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Intention Recognition for Dynamic Role
Exchange in Haptic Collaboration

Ayse Kucukyilmaz, and T. Metin Sezgin, and Cagatay Basdogan

Abstract—In human-computer collaboration involving haptics, a key issue that remains to be solved is to establish an intuitive
communication between the partners. Even though computers are widely used to aid human operators in teleoperation, guidance,
and training, since they lack the adaptability, versatility, and awareness of a human, their ability to improve efficiency and
effectiveness in dynamic tasks is limited. We suggest that the communication between a human and a computer can be improved
if it involves a decision making process in which the computer is programmed to infer the intentions of the human operator and
dynamically adjust the control levels of the interacting parties to facilitate a more intuitive interaction setup. In this paper, we
investigate the utility of such a dynamic role exchange mechanism where partners negotiate through the haptic channel to trade
their control levels on a collaborative task. We examine the energy consumption, the work done on the manipulated object,
and the joint efficiency in addition to the task performance. We show that when compared to an equal control condition, a role
exchange mechanism improves task performance and the joint efficiency of the partners. We also show that augmenting the
system with additional informative visual and vibrotactile cues, which are used to display the state of interaction, allows the users
to become aware of the underlying role exchange mechanism and utilize it in favor of the task. These cues also improve the
user’s sense of interaction and reinforce his/her belief that the computer aids with the execution of the task.

Index Terms—Human-Computer Interaction, Haptic Collaboration, Haptic Guidance, Haptic User Interfaces, Human Factors,
Multimodal Systems, Virtual Environment Modeling, Dynamic Role Exchange, Intention Recognition, Performance Metrics.

F

1 INTRODUCTION

HAPTIC collaboration requires partners to actively
adapt to changes in one another’s requirements

and construct a shared knowledge base about the
operations and intentions of each other [1]. In this
study, we investigate the necessary components that
enhance various aspects of haptic interaction in highly
dynamic collaborative tasks. Human-robot interac-
tion, computer aided design, simulation-based med-
ical training, and interactive games can be listed as
potential applications for schemes that implement dif-
ferent roles for the human and the computer partners.
We believe that in a collaborative system, the human
and the computer need to partition the task into units
to get maximum benefit from each other’s abilities.
For example, in [2], Subasi and Basdogan illustrate
a good example of human-computer collaboration in
molecular docking. In their application, the human
operator manipulates a small molecule in a virtual
environment through a haptic device to search for
the true binding cavity on the surface of a large
molecule. Once the binding site is discovered, the
computer takes over the control and fine-tunes the
alignment of the molecule inside the cavity. In gen-
eral, it is assumed that humans are good at tasks
that require perceptual and cognitive processing, and
benefit greatly from prior knowledge. On the other
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hand, computers are widely accepted to be superior
in tasks that require precision and accuracy. Hence,
we believe that a collaborative scheme will yield the
best results if it successfully divides the labor of
the computer and the human regarding their strong
abilities and dynamically let each party to take control
in appropriate moments during the task.

Our goal in this study is to enable intuitive haptic
communication between humans and computers in
collaborative systems. One way of achieving such
communication is to change the degree of partners’
control levels dynamically during the task, regarding
the intentions of the human. We propose a haptic role
exchange mechanism to realize control trade between
partners. Also, we suggest that the interaction experi-
ence can be further enhanced if the state of interaction
is explicitly conveyed to the human operator. In order
to achieve this, informative cues, in various forms and
through multiple modalities, can be used to signal the
interaction state. Although displaying arbitrary com-
binations of such cues may hamper communication
if perceptive or cognitive conflicts arise in the pro-
cess [3], an effective combination of these cues can be
beneficial. Even though existing studies demonstrate
that the use of multiple modalities improves interac-
tion in virtual environments [4], to our knowledge,
no study has been conducted to utilize multimodal
feedback to inform the users on different states of the
system to facilitate collaborative interaction through
the haptic channel.

In this study, we extend the work presented in [5] to
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further evaluate the benefits and the usability of a role
exchange mechanism as a shared control scheme. As a
test bed, we used a target-hitting task, and developed
a model for haptic collaboration in which the human
and the computer interact through force to achieve
a common goal by dynamically exchanging roles.
Additional sensory cues are also integrated to inform
the human operator about the current role of each
party during the task. The proposed role exchange
scheme is compared with an equal control guidance
method.

