behavior as the Kakinuma model in the deep water limit. As we discuss
below, thanks to the high-frequency behavior of the linearized equations, and contrarily to both
the full model and the Miyata—Choi-Camassa model, the Kakinuma model has a non-trivial
stability domain and, as a result, the initial value problem to the Kakinuma model is well-posed
locally in time in Sobolev spaces under appropriate assumptions on the initial data.

As we have already seen, the roots w € C of the dispersion relation of the linearized equations
of the full model around the rest state are always real, so that the corresponding initial value
problem is well-posed. However, as for the nonlinear problem, even if the initial velocity is
continuous on the interface, a discontinuity of the velocity in the tangential direction on the
interface would be created instantaneously in general, so that the Kelvin—Helmholtz instability
appears locally in space. As a result, the initial value problem for the full model turns out to
be ill-posed. For more details, we refer to T. Iguchi, N. Tanaka, and A. Tani [24]. See also
V. Kamotski and G. Lebeau [17] and D. Lannes [19]. In Section 4 we consider the linearized
equations of the Kakinuma model around an arbitrary flow. After freezing the coefficients
and neglecting lower order terms of the linearized equations, we calculate the linear dispersion
relation and derive a stability condition, which is equivalent to

= Q.

1.8 — 9. (PPP _ pappy _ pP1pP2 VHPP _ TP™PP12 > 0 > ()
(1.8) ( 2 1 ) p1H2042—|—p2H1041‘ 2 1 “>co

on the interface, where P;*® and P;P" are approximate pressures of the waters in the upper
and the lower layers in the Kakinuma model calculated from Bernoulli’s equations, H; and
H, are thickness of the upper and the lower layers, respectively, a; is a constant depending
only on N, az is a constant determined from {pg, p1,...,pn+}, and V = (0y,,...,0;,)" is the
nabla with respect to the horizontal spatial coordinates * = (x1,...,z,). If p1 = 0, then (1.8)
coincides with the stability condition for the Isobe-Kakinuma model for water waves derived by
R. Nemoto and T. Iguchi [23].

As in the case of the Isobe-Kakinuma model, the hypersurface ¢t = 0 in the space-time R" xR
is characteristic for the Kakinuma model, so that one needs to impose some compatibility condi-
tions on the initial data for the existence of the solution. Under these compatibility conditions,
the non-cavitation assumption H; > ¢y > 0and Hs > ¢y > 0, and the stability condition (1.8),
we will show in this paper that the initial value problem to the Kakinuma model is well-posed
locally in time in Sobolev spaces. Here, we note that the coefficients oy and as in the stability
condition (1.8) converge to 0 as N, N* — oo, so that the domain of stability diminishes as N
and N* grow. This fact is consistent with the aforementioned properties of the full model.



As is well-known that the full model for interfacial gravity waves has a conserved energy

(1.9) & = // %p1(]V<I>1(sc,z,t)|2 + (0:®1(z, 2,1))%)dzdz
Q(t)

1
+ // ~pa(|V®2(z, 2,1)|* + (0. P2(z, 2,t))?)ded2
2(t) 2

+/ %(PQ — p)g¢(z, t)*da,
RTL

where 4 (t) and Q9(t) are the upper and the lower layers, respectively. This is the total energy,
that is, the sum of the kinetic energies of the waters in the upper and the lower layers and the
potential energy due to the gravity. Moreover, T. B. Benjamin and T. J. Bridges [1] found that
the full model can be written in Hamilton’s canonical form

0 0
8t<: WJ atqsz_Ya

where the canonical variable ¢ is defined by

(1'10) ¢(wv t) = p2<I>2(iIZ, <($7 t)7 t) - plq)l(ma C(wv t)a t)

and the Hamiltonian 7 is the total energy & written in terms of the canonical variables (¢, ¢).
Their result can be viewed as a generalization into interfacial gravity waves of Zakharov’s Hamil-
tonian [26] for water waves. For mathematical treatments of the Hamiltonian for interfacial
gravity waves, we refer to W. Craig and M. D. Groves [4] and W. Craig, P. Guyenne, and H.
Kalisch [5]. The Kakinuma model has also a conserved energy &¥, which is the total energy
given by (1.9) with ®; and ®; replaced by ®*" and ®5°P. Moreover, we will show that the
Kakinuma model enjoys a Hamiltonian structure with a Hamiltonian % the total energy in
terms of canonical variables ( and ¢, where ¢ is defined by (1.10) with ®; and ®, replaced by
PP and ®5PP. This fact can be viewed as a generalization to the Kakinuma model for interfacial
gravity waves of a Hamiltonian structure of the Isobe-Kakinuma model for water waves given
by V. Duchéne and T. Iguchi [7].

The contents of this paper are as follows. In Section 2 we begin with reviewing the full model
for interfacial gravity waves and derive the Kakinuma model. Then, we state one of the main
results of this paper, that is, Theorem 2.1 about the well-posedness of the initial value problem
to the Kakinuma model locally in time. In Section 3 we analyze the linear dispersion relation
of the linearized equations of the Kakinuma model around the rest state in the case of the flat
bottom and show (1.7). In Section 4 we derive the stability condition (1.8) by analyzing the
linearized equations of the Kakinuma model around an arbitrary flow. In Section 5 we derive
an energy estimate for the linearized equations with freezed coefficients and then transform the
equations into a standard positive symmetric system by introducing an appropriate symmetrizer.
In Section 6 we introduce several differential operators related to the Kakinuma model and
derive elliptic estimates for these operators. In Section 7 we prove one of our main result,
Theorem 2.1, by using the method of parabolic regularization of the equations. In Section 8
we prove another main result Theorem 8.4, which ensures that the Kakinuma model enjoys a
Hamiltonian structure. Finally, in Section 9 we derive conservation laws of mass, momentum,
and energy to the Kakinuma model together with the corresponding flux functions.

Notation. We denote by W™P(R") the LP Sobolev space of order m on R"™ and H™ =
W™2(R"). The norm of a Banach space B is denoted by || - ||[g. The L2-inner product is



denoted by (-,-)r2. We put 0, = %, 0j = Oy, = %, and 0, = %. [P,Q] = PQ — QP denotes
the commutator and [P;u,v] = P(uv) — (Pu)v — u(Pv) denotes the symmetric commutator.
For a matrix A we denote by AT the transpose of A. For a vector ¢ = (¢, ¢1,...,0n5)T we
denote the last N components by ¢’ = (¢1,...,¢n)T. We use the notational convention % =0.
We denote by C(a1,as,...) a positive constant depending on ay,asg,.... f < g means that there
exists a non-essential positive constant C' such that f < C'g holds. f ~ g means that f < g and

g < f hold.
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2 Kakinuma model and well-posedness

We begin with formulating mathematically the full model for interfacial gravity waves. In what
follows, the upper layer, the lower layer, the interface, the rigid-lid of the upper layer, and the
bottom of the lower layer, at time ¢, are denoted by Q;(¢), Q2(t), I'(¢), 3¢, and X, respectively.
Then, the motion of the waters is described by the velocity potentials ®; and ®5 and the
pressures P; and P» in the upper and the lower layers satisfying the equations of continuity

(2.1) AD +02®; =0 in Q(t),
(2.2) Ady + PPy =0 in Qu(t),

where A = 97 + --- + 02 is the Laplacian with respect to the horizontal spatial coordinates
x = (z1,...,Ty), and Bernoulli’s equations

1

(23) P1 <8t<1>1 + 5(‘V(I)1‘2 + (62(1)1)2) + gZ> +P =0 in Ql(t),
1

(2.4) 02 <(9t(132 + 5(‘V(I)2‘2 + (63@2)2) + gZ) + P, =0 in Q(t).

The dynamical boundary condition on the interface is given by
(25) P1 = P2 on F(t)

The kinematic boundary conditions on the interface, the rigid-lid, and the bottom are given by

(2.6) HC+VP,-V(—0,21=0 on T(t),
(2.7) OHC+VPy-V(—0,P2=0 on TI(t),
(2.8) 0,91 =0 on X,
(2.9) Vo, -Vb—0,09=0 on Y.

These are the basic equations for interfacial gravity waves. We can remove the pressures P and
P, from these basic equations. In fact, it follows from Bernoulli’s equations (2.3)-(2.4) and the
dynamical boundary condition (2.5) that

1
(210) P1 <6t®1 + §(|V(I’1|2 + (6Z<I>1)2) + gz)

1
) <8t(1)2 + 5(‘V(I)2‘2 + (8Z(I)2)2) + gZ> =0 on F(t)



Then, the basic equations consist of (2.1)—(2.2) and (2.6)—(2.10), and we can regard Bernoulli’s
equations (2.3)—(2.4) as the definition of the pressures P; and P.

In the case of surface gravity waves, as was shown by J. C. Luke [20], the basic equations
have a variational structure and Luke’s Lagrangian density is given by the vertical integral of the
pressure P — P, in the water region, where Py, is a constant atmospheric pressure. Therefore,
it is natural to expect that even in the case of interfacial gravity waves the vertical integral of
the pressure in the water regions would give a Lagrangian density .Z, so that we first define
_gopre by

hl C(wvt)
(2.11) zrere :/ Pl(a:,z,t)dz—i—/ Py(zx, z,t)dz.
C(t) —ha+b()

By Bernoulli’s equations (2.3)—(2.4), this can be written in terms of the velocity potentials @1,
®5, and the elevation of the interface ¢ as

h1 1
L = —Pl/ <8t<1>1 + 5(’V¢1|2 + @@1)2)) 4
¢

¢ 1
- '02/ (3@2 + 5 (V" + (32‘1’2)2)> 4
—hao+b

1

1 1
- §<P2 — p1)g¢* — §P19h% + ing(—hQ +b)°.

The last two terms do not contribute to the calculus of variations of this Lagrangian, so that
we define the Lagrangian density Z(®1, ®2,() by

hy
(212) L(®),Dy,¢) = —pl/C <8t<1>1 + %(\V%\Q + (3z<1>1)2)) dz

¢ 1 1
- 02/ (5@2 + (Vo2 + (az‘I’z)Z)) dz — = (p2 — p1)g¢*
—hatb 2 2

and the action function _# (®1, ®9,() by

t1
(@1, P9,() :/t o ZL(®1, Po, ¢)dadt.

It is not difficult to check that the corresponding system of Euler-Lagrange equations is exactly
the same as the basic equations (2.1)—(2.2) and (2.6)—(2.10) for interfacial gravity waves.

We proceed to derive the Kakinuma model for interfacial gravity waves. Let ®7PP and ®5F be
approximate velocity potentials defined by (1.4) and define an approximate Lagrangian density

LR (1, 2,C) for 1 = (P10, 1,15+ P1N) T, P2 = (d20, P21, ..., P2.n+)T, and ¢ by
(213) fapp(¢la¢27§) = g(q)?pp?@;pp)C)a



which can be written explicitly as

N
1
_GPaPP o1 {Z 7H21+18t¢1 ;

21+ 1
i=0
2i4i)+1 4ij oG-
+= ]ZO< Z+] +1 1 ¢1,1, ¢1,]+2(i+j)_1 ¢1’L¢1,j>

N*
1 ,
_ E = HgPitly b,
P2 { i T 1 2 t¢2,1

=0

+ Z ( HY PN g Vg j — —— HY Py Vb - Vo

25 \pitpi+1 z+g

Pipj

+7
Di + pj -1

P Vb]2)¢2,z¢27j>

1
— 52— p1)9¢?,
where H; and Hs are thicknesses of the upper and the lower layers, that is,
H1($7t) =h _C(m>t)a HQ(mat) :h2—|—<($,t) —b($)

The corresponding system of Euler—Lagrange equations is the Kakinuma model, which consists
of the equations

) 2 § HQ(H‘J)‘H ) H (i+4) L
(2 14) Hl 8t< { < Z +]) 1 1 v¢1,j 2(1 _1_]) 1 1 ¢1:] 0

fori=0,1,..., N,

N*
: 1 +pj+1 -+
2.15) HPo ¢ + V. [——  HPTPITIge, . — HP P g T
- 2 ¢ jzo{ (Pz'—i-pj—l—l 2 92 pi+pj 2 92
> +p sz"'_pjvb v¢27] ]%Hgﬁ_pj_l(l—f— Vb2)¢27j} _
g J % '
fori=0,1,...,N*, and
N Ll 2 N ' 2
(216) o1 QD HYOidr;+9C+ 2 D HUVO| + (D 2H
J=0 Jj=0 =0
N*
> HY 0o+ 9¢
=0
1 N* 1 2 N* 1 2
+3 D (HY Vo ;—piHY ¢, V)| + | Y piHY ™ ¢a; =0.
j=0 =0



Here and in what follows we use the notational convention % = 0. This system of equations is

the Kakinuma model that we are going to consider in this paper. We consider the initial value
problem to the Kakinuma model (2.14)—(2.16) under the initial condition

(2.17) (¢, &1, 92) = (C0): P1(0)> P20)) at t=0.

For notational convenience, we decompose ¢y, as ¢ = (g0, P})" for k = 1,2 with ¢} =
(G1.1,-..,¢1,5) and @h = (P2.1,..., P2 N+). Accordingly, we decompose the initial data ®r(0) as
Dr(0) = (Pr0(0) Phoy) " for k=1,2.

