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The Role of Roles: Physical Cooperation between Humans and Robots

Since strict separation of working spaces of humans and robots experiences a softening due to recent robotics research achievements, close interaction of humans and robots comes rapidly into reach. In this context, physical human-robot interaction raises a number of questions regarding a desired intuitive robot behavior. The continuous bilateral information and energy exchange requires an appropriate continuous robot feedback. Investigating a cooperative manipulation task, the desired behavior is a combination of an urge to fulfill the task, a smooth instant reactive behavior to human force inputs and an assignment of the task effort to the cooperating agents. In this paper, a formal analysis of human-robot cooperative load transport is presented. Three different possibilities for the assignment of task effort are proposed. Two proposed dynamic role exchange mechanisms adjust the robot's urge to complete the task based on the human feedback. For comparison, a static role allocation strategy not relying on the human agreement feedback is proposed as well. All three role allocation mechanisms are evaluated in a user study that involves large-scale kinesthetic interaction and full-body human motion. Results show tradeoffs between subjective and objective performance measures stating a clear objective advantage of the proposed dynamic role allocation scheme.

Introduction

A variety of physical tasks require the cooperation of two or more agents and demands for haptic joint action of multiple partners, robots together with humans. In such kind of tasks, humans interact in different modalities: explicitly e.g. through speech and gestures and also implicitly through the sense of touch. The twofold feature of haptic interaction is particularly challenging: Physical coupling between the agents allows to negotiate and accomplish the joint action task simultaneously. This means that intuitive interaction is mediated by task oriented actions. The necessary effort to accomplish cooperative physical tasks must be allocated among all contributors. Observable effects of negotiation are emerging strategies in terms of temporally consistent haptic interaction patterns called specialization [START_REF] Reed | Haptic cooperation between people, and between people and machines[END_REF]. In physical cooperation, these patterns refer to a self-organized distribution of the agents' individual contributions. Forming patterns of interaction seems to ease mutual understanding of partners, as an improved task performance has been observed repeatedly in cooperative settings [START_REF] Feth | Performance Related Energy Exchange in Haptic Human-Human Interaction in a Shared Virtual Object Manipulation Task[END_REF][START_REF] Reed | Kinesthetic Interaction[END_REF]. As soon as autonomous physical assistants are able to produce their own task-directed behavior, the question of role assignment arises similarly. Observations from human-human cooperation or motion planning techniques can be used by the robot to calculate its own necessary force contribution to achieve task progress. However, the assignment and possible re-allocation of roles can evolve during task execution and cannot be pre-computed.

The resulting challenge is the synthesis of a robotic assistant that takes the human habit to establish and dynamically change roles into account and renders an intuitive behavior to the human partner. Therefore the physical meaning of roles in human-robot cooperative manipulation must be understood and a framework for role allocation must be developed. Some work on the derivation of guidelines for the synthesis of a robotic role allocation from observations of human-human behavior exists. However, related existing approaches towards autonomous physical robotic helpers target mainly the smooth and intuitive reactive behavior of robots in physical interaction with humans rather than situation-dependent active task contribution. Only little related research on the topic of role adaptation in physical humanrobot interaction exists. [START_REF] Oguz | Haptic Negotiation and Role Exchange for Collaboration in Virtual Environments[END_REF] propose a haptic negotiation framework for blending between dominant and recessive control states in a dynamic virtual task. Their system realizes dynamic role exchange by granting control to one of the operators regarding the intentions of the human, who was assumed to display the intention of gaining control by applying large forces to the system. Later, [START_REF] Kucukyilmaz | Conveying Intentions through Haptics in Human-Computer Collaboration[END_REF] showed that this dynamic role exchange scheme improved task efficiency significantly when compared to an equal control guidance scheme and constituted a personal and subjectively pleasing interaction model. Working in virtual scenarios, these approaches rely on the possibility to adjust the coupling between the human operator and the virtual object. In robotic assistance scenarios, the missing option to control the human partner's coupling to the object imposes additional challenges.

The main contribution of this work is a set of strategies for static and dynamic role allocation in haptic human-robot cooperation and an experimental evaluation of the proposed strategies. The task of cooperative human-robot object manipulation is analyzed in redundant and non-redundant degrees of freedom. The meaning of effort sharing along the redundant directions is derived. A realistic large-scale user study shows the effects of three different effort sharing strategies on task performance and subjective acceptance.

Related Work

The synthesis of robotic physical assistants for cooperative load sharing tasks reaches back to the early 1990's when [START_REF] Kosuge | Dynamic control for robot-human collaboration[END_REF] deployed an objectcentered impedance control scheme similar to [START_REF] Schneider | Object Impedance Control for Cooperative Manipulation: Theory and Experimental Results[END_REF] for a set of robots cooperating with a number of humans. Successful hardware implementations named MR Helper and the distributed variant DR Helpers [START_REF] Hirata | Distributed Robot Helpers Handling a Single Object in Cooperation with Human[END_REF] encouraged a number of groups to research synthesis methods for cooperative human-robot object manipulation strategies. An overview over the achievements of Hirata and Kosuge in this field is given in [START_REF] Kosuge | Human-Robot Interaction[END_REF]. The application of cooperative load transport has also been targeted by [START_REF] Gillespie | A General Framework for Cobot Control[END_REF] using the rather different Cobot approach. While Kosuge's robotic helpers could actively render a virtual object impedance behavior with features such as collision avoidance, Cobots cannot move on their own -they are inherently passive. However, motion induced by a human operator is projected along virtual fixture curvatures by arranging counter-acting forces in the Cobots. This approach focuses on desired paths or workspace constraints rather than desired virtual dynamic object behavior. An approach combining desired virtual constraints and desired virtual object dynamics was proposed by [START_REF] Takubo | Human-Robot Cooperative Manipulation Using a Virtual Nonholonomic Constraint[END_REF]. In their work, a robotic partner renders a virtual nonholonomic constraint -namely a virtual wheel -that prohibits sideway slipping motion and thus simplifies operation similar to a wheelbarrow. This simplification however, inhibits maneuvering of bulky objects in narrow passages. All of these approaches consider robotic partners that react on user operation which certainly limits these devices' capabilities. However, in order to overcome such limitations, a significant body of work was dedicated to fundamentally model human behavior in cooperative haptic tasks and to transfer findings to cooperative robotic partners. The popular concept of jerk minimization in human arm movements as proposed by [START_REF] Flash | The coordination of arm movements: An experimentally confirmed mathematical model[END_REF] for pointing has been transferred to cooperative manipulation by [START_REF] Maeda | Human-Robot Cooperative Manipulation without Motion Estimation[END_REF]. This enabled a robotic partner to not just react to a human operator input but also to predict human intentions and act accordingly. [START_REF] Reed | Kinesthetic Interaction[END_REF][START_REF] Reed | Haptic cooperation between people, and between people and machines[END_REF] investigated the effects of specialization in human-human interaction and successfully transferred their results to a human-robot setup so well, that participants could not distinguish between the robotic partner and an actual human partner [START_REF] Reed | Physical Collaboration of Human-Human and Human-Robot Teams[END_REF]). Reed's findings on evolving specialization were further investigated by [START_REF] Groten | Experimental Analysis of Dominance in Haptic Collaboration[END_REF] which showed that users prefer some dominance difference among collaborating partners in contrast to equally shared control. In this context, dominance refers to the actual achievement of influence or control over another and therefore reflects the individual share of the overall contribution to task success. In order to decide on the necessary overall contribution, first, the desired trajectory must be known. [START_REF] Miossec | Human motion in cooperative tasks: Moving object case study[END_REF] discovered a motion model for cooperating humans that outperforms the minimum-jerk model used by [START_REF] Maeda | Human-Robot Cooperative Manipulation without Motion Estimation[END_REF]. Based on this trajectory generation method for cooperative object moving tasks, [START_REF] Evrard | Homotopy Switching Model for Dyad Haptic Interaction in Physical Collaborative Tasks[END_REF] developed a controller blending scheme that allow a leader/follower role allocation with one single blending parameter. Recent thoughts from this group on the leader/follower assignment can be found in [START_REF] Kheddar | Human-robot haptic joint actions Is an equal control-sharing approach possible?[END_REF] which suggests that blending of stable leader and follower controllers will not necessarily result in a stable overall behavior. An overall system architecture that comprises a confidence-based role adaptation, implemented on a very small scale humanoid robot was recently presented by [START_REF] Thobbi | Using Human Motion Estimation for Human-Robot Cooperative Manipulation[END_REF]. An emerging interest in smart physical robotic assistants to human workers in industrial settings is visible since a few years. [START_REF] Wojtara | Human-robot collaboration in precise positioning of a three-dimensional object[END_REF] developed a basic physical assistant for the well defined task of precise positioning of windshields during car manufacturing processes. Their framework proposes a strict geometrical separation of the degrees of freedom and weighs the assistant's force contribution to the task according to haptic cues.