For evaluation, we establish quantitative metrics
such as: task completion time, number of errors made
during the task, energy consumed by the partners,
and work done on the manipulated object. We also
suggest a metric to quantify the efficiency. We show
that the proposed role exchange mechanism improves
task performance and the efficiency of the user as well
as the joint efficiency of the partners. Furthermore, the
additional sensory cues, which are used to display the
control state of the collaborating parties, increase the
user’s awareness, perceived level of interaction, and
reinforce his/her belief that the computer helps with
the execution of the task.

In the next section, we summarize the related work
in literature. Section 3 presents the haptic negotiation
model and discusses its use for dynamic and natural
collaborative decision making. The test bed appli-
cation is introduced in Section 4. The experimental
conditions and design is explained along with the
measures in Section 5. Section 6 summarizes our
results, and finally Section 7 presents conclusions and
future directions.

2 BACKGROUND
Haptics has been widely used to implement computer
guidance in training applications, where the main
goal is to teach the trainees the dynamics of the
task [6], [7], [8], [9], [10]. Recently, researchers showed
that haptic guidance systems can be further improved
if they are equipped with predictive and progressive
mechanisms [11], [12], [13]. Also cooperative shared
control schemes were developed for haptic systems,
where humans and computers share the control of
a system to collaborate towards a common goal
(See [14] for an extensive review). Even though shared
control provides a good interface between a human
and a computer, its applications in haptics fail to
define different autonomy levels for the operators.
Adjustable autonomy has been used in multi-agent
systems for a decade to make teamwork more effec-
tive by interfacing the user with a remote robot at
variable autonomy levels [15], [16].

Although the idea of adjustable autonomy has not
yet matured in the context of haptic collaboration, the
notion of exchanging roles and trading control levels
have arisen. Many researchers examined role defini-
tions in haptic human-human interaction. Nudehi et

al. [17] developed a system for two collaborating hu-
mans. This system switched the “control authority” to
one party regarding the difference in the individuals’
actions. Reed and Peshkin [18] observed two different
specialization behaviors -accelerator and decelerator-
when two humans interact in a 1-DOF target ac-
quisition task. Feth et al. [19] presented an analysis
that associates the energy flow between interacting
partners with role distributions. Stefanov et al. [20]
defined non-exclusive executor and conductor roles
and proposed a model for analyzing the roles during
the task. They successfully determined the roles of the
parties using the velocities and the interaction forces
that are applied through the haptic devices. Groten
et al. [6] investigated the effect of haptic interaction
in not only collaborative but also conflicting decision
situations. In this study, the users were instructed to
agree/disagree with the operation of their partner or
to remain passive and obey their partner in a path
following task. They observed that in the existence of
disagreements, task performance deteriorates and the
amount of physical effort is increased. This increase
was interpreted as the additional negotiation effort.

Despite the studies in human-computer collabora-
tion, there are limited number of studies on role defi-
nitions and assignments for human-computer interac-
tion involving haptics. Evrard et al. [21] implemented
a role exchange mechanism in a symmetric dyadic
task where a human interacts with a computer. They
defined leader and follower roles and used two func-
tions to define each operator’s control level on the task
by setting certain weight parameters. Although this
model ensured a systematic and smooth transition
between roles, the interaction was not designed to be
user-centric, and did not involve dynamic negotiation.
Corteville et al. [22] used a velocity based dominance
factor to adjust the assistance level in a 1-DOF point-
to-point movement task. The assistance level was set
based on an estimate of the motion characteristics
of the human in a known trajectory. However, the
amount of assistance was predetermined and did not
change dynamically during the task. In [23], Duchaine
and Gosselin implemented a variable impedence con-
trol scheme for human-computer collaboration. In
order to identify the parameters of this scheme, they
utilized the time derivative of human force as an
indicator of the human’s intention of accelerating or
decelerating.

3 HAPTIC NEGOTIATION MODEL AND THE
ROLE EXCHANGE MECHANISM

In this section, we describe our haptic negotiation
model, which constitutes the basis of our role ex-
change mechanism. This model allows the interaction
of two agents (i.e. a human and a computer) through
a negotiated interface point. The haptic negotiation
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model is sketched in Fig. 1. The interaction is imple-
mented using three massless particles and a spring-
damper model between them. These particles serve
as the interface points, through which the parties
communicate with the system. The interface points,
labeled as HIP and CIP in the figure, respectively
denote the human’s Haptic Interface Point and the
Computer’s Interface Point. The operations of the
parties are combined by interconnecting these two
points at NIP (Negotiated Interface Point), and by
allowing NIP to move the manipulated object.

Fig. 1. Our haptic negotiation model. Force negotiation is achieved
by setting the stiffness constants, Kp,HN and Kp,CN . These con-
stants are used to adjust the control levels of the parties.