The hypersurface t = 0 in the space-time R™ x R is characteristic for the Kakinuma model
(2.14)—(2.16), so that the initial value problem (2.14)—(2.17) is not solvable in general. In fact,
by eliminating the time derivative 0;¢ from the equations, we see that if the problem has a
solution ((, ¢1, ¢2), then the solution has to satisfy the N + N* 4 1 relations

(2.18) Zv (2 — f”lvgz)w)

1 2(i4)+1 > 4ij S(it)-1 }
B Vlsizae? Vorj | —s7———H L_0
jzo{ <2(i+j)+1 ! 15 2it+j)—1 1 b1,

fori=1,2,..., N,

(2.19)  HY Z V- <

1 i+pj+1 Pj i+D;
_Z{V' <pi+pj+1H§ P v¢2’j_pﬁfij§ P o, Vb
=0

Hpﬂ“v(pg,] ?Hpﬂ@,]w)

HPz"‘FJVb v plp] Hpi+pj_1 1+ VbQ } —
pH—pg P25 — pitpj—1 2 ( IVb[") 2,

fori=1,2,...,N*, and

N*
1
27+1 ) .
(2.20) §jv <2 i vm) +j§:0jv (p "

J

HY 'V — ?Hg’j@,jvz)) = 0.
J

Therefore, as a necessary condition the initial date (o), @1(0)» ¢2(0)) and the bottom topography
b have to satisfy the relation (2.18)—(2.20) for the existence of the solution. These necessary
conditions will be referred as the compatibility conditions.

The following theorem is one of our main results in this paper, which guarantees the well-
posedness of the initial value problem to the Kakinuma model (2.14)—(2.17) locally in time.

Theorem 2.1. Let g, p1, p2, h1, ho, co, My be positive constants and m an integer such that m >
5 + 1. There exists a time T > 0 such that for any initial data (C(O),g‘bl(o), ¢2(0)) and bottom
topography b satisfying the compatibility conditions (2.18)—(2.20), the stability condition (1.8),
and

oony {160 Tor00: Vorao)lim + 1@y Sy lmes + [Blmsaos < Mo
— o)) = co, ha+oy(x) —b(x) > co for xR,
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the initial value problem (2.14)—(2.17) has a unique solution (C, ¢1, ¢2) satisfying

C,V(bl,o, V¢270 S C([O,T]; Hm) N Cl([O,T];Hmfl),
L, dh € C([0,T); H™ Yy nCt([o, T); H™).

Moreover, the flow map is continuous.

Remark 2.2. The term (9, (Py*® — P{)) |,—¢ in the stability condition (1.8) is explicitly given
in (4.4). It includes the terms 0:¢y(x,0) for £ = 1,2. Although the hypersurface t = 0 is
characteristic for the Kakinuma model, we can uniquely determine them in terms of the initial
data and b. For details, we refer to Remark 7.1. Under the condition (p2 — p1)g > 0 and if
the initial data and the bottom topography are suitably small, the stability condition (1.8) is
automatically satisfied at ¢t = 0.

Remark 2.3. In the case N = N* = (0, that is, if we approximate the velocity potentials in the
Lagrangian by functions independent of the vertical spatial variable z as ®;*"(x, z,t) = ¢i(x, t)
for k = 1,2, then the Kakinuma model (2.14)—(2.16) is reduced to the nonlinear shallow water
equations

O =V (= Q)Vé1) =0,
(2.22) ¢+ V- ((ha +C—b)Ves) =0,
p1 <6t¢1 +9¢+ ;vw?) P2 <at¢2 +9¢+ ;vw) =0.

The compatibility conditions (2.18)—(2.20) are reduced to
V(i =QVe1) + V- ((he + (= b)Vea) =0

and the stability condition (1.8) is reduced to

P1P2

— B ¥y — Véi]? > > 0.
,01H2+P2H1| ¢ 91l” = co

9(p2 — p1) —
Therefore, we recover the conditions for the well-posedness in Sobolev spaces of the initial value
problem to the nonlinear shallow water equations (2.22) proved by D. Bresch and M. Renardy [2].

Remark 2.4. By analogy to the canonical variable (1.10) for interfacial gravity waves introduced
by T. B. Benjamin and T. J. Bridges [1], we introduce a canonical variable for the Kakinuma
model by

N* N
(2.23) d=p2> HYoj—p1 > Hi'¢n;.
§=0 3=0

Given the initial data ({(g), #(0)) for the canonical variables (¢, ¢) and the bottom topography
b, the compatibility conditions (2.18)-(2.20) and the relation (2.23) determine the initial data
((1-"1(0), d’z(o)) for the Kakinuma model, which is unique up to an additive constant of the form
(Cp2,Cp1) to (b1,0(0), P2,000))- In fact, we have the following proposition, which is a simple
corollary of Lemma 6.4 given in Section 6.

11



Proposition 2.5. Let p1, p2, hi1, ha, co, My be positive constants and m an integer such that
m > g + 1. There exists a positive constant C such that for any initial data ({(o), $()) and
bottom topography b satisfying

ICoyllzm + [bllwmee < Mo, Vo)l gm—1 < 00,
hi = Coy(T) > co,  ha+(o)(x) —b(x) >y for x€R",

the compatibility conditions (2.18)—(2.20) and the relation (2.23) determine the initial data
(¢1(0)7 ¢2(0)) for the Kakinuma model, uniquely up to an additive constant of the form (Cp2,Cp1)
to (¢1,0(0)> 2,0(0))- Moreover, we have

161,009 Vo)l m-t + @0y hopllizm < IV 0.
Therefore, given the initial data ({(g), #(0)), we infer initial data for the Kakinuma model,
which satisfy the compatibility conditions (2.18)-(2.20).
3 Linear dispersion relation

In this section we consider the linearized equations of the Kakinuma model (2.14)—(2.16) around
the flow ((, @1, ¢2) = (0,0,0) in the case of the flat bottom. The linearized equations have the
form

(! 4ij i
- — L Ap ;- ———hV P, | =0 f i =0.1.....N
% ; it ) 41 gy ¢ ) =0 for i=01

o I pip; -
(3.1) 8tc+2(2A¢27j —_pb qbg,j):o for i=0,1,...,N*,

e \pitpi+l Cpitpi—1
N N*
p1 Z hY o1+ 9C | — p2 Z hy Od2j + gC | = 0.
j=0 J=0

Putting ¢, = (QZ)LQ, h%d)l,la R h%N(ﬁl,N)T and ¥y = (¢270, h?l(ﬁQ,l, cee h?N* ¢27N*)T, we can
rewrite the above equations as the following simple matrix form

0  —pi1T po1” ¢
hil 0 0 O | Y1
—h21 O 0] ¢2
(p2—p1)g o' o’ ¢
+ 0 —h%ALoA + A1 0 Y1 | =0,
0 O —h3A20A + Az P
where 1 = (1,...,1)T and matrices Ao and Ay ¢ for k = 1,2 are given by

1 4
o () ()
20+7) +1) o<ijen 20+7) = 1) o<ijen

Ao — ( Pipj >
21 =\ :
Pi P =1/ o<ij<n~

1
AZ,O — ( > )
pit+pj+1/0<j<n

12



Therefore, the linear dispersion relation is given by

(2 —p1)g  ipwl®  —ippwl™
det —ihjwl Aq (hlé') O =0,
ihgwl O AQ(hQ&)

where £ € R™ is the wave vector, w € C is the angular frequency, and A (&) = |€]2 Ao + Ax1
for k =1,2. We can expand this dispersion relation as

(3.2) (p1h1 det Ay (h1€) det Ag(ho€) + pahg det Az (ho€) det Al(h1§)> w?
— (p2 — p1)g det Ay (h1€) det Az (ho€) = 0.

Here and in what follows, we use the notation

p 0 17T
A=
-1 A
for a matrix A. Concerning the determinants appearing in the above dispersion relation, we
have the following proposition, which was proved by R. Nemoto and T. Iguchi [23].

Proposition 3.1.

1. For any €& € R™\ {0}, the symmetric matrices Ay (&) and A3(€) are positive.

2. There exists cg > 0 such that for any & € R™ we have det Ak(ﬁ) >co fork=1,2.

3. |€|72det Ay (€) and |€]72 det A3(€) are polynomials in |€|? of degree N and N* and their
coefficient of |€|?N and |€|?N" are det A1 and det Ag g, respectively.

4. det Ay (&) and det Ay(€) are polynomials in €] of degree N and N* and their coefficient
of |€1?N and |€]*N" are det Ay o and det Ag g, respectively.

Thanks of this proposition and the dispersion relation (3.2), the linearized system (3.1) is
classified into the dispersive system in the case N + N* > 0, so that the Kakinuma model
(2.14)—(2.16) is a nonlinear dispersive system of equations.

Therefore, we can define the phase speed ¢k (§) of the plane wave solution to (3.1) related to
the wave vector £ € R"™ by

(p2 — p1)gl€] 2 det Ay (h1€) det Az (ho€)

(3.3) cx(€)? = 7 7 :
p1hy det Al(hlﬁ) det Ag(hgﬁ) + pahg det AQ(hgf) det A1(h1€)

It follows from Proposition 3.1 that

2 _ (p2 — p1)ghihs det Ay gdet Ag g
p1ho det /1170 det A270 + pohq det 1212,() det Al,O

lim c
h €], hal€] 00 «(&)

which is not consistent with the linear interfacial gravity waves

cIW(£)2 =0.

lim
h1 |£‘,h2|£‘*>00

However, as is shown by the following theorems the Kakinuma model gives a very precise ap-
proximation in the shallow water regime h1|€|, h2|€| < 1 under an appropriate choice of the
indices p; for i =0,1,..., N*.

13



Theorem 3.2. If we choose N* = N and p; = 2i fort=20,1,...,N* or N* =2N and p; =1
fori=20,1,...,N*, then for any & € R" and any hi, ho,g > 0 we have

‘(cms))? - <cK<s>)2

where C' is a positive constant depending only on N.

< O(h|€] + hal€)*N T2,

Proof. The phase speeds ciw (&) and cx(€) can be written in the form
tanh(hq[€]) tanh(ho|€])

(CIW@))Q _ i [€] hal€]
Cow Htanh(hl\ﬁ\) tanh(hs|€|)

+(1-46
me 0T e
and
det Al(hlé) det AQ(h2$)
cx(€)\? _ (h1]€))2 det Ay (h1€) (hal€])2 det Ao (hot)
Csw det Ay (h1§) - 0) det Ap(ho§) 7
(h1]€])? det A (h1€) (h2|€])? det Az (ho€)
respectively, where 6 = % € (0,1). It has been shown by R. Nemoto and T. Iguchi [23]
that
tanh |£| . det Akg&) < C|€|4N+2
€] |€[2 det A (€)
for kK = 1,2, so that we obtain the desired inequality. ]

4 Stability condition

In this section, we will derive the stability condition (1.8) by analyzing a system of linearized
equations to the Kakinuma model (2.14)—(2.16). We linearize the Kakinuma model around an
arbitrary flow (¢, ¢1, ¢2) and denote the variation by (C , b1, gbg) After neglecting lower order
terms, the linearized equations have the form

HY A, = -
8t€+u1 VC ZW 1 A¢17J—O for Z—0,17...,N,
i+1 A . x
(41) atC+U2 VC+Zm 53 A(ZSQ’]' =0 for ’LZO,].,...,N s
N - . . N* . . .
pry HY (01 +ui-Vorg) —p2 Yy Hy (o +uz- V) —al =0,
j=0 j=0

where H; = hy — ( and Hy = ho + ( — b are the thicknesses of the layers,

N
uy = (VO = > H'Ven,
(4.2) 720

up = (VOIP) .o = Y (HY' Vo j — pi HY' ™ 63,;Vb)
=0
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are approximate horizontal velocities in the upper and the lower layers on the interface,

N
w1 = (azq)?pp”z:C = _ZQijjilgbl,ja
(4.3) J=0

N
—1
wy = (0:25") ¢ = Y piHy' ¢n,
=0

are approximate vertical velocities in the upper and the lower layers on the interface, and

N* N*
=1 =2
(4.4) a= po ijHgJ (O¢d2,j + w2 - Vo ;) + (wg — ug - VD) ij(pj —DHy “¢2+g
j=0 7=0
N ' N :
o1 | D 2HY T Oy +ur - V) —wi »25(25 — H?U Vg — g
j=0 Jj=0

= — (0P = PI™)) o=

Here, P/* and PyP" are approximate pressures in the upper and the lower layers calculated
from Bernoulli’s equations (2.3)—(2.4), that is,

1
P,?pp = —pi <6,¢I>2pp + B (\V(I)ZPPIZ + (@@2”)2) + gz>
for k = 1,2. Now, we freeze the coefficients in the linearized equations (4.1) and put

(4.5) {¢1 = (<]'51,0,H12gz.51,1,...7H12N¢'51’N)T7

¢2 = (¢2,07 H§1¢2,17 RN HgN* éQ,N*)T-

Then, (4.1) can be written in the form

0 —pi1T po1” ¢
Hi1 O O | & |4n
—-H,1 O O o
a —p11T(u1 - V) po1T(uy - V) ¢
+ Hll(ul . V) *HIQALQA O ¢1 =0.
—HQ]_(UQ : V) 0 —H%AQ,OA ’1/.)2

Therefore, the linear dispersion relation for (4.1) is given by

a ipr(w—u-€)1T —ipy(w —ug-€)1T
det —iHl(w —ui - 5)1 (Hl‘ﬂ)%‘h’o 0] =0,
iHoy(w— us - €)1 O (H|€])* Az,
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where £ € R" is the wave vector and w € C the angular frequency. The left-hand side can be
expanded as

a ipr(w—ui-&1T —ipy(w —uy-€)1T

LHS = det 0 (Hly§|)2A1,o O
(Hal€])? Az
ip1(w —ur - 1T —ipa(w —ug - )17
+ det —lHl w —Uujp - E) (H1|€D2A170 0]
iHo(w — us - €)1 O (H2|€[)*Az2,0
— adet ((H,)¢]) Alo det ((Hz|€])*Az,)
—i—det( 1,01(w—u1-£)1T> det ((Hal€])* Az)
—iH(w—u1- €)1  (Hil€])*A1p 0