Contribution

The main contribution of this work is an investigation of the objective and subjective effects of a dynamic role allocation of a physical robotic assistant.

Therefore, the task of cooperative load transport is analyzed and decomposed into two components for steering and progressing respectively. Meaningful decomposition parameterizations are derived such that the necessary effort resulting from a desired task progress is allocated among the cooperating partners. Therefore we propose three different strategies: First, a constant role allocation disregarding the human's haptic expression of the desire to accelerate or decelerate the task progress. Secondly, a continuous adjustment of the allocated roles depending on human feedback and thirdly, a discretized version of the second approach. Within a user study involving large-scale kinesthetic interaction in a realistic scenario with human full body motion, the proposed approaches are evaluated in terms of task performance and user acceptance including the introduction of novel evaluation criteria.

Notation

In this article, bold characters are used for denoting vectors and matrices. Ker(A) denotes the kernel or nullspace of matrix A. Ker j (A) denotes the j th vector spanning A's nullspace. A matrix's nullity is the dimension of its nullspace. Superscripts are used to denote the reference frame of the respective matrix and vector quantities, whereas quantities referring to the inertial frame are written without superscripts.

The remainder of this article is structured as follows: The problem is stated and confined in Section 2 where also our conceptual approach is presented. Section 3 gives a systematic analysis of the envisaged task and explains the meaning of roles. The deployed control scheme is presented in Section 4. Our experimental setup is depicted in Section 5. The evaluation methods used are explained in Section 6 and the results are presented in Section 7. A discussion of the results is given in Section 8 and we conclude and give an outlook in Section 9. 

Problem definition and approach

Our work addresses the cooperative task of jointly manipulating a rigid bulky object by human-robot teams. In the following, we concisely define our problem and outline our conceptual approach.

Definition of the effort sharing problem

The envisaged scenario allows the cooperation between a human and an assistive robot. [START_REF] Parker | Distributed Intelligence: Overview of the Field and its Application in Multi-Robot Systems[END_REF] and [START_REF] Olfati-Saber | Consensus and Cooperation in Networked Multi-Agent Systems[END_REF] define cooperation as the willing participation of all agents towards a common goal along a shared plan. In line with this, we focus on manipulation tasks which require physical cooperation between partners through close coupling with an object, see Fig. 1. When two or more agents cooperate through jointly manipulating a common object, the problem of sharing the task's physical effort arises. The physical coupling imposed by the task's geometrical and dynamical properties has to be addressed and exploited such, that each agent's effort in terms of input wrenches allow for a smooth and efficient cooperation. We confine the effort sharing problem to the following conditions:

• One human cooperates with one robot towards achieving a common known goal (e.g. reaching certain configuration(s) when jointly manipulating an object).

• Constraints of the environment are such that the task is achievable (e.g. a feasible path to the goal exists).

• All participants tightly grasp a single rigid object with commonly known shape and dynamics.

• Object dynamics are holonomic, i.e. the manipulated system does not have any velocitydependent constraints.

• The grasp points are such that the task is controllable and its control inputs are redundant [START_REF] Lawitzky | Load Sharing in Human-Robot Cooperative Manipulation[END_REF].

• The partners interact with each other only through the haptic channel provided by the physical coupling.

System-theoretic modeling approach

A dynamic modeling approach of the task is employed to define the physical and geometrical properties of the manipulation task under environmental constraints. Through this approach, we model the dynamics of the manipulated object including the agents' contact points. Starting from an objectcentered viewpoint, the agents' contributions to the task can be defined by spatially distributed control inputs, i.e. forces that effect the object's motion towards the goal. Results on the cooperation of human dyads suggest an object-centered formulation of the desired path, as they achieve better tracking performance in a cooperative task when they have common visual access to the central part of a manipulated object [START_REF] Ahmad | Towards Realizing Collaborative Rigid Object Transfer by a Human Hand and a Robot Manipulator[END_REF]. Thus, the desired motion of the manipulated object can be intuitively represented by an object-centered trajectory as a result of a priori negotiation between the agents. In this article, we assume a shared plan in terms of a predefined path that leads to a common goal. The object model is assumed to be known to all agents, and in order to obtain the required individual input forces, each agent applies an inverse dynamical model of the object. This is where the demand for an effort sharing strategy comes into play: redundancies of the control inputs, which are usually present if two ore more agents are manipulating a single object [START_REF] Lawitzky | Load Sharing in Human-Robot Cooperative Manipulation[END_REF], span a subspace of the control inputs which can be deliberately distributed between the agents without affecting the motion. Thus, effort sharing describes the distribution of a voluntary force input among agents. Each agent can be assigned a certain input behavior in terms of an effort sharing policy. The behavioral patterns of the agents due to a certain effort sharing policy can be referred to as roles that the agents take on in the redundant space of task.