This model allows the control of a virtual point
to be shared between parties. It also facilitates the
process of assigning different control levels (i.e. roles)
to the parties. The human and the computer are
granted different levels of control on the task by
varying the stiffness coefficients between HIP and NIP
(Kp,HN ) and between CIP and NIP (Kp,CN ). If Kp,CN

and Kp,HN have equal value, the computer and the
user will have equal control on the movement of the
manipulated object. On the other hand, the computer
will be the dominant actor if Kp,CN has a larger
value, and vice versa, the human will be dominant if
Kp,HN is larger. Kp,ON and Kd,ON affect how much
and how fast the object is manipulated when NIP is
moved under the influence of the forces applied by
the human and the computer1.

The parties interact through force information to
enable the role exchanges. The computer infers the
user’s intention of taking control and shifts the roles
as intended. It is assumed that the user shows his/her
intention of taking control by applying large forces,
whereas (s)he tries to relinquish control to the com-
puter by reducing the forces (s)he applies. In prac-
tice, the user initiates a role exchange whenever the
magnitude of the force (s)he applies is above an
upper threshold or below a lower threshold over a
predetermined period. Note that the forces in our
system vary between 0-4 N, hence the term “large
force” is relative and indicates that the force applied
by the user is higher than the upper force threshold.
Upper and lower force thresholds are initially set
at the beginning of the game, but new user-specific

1. The stiffness and damping coefficients used in the experiment
are as follows: Kp,ON = 0.5N/m, Kd,ON = 0.0015Ns/m;
0.05N/m ≤ Kp,HN ≤ 0.45N/m and Kp,CN = 0.5N/m−Kp,HN

during role exchange

values are calculated and updated adaptively later
during the game:

τL = µF − σF ,
τU = µF + σF ,

where µF and σF are respectively the average of the
forces applied by the user and the standard deviation
of these forces.

Fig. 2. State diagram defining the role exchange policy. |Fuser| is
the magnitude of the force applied by the user.

Fig. 2 illustrates the finite state machine (FSM)
used to realize a smooth transition during the role
exchanges. The states of the FSM define the interac-
tion states within the system. Human Control (S1) and
Computer Control (S3) states express the two extreme
control levels that are defined in our application.
Initially the system is in S1, in which the user acts
as the controller of the task. If the user wants to, (s)he
can give control to the computer. We designed the
role exchange mechanism so that the forces applied
by the user need to stay below the personalized lower
threshold value for more than 80% of a 500 mil-
lisecond duration to initiate a role exchange. Hereby,
the user will make the system enter the transition
state S2, in which the control is gradually shifted to
the computer until the predefined control transition
period is over (i.e. 750 ms)2; only then the system
enters the Computer Control state (S3). Similarly, when
the system is in Computer Control state (S3), the user
can decide to take over control by exerting forces
larger than the upper threshold. Then, a series of
state transitions will occur from S3 to the transition
state S4, and then to the Human Control state (S1)
in succession. In transition states (S2 and S4), the
stiffness coefficients are varied linearly over time to
let the user and the computer share control in variable
degrees.

4 APPLICATION: HAPTIC BOARD GAME
The haptic board game is designed especially to create
a dynamic and interactive environment that mimics

2. The transition interval was selected to be larger than the
typical motor response time (reaction time + movement time) of
a human operator in reaching tasks (4̃00 ms) to ensure smooth
transitions [24].
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a physical task, in which the human benefits from
collaboration with a computer.

4.1 Rules and Design Considerations
In the game, the user controls the position of a ball
with a PHANToM R© Premium haptic device to hit
cylinders on a board. The user is asked to move the
ball to hit the target cylinder and wait on it to the
count of 10. A counter appears in the middle of the
screen to alert the user to the countdown status while
the ball resides on the target cylinder. If the user
succeeds in staying on the target until the end of
the countdown, the color of that cylinder changes to
red, indicating that it has been collected, and a new
target cylinder is determined. This cylinder is colored
green to indicate that it is the new target cylinder the
user should hit. In Fig. 3, the cylinder in the upper
right corner of the board was previously hit, whereas
the target cylinder lies at the lower right corner. The
remaining two cylinders are unhit. To motivate the
users, we display a set of messages on the screen
at the end of a trial -after hitting all 4 cylinders on
the board. These messages bear either positive (i.e.
“Good job”, “Much better”, “Excellent”) or negative
(i.e. “You can do better”) meaning and are invoked
regarding the improvement or deterioration in the
user’s performance.