0 —ipa(w —uz - §)17"
et (1H2(W —uy- €)1 (H2|€])? Az > det ((H1|€|)2A1,o)

= H12N+1H22N*+1’€’2(N+N*+1) {aH1H2|£|2 det A1 o det As g
—leQ(OJ — Ui - 5)2 det 1211,0 det A2,0 — ,02H1 (OJ — Uug - 5)2 det A270 det Al,O} s

so that the linear dispersion relation is given simply as

o1 2 P2 2 2
4.6 —_ . P2 . _ _
(4.6) Hlal(w uy - §) +H2a2(w uz - §)° — alg|
where
det AkO ~ < 0 1T )
4.7 A = — 2 s A =
( ) ¥ det Ak70 "0 -1 Ak,O

for k = 1,2. The discriminant of this quadratic equation in w is
2
P1 P2
<H1a1 ui-& H2a2u2 6)
_ P1 P2 P1 a2, P2 ey )
<H1a1 - H2a2> <H1a1 (w1 -£)"+ Hoas (uz - )" — alg] >

P1 P2 2 p1pP2 5
- - algl” — Uy — U ) - .
<H10‘1 H20‘2> ( <l p1Haa + p2Hyion (w2 1)-§) >

Therefore, the solutions w to the dispersion relation (4.6) are real for any wave vector & € R™ if
and only if

P1pP2 2
a— ug —u1|” > 0.
p1Haao + paHion [ 1”2
Otherwise, the roots of the linear dispersion relation (4.6) have the form w = w;,(§) % iw;(§)
satisfying w; (&) — +oo as € = (u2 — u1)€ and £ — 400, which leads to an instability of the

problem. These consideration leads us to the following stability condition

P1P2 2
4.8 a— U9 — Ul ZCQ>0,
(48) p1Hzas + ,02H10é1| |

which is equivalent to

—(8.(PPP — poP . P1p2 VOIPP _ YHIPP2)| . > ¢
(0:(P5 ) la=¢ 1H2a2+p2H1a1(\ 5 PP o=¢ > <o

Here, we note that o and agy are positive constants depending only on N and {po, p1,...,pn+}
and converge to 0 as N, N* — co. Therefore, as N and N* go to infinity the domain of stability
diminishes.
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5 Analysis of the linearized system

In this section, we still analyze the system of linearized equations (4.1) with freezed coefficients.
We first derive an energy estimate for solutions to the linearized system by defining a suitable
energy function, and then transform the linearized system into a standard symmetric form, for
which the hypersurface ¢ = 0 in the space-time R™ x R is noncharacteristic. These results
motivate the subsequent analysis on the nonlinear equations.

5.1 Energy estimate

With the notation (4.5), the linearized system (4.1) with freezed coefficients can be written in a
symmetric form as

(5.1) 0,U 4+ AU =0,
where U = (é,¢1,’l[)2)T and
0 —pm1T podt

«52{1 = p11 O O ;
—pal O 0]

a —pllT(ul . V) png(UQ . V)
= pl(ur-V) —piHiA1pA O
—pg].(’u,g . V) O —p2H2A270A

We note that 2% is symmetric in L?(R") whereas <7 is skew-symmetric. Therefore, by taking
L%-inner product of (5.1) with 8,U we have

d . )
— U, HU);2 =0

dt( 0 )L2

for any regular solution U to (5.1), so that (U, «U).> would give a mathematical energy
function to the linearized system (5.1) if we show the positivity of the symmetric operator
oy in L?>(R™). We proceed to check the positivity. For simplicity, we consider first the case
N = N* =0so that A; g = A0 = 1. Then, we see that

. . C a —p1ui  pouy C
(Ua%U)[ﬁ :/ v?LO | —prusg lelld 0] v¢170 da.
" \Veao p2u2 O p2H1d) \ Vo

Therefore, it is sufficient to analyze the positivity of this (2n 4+ 1) x (2n 4+ 1) matrix. The
characteristic polynomial of this matrix is given by

A—a pruf —pauy
0 = det pruq (A — lel)Id 0]
—pP2UQ O ()\ - pQHQ)Id

= (A= a)(A = p1H1)"(A — p2H2)"

— pilu P (A = prH1)" N (A = p2H2)" — p3lual* (A — prH1)" (A — paHo)"
= (A= p1H1)" "' (A = p2Ha)" " {(A = @) (A = prH)(A — p2Ha)

—ptui [P (A — p2Ha) — p3lus|*(A — p1H1)} -
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Therefore, the eigenvalues of the matrix are p;1 H; and ps Ho of multiplicity n — 1 and A1, A9, As,
which are the roots of the polynomial

(A= a)(X = p1H1) (A — p2Ha) — pi|ui|*(A — poHa) — p3lua|*(A — p1Hy) = 0.

Here, we see that
M3 = p1p2(aH Hy — prHolui|* — poHi|ug|?),

which is not necessarily positive even if u; = ug. Therefore, for the positivity of the symmetric
operator % we need a smallness of the horizontal velocities u; and us. Such a condition is, of
course, stronger restriction than the stability condition (4.8). This means that (U, .oU) 2 is
not an optimal energy function and we proceed to find out another one.

We are now considering the linearized system (5.1) with freezed coefficients, that is,

Hll(até + up - VC) — H12A17()A’l,b1 =0,
(5.2) Ho1(9¢ + uz - VE) + H3 Az gAdhy = 0,
p1l- (3{%[11 + (u1 - V)¢1) —p2l- (3t¢2 + (u2 - V)Th) —a(=0.

Applying A to the last equation in (5.2) we have
(53) P1 (ALO)_I]. . (8t + u - V)AL()A’lﬁl — pQ(A2,O)_11 . (6t + ug - V)AQ,OA'I/}Q - GAC = 0.
Plugging the first and the second equations in (5.2) into (5.3) to remove t; and %3, we obtain

p1(A1p)~11-1
H,y

p2(Az0)~11-1

o2
(O +uy- V) + H,

(O + us - V)2> ¢ —aAl =0.

In view of the relation following from Cramer’s rule

detAhQ B 1

det Ak70 N g

(Apo)'1-1 =

for k = 1,2, the above equation for ¢ can be written as

p1 P2 2 p1P2 5\
(5.4) <H1a1 H2a2>( t )¢ ( p1H2a2+p2H1a1(( 2 —u1)- V) >C

where w is an averaged horizontal velocity on the interface defined by

p1Hoa p2Hiaq

5.5 = ul + us.
(5:5) p1Hzag + poHion p1Hsa0 + paHion

Taking (5.4) into account, we consider the following constant coefficient second order partial
differential equation

(5.6) (0 4+u-V)A — (c2A = (v V)Q) ¢ =0,

where ¢; and ¢y are positive constants. By taking L2-inner product of (5.6) with (9; + u - V)¢
and using integration by parts, we see that

d . , ‘ ‘
s (c1H&tC +u- V|3 + 2| VC |72 — |Jv - VCH%z) —0
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for any regular solution ¢ to (5.6). Here, we have
e[ VC|[72 = llv - V|72 = (VC, (eald — v @ 0) V() 2.

The matrix cold — v ® v is positive if and only if ¢ — |v|? > 0. Under this assumption, we obtain
an energy estimate for the solutions to (5.6). Applying this consideration to (5.4), we see that
the positivity condition is exactly the same as the stability condition (4.8), under which we can
obtain an energy estimate for (5.4).
In view of this fact we rewrite the linearized system (5.1) with freezed coefficients in the
form
(0 +u- VU + &0 =0,

where

%mOd:%—M(u-V)

__pipaHiar T, . __pipaHzas T,
@ p1H2a2+p2H1a11 (’U v) lezaz—l—nglall (’U v)
— | - __pipeHion . _
- p1H2a2+p2H1a11(v v) lelALOA O
___ _pipaHras . .
p1Hoao+paHian 1(,0 V) O pQHQAQ,OA

and v = uy — ;. By taking L2-inner product of this equation with (8, + u - V)U and using
integration by parts, we see that
d L
— (U, U) 2 =0
dt
for any regular solution to (5.1). We proceed to check the positivity of the symmetric operator

m°d in L2(R™) under the stability condition (4.8). We see that

(%0, U) 2 = (a2 + ) {(P1H1A1,051¢1731¢1)L2 + (P2H2A2,08l1b278l¢2)L2}
=1

p1p2Hion S
+ 2 v-V)(1- ,
(P1H2042 + peHi ( JA-%1), Oz
p1p2Haan "
+ 2 v-V)(1- , 2.
(0 V) (1) )

On the other hand, the matrix flk,o is nonsingular and its inverse matrix can be written as

y I 0 1T\! a0  (qr o)T>
A 1 o e ’ ’
(Ako) (—1 Ak,o) <—qk,0 Qk,0

det Ak,O
det Ak’,O

nonnegative. In fact, for any v putting ¢ and ¢ by <§)) = (flkp)*l (3)) we have

T _
Qro¥ - = <_q(§’£0 (?Qk;co()) > <,Z> ' <1’Ob> = (f];) Ao <§5> =¢  Agog > 0.

We note that Q¢ is not positive because it has a zero eigenvalue with an eigenvector 1. Now,

for any ¢, putting n = 1- ¢ and ¢ = Aj, o, we have flk,o <2) = (Z) so that

Arod - ¢ = Arp (2) : (;) = (Z) (Ago)™ (Z) = qron” + Qr o - 1,
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from which we deduce the identity

(5.7) Apod - @ = ap(1-$)° + QuoArod - Ayod.
By using the decomposition (5.7) we see that

(%modU’ U)LZ

=> {(p1H1Q1,0A1,031¢1, A100%1) 12 + (p2H2Q2,0A2,001%2, Az,o@d’z)m}
=1

+ {(GC',C.)L'Z + (p1H1a1 V(1 - 4p1), V(1 41)) 12 + (p2H202V (1 - 4h3), V(1 - 4p2)) 2

2p1p2H10n
p1Hao + paHiaq
=11 + 5.

2p1p2Haces
p1Hao + poHian

(0 V)(L-4n), )z + ( (v-V)(1- Mc‘m}

Here, I; > 0 since Q1,0 and Q)2 are nonnegative, and

> / {aéQ o Hin | V(141 + paHaan| V(1 - )2

_ 2p1p2|v|
p1Haan + paHion

(101 V(1 9h1)| + Haao| V(1 - 4h2)]) |<'|}da:,

so that it is sufficient to show the positivity of the matrix

a __ pippHian ‘,U’ __ _pipaHron ]v[
p1H2a2+p2Hian p1Haaz+paHiaq
| pippHia
Rlo := p1Hza2+paHion ‘U‘ prHian 0
_ p1p2Hoaso
p1Haao+p2Hian |’U‘ 0 pQHQOQ

From Sylvester’s criterion and since pg Hroy is positive for & = 1,2, the positivity of the matrix
g is equivalent to

det g = a(prHia1)(p2Hoo)

2 2
102 Hoa 1p2Hi0n
—p1Hiag < 1P |'U|> — p2Hoan ( PP "U)

p1Hzao + poHion p1Haao + poHion

P1P2 2
= H H — > 0.
(p1Hyaq)(p2Hacr2) (a oo + pallion v )

Since v = uy — w1, under the stability condition (4.8) we have the positivity of 2y, so that in
view of (5.7) and the positivity of the matrix Ay for k¥ = 1,2 we finally obtain the equivalence

(A0, 0) 12 = (€[22 + Va3 + [V ball3.

Therefore, (%mOdU, U) > would provide a useful mathematical energy function.

5.2 Symmetrization of the linearized equations

We still consider the linearized equations (4.1) with freezed coefficients. However, for later use
we define ¢, and ¢ in place of (4.5) by

b1 = (1,0, q:51,1, e dn) T,
ba = (2.0, 2.1, -, pan)T.
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Then, the linearized equations have the form
L (H))(0:C 4wy - V() — A1(H1)Ady = 0,

(5.8) —ly(H2)(9:¢ + uz - V() - AQ(H2)A¢2 =0, ' . .
—pili(Hy) - (Oep1 + (w1 - V)d1) + pala(H2) - (Orp2 + (w2 - V)p2) + a = 0,

where
(5.9) L(H) = (1, HE HY, ... HNT 1(Hy) = (1, HY HY? ... HIN)T,
and
1 2(i45)+1

AI(HI) - (H y

(5.10) 2(i+ )+ 17 0<ij<N
_ 1 pi+p;+1
Ay(Hy) = | ———H, .
pi+pj+1 0<i,j<N*

In the following, we abbreviate simply l;(Hy) and Ax(Hy) as I and Ay for k£ = 1,2. We are
going to show that the system can be transformed into a positive symmetric system of the form

(5.11) AP, U + 7 U =0,

where U = (C , cﬁl, (ﬁg)T, %mOd is the positive operator defined in the previous section with slight
modification, and .7 is a skew-symmetric operator in L?(R™). As before, we put v = us — u;
and define u by (5.5). Furthermore, we introduce the notation

_ paHi0n
prHoao + poHian’

p1Hzan

5.12 9 - ,
(5.12) ! p1Haao + paHion

02

where o and «g are positive constants defined by (4.7). Then, we have u = fouq + 61uy and
01 + 05 = 1. We can also express u; and uo in terms of w and v as

u; = u — Ov, us = u + .