While a feedforward assignment of roles in a centralized manner works well for robotic agents, such an assignment is inappropriate for humans. Investigation of human cooperative behavior in a dyadic tracking task provides evidence for role distributions, which are partly person-specific and partly interaction-dependent [START_REF] Groten | Experimental Analysis of Dominance in Haptic Collaboration[END_REF]. If we assume persistent validity of the agents' shared plan which holds true for a static environment, the applied human force can be estimated based on the object dynamics and fed back to allocate the agents' roles on-line. In this article, we develop concepts for role allocation within a human-robot dyad and evaluate these concepts with an experimental study.

Synthesis of role behavior

This section presents the dynamic object model and a parameterization method for effort sharing policies. Different sharing policies and the definition of roles we adopt in the experiments are explained. Our method to parameterize effort sharing policies generalizes to multiple cooperating partners. Therefore in the first part of the derivations we will keep the method as general as possible and later specialize to the dyadic case.

Dynamic object model

The general problem of joint transfer of an object in free space by multiple agents involves the contribution of N robotic manipulators and M human arms that tightly grasp a rigid object of arbitrary shape as shown in Fig. 2. In the figure, a body frame C is at- tached to the object, and the inertial frame is denoted by I. Besides a collision-free trajectory in compliance with the environment, the dynamical and geometrical model of the manipulated object -the coupling between the agents -is crucial to a system-theoretic analysis of the task.
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We assume that the rigid-body dynamics of the object can be described by

M c ẍc + f c ( ẋc ) = u c , (1) 
where x c is the configuration of the object with inertia M c , f c is the sum of environmental forces such as friction and gravitation, and u c denotes the external wrench applied by the agents to the object. Agent i contributes to the manipulation task via input wrench u i applied at the grasp point x i on the object. In order to formally represent the type of grasp and dominant inputs of the agents, we introduce the applied wrench ũi as ũi = S i u i , where S i is a selection matrix determining which torque and force components an agent can effectively apply at the grasp point. Thus, the external wrench on the object is composed by

u c = M +N i=1 J T ic ũi , (2) 
where matrix J ic (dim( ũi )×dim(u c )) denotes the Jacobian of the kinematic constraints φ i (x c ) which describes the position of the rigid grasp point with respect to the object frame. The kinematics comprising position x i and velocity ẋi of the grasp point of agent i = 1, ..., M + N are

x i = φ i (x c ) (3) ẋi = J ic ẋc . (4) 
In the following, the dynamics and kinematics of the object grasped by the agents serve as a basis for analysis of the effort sharing problem.

Effort sharing by input decomposition

In this section, we develop a strategy for effort sharing which utilizes redundant degrees of freedom that naturally arise from actuation redundancy. According to our system-theoretic approach outlined in Section 2.2, with the inverse dynamical system model (1) a desired external wrench ûc can be calculated, which is to be imposed on the object to track a shared plan given as a desired trajectory of the object configuration x c,d . Note that in general, only parts of the applied wrenches cause the object's motion and hence constitute the external wrench. The remaining component of the applied wrench is called internal wrench and causes squeeze forces on the object. In the next step, we aim for solutions of each agent's applied wrench ũi , in order to compose a desired ûc . By substituting (2) into (1), we obtain for the object model

M c ẍc + f c ( ẋc ) = J T ũ, (5) 
with the stacked Jacobian J composed by the block diagonal matrix

J = diag J 1,c , . . . , J M +N,c ,
and the stacked applied wrench ũ = ũ1 . . . ũM+N T .

Let us introduce now

ũ = Aû c , (6) 
where A denotes a decomposition matrix from desired external wrenches to applied wrenches. Using ( 6), the dynamical object model depending on the desired external wrench yields

M c ẍc + f c ( ẋc ) = J T Aû c .
In order to achieve tracking of the desired trajectory through feedforward control of the inverse dynamics, matrix A has to be chosen to sustain ûc = u c , i.e. A has to be an inverse of J T , fulfilling

J T A = I. (7) 
Note that dim(u c ) is equal to the dimension of the object's configuration space dim(x c ), since the task is required to be controllable and holonomic. In our setting, we further assume that the number of actual inputs is larger than the required number of inputs for task completion, dim(ũ) > dim(u c ).

A minimal example of such actuation redundancy is movement of an object in one-dimensional space by two agents, each applying an input force. The task is redundant as one agent's input would be sufficient for controlling the point mass, and arbitrary compositions of the agent's input forces are possible, see Fig. 3. Therefore, the choice of A in ( 7) is not unique. We can show that a particularly interesting solution for the effort-sharing matrix A is the generalized Moore-Penrose pseudoinverse (J T ) + of the stacked transposed Jacobian J T , which yields the minimumnorm solution for ũ [START_REF] Doty | A Theory of Generalized Inverses Applied to Robotics[END_REF]. Since we are solving for wrenches, there is particular physical meaning of the minimum-norm solution: The applied wrench obtained with (J T ) + represents an efficient decomposition, because the external wrench is composed by a minimum magnitude of the applied wrench's components, see Fig. 3 (a). Hence, the applied wrench has no components which could cause ineffective internal wrenches.

Additionally, the nullspace of J T defined as

Ker(J T ) = {ũ|(J T )ũ = 0}
provides a solution space for ũ. Note that in a physical meaning, the null-space component causes no motion of the object, as it does not affect the external wrench. When we replace A by (J T ) + in ( 6), the family of all solutions for ũ is given by ũ = (J T ) + ûc + nullity((J T )) j=1 λ j Ker j (J T ), ( 8)

with parameter λ j ∈ R. Depending on the choice of λ j , the solution ũ potentially produces internal wrenches, as depicted in Fig. 3 (b). In fact, the solution (8) provides an effort sharing strategy by input decomposition: In redundant directions where effort sharing between the agents can take place and which are affected by λ, and in non-redundant directions where each agent's input is uniquely defined by a necessary contribution.

In the following section we show, how λ can be used to parameterize the effort sharing strategy between the agents.

Policies for effort sharing

In this section we show, how the agents can be assigned meaningful policies regarding their effort behavior. With reference to the experiment conducted in this study and for intuitiveness of analysis, we consider from this section on a planar cooperative manipulation task involving two agents.