Fig. 3. A screenshot of the haptic board game.

Each cylinder is located in between two pits which
diagonally extend towards the center of the board.
The users are instructed to avoid falling into these
pits. If the ball falls in a pit, that pit is highlighted to
warn the user and the ball is imprisoned in the pit. To
leave the pit, the user should move the ball towards
the entrance of the pit. As an additional penalty, if
the ball falls in a pit, all acquired targets are undone,
hence the trial is restarted. The pits are designed to
serve as “difficult” regions for the human, where the
user is anticipated to ask for computer guidance. It
is relatively “easy” to control the movements of the
ball outside the pits. This design is chosen to create
a task where a human and a computer can perform
better than one another at different times during the
execution of the task. Additionally, as a result of the
movement of the ball, the board is tilted about x and
z axes and the users are fed back with forces due to
the rotation of the board. This feature makes the game

more difficult, hence the users are further motivated
to demand computer guidance.

4.2 Physics-Based Engine

Fig. 4. The flow of interactions within the game.

The physics-based model used for simulating the
game dynamics is shown in Fig. 4. At each time step,
the controller moves CIP by applying a force FC to
reach a target point. This force is calculated using a PD
(Proportional-Derivative) control algorithm, for which
the proportional and derivative gains Kp,CT and
Kd,CT are set to 5.0× 10−6N/m and 3.5× 10−3Ns/m,
respectively. Using the PD controller, CIP is forced
to follow a trajectory defined by the via points that
are connected to each other by line segments. Three
via points are defined for each target as illustrated
in Fig. 5. The first via point is used to move CIP to
the entrance of the pit. Upon reaching the first via
point, the ball is guided by CIP to the target cylinder
between the pits with the help of the second via point.
Finally, for exiting the pit, CIP leads the ball out of the
pit through the use of the third via point.

Fig. 5. Three via points are used to define the trajectory of the ball
under computer control: at the entrance of the pit (1), on the target
(2), and at the exit of the pit (3).
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In our model, the movements of HIP and CIP affect
the movements of NIP. At each time step, the new
position of NIP (xt+1

NIP ) is calculated so that the system
illustrated in Fig. 1 is in static equilibrium. The new
position of NIP is then used to calculate FCIP , FHIP ,
and Fball. These respectively denote the forces that act
on NIP by CIP, HIP, and the ball. FHIP is negated and
fed back to the user through the haptic device. The tilt
angle of the board (θt+1) is calculated using the force
acting on the ball (Fball) and its acceleration (atball).
Finally, the ball’s new position (xt+1

ball), velocity (vt+1
ball ),

and acceleration (at+1
ball) are calculated and updated

using Euler integration.

4.3 Additional Sensory Elements
An advantage of our collaborative model is that it
allows the integration of different sensory cues to
display the control state. In [25], we observed that
when the users are not informed on the nature of the
task, some of them fail to understand that their control
level within the task is changing. Hence, for this
study, we aimed to make the underlying mechanism
as visible as possible through the integration of visual
and vibrotactile informative cues.

4.3.1 Visual Cues
Our application requires users to attend to visual
information in order to successfully complete the
game. We used two role indication icons, which
are displayed over the board to display the control
levels of the parties (See Fig. 6). For instance, in
Fig. 6(a), the icon for the human (on the right) has
greater size, indicating the dominance of the user.
Similarly, in Fig. 6(b), the computer’s icon (on the
left) is larger, indicating that the computer has taken
control of the game. The sizes of the icons serve as
metaphors for the parties’ control levels. The icons are
enlarged and shrunk gradually based on the transition
process discussed in Section 3 to demonstrate the
smooth transition between control levels (i.e. roles).
We initially considered locating two role indication
bars at each side of the board or a single one on
top, which would illustrate the parties’ control levels.
However, these were not successful in attracting the
users’ attention. Hence, we selected the icons in Fig. 6
for role-indication.

(a) Human Control (b) Computer Control

Fig. 6. Two configurations for the role-indication icons.

4.3.2 Vibrotactile Cues
In our application, the users rely on force feedback
to choose their control actions over the ball move-
ments. Moreover, all negotiation is done through force

information. In order to signal the active state of
interaction, we used the same channel to display
vibrotactile cues to the users. These cues are imple-
mented as vibrations in the y-direction, hence don’t
interfere with the movement of the ball in any way.
Two different types of cues are implemented:

Buzzing is a high frequency vibration (100 Hz)
presented to the user through the haptic device during
state S2. It signals the initiation and occurrence of role
exchange.