Applying A to the third equation in (5.8) and differentiating the first and the second equations
with respect to t, we obtain

0  —pldl poly 07¢ 0 ‘
—pili p1Ag O Ay | + —plll(ul . V) 0¢C
pala O p2As) \Adio p2la(ug - V)
a —pilf(ur-V) pal3(uz-V) '
+10 0 O AU = 0.
0 O 0O

In view of this, we introduce a symmetric matrix as

-1

o 491 a 0 —pldT polf
(5.13) q Qu Qu|=|-pli p4 (0] ,
g2 Q2 Q2 p2la O  pA
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where QT; = Q11, Q% = Q22, and Q, = Q21. Moreover, we have

—pili-q1+p2la-q2 =1, Ai1q1 = qol1, Axqa = —qola,
p1A1Q1 =1d + pilig],  p2A42Qa2 = 1d — palagqy,
A1Qi2 =gy, AQo = —lag}
and by Cramer’s rule,
HiHyanan —qo 02 qo 01
q = — ;o b= =——, b-q@= =—.
prH202 + p2Hion Hion p1 Haas  po

Using these notations, we have

. 0
—P1A1A3t¢1> <—01A1 @) ) <Q1 Q1 Q12> :
. —p1l V)| o
<—/?2A2A3t¢2 o —p2A2) \q2 Q21 Qa2 prly(ur - V) | 9i¢

pala(ug - V)
—plT v 1T .V
—p14 (@) g Qu Qi a pily (uy ) p2ls (us ) -
T 0 0 0 AU = o0.
@) —p2As) \q@2 Q21 Q22 0 P ot

Here, we see that

0
-p1Ar O a1 Qn Q12> (‘91,0111>
ol )| = V),
( O —P2A2> <CI2 Q21 Q22 pli(us - V) o paly (v-V)

pala(uz - V)
—plT -V T -V
—p14 O o Qu Qu) (2 M1 (ur- V) paly (uz- V)
0 oA Ow O 0 0] 0]
P2A2 q2 21 22 0 0 0

- 0(_aplll pilli (u1 - V) —mmlllzT(u‘z'V))
apaly  —p1paloli (w1 V) p3lal(uy- V) )7

so that

(5.14) <_p1A1Aat¢:)1 —O1p1ly (v - V)6t§:>
. —p2A2 A0 s — Oapala(v - V)0, (¢

pil : —pilil{ (w1 - V) pipalils (us - V)) <¢1>
= A Al5).
e <—le2> ¢ <Plpzl2l1T(U1 V) —pslaly (ug - V) b2

On the other hand, taking the Euclidean inner product of the first and the second equations
in (5.8) with —p1q1 and pa2ga, respectively, we obtain

02(0:C + w1 - V() + qoprls - Ay = 0,
01(0¢¢ +u2 - V() — qopala - Agpa =0,

which are equivalent to

(5.15) ¢ +u-VE+ qA(pili - 1 — pala - d2) = 0,
0102v - V( — qoA(01p1l1 - p1 + O2p2la - p2) = 0.

It follows from the second equation in (5.15) that

010111 - D1 + O2pala - Oppo = gy 10162(v - V)AT1H,(.
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Therefore, we obtain

(5.16) adiC + (v - V) (01p1l1 - D1 + Oapals - Orba)
= —a((u- V)¢ + qA(prly - 1 — pals - $2))
—0162(v - V)* (g5 (u- V)ATIC+ (pily - 1 — pala - o).

We proceed to symmetrize the second term in the right-hand side of (5.14).

. <—P%lllir(u1 V) pip2lals (us - V)) A <¢1)
prp2lal (w1 - V) —p3laly (us - V) b2

27 3T ; }
—pilily P1P2lllz) <¢1> < O1pill]  O2p1p2ly l2> <¢1>
q0 <p1p2l2l’1T lng (U ) ¢2 q0 91p1p2l2l1 _92p l2lT (’U ) ¢2
where
. ( O1pi LT 02p1p21112> < > < )q A(Oupils - b1 + Oopols - o)
0 —91p10212l1T 21l 0 1p101 - @1 2p2l2 - @2

.

In the above calculation, we used the second equation in (5.15). Therefore,

—p1 A1 APy — O1p1ly (v - V)dﬁf) < p1l1 ) ( p1l1 ) 2
. ) = A+ 616, v
<—02A2A3t¢2 tapalalv-V)ai) = O\ paty) A6 paly) 0V

—pilili  p1p2ly l2> <¢1>
BAVAVAN I
1 (lelzllT —p3lalt (u-V) o))

Summarizing the above calculations, if we define the symmetrizer %m‘)d by

a lell’ll‘(,v : V) Gnglg('v : V)
(5.17) %mod —91,01[1(’0 . V) —p1A1A O s
—02p212(’0 . V) 0] —pQAQA

then we obtain

. adC + (v - V) (01p1ly - Qt@ + O2p2ls - Do)
AU = —01p1l (v - V)¢ — p1 A1 DD
—bap2la(v - V)0, ( — p2 A2 AD o

—u-V  —qpld{ A qopaly A\
=a QQplllA O O U

—qopalaA @) @)
—q0_119192('u . V)Q(u . V)A_l —QlegplllT('v . V)Q 9192p2l2T(v . V)z .
+ 6162p1l1(v . V)2 —qu%lllrlr(’u . V)A qoplpglllzT(’u . V)A
—9192p2l2('v . V)Q qupoleriF(u . V)A —qu%lglg(’U[ . V)
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Therefore, U satisfies the symmetric system (5.11) with a skew-symmetric operator 7 defined

u-V  gomli A —qopals A

o =a —qulllA 0] 0]
qop2laA O O
G 10102(v - V) (- V)A™L  0109p11T (v - V)2 —0102091% (v - V)2
+ —9192p1l1(v . V)z qu%lllrlr(’u . V)A —qu1p2l1l2T('u, . V)A
9192p2l2(’1) . V)2 —qulpglgl?(’u . V)A qu%lglzT(’u . V)A

For the positive symmetric system (5.11), we can apply the standard theory for partial differential
equations to show its well-posedness of the initial value problem. Moreover, these considerations
help us to analyze the nonlinear problem (2.14)—(2.16).

6 Analysis of related operators
We go back to consider the nonlinear problem, that is, the Kakinuma model (2.14)—(2.16). We

introduce second order differential operators Li;; = Li14;(H1) (4,5 = 0,1,...,N) and Lo;; =
LQ’i]’(HQ, b) (’L,j = 07 1, N ,N*) by

1 2(i+)+1 duj 2(i+4)—1
6.1 Li;ipmi=—-V-|—H V1. —H ;
( ) L,ij 1,5 (2(’L +]) +1 1 1,3 + 2(Z +j) -1 1 1,55
1 i+p;+1 Py Pi+p;j
6.2 Lo 2,-:—v-<Hp’ TN g g — ——L—Hy s i Vb
(6.2) i3 P2,5 pitp+1 2 P2,j pi+p; 2 $2,5
i

pitp; Pibj pitp;—1 2
. +p] H2 Vb - VQOQJ + mHQ (]. + |Vb| )@27].
Then, we have (Ly;j)* = Lyj; for k = 1,2, where (Lj;;)* is the adjoint operator of Ly ;;
in L?(R"). We also use u and wy for k = 1,2 defined by (4.2) and (4.3), which represent
approximately the horizontal and the vertical components of the velocity field on the interface
from the water region Q(t), respectively. Then, the Kakinuma model (2.14)—(2.16) can be
written simply as

N
Hfl&fg + ZLl,ij(Hl)¢1,j =0 for i=0,1,..., N,
7=0
N*
—Hﬁ”&tc + Z L27Z‘j(H2, b)(f)QJ = 0 fOI“ 1= O, 1, . ,N*,
7=0

N
; 1
—p1{ > HY 0+ 9C + 5(\u1\2 +wi)

=0
N* 1

+p2 Y Hy o+ gC+ §(|U2!2 +uw3) o =0.
=0

\

Moreover, introducing ¢1 = (1.0, 1,15, P1.8) 1, P2 = (¢2,0, P21, - .., P2,n+)T, and

(6.3) Li(Hy) = (1,Hf, HE, ... HP?N)Y Li(Hy) = (L1,g(Hy))o<ij<n,
Io(Hy) = (1, HY'  HE?, ... HEN)T, Ly(Ha,b) = (L2, (Ha,b))o<ij<n+,
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we can write the Kakinuma model (2.14)—(2.16) more simply as

(1, (H1)0:¢ + L1(H1)y = 0,
—19(H2)0:¢ + La(H2,b)¢p2 = 0,

(64) —p1 {ll(Hl) “Oid1 +9¢ + %(’Uﬂz + w%)}

+p2 {lQ(H2) < Orpa + gC + %(’U2|2 + w%)} =0.

By eliminating 9;¢ from the Kakinuma model, we obtain N + N* + 1 scalar relations

(N
> (Luij(Hi)¢1,; — Hi'Lygj(H1)¢1;) =0 for i=1,2,..., N,
=0
-,
Z(L2,ij(H2a b)qf)QJ — HQPiLgyoj(HQ, b)¢2,j) =0 fOl“ 7= 1, 2, . ,N*,
=0
N N*
Z Lioj(H1)¢r; + Z Lo oj(Hz2,b)¢2,; = 0.
5=0 §=0

These are compatibility conditions for the existence of the solution to the Kakinuma model,
and exactly the same as the compatibility conditions (2.18)-(2.20). Introducing furthermore
linear operators £1; = £1,(H1) (i = 0,1,...,N) acting on ¢1 = (¢10,..-,01.n)" and Lo; =
Loi(Ha,b) (i=0,1,...,N*) acting on o2 = (2,0, . . .,@27N*)T by

N

Lio(H)er =Y Lioj(Hi)er,
=0
N

Lyi(H)er =Y (Lig(Hi)pry — HY Ligj(H)g1y) for i=1,2,...,N,
(6.5) =
Lo0(Ha, b)p2 = ZL2,OJ'(H27 b)p2,j,

J=0
N*

EQ}@(HQ, b)(PQ = Z(LQ,ij(H2> b)gOQJ' — HgiLZOj(HQ, b)(pgyj) fOI’ ;= 1, 2, Ce. ,N*,
7=0

the compatibility conditions can be written simply as

Li;(Hi)$p1 =0 for i=1,2,...,N,
(6.6) Loi(Hy,b)po =0 for i=1,2,... N*
L10(Hy)@1 + Lao(Ha,b)g2 = 0.

We proceed to derive evolution equations for ¢ and ¢o. To this end, we differentiate the
above compatibility conditions with respect to ¢ and use equations of the Kakinuma model to
eliminate ;. Then, we obtain

Li;(H)owpr = Fi; for i=1,2,...,N,
(67) ['2,i(H2,b)at¢2 = F27i for i=1,2,...,N*,
L10(H1)0wp1 + La2o(Ha,b)Orp2 = F3,
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where ac
1 7
Fi; = = (

: H)[L1o(H)) 1]y for i=1,2,... N,
I = 8£QL(H2, b)[L20(Ha2,b)polpy for i=1,2,...,N*,
By = _68%10 (H1)[L10(H1)pr]1 — %%’20 (Hz,0)[L2,0(Ha2,b)p2]po.

Here, we note that F3 can be written in divergence form as

N N*
Fy=V- {(51,0<H1)¢1> > HPV ¢+ (Loo(Ha, b)) Y H;”f'w?,j}.

j=0 j=0
On the other hand, the last equation in the Kakinuma model can be written as
(6.8) —p1li(Hy) - Ovp1 + pala(Ha) - Orpa = Fy,
where

Fi=m{ac+ 5P +ud) |- pad e+ g (el +u3) |

In view of these evolution equations (6.7)—(6.8) for ¢; and ¢2, we will consider the following
equations for ¢; and 3.

1AHJm—fu for i=1,2,...,N,

(69) EQZ(HQ —fgz‘ for ’i:l,Q,...,N*,
' L1 0(H1)<P1+£20(H2,b)902 =V-fs,
—p1li(Hy) - 1 + p2la(Ha) - p2 = fa.
In the following we will use the notation ¢} = (p11,... ,<p1,N)T and @5 = (@21, .- ,@Q’N*)T,

and we put fi = (fi1,..., fin)T and £ = (fo1,.... fon)T.

Lemma 6.1. Let ¢g and ¢1 be positive constants. There exists a positive constant C = C(cg, ¢1)
depending only on cy and ¢y such that for any Hy, Hy, Vb € L*°(R"™) satisfying Hi(x), Ha(z) > ¢
and |Vb(x)| < c1, any regular solution (yp1,p2) to (6.9) satisfies

p1(IVerollze + I€1l7n) + p2(IVezollZ: + llbllF)

N

1 .

<C —Z(Vﬁh —— H7'Vr )
= 274+1

+ p1(f1 1) 2 + p2(f2,5) 12 + p2(V - f3,12(Ha) - <P2)L2)-
Proof. We introduce a dummy variable i by

n=—L1o(H1)p1

Then, we can rewrite the equations in (6.9) as

nli(Hy) + Li(H)pr = f1 = (0, fi1,..., in) T,
—nla(Ha) + La(Hz, b)a = fo = (0, fa1,. .., fon+)" + (V- f3)l2(Ha),
—p1li(Hy) - 1 + pala(Ha) - 2 = fu,
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that is,

0 —pili(H)Y  polo(Ho)® U] fa
pili(Hy)  p1li(Hy) @) P1|=[mh
—p2la(Ho) @) p2L2(Ha,b) P2 p2f2

By taking the L2-inner product of this equation with (1, @1, 2)T, we see that

p1(L1(H1)p1, 1) 2 + p2(Le(Hz, b)pa, p2) 12
= (fa, 77)L2 + Pl(fh‘Pl)L? + p2(f2, p2) 2

:—Z Vf4,2 —H T V)
7=0

+ p1(f1. 1)1z + p2(fa, @) 12 + p2(V - f3,12(Hz) - p2) 2.