Analysis of a planar dyadic task

An example of a planar dyadic task is shown in Fig. 4, satisfying the required conditions from Section 2.1. The joint transport of a large table on ball casters, or joint movement of any other kinds of heavy objects by sliding on a surface can be such a task. Both, the human (i=1) and the robotic agent (i=2) could provide input wrenches u i of dimension dim(x c ) with

x I y I I x C y C C u 1,x u 1,y u 2,x u 2,y x 1 x 2
x c = x c,φ x c,x x c,y T ,
which generally include torques. However, a common property of bulky objects regarding their handling is the lack of sensitivity to certain torque components applied at the grasp points (see also [START_REF] Wojtara | Human-robot collaboration in precise positioning of a three-dimensional object[END_REF]. In our illustrative scenario, this approximation reduces the input vector to the effectively applied wrench

ũ = u 1,x u 1,y u 2,x u 2,y T . ( 9 
)
The kinematic constraints (4) of the system can be written as

x i = x c,x x c,y T -Rr C ic , with R = cos φ -sin φ sin φ cos φ
denoting the rotation of object frame C w.r.t. inertial frame I by angle φ, and

r C ic = r ic,x r ic,y
T being the vectors from the grasp point of agent i to the origin of C. According to (4), the 4 × 3 Jacobian

J =     sin φ r 1c,x + cos φ r 1c,y 1 0 -cos φ r 1c,x + sin φ r 1c,y 0 1 sin φ r 2c,x + cos φ r 2c,y 1 0 -cos φ r 2c,x + sin φ r 2c,y 0 1     (10) can be derived. Since we can calculate ∀φ dim(x c ) = rank(J ) = 3
for different grasp constraints r 1,c = r 2,c = 0, our planar system is redundant regarding the applied wrench (9) since dim(ũ) = 4.

Thus, parts of the task effort in terms of applied wrenches can be shared arbitrarily among the contributing agents within the redundant degree of freedom without influence on the external wrench of the object. In the following, we introduce effort sharing policies which are described by a certain choice of the parameter λ in (8) characterizing meaningful shares. In a first step, we will investigate static sharing policies yielding constant role behaviors, while in Section 3.4 our notion of roles is extended to encompass a dynamic allocation within dyads.

Identification of meaningful policies

In the given planar example, the only redundant degree of freedom is intuitively represented by the y Caxis of the object frame C (c.f. Fig. 4), hence components of external input wrench along this axis can be arbitrarily shared among the two agents. Let us recall now the decomposition (8) leading to the agents' applied wrenches ũ. The nullspace Ker(J T ) is spanned by the family

Ker(J T ) = diag (R, R) Ker(J T ) C , with Ker(J T ) C = λ 0 1 0 -1 T ,
allowing one degree of freedom for the design of different effort sharing policies through the choice of the scalar parameter λ in (8). Three extreme policies of particular physical meaning are discussed below:

• Balanced-effort policy: By choosing the policy

π bal : λ = 0, (11) 
we obtain the min-norm solution for ũ. The effort in terms of magnitude of the applied wrench is to be equally shared among the agents, see Fig. 5.

x I y I ũ1 x C y C ũ2
Figure 5: Equal share of the voluntary effort.

• Maximum-robot-effort policy: If we want to have the robot to take over all of the sharable effort, then the applied human force in the y C -direction would be zero, i.e. ũC 1,y = 0. Hence, λ is chosen such that the human does not contribute any voluntary effort to the task, which yields the policy

π max : λ = -0 1 0 0 ũC , (12) 
with the min-norm applied wrench

ũC = diag (R, R) T (J T ) + û. ( 13 
)
The required human effort in terms of the Euclidean norm

ũ1 = (ũ C 1,x ) 2 + (ũ C 1,y ) 2
is minimized now, since ũC 1,x refers to the necessary input contribution, see Fig. 6. Intuitively spoken, the human has to apply wrenches only in those degrees of freedom, which simply can not be accomplished by the robot alone, i.e. rotation, and motion in x C -direction.

• Minimum-robot-effort policy:

Dual to policy π max , the human has to take over all of the

x I y I ũ1 x C y C ũ2
Figure 6: Robot takes all of the voluntary effort.

sharable effort, if we satisfy ũC 2,y = 0 through the policy

π min : λ = 0 1 0 0 ũC , ( 14 
)
where ũC is given by ( 13). Using this policy results in a minimum-effort robot assistance, i.e. in each degree of freedom, the human has to apply wrench components to accomplish the task, see Fig. 7.

x I y I ũ1 x C y C ũ2
Figure 7: Human takes all of the voluntary effort.

When we introduce the family of effort sharing policies π : λ = -α 0 1 0 0 ũC ,

with policy parameter α ∈ R, obviously the policies π bal , π max and π min are parameterized by setting α = 0, α = 1 and α = -1 respectively. Note: Policies (15) with α ∈ [-1; 1] are efficient, since no counter-acting internal wrench on the object is generated (c.f. Fig. 3).

Dyadic allocation of roles

The effort sharing policies (15) with constant policy parameter α imply a static role in terms of the effort sharing ratio among the dyad in the redundant direction, resulting from a feedforward calculation of the agents' applied wrenches (6). In contrast, a dynamic role allocation strategy investigated here varies the policy parameter α over time depending on the measured force feedback from the partner. In the dyadic case, the robotic agent may perform an estimation of the actually applied human wrench, if the object dynamics (1) are assumed to be known and measurements of the object state are available to the robot. Note that roles and their allocation strategies refer to the task's redundant degrees of freedom.

Constant role allocation

Any arbitrary choice of a constant parameter α directly affects the robot's urge to accomplish the task. A choice of α = 0 results in an equal composition of the necessary total force in the redundant direction given a reference object position trajectory following the inverse dynamics in (1). Velocity references can either be taken from observations in human-human experiments or describe the technical limitations of the robotic system in its environment or a mixture of both. Kinodynamic motion planning techniques can be alternatively used to produce trajectories with bounds on velocities and accelerations [START_REF] Donald | Kinodynamic Motion Planning[END_REF] in order to generalize the approach to arbitrary feasible transport tasks. In the performed human user studies we investigate the case α = 0 which is symmetric in the sense that the human partner has the chance to accelerate or decelerate the task execution according to personal preferences by the same magnitude. A human partner applying the same force input as the robot in the redundant direction accelerates the object to the robot's upper velocity limit. A human partner who applies the same force magnitude in the opposite direction cancels the robot's exerted force.

Weighted proactive role allocation

For the realization of the weighted role allocation strategy developed in this work we propose the first order dynamical system with the policy parameter

α = α 0 + t t0 αdt, (16) 
bounded within the interval [-1, 1] by an anti-windup saturation, and

α =      τ -,w ũC 1,y,m , if ξ = 0 τ +,w ũC y,thr , if ξ = 1 ∧ ũC 1,y,m < ũC y,thr τ +,w ũC 
1,y,m otherwise using the measured human force input component in the redundant direction ũC 1,y,m and the agreement indicator

ξ = 0, if sgn(ũ C 1,y ) = sgn(ũ C 1,y,est ) = 0 1, otherwise. ( 17 
)
Note, that the initial value α 0 = -1 produces initially a minimum-robot-effort behavior. Either zero human force input or force input ũC 1,y,est in the expected direction sgn(ũ C 1,y ) produces an agreement value of ξ = 1 and lets the policy parameter α rise which leads to emerging robot effort. A force threshold ũC y,thr is used to define a neutral human force input which is treated as silent agreement. The time constants τ -,w and τ +,w weigh the human's agreement or disagreement force input. A faster reaction to disagreement signals (i.e. -τ -,w > τ +,w > 0) is considered to be a reasonable option. This choice lets the robot rapidly fall back to a passive partner mode if the human signals discomfort by applying a counteracting force. The qualitative dynamical behavior of the weighted role allocation scheme is illustrated by a simulation example in Fig. 8.