Here, by direct calculation we have

N
(6.10) (Li(H) 1, 01)r2 = Y (Lugg(H)pr g, p14)12
,§=0
m (1N 2 N | 2
:/ dac/ Z (2% V)| + Z%zm_lcplﬂ' dz
S i=0 i=0

Hy N
:/ndw/ Z (27| Veril* + %2201 ;) dz

0 =
N . .
2/' Z (H;ll+1|v801,i|2 +Z.2Hil2_1§0%’i) dm,
n —0

where we used the fact that {zzi}Z-:o,._,,N and {z2i*1}i217__.7N are both linearly independent.

have also

N*
(La(Haz, b)p2, 2)12 = > (Laij(Ha, b)p25, 02.0) 12

1,7=0
Ho
= dx
n 0

If {zP:, zpi_l}izoymy n are linearly independent, then we have

2

Z(Z”’Vsou — pi" o9 iVD)

N* 2
+ (Zpizpi1¢27i> dz.
i=0

(6.11) (L2(Ha, b)p2, <P2)L2

:/R dw/ Z{ (2P| V ol + pF 2P 2|V 08 ;) + pF 2205} de

:/ Z{Hipi“rwz,i\?+pZH§“‘1<1+ [VHP)e3, e
R™ =
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Otherwise, for example, in the case p; =i (i =0,..., N) we obtain

(6.12)

(L2(Ha2,b)p2, p2) 12

H2 N* 2
:/ d:z:/ + sz‘zm_lw,i dz
" 0 -0 i=0

Hs 1 N*
f:/ da:/ {Z 22\ Vo — (i + 12,41 VO|? + 22V !V902N*|2+ZZ2 2= 1)g0§71}dz

=0

N*—1 2

2 (Vo — (i 4 1)2:11VD) + 2V Vipg N

N*—1 N*
o~ / { D (HI Vs — (i + 1)@2ipa VO + H3N T Voo w2+ Z'ZHzQil@%,i} de.
R™ | =0 i=0

A similar estimate holds in other cases. These estimates give the desired one. O

Although this lemma gives an a priori bound of the solution to (6.9), the equations in (6.9)
do not have a good symmetry. In order to give an existence theorem to (6.9) with robust elliptic
estimates, it is better to rewrite them in a symmetric form by introducing a good unknown
variable. We introduce scalar functions ¢ and ¢ by

(6.13) e1=U(H1) -¢1, @2 =1(Hs) .

We also introduce second order differential operators P ;(Hy) (1 =1,...,N) and Q1(H;) acting
on R¥-valued functions P = (gol,l,...,gol’N)T and P ;(H2,b) (1 = 1,...,N*) and Q2(H2)

acting on R -valued functions ¢ = (p21,...,p2n+)T by
(
Pyi(Hy)py = Z{ (L1ij(Hy) — HY Ly oj (H1)) 15
(6.14) — (Laio(Hy) — HE Ly oo(Hy)) (H ¢15) },
2j
Q1(Hy)p) = Z{L1 0j (H1)¢1,5 — Lioo(H1) (Hy? ¢15) }
J=1
and
Py i(Hs,b) Z{ (Lo,ij(H2,b) — Hy' Lo oj(Hz2,b)) @2,
(6.15) — (La,io(Hz,b) — H5' Lo go(Ha,0)) (Hy" ¢2,5) }
N*
Q2(Ha,b)ph = > {Lag;(Ha,b)paj — Looo(Ha,b) (Hy ¢a5) },
\ J=1

respectively, and put

Py(Hy)@hy = (PLi(H)ey, - Puv(HDeh)T,
Py(Hz,b)ply = (P21 (H2, b)Y, . .., Pon+(Ha, b)) ™.
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Then, we see easily that P;(H;) and Py(Hz,b) are symmetric in L?(R™) and that

Loi(H)er = Q1(H1)@| + Lioo(Hy) (11 (Hy) - 1) for i=0,
R PLi(H) @, + (Qu(HD) (W (H) - ¢1))i for i=1,...,N,
Q2(H2,b)h + Lo oo(H2,b)(I2(H2) - ¢2) for =0,

Failile:Dliee = {P2,i(H2,b)<P'2 + ((Q2(H2,b))"(I2(Hz2) - p2))i  for i=1,...,N*,

where Q* denotes an adjoint operator of @ in L?(R"). Therefore, we can rewrite (6.9) as

Pi(Hy)¢| + (Q1(H1))" 1 = fi,

Py(Haz,b)h 4+ (Q2(Ha, b)) p2 = fo,

Q1(H1)@| + Lioo(Hy)pr + Q2(Ha, b)y + Lo go(H2,b)p2 = V - f3,
—p1p1 + p2p2 = fa.

These equations for (¢}, ¢1, ¥h, ¢2) do not have yet any good symmetry. But, it follows from
the last equation that

p2p2 = p1p1 + fa-

Using this we can remove o from the equations and obtain

p1PL(Hy )@ + p1(Q1(Hy))* 1 = pr F,
p2Pa(Ha, b)@h + p1(Q2(Ha, b)) 1 = poFo,
p1Q1(H1)@) + p1Q2(H2,b)ph + p1 (L1,00(H1) + %Lz,oo(H% b)) p1=p1V - F3,

where
1 1
(6.16) Fi=f, B=f— E(Q2(H2,b))*f4, F3=f3+ gH2Vf4.

These equations for (¢, @5, p1) have a good symmetry and can be written in the matrix form

%] p1Fy
(6.17) 2Ch) ey = P2 |,
1 p1V - F3
where
p1Pi(Hy) @) p1(Q1(Hy))*
(6.18) P(C,b) = o p2P2(Ha,b) p1(Q2(Hz,b))" ,

(
p1Qi1(H1) p1Q2(H2,b) p1 (Ll,oo(Hl) + %Lz,oo(fb,b))

which is symmetric in L?(R™). Moreover, Z((,b) is positive in L?(R") as shown in the following
lemma.

Lemma 6.2. Let ¢y, c; be positive constants. There ezists a positive constant C = C(cg, c1)
depending only on cy and c1 such that if (,b € WH°(R™) satisfy Hyi(z), Ha(x) > co and Hy(z)+
|VHy(2)| + |Vb(x)| < c1, then for any @ = (@}, @b, ¢1)T we have

(2(0), )2 = C il 3 + p2ll bl i + o1l Verll72)-
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Proof. Given ¢ = (¢}, 5, ¢1)T, we define ¢ and @2 by

N N*
27 1 i
pro=w1—y H'pij,  pag= %@1 — > HY ¢
=1 i=1

and put ¢ = (g@l,o,wl,l,...,gol,N)T and g = (90270,¢271,...,9027N*)T. Then, we have ¢ =
Li(Hy) - 1 = B213(Ha) - 2, so that

pili(H1) - 1 — pala(Ha) - p2 = 0.
We also define F1 = (Fl,la N ,FLN)T, F2 = (FQJ’ e ,FQ,N*)T7 and F3 by

F ©
3 1

Then, we have
p1Lii(Hi)p1 =F1; for i=1,2,..., N,
p2L2i(Ho,b)po = Fy; for i=1,2,...,N*,
p1L1o(Hi)p1 + p2Loo(Ha, b)ps = F3.

Now, we introduce a dummy variable n by

n=—L10(H1)p1.

Then, it follows from the above equations that

—pili(H1) - o1+ p2la(H2) - 92 =0,
p1(nli(Hy) + Li(H1)e1) = fi1,
pa(—nl2(Hz) + Lo(Hy, b)p2) = f2 + S2la(Ha) F3,

where f; = (0, F14,... ,FLN)T and fo = (0,Fa1,... ,FQ,N*)T. These equations can be written
in the matrix form

0 —pili(H1)Y  pola(H)" n 0
p1li(Hy) p1L1(Hy) O w1 | = fi
—pala(Ha) @) p2La(Ha,b) P2 fo+ %12(H2)F3

By taking the L2-inner product of this equation with (1, @1, @2)T we see that

p1(Li(Hy)p1, 1) 12 + p2(La(Ha, b)pa, @2) 12

= (f1,e1)02 + (f2,02) 12 + %(lz(HﬂF&@z)m

- (F1790/1)L2 + (F27LP/2)L2 + (F37g01)L2
= ‘@(Cab)aa ‘;5)[?7

which gives, by (6.10) and (6.11) or (6.12),

22) + p2(l el + [Vie20llZ2).

(2(¢,0)2,9)12 = pr(llei 7 + [IVerol

Since ||[Ver 2, S 104112 + [[Ve1,0]/22, we obtain the desired estimate. O
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By this lemma, the explicit expression (6.18) of the operator &((,b), and the standard
theory of elliptic partial differential equations, we can obtain the following lemma.

Lemma 6.3. Let p1, p2, h1, ha, co, M be positive constants and m an integer such that m > 5+1.
There exists a positive constant C = C(p1, p2, h1, ha,co, m) such that if ¢ and b satisfy

[CIEzm + [1bllwm.ee < M,
Hl(il}) =hy — C(m) > co, HQ((IZ) = hy + C(m) — b(:l)) >cy for xR

then for any Fy,Fy € H*' and F3 € H* with k € {0,1,...,m — 1} there exists a solution
(¢1: 5. p1) of (6.17) satisfying

15, L) + IVorll e < C(|(Fy, Fo)ll g + (| Fs][ ) -

Moreover, the solution is unique up to an additive constant to y.

We proceed to consider solvability to (6.9). Given fi, f3, fs, f1, we define Fy, F», F3 by (6.16),
for which there exists a solution (¢, ¢, ¢1) to (6.17), define ¢; o and p2 by

N N*
A . . 1
pro=e1—Y Hiprj,  gao= P~ > HY o+ —fa,
— P2 — P2
7=1 Jj=1
and put @1 = (10,115, 91.8)" and @2 = (20,9215, p2n+)T. Then, we see that
(¢1,p2) is a solution to (6.9). More precisely, we obtain the following lemma.

Lemma 6.4. Under the hypothesis of Lemma 6.3, for any f| = (fi1, .-, fin)T, 5= (fa1,---,
fone)Y, fs, and fy satisfying fi, f5 € H*"' and f3,Vfy € H* with k € {0,1,...,m — 1}, there
exists a solution (yp1,p2) to (6.9) satisfying

1@, @) s + 1(Veor0, Vool < CUIFL F) s + 1(F3: V fa)ll )

where C = C(p1, p2, h1, ha,co,m). Moreover, the solution is unique up to an additive constant
of the form (Cp2,Cp1) to (¢1,0,920)-

7 Construction of the solution

In this section, we will prove Theorem 2.1 one of the main theorems in this paper. One possible
strategy to construct the solution of the initial value problem to the Kakinuma model (2.14)-
(2.16) would consist in firstly transforming the equations into a quasilinear positive symmetric
system, that is, a quasilinear version of the positive symmetric system (5.11), secondly applying
the method of parabolic regularization to construct the solution of the transformed system,
and finally to show that the solution to the transformed system is in fact the solution of the
Kakinuma model if we further impose the compatibility conditions (2.18)—(2.18) on the initial
data. Here, in order to avoid the heavy computations that would be involved when following
this strategy, we find it more convenient to instead apply the method of parabolic regularization
to the Kakinuma model directly.
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7.1 Parabolic regularization of the equations
We remind that the Kakinuma model (2.14)—(2.16) can be written compactly as (6.4), that is,
L1 (H1)0:¢ + L1(Hy)¢p1 = 0,

(7.1) —l2(H32)0iC + L2(Hz,b)p2 = 0
—p1li(Hy) - Oy + pala(H2) - Oppa = F

where ¢1 = (¢1.0,011,---,01.N)T, P2 = (P20, 92.1,--.,P2.n+)T, I and Ly, for k = 1,2 are
defined in (6.3), and

(2 F=o{act g (P +ud) b - {oc+ 5 (uaf +ud) |

Here uy and wy for k = 1,2 are defined by (4.2) and (4.3) respectively. We regularize the
Kakinuma model by adding artificial viscosity terms as

11 (H1)(0i¢ — eAQ) + Li(H1)g1 = 0,
(7.3) —l2(H2)(0¢¢ — eAQ) + La(Ha,b)¢p2 = 0,
—p1li(Hy) - (Orp1 — eA1) + pala(Hz) - (2 — eAgp2) =

We are going to show the existence of the solution to the initial value problem for this regularized
Kakinuma model under the initial conditions

(7.4) (¢, &1, @2)lt=0 = (C(0)> P1(0)> P2(0))-
For this regularized Kakinuma model, the compatibility conditions for the existence of the
solution have the same form as the original Kakinuma model, that is,
El,i(Hl)(,bl =0 for ¢= 1,2, PN ,N,
(75) Eg,i(HQ,b)(ﬁg =0 for = 1,2,...,N*,
L10(H1)$1 + Loo(H2,b)p2 =0,

where £q;(H;) for i =0,1,...,N and Ly ;(H>,b) for i =0,1,..., N* are defined in (6.5). Here,
we note the identities

[815, El,i(Hl)]¢1 = fl,i(Cv d)l)atc for 1= 1,2,..., N,
[8157 £2,i(H27 b)]¢2 = f2,i(<> ¢27 b)atC for i= 17 27 cee 7N*7
[0, L1,0(H1)|p1 + [0r, L2,0(H2,b)|p2 = =V - (v0(),

where v = ug — w7 and

N
flz<¢1 Z{

H Y Ay + 4ijH} Y ¢M}

Jj=0
N*

f2,i(C, p2,b) Z { b HY P Ay — pzl?j HY PN (g VD)
=0 ] + 1 p]

i 1 i i—2
— pHY PN - Ve  + pip HY TP (1 4 IVb|2)¢2,j}’
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and

(A, Lri(HD1 = f1i(C, $D)AC+ fri(G 1) for i=1.2,..., N,
[A7£2,i(H27b)]¢2 :f2,i(<7¢27b)AC+f2,i(€7¢27b) fOI' 1= 1727"'7N*7
[Aa EI,O(HI)]d)l + [Aa £2,0(H2a b)]¢2 =-V. (UAC) + f3(C7 ¢1> ¢27 b>7
where
Fri(C, 1) = Z{ O, L1,i(H1)]01p1 + (01€) 91 fri(C, 1)},

n

Fos(Cobnsb) = Z{[az, Loi(Ho, D)0uhs + () fo.(C, 2, b) — 1((01D) fos(C, b, b)

=1

bipj Pi+Dj Di Di+D;
+ 711 V(¢ 7‘V(91b - —H. ]Valb-Vd),-
Z ( +p)p; 2 (¢2,5 ) Pi +p; 2 2,

S r— ff?'_ CH T 2(T V@lb)> }
i T Pj

n

f3(C, 1, ¢2,b) = Z{[%ELO(HQ]@I% + [0, L2,0(H2,b)]01¢p2

=1

+V- (—(alg)(alv) + 0 <(alb)u2 + i H§j¢2,jvalb)> }

\ j=1

We also note that f3(, ¢1, ¢2,b) can be written in a divergence form as

f3<<7 ¢17 ¢27 b) =V f3(C7 ¢1; ¢27 b>7

where

n N N*
F3(C pr o, b) = {(am Y HUIVO;+ Y Hy (Do) VD
=1

J=0 J=1

N*
+ (O — 00 > (HY N Oydoj — piHY ™ (91p2,5) V)
7=0

N
—(01¢)(Ov) + 9y ((3lb)u2 + Z H§]¢2,jvalb> } -

j=1

Therefore, applying the operator 9; — €A to (7.5) we obtain

L1i(H1)(Oepr — eAP1) = — f1.4(C, 1)(0eC — eAC) + e f14(C, 1)
for i=1,2,...,N,
Loi(Ha,b)(Osp2 — eAp2) = — fo.i(C, 2, b) (9 — £AC) + £ f2,i(C, B2, b)
for i=1,2,...,N*,
L10(H1)(0sp1 — eApy) + Lo o(Ha2,b)(Orp2 — eAgpa)
=V (v(atC - 5AC) + 8f3(<7 ¢1a ¢2’ b))

On the other hand, we have N 4+ N* 4 2 evolution equations for one scalar function {. To select
an appropriate evolution equation for ¢, we will use the notation defined by (5.13). We note
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that they depend on the unknown functions H; and Hs. Taking Fuclidean inner products of
the first and the second equations in (7.3) with p;q; and paqa, respectively, adding the resulting
equations, and using the relation —p1ly - q1 + p2la - g2 = 1, we obtain

(7.7) 9¢ — eA¢ = Go,

where
Go = p1q1 - L1(H1) 1 + p2q2 - La(Ha, b)¢o.
Plugging this into (7.6) and noting the last equation in (7.3), we have

L1i(H) (011 — eAdy) = —f1i(C, p1)Go +ef1.4(C, 1) for i=1,2,..., N,
L2i(Ha, b)(Drp2 — eA¢2) = — f4(C, 62,0)Go + efoi(C, d2,b) for i=1,2,.. N*,
(7.8) R L10(H1) (i1 — A1) + Loo(Ha, b)(8sp2 — eApa)

= V- (vGo+cfs(C, b1, 2, b)),
—p1li(Hy) - (Orp1 — eA¢p1) + palo(Hs) - (Orp2 — eAgpa) = F

Therefore, thanks to Lemma 6.4 we obtain

(7.9) {3t¢1 —eA¢; = Gy,

Oip2 — eAgps = Ga,

where G1 = (G10,G1,,- .- ,GLN)T and G2 = (G2,0,G21, - - .,GQ’N*)T are defined as a solution
to the following equations

1,Z(Hl)c:lf —f1i(¢, d1)Go +ef1.4(C, 1) for i=1,2,...,N,
Loi(Hy,0)G = — f2,4(C, $2,0)Go + e fai(C, ¢2,b) for i=1,2,...,N*,
Ly O(Hl)Gl + Loo(H2,0)G2 =V - (vGo + e f3(C, d1, @2, b)) ,
—p1li(H1) - G1 + p2la(Hz) - Go = F

(7.10)

Precisely speaking, (G1,G2) are defined uniquely up to an additive constant of the form
(Cp2,Cp1) to (G10,G20). However, this indeterminacy does not cause any difficulties in the
following arguments.

Remark 7.1. The equations in (7.9) are valid even in the case ¢ = 0, that is, any regular
solutions to the Kakinuma model (2.14)—(2.15) satisfy (7.9) with ¢ = 0. Particularly, d;¢y(z, 0)
for & = 1,2 can be expressed in term of the initial data (i), ®1(0); ®2(0)) and the bottom
topography b.

7.2 Existence of the solution to the regularized problem

Lemma 7.2. Let g, p1, p2, h1, ha, co be positive constants and m an integer such that m > 5 +1.
For any initial data (), d1(0)> P2(0)) and bottom topography b satisfying

C0), Vo1,000)s VP2,00) € H™ ¢’1(0)7¢/2(0) € Hml, pe Wmte
—Co(®) = <, h2 + C(0)(“5) —blx) >cy for xR,

and for any € > 0 there exists a mazimal existence time T, € (0,+00] such that the initial value
problem (7.7), (7.9), and (7.4) has a unique solution ((¢, @5, @5) satisfying

€5, Vi, Voo € C([0,T2); H™), i,¢5 € O([0, I.); H™ ).

34



Proof. We evaluate the right-hand sides of the equations, that is, the terms Gy, G1, and Gbs.
To this end, suppose that ((, @1, ¢2) and b satisfy

1) {H(C, V610, Vér0)lm + (65, )l sss + [llwnsae < M,

hi—¢(x) > ¢y, ha+{(x)—blx) >cy for xeR"™
Then, we see that

1Gollzzm—1 + 1(F1s £5, £3) | rrm—r + 1(FL, F)llzzm—2 + [ Fll e < C(M, 1),
where f{ = (f11((, 1), ..., fin(¢, ¢1)) and so on. Therefore, by Lemma 6.4 we have
1(VG10, VG20)llzrm-1 + (G, Go)lum < C(M, c1,¢),

where we notice for further use that C' (M, c1,¢€) is bounded uniformly with respect to e € (0, 1].
We obtain the desired result by the standard theory on the heat equation. ]

Lemma 7.3. Suppose that the initial data ( oy, 1(0), P2(0)) and the bottom topography b sat-
isfy the hypotheses in Lemma 7.2 and the compatibility conditions (7.5). Then, the solution
(C5, @5, @5) constructed in Lemma 7.2 satisfies the regularized Kakinuma model (7.3).

Proof. By the construction of the solution, we easily see that it satisfies (7.8) and in particular
the last equation in (7.3). Therefore, it is sufficient to show that it satisfies also the first two
equations in (7.3). By (7.7) and (7.8), we have

(at_gA)(El,i(Hl)(ti)l) =0 for i:1727"'7N7
<8t_€A)<£2,i(H27b)¢2) =0 for i= 1727"'7N*7
(Or — eA) (L1,0(H1) 1 + L2,0(Hz2,b)p2) =0,
so that by the uniqueness of the solution to the initial value problem of the heat equation, if the

initial data satisfy the compatibility conditions (7.5), then the solution satisfies also (7.5) for all
t € [0,T). Particularly, we obtain

—U(Hy)(L1,0(H1)p1) + Li(Hi )1 = 0,
—l3(H3)(L2,0(Hz,b)p2) + La(Hz,b)p2 = 0,

so that by the last equation in the compatibility conditions (7.5) we have

(7.12) —U(Hy)(L10(H1)@1) + Li(H1)1 = 0,
‘ lo(H2)(L1,0(Hi)$1) + La(Ha,b)p2 = 0.

Taking Euclidean inner products of the first and the second equations with p1q; and pago,
respectively, adding the resulting equations, and using the relation —p1l; - q1 4+ p2lo - g2 = 1, we
obtain

L10(H1)$1 + p1qr - Li(H1) 1 + p2qe - La(Hz, b)g2 = 0,
which together with (7.7) implies

L1,0(H1)p1 = —(9:¢ — AQ).

Plugging this into (7.12), we see that the solution satisfies the first two equations in (7.3). [
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7.3 Uniform bound of the solution to the regularized problem

We proceed to derive estimates on solutions ((%, ¢, ¢5) to the regularized Kakinuma model (7.3)
uniform with respect to the regularized parameter ¢ € (0, 1] and for a time interval independent
of €. To this end, we make use of a good symmetric structure of the Kakinuma model based
on the analysis of Section 5.1. In order to simplify the notation we write ((, ¢1, ¢2) in place of
(C°. 5. 5).

In view of (6.1) and (6.2) we decompose L1(H1)¢1 and La(Ha,b)¢2 into their principal parts
and the remainder parts as

(7.13) Li(Hy)p1 = —Ay(Hy) Ay + 1 (Hy)(wy - VE) + LY (Hy) ¢,
(7.14) Lo(Hy,b)po = — Ao (Hy)Adpy — lo(Hy) (ug - VC) + LYY (Hy, b) o,

where the matrices A;(H;) and Ag(Hz) are given by (5.10), LY (H;) = (Llfz'(Hl))ogi,jgN and
LQ(HQ, b) = (Llow (HQ, b))OSi,jSN* are given by

2,45
4ij 2(i+5)—1
L% (Hy)prj = ———H; " :
1;5]( 1)@1,‘] 2(2 +]) -1 1 ng:]’
LI (Ho BYpg: = Vb - (HP Py i — p HPPI 0 Wb Pi_ gpitrig . (o Vb
2,@]( 2,b)p2,; = (H, $2,5 — Pjllg ¥2,j )+p‘+p' 2 (2,5 VD)
i T Pj
Di pi+p; PiPj pi+p;—1 2
— Hy" 7’Vb- -V ;j + ————Hy" "7 "(1+|Vb|7)pa;.
Py 2 J pitp—1 2 ( IVO[") 2,

Let us recall the definitions of w in (5.5), and ¢; and 63 in (5.12), so that
u; = u — v, Uy = u + Oyv.

Therefore, we can rewrite the first two equations in (7.3) as

11 (Hp)(0:¢ — eAC + (u — 01v) - V) — A (Hy) Ay + LIV (Hy )y = 0,
—1y(Ho) (8¢ — eAC + (u + 0v) - V) — Ag(Hz)Agpy + LYY (Ho, b)py = 0.

Let 3= (B1,...,Bn) be a multi-index satisfying |3| < m. Applying the differential operator 9%
to these equations and noting the relation (v-V) = —(v-V)* — (V- v), we have

il (9¢7 = AP + u-VEP) + (v V) (mOili(?) = Y (1 A10i$]) = Fis,

(7.15) =1

—pala(0iC° = eAC” +u- V() + (v V) (pa02laC”) = D Ailp2As01903) = Fi g,
=1

where ¢F = 9°¢, @) = 8¢y, for k = 1,2, and

,

Fiz= pl{—[aﬁ,ll}Go — [0%,iuT V¢ — (V- 0)011:¢P + [v -V, 0111]¢P
=D (@A)B] + (07, AiJAg — 35L11°W(H1)¢1},
=1

Fyp= p2{[aﬁ, 15]Go + [0°,1,ud V¢ — (V- 0)0alalP + [v - V, 0l5]¢P

=S @A) + (0%, As] Ay — 0° L™ (H, b)¢2}.

\ =1
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In the above calculation, we used (7.7). Similarly, applying the differential operator 98 to the
last equation in (7.3), we have

(7.16) — pili - (01, — eAB, + (w- V)@Y + proals - (v- V)
+ pala - (D — AGS + (w- V)5) + pabaly - (v- V)5 +al’ = Fy g,

where

=0 1=0

N* N*
a=p (Zpiﬂgi_l(GQ,i g Vo) + Y pilpi — DHY *(wy — uy - V) + g)

N
<Z 2iHY (G +ur - V) —wr » 20(2i — H Dy — g> ,

i=0
Fop :pl{(aﬁll(Hl) — (O, L (H1))0PHy) - G1 + [0°; 1 (H1) T, G4

+u - Z (11 (H1), V] + (0% (Hr) — (Om, 15 (H1))0  Hy )V ;)

—wi Z %, 61,310, 11 5 (H1) + (70, 1 j(Hy) — (8, 1,5 (H1)O” Hi)n 5)

gaa o+ san0)

— P2{(8ﬁl2(H2) — (5H2l2(H2))8BC) -G+ [8ﬁ;l2(H2)T,G2]

+up Z( 2 (H2), Vo) + (07125 (H) — (Om,1a(H2))0° Hy) Vo
— 0%, Ol (H2)] 62,5 Vb — (0%l (Ha) = (D, Lo (H2))O" Ha) b, V)

+w22 %, 62,310,125 (Hz) + (870, 1o j(Ha) — (97,12, (H2))0” Ha)¢2,5)

l\DM—l

([8 cud, ug] + [0°; wa, wo)) }

In the above calculation, we used (7.9) and the notation
l1(Hy)
lo(Ho)

and the notation for the symmetric commutator [0°;u,v] = 9% (uv) — (9%u)v — u(9°v). We can
rewrite (7.15) and (7.16) in a matrix form as

(lho(Hy), lia(Hy), ool (H))T,
(la,o(H2),12.1(Hs), ..., lo n+(H2)),

(7.17) A (U7 — AU + (u- V)UP) + o U7 = B,
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where

CZ Fop
UB = ¢1 y F,B = FI,B 5
oy F 5
and
0 —plf palf

4271 = ,01l1 O 0 ’
—p2la O 0

a p1011F (v - V) pabal (v - V)
| @vree) =Y amAa) o
&0 = =1 "
(’U . V)*(pgezlg . ) O — Z 8l(p2A281 . )
=1

Here, we note that <7 is a skew-symmetric matrix and "¢ is symmetric in L?(R"). Con-
cerning the positivity of /"4, we have the following lemma.