Discrete role allocation

In order to investigate whether role allocation with a small number of distinct meaningful steps is more subjectively understandable for the human partner and hence beneficial for the cooperation, a discrete version of the continuous role allocation mechanism is developed here. A chattering-free output discretization of the weighted role allocation mechanism to three distinct values ζ = {-1, 0, 1} is achieved by an output quantization with hysteresis. The rate of change of the internal continuous policy parameter α is also chosen depending on the agreement indicator ξ from ( 17) with

α = τ +,d , if ξ = 1 τ -,d , otherwise.
A quantization with hysteresis maps the internal continuous policy parameter α onto the discrete value ζ, replacing the continuous output (16). A smooth transition between the three discrete levels is achieved by a bang-bang-like ramp generating mechanism

α = τ b sgn (ζ -α)
where τ b denotes a blending time constant. The qualitative behavior of the discrete role allocation scheme is also illustrated by simulation, see example in Fig. 9.

Robot interaction control

In order to embed the role behavior developed in Section 3 in a robotic agent, we present an architecture for feedback interaction control, see Fig. 10. The robot's applied wrench ũ2 is realized by an admittance-type force controller imposing motion at the robot's grasp point x 2 on the object. The effortrole behavior (grey box) consisting of three modules, role allocation, sharing policy and sharing strategy generates the robot's input behavior for given external wrenches ûc and estimates of the human applied wrench ũ1,est . A given object-related trajectory x c,d is reference to the system's inverse dynamics comprising a model of the object as well as the robot, and generates a feedforward component of the external wrench ûc,dyn . A feedback component ûc,imp as output of an impedance control law ensures tracking of the object configuration under model uncertainties and unexpected human behavior. In the following, the interaction control architecture is explained in detail.

Admittance-type force control

An admittance-type force control law is utilized to impose the robot's applied wrench ũ2 . The controller renders the dynamics

u 2 -u 2,m = M r ẍ2 + D r ẋ2 , (18) 
where u 2,m is the measured input wrench, matrix M r and D r are a rendered virtual robot's mass and friction respectively. Note, that for a rigid grasp, (18) has to be formulated in dim(u 2 ). Zeroing ineffective components of u 2 (e.g. u 2,φ = 0) yields the robot's applied wrench ũ2 . In order to make use of the extended workspace of a mobile robot composed by a manipulator-base system, the admittance control law is calculated in the inertial frame similar to [START_REF] Unterhinninghofen | Control of a Mobile Haptic Interface[END_REF]. The control scheme depicted in Fig. 11 compensates for repositioning of the mobile base through transformations between the local robot frame R and the inertial frame, which are denoted by I T R and R T I respectively, so that the grasp pose of the manipulator is not affected. Following of the mobile base is ensured by the velocity command ẋR b = ẋb,φ ẋb,x ẋb,y T generated according to the control law ẋR b = diag (K hdg , K dst , K tng ) e hdg e dst e tng T .

(19) Three independent proportional controllers with gains K hdg , K dst and K tng move the mobile base controlling heading error e hdg , distance error e dst and tangential error e tng to zero with respect to a desired relative configuration of the manipulated object and the robot base, as illustrated in Figure 12. The desired pose of the end-effector x R d w.r.t. the robot frame R is chosen to meet a certain lower bound µ min of the manipulability measure where J m is the Jacobian of the manipulator and ∆x R describes required workspace bounds during manipulation.

det J T m J m > µ min ∀ x R d -x R m < ∆x R , ũR 2 -ũR 2,m I T R Robot admittance R T I x R Position controlled
Assuming a rigid grasp of the robot's manipulator on the object, the errors e hdg , e dst and e tng can be determined as a function of x R d and x R m . The control gains in ( 19) are tuned to achieve a smoothly-damped, spring-like following behavior of the platform that keeps the manipulator within its workspace bounds during mobile manipulation. The resulting motion command ẋR b is then executed by an omni-directional velocity control law as proposed in [START_REF] Nitzsche | Design Issues of Mobile Haptic Interfaces[END_REF].

Object-centered motion tracking

In addition to the capability to apply input wrenches ũ2 on the manipulated object, the mobile robotic agent needs the capability to impose a desired trajectory of the object configuration x c,d as a result of the shared plan. The tracking behavior is synthesized in an object-centered representation by means of an external wrench ûc = ûc,dyn + ûc,imp ,

decomposed by the underlying effort-behavior. Wrench component ûc,dyn compensates in a feedforward branch for the dynamics of the combined manipulator-object system with

ûc,dyn = M (x c , ẋc,d )ẍ c,d + f (x c , ẋc,d ), ( 21 
)
where mass matrix M (x c , ẋc,d ) and friction term f (x c , ẋc,d ) comprise the mass and friction terms from ( 1) and ( 18). An object-centered impedance-type control law acting on the tracking error of the configuration x c generates the external wrench component

ûc,imp = K p (x c,d -x c ) + K d ( ẋc,d -ẋc ). ( 22 
)
Stiffness gain K p and damping gain K d render a compliant behavior, if the object configuration deviates from the expected. The external wrench (20) guaranteeing objectcentered motion tracking feeds the effort-role behavior, which can be regarded as a selective wrench filter. Depending on the estimated human's applied wrench ũ1,est and the policy parameter α of the role allocation scheme, the robot's applied wrench ũ2 as a result of the effort-role behavior reflects the robot's voluntary contribution to the task effort. The admittance-type force control law (18) imposes the applied wrench on the object and renders the robot's input behavior.

Experiment

In order to evaluate our effort sharing strategy and the effects of the role allocation schemes developed in Section 3.4, we conducted a large-scale user study at Munich Multi Joint Action Laboratory of CoTeSys research center. A human-robot interaction scenario was designed for this study in a unique setup, involving the joint manipulation of a real-sized bulky object. The participants were asked to maneuver jointly with a human-sized mobile robot through our cluttered lab area (See Fig. 1) in order to collaboratively transport a table. The realization of such a joint action task serves as the proof of concept for our approach and provides valuable observations through a real scenario. In this section, we describe the experimental setup, conditions, design, and the procedure.