Lemma 7.4. Let ¢y and Cy be positive constants. Then, there exists C = C(co,Cp) > 0 such
that if a, Hy, Hy, and v satisfy

(718) {HaHL | (Hy, Hy) [~ + [[o]]z < Co,

Hi(x) > cg, Ha(x)>cy for xeR",

and the stability condition

P1P2

(7.19) a(z) — o1 Ho(2)as + poH ()

w(xz)]>>co>0 for xcR",

then for any U = (C, b1, (i)g)T, we have the equivalence
CTH(CG V1, Vo)liz < (U, U) 12 < C|((, Vb1, Vo) 1
Proof. Introducing diagonal matrices D1(H1) and Dy(Hs) by

Dl(Hl) = diag(la lea H%) cee 7H12N)7
DQ(HQ) = diag(l, Hgl, Hggv RN HgN*)’

we have

where A and Ao are constant matrices defined by

1 1
ALO — <) 9 A270 = <> :
2(i+7)+1 0<i,j<N Pitpj+1/0<ij<ne

We have also

1 Dy(Hy)pr = l(Hy) - ¢, k=1,2.
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Therefore,

(A, U) 2 = (al, )2 + Z Z (piHi Ak, o DOy, D0y 1.2
=1 k=1,2

125 (osbids - (v V), O);

k=1,2

= Z Z (pk Hi Q10 Ak 0 D011, Ak o Di0i i) 12

=1 k=1,2

+(al, Q)2+ Y {(peHron(le © V) ¢, (I © V) Ty 2
k=1,2

+ 2(pk9kv . (lk & V)T(i)k, é)LQ}
=: 1 + I,

where we used the identity (5.7). Since Q10 and Q2 are nonnegative and in view of
I > / {GC? + Z {pe Hrow| (s @ V)T |? — 2010k |v|| (1 @ V)Ték\!é’}}dw
" k=1,2
and the analysis in Section 5.1, we can show the desired equivalence. O

Lemma 7.5. Let g, p1, p2, h1, ha, co, My be positive constants and m an integer such that m >
5 + 1. There exist a positive time T and a positive constant C such that if initial data

(C(0)s 1(0)> P2(0)) and bottom topography b satisfy

1(C0)> V1,000, V2,000l Em + [[(DY ) Do)l 1 + [[bllyrm+z.c < Mo,
h1 — Coy(@) = 2c0,  h2 + (oy(x) —b(x) > 2¢9 for x € R",

the stability condition (7.19) with co replaced by 2cy, and the compatibility conditions (7.5), then
for any ¢ € (0, 1] the solution (C%, @3, P5) constructed in Lemmas 7.2 and 7.3 satisfies

sup ([[(C°(t), Vi o(t), V5.0t | Fim + (DT, &5)[77m+1)
0<t<T

T
+5/0 1(¢° (1), Vi (1), V5 (1)) [[Fpmrdt < C.

Proof. Once again we simply write U = ((, ¢1,¢2)T in place of (¢°, @5, #5)T. We define an
energy function &, (t) by

Ent) = 3 (AU @), 0°T ()12 + (079 (1), B3 }.

[B|<m

We assume that the solution ({(t), ¢1(t), @2(t)) satisfies (7.18) and the stability condition (7.19)
for 0 <t < T. Then, the energy function &,(t) is equivalent to

En(t) = [1(¢(t), Vér,0(t), Vo0 () Frm + (1(2), (1)) | Frme -

Furthermore, we assume that

(7.20) E(t) + ¢ /O B (r)dr < My
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for 0 <t < T, where the constant M; and the time 7" will be determined later. In the following
we simply write the constants depending only on (g, p1, p2, b1, ha, co, Co, My) by Cy and the
constants depending also on M7 by Cs. They may change from line to line. Then, it holds that

CrE;(t) < &(t) < C1LE;(t)

for 7 =0,1,2,.... We are going to evaluate the evolution of the energy function &, (t). To this
end, we take the L%inner product of (7.17) with 9, U” — e AUP + (u - V)U? and use integration
by parts to get

1d

5 dt(gfmodUﬁ U2 —i—ez (o UP, oUP) 12

=1

1 n
= 5 (00, N0 UP) 2 = (101, WU, 0U) 12 — (707 (u - VIUP) 12
=1

+ (Fop,0°Go+ (u-V)CP) 2+ Y (Fip, 0°Gh + (u- V)y) 12
k=12

Here, we see that

(01, " NUP , UP) 12 = ((04a)¢P, (%) 2

+2 Z 1 (00, 0L (v - V)b, %) 2 +Z Z pr((0: A1 01900) 12,

k=1,2 =1 k=1,2
(01, U7, 0U”) 12 = ((D1a)¢”, M) 2
+ 3 o { (00, 0uLE - )] ) 12 + (P 00, Ol (v )} 2 |

k=1,2

+ 3> okl(9A0)0iy, 05017 12,

k=1,2 j=1

(AP0, (w- D)) 2 = ~ (V- (@), )

= 3w {((V- W Ol (0 )@ + (P V), 0L (0 V)11 |

k=1,2
- 8 5 1 " B g 4
N {(Akazsbk,((am) Ve + 5w 9y 40001 |
k=1,2 =1
so that for 1 < |8 < m we have

1d

5 (" U8 U 2+ (A™0UP, 0U°) 1

=1
< Co(1+ Emi1(t)?) + | Fosll i 10°Go + (- V)P g

+ 3 Bl 2 107G + (w- V) 2
k=12

<Oy (1 + eEmH(t)%) .
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Similar estimate can be obtained in the case |3| = 0 more directly. On the other hand, it follows
from (7.9) that

L@, oI + (Vi Vo) 2. = S (0°Gh 012, < G

2 dt Py

Therefore, we obtain

d

St + B () < Co (14 2B (7)),

which yields
t
E,.(t) + 5/ Epyi1(m)dr < C + Cat.
0

Putting M7 = 2C7 and taking T > 0 so that CoT < (4, we obtain by a continuity argument
that (7.20) holds for 0 <t < T.

It remains to show that ({(t), ¢1(t), p2(t)) satisfies (7.18) and the stability condition (7.19)
for 0 <t < T. By the Sobolev embedding theorem, (7.7), and (7.9), we see that

(7.21) 6@ ) = Goy@) + D (IVor(@,t) = Vouo)@)] + [0, 1) — B (@) )

k=1,2

< (160 Gl + 3 (IV80(0) = Teu s + 1940) ~ Sy llnr)

k=1,2

t
<Oy /0 <||atc<r>||Hm1 + 3 (IV0 ()l s + ||at¢z<7>r|Hm1>)dT

k=1,2
t 1
<1 [ (G0 V10, TG20)(7) i + (G, G arm + B ()} )
0
<Oy (t+et),

which yields (7.18), except for the estimate for a, by taking 7' > 0 sufficiently small. We now
turn to the stability condition (7.19). In order to evaluate d;a, we need to obtain estimates for
0,G), for k = 1,2. Differentiating (7.10) with respect to ¢, we have

L1,(H1)0:G1 =¢g1; for i=1,2,...,N,
Loi(H2,0)0,G2 = ga; for i=1,2,... N*
L10(H1)0:G1 + L29(H2,0)0,G2 =V - g3,
—pili(Hy) - 0;G1 + polo(Ha) - 0,G2 = ga,

where
(910 = =10 LL(HDIGY = 01 (£13(C, $1)Go — efialG pr))  for i=1,2,...,N,
92i = [8t7 (HQ b)]GQ _at(fQZ(C ¢27b)GO_Ef2,i(C7 ¢2ab)) for i= 1727"'7N*7
N
gs = 815(: Z VGlj + Z VGQ’]' — ijngGQJVb))
=0
+ 0 (UGO + €f3(<a ¢1a ¢2> ))7
94 = p1[0, L (H1)T|G1 — pa[0y, 1o (H2)T|Go + O, F.
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Therefore, by Lemma 6.4 with & = m — 2 we obtain

[(V3:G1,0, VO:G20)llgm—2 + [[(0:GY, 0:G3) || frm—1
< Ca2 (l(g1, g2)l| rm—3 + [|(g3, Vga) || m—2)
< Oy ([[(8¢¢, V1,0, VOr2,0) || grm—1 + || (Ord, Oreph)| 1) -

On the other hand, it follows from (7.7) and (7.9) that

1(9¢C, VOrp1,0, VOrdao) | gm—1 + [|(0r7, )| prm
< (Go, VG1,0, VG20l grm—1 + (G, GY) || zrm

+ & (I1(¢, V10, Vo)l gmer + 191, 95)l| gme2)
<O (1 + aEmH(t)%) .
Thus,
[0sal| grm—1 < Co ([(8:C, VOr1,0, VD120, 0iGY, ,GY) | prm—1 + [ (9e @', By )| rm)

< G (14 eBm (1)),
so that .

la(@, 1) — a(z,0)| < 01/ |9k m-sdr < Cs (14 VaT)

0

This together with (7.21) yields (7.18) and the stability condition (7.19) by taking 7" > 0
sufficiently small. This completes the proof. O

Once we obtain this kind of uniform estimates, compactness arguments allow to pass to
the limit ¢ — 40 in the regularized problem (7.3) and (7.4). Moreover, using the Bona-Smith
technique, we obtain the strong continuity in time of the solution and the continuity of the
flow map, and the corresponding strong continuity of the time derivatives proceeds from (7.7)
and (7.9) with € = 0. Thus, Theorem 2.1 follows.

8 Hamiltonian structure

In this section, we will show that the Kakinuma model (2.14)—(2.16) also enjoys a Hamiltonian
structure analogous to the one exhibited by T. B. Benjamin and T. J. Bridges [1] on the full
interfacial gravity waves. We remind again that the Kakinuma model can be written simply as

I (H1)0i¢ + L1(Hy )1 = 0,
(8.1) —l3(H2)0i¢ + Lo(Hz,b)¢p2 = 0,
—p1li(Hy) - Oy + pala(Hz) - Orpa = F,

where ¢1 - (¢1707¢1,17"'7¢1,N)T) ¢2 = (¢2,07¢2,17"'7¢2,N*)T7 lk and Lk for k = 172 are
defined by (6.3) and F is defined by

(52 F = {g6+ 5 (Ve + (@.07)].0") |

1
~ 2 {o 5 (TP + (@057 }.
Here, ®i"? and ®5"P are approximate velocity potentials defined by (1.4).
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8.1 Hamiltonian

As was expected, the Hamiltonian would be the total energy. In terms of our variables (¢, ¢1, ¢2),
the total energy &K is given by

(3.3) EX(C, 1, o) = / K (¢, b1, o)
Rn

where the density of the energy eX = eX(¢, ¢1, ¢p2) is given by

h1 1 ¢
(8.4) eK_/C 2p1(\V<I)?pp]2+(8Z¢'?pp)2)dz+/ p2 ([VEPP1? + (9, 95PP)%)d»

ha+b 2"

1
+ 5(02 - Pl)gCZ}dSB
2(i+5)+1 dij 2(i+j)—1
*Pl Z ( Z +J 4 1H1(l 4) V¢1,i . V¢Lj + WHI(Z J ¢1,i¢1,j>

4,7=0
1 & 1 .

+ = 7Hpi+pj+ v . V L Hp«;-ﬁ-p;‘ Vb . V ]
52 Z (pz Tl @2,i - Voo j pitp 2 $2,i ®2,j

2,7=0

pipj pi+p;—1 2
PRl g <z>2,-¢2,~> "
P 04 V0,

By integration by parts, we also have

1
52— p1)g¢.

EX(C, p1, o) = / <;p1L1(H1)¢1 -1+ %szQ(H%b)ﬁbz o + %(Pz - P1)942>d33
Rn

In view of the symmetry of the operators Li(H;) and Lo(H2,b), we can easily calculate the
variational derivatives of this energy functional and obtain

5cEX(C 1, p2) = —
(8.5) 5, E5(C, 1, p2) = prLi(Hi) 1,

5,5 (C, 1, 02) = paLa(Ha, b)gpo.
Therefore, the Kakinuma model (8.1) can be written as
0 pili(H)T  —pola(Ho)T ¢ 5cEX(C, b1, o)
(8.6) —p1li(Hy) O ) O | o1 | =005 P1.02)
p2la(Hs) O @ P2 5,55 (¢, 1, B2)

As we will see later, the canonical variables of the Kakinuma model are the surface elevation
¢ and ¢ given by

(8.7) ¢ = pa®3 .mc = P11 P ¢ = p2la2(H2) - 2 — prli(Hy) - 1,
which is the canonical variable for the full interfacial gravity waves found by T. B. Benjamin
and T. J. Bridges [1] with (@1, ®3) replaced by (®]", ®5PP). Then, the compatibility condi-
tions (2.18)—(2.20) and (8.7) are written in the form
Lii(Hi)$p1 =0 for i=1,2,...,N,
Loi(H2,b)¢po =0 for i=1,2,...,N*,
L1,0(H1)e1 + L2o(Hz,b)d2 = 0,
—p1li(Hy) - @1 + polo(Ha) - 2 = ¢.

(8.8)
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Therefore, it follows from Lemma 6.4 that once the canonical variables ((, ¢) are given in an

appropriate class of functions, ¢} = (¢11,...,¢1.n ) Py = (P21, .-, ¢27N*)T, V1,0, Voo can
be determined uniquely. In other words, these variables depend on the canonical variables (¢, ¢)
and b, and furthermore they depend on ¢ linearly. Although the solution (¢1, ¢2) to the above
equations is not unique, we will denote the solution by

d)l = Sl (C? b)¢7 ¢2 = SQ(C7b)¢

This abbreviation causes no confusion in the following calculations. Since we will fix b, we
simply write S1(¢) and S2(¢) in place of S1(¢,b) and S2(¢,b) for simplicity. Now, we define the
Hamiltonian to the Kakinuma model by

(8.9) ARG, 0) = ER(C, 81(0)9, S2(C)9),
which is uniquely determined from (¢, ¢).

8.2 Hamilton’s canonical form

We proceed to show that the Kakinuma model (8.1) is equivalent to Hamilton’s canonical form
with the Hamiltonian defined by (8.9). In the following, we fix b € W with m > § + 1 and
put

U ={Ce H™; inf (hn—((2)) > 0and inf (s +((@) - bla)) > O},

which is an open set in H™. We also use the function space H* = {¢; V¢ € H™ 1}, For
Banach spaces 2" and %, we denote by B(Z"; %) the set of all linear and bounded operators
from 2 into . By Lemma 6.4, we see easily the following lemma.

Lemma 8.1. Let m be an integer such that m > 5 +1 and b € W"°. For each ( € U;" and
fork=1,2,...,m, the linear operators

Si1(¢): H" 3 ¢+ ¢y € H* x (H*)N,

So(¢): HY 3 ¢ > ¢y € HF x (HF)N,
where (@1, @2) is the solution to (8.8), are defined. Moreover, we have S1(() € B(H*; 0% x
(HF)N) and S3(¢) € B(H®; H* x (H*)N").

Formally, v, = D¢Si () [{]¢, the Fréchet derivative of Sj,(¢)¢ with respect to ¢ applied to ¢
for k = 1, 2 satisfy

Lyi(H\)Y1 = Dy, L1,;(H1)[{]pr for i=1,2,...,N,
Lo i(Hy,b)thg = =Dy, Lo i(Ha,b)[(]p2 for i=1,2,...,N*,
L1.0(H1)91 + L20(Ha2, b)po = Dy, L1.0(H1)[C]1 — D, Lo,0(Hz, b)[{] o,
—prly(Hy) - 41 + pala(Ha) - o = —(p1 (O, i (H )) b1+ p2(0m,12(Hz)) - $2)¢
with ¢; = S;({)¢ for j = 1,2, where fori =1,..., N,

N

Dty L1 (H) ({1 = Y (Dity L (H)(C) = HE Diry Lo (H)[C) = 2HE ™ CLuo; (H1) ) 1
7=0

Dy L (H)] s = =V - (CHY V0 5) + 4iiCHT Vo,
and so on. By using these equations together with Lemma 6.4 and standard arguments, we can

justify the Fréchet differentiability of Sy (¢) with respect to ¢ for kK = 1,2. More precisely, we
have the following lemma.

(8.10)
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Lemma 8.2. Let m be an integer such that m > 5 + 1 and b € W™, Then, the maps
U" 3 ¢ 81(¢) € B(H" H* x (H*)N) and U™ 3 ¢ — 82(C) € B(H"; H* x (H*)N") are
Fréchet differentiable for k =1,2,...,m, and (8.10) holds.

We proceed to calculate the variational derivatives of the Hamiltonian ./ ((, ¢), which are
given by the following lemma.

Lemma 8.3. Let m be an integer such that m > 5 + 1 and b € W™, Then, the map

U x H'' 5 (¢, ¢) — HK((, ) € R is Fréchet differentiable and the variational derivatives of
the Hamiltonian are

5o ((,0) = —L1,0(H1) 1,
6 HR(C,0) = (6cEF)(C, 1, d2) + (L1,0(H1)d1) (p1 (0, 1) (HY) - @1 + p2(Omyle)(Ha) - ¢2),
where ¢, = Sk(C) for k =1,2.

Proof. Let us calculate Fréchet derivatives of the Hamiltonian /¢ K(¢, #). Let us consider first
U x H? 3 (¢, ¢) = H#5((, ¢). For any ¢ € H?, we see that

DA, 9)[d] = (D, %) (¢, S1(¢)$, S2(¢)@)[S1(¢)B] + (D, ) (¢, 81() 9, S2(¢) ) [S2(¢) )]
= (0, )¢, 1, 82), S1(Q)B) 12 + ((66,)(C, D1, B2), S2(C)) 12
= (p1L1(H1) 91, 81(C)®) 2 + (paLo(Ha, b)d2, S2(()9) 12
= (pli(H1) (L1,0(H1) 1), S1(0)) 2 — (palo(Ha) (L1,0(H1)1), S2(C) @) 2
= (L1,0(H1) 1, prli (Hy) - S1(C)¢ — pala(Ha) - S2(C) @) 12
—(Lro(Hy) b1, 9) 2

where we used (8.5) and Lemma 8.1. The above calculations are also valid when (¢, b) €
H' x H!, provided we replace the L? inner products with the 2/~2 duality product where
2 =H'x (HY)YN or 2 = H' x (H')N" for the first lines, and 2 = H* for the last line. This
gives the first equation of the lemma.

Similarly, for any (¢, ¢) € U™ x H? and ¢ € H™ we see that

DeAR(C,)C] = (DeE™) (¢, S1(¢) ¢, S2(C)d) K] + (D, ) (¢, S1(¢) 9, S2(¢)$) D S1(¢) [
+ (D, %) (¢, S1(¢) ¢, S2(¢)9)[DS2(¢)[€] 9]
= ((0c65)(C, b1, 82), ) 12 + (8, E)(C, b1, b2), DeS1(Q)[C]) 12
+ (0, E5)(C, 1, P2), DcS2(C)[C]0) 2.

Here, we have

(88, E)(C, p1. D2), DeS1(Q)[C]D) 12 + (09,6 ™) (€. b1, ¢2), D S2()[C)9) 12
= (p1L1(H1)$1, DcS1()[C]8) 2 + (p2La(Ha, b)d2, DcS2(¢)[C]6) 12

= (L10(H1) 1, prli(H1) - DcS1(¢)[{]¢ — pala(Hz) - DeS2(¢)[{]9) 12

= (L10(H1) 1, (p1 (O, 11) (H1) - d1 + pa(Opyb2) (Ha) - 2)C) 12

= ((L10(H1)$1)(p1(0m, 1) (H1) - b1 + p2(Ompla) (Ha) - ¢2), ) 2

where we used the identity

pili(Hy) - DeS1(C)[{]¢ — pola(Ha) - DeS2(C)[C]¢
= (p1(0m, 1) (H1) - @1 + p2(Om,l2) (Ha) - 2) C,
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stemming from (8.10). Again, the above identities are still valid for ({,¢) € U™ x H* provided
we replace the L? inner products with suitable duality products. This concludes the proof of
the Fréchet differentiability, and the second equation of the lemma. O

Now, we are ready to show another main result in this paper.

Theorem 8.4. Let m be an integer such that m > 5 +1 and b € W™, Then, the Kakinuma
model (2.14)—(2.16) is equivalent to Hamilton’s canonical equations

s K sHK
T at¢ = - )
50 3¢

with A% defined by (8.9) as long as ((-,t) € UM and ¢(-,t) € H'. More precisely, for any
regular solution (C, @1, ¢2) to the Kakinuma model (2.14)—(2.16), if we define ¢ by (8.7), then
(¢, ¢) satisfies Hamilton’s canonical equations (8.11). Conwversely, for any regular solution ({, ¢)
to Hamilton’s canonical equations (8.11), if we define ¢p1 and 2 by ¢ = Si({)d for k = 1,2,
then (¢, @1, ¢2) satisfies the Kakinuma model (2.14)-(2.16).

(8.11) ¢ =

Proof. Suppose that (¢, ¢1, ¢2) is a solution to the Kakinuma model (2.14)—(2.16). Then, it
satisfies (8.6), and in particular

(8.12) ¢ = —L1,0(H1)1.
Moreover, it follows from (8.7) and (8.6) that

Or¢ = pala(Ha) - Oyp2 — p1li(Hy) - Opp1 + (p2(0m,l2(H2)) - 2 + p1(On, li(Hy)) - 1) OiC
= —(0¢E™) (¢, prep2) — (L1,0(H1) 1) (p1(0m, 11 (H1)) - @1 + p2(Om,la(Ha)) - d2) -

These equations together with Lemma 8.3 show that ({, ¢) satisfies (8.11).

Conversely, suppose that (¢, ¢) satisfies Hamilton’s canonical equations (8.11) and put ¢ =
Si(C)¢ for k =1,2. Then, it follows from (8.11) and Lemma 8.3 that we have (8.12). This fact
and Lemma 8.1 imply the equations

11(H1)0:(C+ Li(Hy1)¢p1 =0,
—1y(H2)O:C + Lo(Ha, b)ps = .

We see also that

—p1li(Hy) - 0¢p1 + pala(H2) - Orp2 = 0 — (p1(Om 1) (H1) - 1 + p2(0m,l2) (H2) - ¢2) 0:¢
= —0:6%(C, p1¢02) = F,

where we used (8.11), (8.12), Lemma 8.3 and (8.5). Therefore, ((, ¢1, ¢p2) satisfies (8.1), that is,
the Kakinuma model (2.14)—(2.16). O

9 Conservation laws

The Kakinuma model (2.14)-(2.16) has conservative quantities: the excess of mass [g, (d and
the total energy &% (¢, ¢1, o) given by (8.3). Moreover, in the case of the flat bottom in the
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lower layer, the momentum given by

ME(C, 1, P2) = / / p1 VOPPdzdz + / / P2 VO dedz
Q1(t) Q2(t)

= - CV(=p1li(Hy) - 1+ p2la(Hs) - ¢2)dx

= / (Voda

is also conserved for the Kakinuma model. Here, we give also the corresponding flux functions
to these conservative quantities.
We have two forms of conservation of mass by (2.14) and (2.15) with ¢ = 0, that is,

(9.1) 0¢+ V- Z( 1 ff“wn,j) =0,

(9.2) A+ V- Z ( — HY gy, — ?H§j¢27ij> = 0.
J

Proposition 9.1. Any regular solution (¢, ¢1, ¢2) to the Kakinuma model (2.14)—(2.16) satisfies
the conservation of energy

el +v - fK =0,
where the energy density eX is defined by (8.4) and the corresponding flur fX is given by

=p1 Z ( i +J T 1H12(i+j)+lv¢1,j> (O¢d1,4)

i,7=0

N*
1 i+ +1 p.+p, )
+ ———————Hy;" P Vo + HY 1 gy Vb ) (Dybos).
PZi;O( Pitp+1 2 b2, i + 2 b2, (Or2.i)
Proof. By using F defined by (8.2), we see that
e = —Fatg
4ij
H 2(i+7)+1 i 7}[ (i4+5)— p

+ HPTPit g, J
p22{<pz+pg+l 2 927 pi +

Hgﬂrpj ¢27ij) . V@t¢2’i
1,7=0

pj

i Pi+p; Pipj pi+p;—1 2
N — Hy,""7Vb-V 4+ ——  HTT(1 4|V ) Orda i
( pi+p) P20t e (A ’)@J) t‘b?v}

= —F0( — V- X+ p1Li(H1)p1 - 0ep1 + p2La(Ha,b) s - Orpo,
so that, by (8.1),
O™ +V - fX = —FO, ¢+ p1L1(H1)p1 - 91 + p2Lo(Ha, b)epa - Orpo

= (=F — p1l1(Hy) - 041 + pala(H2) - 0s2) OiC
-0,

which is the desired identity. O
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Proposition 9.2. Suppose that the bottom in the lower layer is flat, that is, b = 0. Then, any

regular solution (C, @1, ¢2) to the Kakinuma model (2.14)~(2.16) satisfies the conservation of
momentum

omX +v.FX =0,
where the momentum density m® and the corresponding flur matriz FX are given by
m" = (V¢ = (V(pala(Hz) - 2 — prla(Hy) - 1),
Ef = — (COu(pala(Hs) - o — prli(Hy) - 1) + €5) 1d

1 2(i+j)+1
D Vé1i® Vi
p1“ it )1 01, @ Vor;

1 ipit1
tp1 Y Hy P Vs, © V.

Proof. For I =1,2,...,n, we see by (8.1) that

0¢(CO1p) — D1(C0:d) = (0:Q) (p2l2(Hz) - Oyp2 — p1li(Hy) - Oyp1)
—(01€Q) (p2l2(Hz) - Oyp2 — p1li(Hy) - Opp1)

= paLa(H2,0)¢2 - Oyp2 + p1Li(H1) b1 - O1p1 — (O1Q) F
N

1 2(i45)+1
=V Spm Y, <..Hl Véri | dien
52 2(i+j) +1
N* ] X
i+pi+
+PQZ <H§ ! V¢2,i> D25 ¢ + I,
i3=0 Di + Dy +1
where F' is given by (8.2) and
2(i+5)+1 4ij 2(Z+J
Ry = H Vér1,- Vo1 + ——+—— 0
1=p1 Z ( z+] TF1th P1, 1,5 + 2(i+j)—1 <751z l¢1,g>
- 1 PipPj

+ HY PN g Ve + — L HY P gy 30 )

P2 z';::o <p¢+pj+1 2 b2, - VOiga,; ——— $2,i0192,5

— (O F

— a 1 - ;H (i+35) +1v¢ v¢ L 1+j d) ¢

! 2/)1”:0 20+ ) + 1 14" 1,j T 2(@—1—]’)—1 1,i9P1,5
N*
30 Y <1 HY P05 Va4 — LBl 0, )
27 = \pitp+177 R A e
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Here, we have

N
1 itj 2t -
Ry =5p1 > <H12( N1 - Ve + dijH 1)¢1,i¢1,j) ¢
ij=0

N*
1 b 2
— 5P > (Hé’ I o Vo + pipy Hy P ¢2,i¢2,j) ¢ — FoC
ij=0

= (p2 — p1)9¢0i¢ = O <;(P2 — P1)9C2> :

so that Ry = 9jeX. These identities yield the desired one. O
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