Experimental Setup

The mobile robot used in the experiment consists of an omni-directional mobile base developed by [START_REF] Hanebeck | A Modular Wheel System for Mobile Robot Applications[END_REF], two admittance-controlled anthropomorphic manipulators [START_REF] Stanczyk | Development of a Telerobotic System for Exploration of Hazardous Envi-ronments[END_REF]) using 6-degrees-of-freedom wrench sensors (JR3 67M25A3-I40-DH) on each end effector. A twofinger parallel gripper of type Schunk PG70 mounted at the robot's right manipulator provided a rigid grasp of the flange attached to the table. A detailed description of the robot's system hardware and software architecture can be found in [START_REF] Althoff | An Architecture for Real-time Control in Multi-robot Systems[END_REF][START_REF] Medina | An Experience-Driven Robotic Assistant Acquiring Human Knowledge to Improve Haptic Cooperation[END_REF]. During the experiment all data collection was done by the mobile robot at a sampling frequency of 1 kHz . The wrench sensor at the human-side was identical to those attached to the end effectors of the robot and it was connected to a PC on the robot. The table configuration as well as the grasp points were tracked using the robot's inverse kinematics, transformed by the mobile base's odometry readings. The interaction control architecture was implemented in MATLAB Simulink and executed at 1 kHz under Ubuntu Linux utilizing Matlab's Real-Time Workshop.

During the experiment, the subjects were asked to move a wooden table weighing 44 kg that was mounted on an aluminum frame standing on ballcaster feet (see Fig. 1). The ball casters provided low-friction, holonomic maneuverability of the table. A handle and a flange were rigidly attached to the table at facing sides for the grasp points of the human and the robot, respectively (see Fig. 13). The flange was a solid wooden plate that provided slippage free zero-backlash grasp for the robot. Cooperatively manipulated table equipped with a handle and wrench sensor for the human (left) and a grasp flange for the robot (right), both mounted at a height of 0.925 m over the ground.

The parameters used by the robot's interaction control architecture ( 18) and ( 22) in Section 4 were set to the following values regarding the task-relevant degrees of freedom: M r = diag(0.4 kgm 2 , 20 kg, 20 kg) D r = diag(10 Nmsrad -1 , 100 Nsm -1 , 100 Nsm -1 )

K p = diag(200 Nrad -1 , 200 Nm -1 , 200 Nm -1 ) K d = diag(50 Nmsrad -1 , 50 Nsm -1 , 50 Nsm -1 )
An estimation of the object dynamics used in (21) revealed the parameters of the table mass matrix M c = diag(13.5 kgm 2 , 44 kg, 44 kg), the table friction f c was considered as a Coulombtype friction of 14 N in total, acting at the table feet.

Conditions

We designed three conditions for implementing different behaviors for the robot:

1. Constant Role Allocation (CRA): As explained in Section 3.4.1, the robot contributes to the task without changing its role, i.e. it uses a balancedeffort policy α = 0 at all times.

Weighted Proactive Role Allocation (WPRA):

As explained in Section 3.4.2, as long as the force applied by the human is in the expected direction, or the human is inactive, the robot increases the policy parameter α gradually with time. Otherwise, it decreases α. During the experiment, we used τ +,w = 0.02 (Ns) -1 , τ -,w = -0.04 (Ns)

-1 , and ũC 1,y,thr = 10 N.

Discrete Proactive Role Allocation (DPRA):

Similar to WPRA, the robot changes its role by increasing or decreasing α gradually. We defined three discrete states for defining the roles in this condition (see Section 3.4.3). During the experiment, we used τ +,d = 0.2 s -1 , τ -,d = -2 s -1 , and τ b = 2 s -1 .

Participants, Procedure and Design

18 subjects (6 female and 12 male), aged between 19 and 44, participated in our study. All the subjects were right handed and used their right hands for moving the table. We conducted a within subjects experiment, in which each subject experimented with all conditions in a single day. The conditions (CRA, WPRA, and DPRA) were presented to the subjects in permuted order using a balanced Latin Square design to avoid learning effects. The subjects were given detailed instructions about the task and the conditions before the experiment.

In the experiment, a trial consisted of moving the table jointly with the robot to four parking configurations and then coming back to the initial configuration, as shown in Fig. 14. The subjects were allowed to apply pushing and pulling forces using only their dominant hands by holding the handle of the table; lifting the table off the ground and talking during the experiment were prohibited. The positions of the human and the robot in each of the parking configurations were clearly marked on the floor area. These marks were shown to the subjects before the experiment. The free space available for maneuvering the table between the parking configurations was constrained by obstacles in such a way that ambiguities and possible alternative common paths were For each condition, the subjects performed the task three times (i.e. three trials). After each trial, a small break was given to initialize the table and robot pose. After performing these three trials successfully, the subjects were given a questionnaire to comment on their experience. Afterwards, they were presented with a new condition.
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Evaluation

In this section, quantitative as well as subjective measures used for the evaluation of the user study are introduced.

Quantitative measures

This section presents details on the quantitative measures we adopt in analysis. The data collected in the first 300 ms of each trial is discarded to eliminate possible discrepancies encountered at the beginning of the trials. Also data collected at the final leg of segment s 4 (see Fig. 14) is discarded since the final parking procedure was difficult for some of the participants, and we had to cut some trials early due to impending collisions with obstacles. The data is low-pass filtered using a first-order filter with 15 Hz cut-off frequency.

We quantify task performance in terms of task completion time. We also examine the individual interaction forces applied by the agents, the work done by the partners, and the total work done by the dyad as indication of physical effort. Also, the degree of cooperation under each condition is investigated with respect to the amount of disagreement in the dyad's operation and the distribution of the robot's effort. We also propose a novel metric, namely the translational gain of the dyad, to measure the collaborative contribution of the dyad towards task completion.

Task performance

The completion time of each trial is taken as a measure of performance.

Effort

The human's and robot's applied wrenches along with the work done by them are considered to be indications of the effort made by the agents. Work done by the agents is calculated by

W i = T 0 |ũ i,m • ẋi | dt,
where ũi,m denotes the measured wrench exerted by the agent, ẋi the velocity of the grasp point and T the duration of the trial. The total work done on the table by the partners is calculated by

W T otal = T 0 |u c • ẋc | dt,
where the motion-causing external wrench u c is obtained by evaluating (2) for ũi,m .

Role allocation

The frequency distribution of the policy parameter α is investigated to provide a better understanding of the dynamic role allocation in the different conditions.

Amount of disagreement

We assume that in our experiment a disagreement occurs when two partners pull or push the table in opposite directions along the y C -axis. Instead of contributing to the movement of the object, part of the forces in this axis are wasted for compressing the table (i.e. squeeze force) or resisting the other partner (i.e. tensile force). [START_REF] Groten | Experimental Analysis of Dominance in Haptic Collaboration[END_REF] call these forces interactive forces defined as

f I =                ũC 1,y , if sgn(ũ C 1,y ) = sgn(ũ C 2,y ) ∧ |ũ C 1,y | ≤ |ũ C 2,y | -ũ C 2,y , if sgn(ũ C 1,y ) = sgn(ũ C 2,y ) ∧ |ũ C 1,y | > |ũ C 2,y | 0, otherwise.
In order to come up with a metric of disagreement, we weigh the interactive forces recorded during the disagreement periods with the total time spent in disagreement.

Translational Gain of the Dyad

The translational gain of the dyad (TGD) is a measure of the cooperative gain achieved by the dyad in translating the object. We define TGD as:

T GD = ũC 1,y + ũC 2,y • sgn(x C c,y,d ) ũC 1,y -ũC 2,y
, where sgn(x C c,y,d ) is the desired direction of motion. In this sense, TGD is maximized when the collaborating partners balance their forces and act harmoniously during translation. In order to eliminate very small force differences in the denominator caused by noise, we investigate the resulting TGD values for outliers, and discard data points with extremely large or small values.

Subjective measures

At the end of each condition, the subjects are asked to fill in a questionnaire, which is designed with the technique that [START_REF] Basdogan | An Experimental Study on the Role of Touch in Shared Virtual Environments[END_REF] have used in the past for investigating haptic collaboration in shared virtual environments. The questionnaire consists of 20 questions taken from NASA-TLX task load index [START_REF] Hart | Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research[END_REF] as well as those developed by [START_REF] Kucukyilmaz | Conveying Intentions through Haptics in Human-Computer Collaboration[END_REF]. The subjects indicate their level of agreement or disagreement on a 7-point Likert scale for a series of questions, some of which are rephrased and asked again within the questionnaire in an arbitrary order. The average of the subjects responses to the rephrased questions is used for the evaluation. NASA-TLX evaluates the degree to which each of the following six factors contribute to the task workload:

• Mental Demand: One question asks how much mental and perceptual activity was required for achieving the task (e.g. thinking, deciding, calculating, remembering, looking, searching, etc.).

• Physical Demand: One question asks how much physical activity was required for achieving the task (e.g. pulling, pushing, turning, calculating, remembering, looking, searching, etc.).

• Temporal Demand: One question asks how much time pressure the subjects felt during the task.

• Performance: One question asks the subjects to assess their self-performance in accomplishing the goals of the task.

• Effort: One question asks how hard the subjects had to work to accomplish their level of performance.

• Frustration Level: One question asks how much irritation, stress or annoyance the subjects felt during the task.

The remaining questions are asked in the following categories:

• Collaboration: Two questions investigate the extent to which the subjects had a sense of collaborating with the robot during the task.

• Interaction: Two questions explored the level of interaction the subjects experience during the task.

• Comfort: One question asks how comfortable the task was.

• Pleasure: One question asks how pleasurable the task was.

• Degree of Control: Two questions ask the subjects about their perceived degree of control on the movement of the table.

• Predictability: Two questions investigate how predictable the robot's movements were during the task.

• Trust: Two questions investigate whether the subjects trusted their computer partner on controlling the table or not.

• Human-likeness: Two questions ask the subjects whether the robot's actions (movement patterns) resembled those of a human being acting in a similar real-life scenario.

Results

This section presents the results of the experiment in terms of the quantitative and subjective measures defined in Section 6. Statistically significant differences between conditions were investigated using one way repeated measures ANOVA and multiple comparisons were performed via post-hoc t-tests with Bonferroni correction. Mauchly's test was conducted to check if the assumption of sphericity was violated.

If so, the degrees of freedom were corrected using Huynh-Feldt estimates of sphericity.

Quantitative Analysis

In this section, we present the quantitative results as discussed in Section 6.1. According to ANOVA results, we observe a statistically significant effect of the condition on completion time (p < 0.001). Specifically, the subjects completed the task significantly faster under WPRA than they did under the other two conditions. While the completion time is slightly smaller in DPRA than it is in CRA, the difference between these conditions is not significant. According to ANOVA results, the experimental condition has a significant effect on interaction forces of both the human and the computer (p < 0.001). We observe that the average force applied by the human under WPRA is significantly smaller than it is under the other conditions (p < 0.001), whereas it is significantly higher under DPRA (p < 0.001). The force input of the robot is significantly higher under WPRA and DPRA than it is under CRA (p < 0.001). We consider the work done as an indication of physical effort. ANOVA results suggest that there is a significant effect of the experimental condition on the individual work done by the agents and the work done by the dyad (p < 0.001). We observe that the subjects consume the least energy under WPRA (p < 0.001) and the most under DPRA (p < 0.001). Similarly, we observe that as a dyad, the joint effort under WPRA is smaller than that under CRA (p < 0.05) and DPRA (p < 0.001). The effort is maximized under DPRA (p < 0.000). On the other hand, the robot showed significantly more effort under WPRA and DPRA than it did under CRA (p < 0.001). Even though we observe the highest robot effort in DPRA, the difference between the WPRA and DPRA conditions is not statistically significant.

Effort

Role Allocation

A quantitative insight on the resulting dynamic role allocation behavior is given in Fig. 18. The frequency distribution of the alpha parameter under each condition is illustrated in Fig. 19. We observe that under WPRA the robot acted towards maximum effort. On the other hand, we see almost a uniform distribution between the three discrete effort sharing behaviors (also due to transition, we notice values in between these three states).

The Amount of Disagreement

The amount of disagreement under each condition is illustrated in Fig. 20. The ANOVA results indicate a significant effect of the condition on the amount of disagreement (p < 0.05). The multiple comparison results imply that the amount of disagreement is similar under CRA and WPRA, whereas it is lower under DPRA than CRA (p < 0.001) and WPRA (p < 0.001). Note that we consider only the signs of the applied individual forces to decide whether there is a disagreement between the partners. Also we check for very small interactive forces that might be due to noise in data collection, and do not treat these as disagreements. experimental condition on translational gain of the dyad (TGD) (p < 0.001). TGD was significantly smaller for WPRA than that of the other conditions (p < 0.001), between which no statistically significant difference is observed.

Subjective Evaluation

Fig. 22 plots the mean values of the subjects' responses to the questionnaire and the standard error of the means.

The key results of the subjective evaluation are as follows:

• The subjects thought that the task was physically and mentally less demanding in WPRA.

The physical demand for DPRA was significantly higher than it was for WPRA (p < 0.005) and CRA (p < 0.05).

• The subjects felt significantly less comfortable under DPRA than they felt under CRA (p < 0.01) and WPRA (p < 0.005).

• The subjects believed that they could control the table significantly better under DPRA than they did under WPRA (p < 0.05).

• Under DPRA, the predictability of the robot was significantly lower than it was under CRA (p < 0.05).

Discussion

The subjective evaluation, when considered along with the quantitative results presents insight about the users' perception of different effort sharing policies. During the experiments, we observed that, under DPRA, the subjects had to accelerate and decelerate the motion from time to time in order to adapt to the changing α level. We infer that such movements might have caused the subjects to finish the task in a longer time. The force input of the robot is significantly higher under WPRA and DPRA than it is under CRA, which indicates a possible tendency towards maximum effort in the robot's behavior under both conditions. However, perhaps due to the smooth operation, only under WPRA, the maximum effort policy that was dominantly employed by the robot made the subjects think that the task required them to be faster (i.e. the task had a higher temporal demand). Eventually this perception could be responsible for the better time performance under this condition. Also, the same behavior may have forced the users to increase their velocity to adapt to the robot and could have been too much pushy from time to time. [START_REF] Reed | Kinesthetic Interaction[END_REF] mention that sometimes force oscillations may be observed in interaction for stabilization purposes or in an effort to adapt to the varying velocity enforced by the robot. Since the state transitions were more extreme under DPRA, the behavior of the robot was more observable. Hence the users might have needed to use force oscillations less for adaptation, but acted more determinate in their applied forces, resulting with an increased level of agreement during the task.

We also observe that TGD is very low under WPRA. Notice that the work done by the dyad was small under WPRA, which drops the TGD significantly. Also the robot's smooth operation resulted in an increased level of disagreement with the human partner within the task because of possible force oscillation due to a stabilization effort. Those effects, when combined, caused a significant drop in TGD under WPRA.

As mentioned above, under DPRA the subjects were able to observe the operation of the robot more clearly and infer that different behaviors were displayed by the robot. This was probably due to the existence of discrete effort levels adopted by the robot. On the other hand, WPRA resulted in a smoother operation, which was transparent to the subjects for most of the time. We infer this results based on the decrease in mental and physical load under WPRA. We also observe that the mental and physical demand of task, as well as the frustration level and the physical effort were higher under DPRA. This may be an artifact of the occasional accelerating and decelerating behavior faced during the task under DPRA.

The subjects believed that they could control the table significantly better under DPRA than they did under WPRA. They also felt that they spent more effort in DPRA, which agrees with our effort measurements. Also since the robot displayed greater effort under WPRA, the perception of the relative control level of the human might have dropped.

The subjects thought that the robot was acting less collaboratively under WPRA and DPRA. A possible reason for this is that the changing effort policy of the robot made the operation more complex, and the subjects favored a more constant role allocation scheme. The subjects found the level of interaction to be higher under DPRA. Under WPRA, the role exchanges were probably too smooth to be observable, hence the subjects failed to perceive the interactive nature of the task.

The subjects felt significantly less comfortable under DPRA and they thought that the predictability of the robot was significantly lower than it was under CRA. Since the movements of the robot were less smooth under DPRA, the subjects might have felt discomfort due to jerkier operation and experienced a difficult time in inferring the robot's actions in advance. However, in WPRA, as the actions were smoother, the subjects could predict the robot's actions better. The subjects' belief that the robot would perform the task correctly was the highest under CRA, in which the subjects observed no unexpected behaviors as the robot's effort sharing policy was constant at all times. Finally, the humanlikeness of the robot was lower under DPRA than it was under WPRA and CRA. This gives us a hint that the subjects found less smooth movements also less human-like, whereas they thought smoother movements resembled the movements of a human being more in the table pushing task.

Conclusion

In this paper we present a systematic analysis of cooperative human-robot manipulation and introduced three different schemes for the allocation of the effort resulting from the task. The envisaged cooperative load transport task is decomposed into the subtasks of steering and progressing according to the objects geometrical and dynamical properties. Meaningful decompositions are derived in order to parameterize policies to distribute the effort among the contributing partners. The effort along the direction of redundant inputs is allocated among the agents in terms of roles following three proposed strategies. The experimental evaluation revealed the interesting effect that a continuous dynamic role allocation policy is objectively superior over a constant role strategy whereas the human partners subjectively preferred the constant role which was obviously better understandable. Our next steps include the application of our dynamic role allocation scheme to more complex tasks involving dynamically changing environments and a stronger emphasis on different capabilities of the partners. Furthermore, possibilities to generate the underlying reference object trajectory will be investigated in more detail. We are convinced that the ability of a robotic system to adjust its own role within a cooperation is a relevant factor for the usefulness of future robotic physical assistants. The decrease of subjective acceptance of a dynamically changing role in spite of the performance increase leaves a number of interesting research questions.
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 1 Figure 1: Scenario of cooperative manipulation and experimental setup: human and robot jointly transporting a bulky table.
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 2 Figure 2: Haptic human-robot joint action task: Cooperative manipulation of a rigid object by multiple agents acting at different grasp points.
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 3 Figure 3: Illustrative example of input decomposition in a one-dimensional redundant task. (a) minimumnorm solution. (b) possible, but inefficient solution.
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 4 Figure 4: Illustrative scenario of planar cooperative manipulation: one human (left) and one robot (right) jointly move a bulky object in the x-y-plane.
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 8 Figure 8: Policy parameter α over time as a result of the weighted proactive role allocation for an artificial force profile of the human wrench component ũC 1,y,m
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 109 Figure 10: Overall scheme of the interaction control architecture embedding the effort-role behavior.
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 1112 Figure 11: Inertial admittance-type control scheme including manipulator-base coordination.

  Figure 13:Cooperatively manipulated table equipped with a handle and wrench sensor for the human (left) and a grasp flange for the robot (right), both mounted at a height of 0.925 m over the ground.

Figure 14 :

 14 Figure 14: Bird's eye view of the lab area used for the experiments. The outer box corresponds to the boundary of the environment and spans a square of approximately 8 m × 8 m. The regions marked as gray are occupied by obstacles. The positions of the table and the interacting dyad (i.e. the human and the robot) in each of four designated parking configurations, p i , i = 1..4, are depicted. The paths, s i , i = 1..4, connecting the parking configurations are represented by dotted lines.

  Fig. 15 illustrates the mean completion time under each condition and the standard error of the means.

Figure 15 :

 15 Figure 15: Average completion time of the task. The bars represent standard errors of the means.

Fig. 16

 16 Fig. 16 illustrates the mean individual forces applied by the agents and the standard error of the means.According to ANOVA results, the experimental condition has a significant effect on interaction forces of both the human and the computer (p < 0.001). We observe that the average force applied by the human under WPRA is significantly smaller than it is under the other conditions (p < 0.001), whereas it is significantly higher under DPRA (p < 0.001). The force input of the robot is significantly higher under WPRA and DPRA than it is under CRA (p < 0.001).
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 16 Figure 16: The average force applied by the human and the robot. The bars represent standard errors of the means.

Fig. 17

 17 Fig. 17 illustrates the average work done by individual agents and the dyad under each condition. The error bars denote the standard error of the means. The results are in parallel to those we observed for the individual forces applied by the agents.
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 17 Figure 17: Average work done by individual agents and the dyad. The bars represent standard errors of the means.
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 18 Figure 18: Sample trials for condition WPRA (top) and DPRA (bottom): policy parameter α and human force profile of the component ũC 1,y,est . Task segments are separated by vertical bold lines.
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 19 Figure 19: The frequency distribution of the α parameter under each condition
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 20 Figure 20: The average amount of disagreement under each condition. The bars represent standard errors of the means.
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 21 Figure 21: The average TGD under each condition and. The bars represent standard errors of the means.
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 22 Figure 22: Means of the subjective measures in each condition. The bars represent standard errors of the means.
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