Tremor is defined as an involuntary shaking of
some body part (i.e. trembling). In order to signal
the presence of computer control in state S3, a low
frequency vibration varying between 8 and 12 Hz is
artificially generated and continuously displayed to
the user while the system is in this state.

The choice of the displayed cues and the way they
are displayed are not arbitrary. In small-scale pilot
studies, we investigated the effectiveness of different
cues displayed by different sensory modalities (i.e.
vision, sound, and haptics) to convey the control state
to the user. However, only the visual and vibrotactile
cues in their current forms were found to be effective.
In the end, we have chosen to present visual and
vibrotactile cues simultaneously to make information
processing easier through the acquisition of the same
information through multiple channels [26].

5 EXPERIMENT

This section presents the experimental conditions,
design, and the procedure as well as the measures
used in the analyses.

5.1 Conditions

Equal Control (EC): The user and the computer
share control equally at all times to move the ball. This
is achieved by choosing Kp,HN and Kp,CN constant
and equal to each other (Kp,HN = Kp,CN = 0.25N/m).
In this condition, the user feels guidance forces ap-
plied by the controller as well as forces generated due
to the dynamics of the game.

Role Exchange (RE): At any point during the
game, the user can hand/take over the control of
the ball to/from the computer by altering the forces
(s)he applies through the haptic device. The computer
infers the user’s intention of taking over or giving
up the control of the game based on the user’s force
profile and updates its degree of control on the ball.

VisuoHaptic Cues (VHC): As in RE condition, the
user can initiate role exchanges to get the computer
to dynamically change its degree of control on the
ball. Additionally, role-indication icons, buzzing, and
tremor are displayed to inform the user about the state
of the system.
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Fig. 7. The order of the conditions displayed to the subjects in the experiment (Practice Game: without assistance; Game A/B/C: one of
EC, RE or VHC in permuted order)

5.2 Procedure and Participants

30 subjects (9 female and 21 male), aged between 21
and 28, participated in our study. All of the subjects
were right handed, and they interacted with the hap-
tic device using a thimble attachment. We conducted
a within subjects experiment, in which each subject
experimented all three conditions in a single day.
A practice condition, under which the user plays
the game without computer assistance, was initially
presented to each subject to familiarize him/her with
the system. The guidance conditions (EC, RE, and
VHC) were then presented to the subjects in permuted
order to balance learning effects. 5 subjects were
tested in each of the six permutations of all three
guidance conditions. The subjects were given detailed
instructions about the conditions. However, since the
conditions were presented in mixed order, in order to
avoid any perceptual biases, the guidance conditions
were labeled as “Game A”, “Game B”, and “Game
C”, whereas the practice condition was labeled as the
“Practice Game”.

The experiment consisted of an evaluation and a
post-evaluation session as detailed in Fig. 7. During
the evaluation session, the subjects played the haptic
board game 5 times (i.e. 5 trials) under each condition.
The subjects first played the game without computer
guidance, afterwards they played the game under one
of the guidance conditions in mixed order. The trial
number was displayed in the upper right corner of the
game screen. When a trial was over, another trial was
started automatically without any interruption until
all 5 trials were completed. In each trial, the order
of the target cylinders was modified in a controlled
manner so that the subjects do not memorize a specific
motion path. After playing the game successfully
under the same guidance condition for 5 times, a 1-
minute break was given to the subjects and a new
game was started in a different guidance condition.
Once the subjects finished the evaluation session,
they were given another break before starting the
post-evaluation session. In this session, the subjects
played the game only once (i.e. one trial only) under
each guidance condition in succession (Games A, B,
and C) to remember the conditions and compare the
differences in their experiences.

5.3 Measures
5.3.1 Quantitative Measures
For quantitative analysis, we utilized the data col-
lected during the evaluation session.

We quantify task performance in terms of task
completion time and the number of faults made by
the user (i.e. how many times a user falls into a pit)
in each trial. We also examine the energy consumed
by the partners as an indication of physical effort, and
the work done to move the ball in order to complete
the task (each are normalized with respect to task
completion time). Using these two measures, we also
introduce an efficiency measure.

Task performance: The completion time of each trial
and the total number of faults are counted as perfor-
mance measures.

Consumed energy (E): Assuming that no energy is
stored in the springs at the beginning, the energy
consumed by the human partner is calculated by the
dot product of the displacement of HIP and the force
exerted by the spring located between NIP and HIP
as:

EH =

∫
PH

|FHIP · dxHIP | ,

where PH is the path traversed by HIP during the
trial. Similarly, the energy consumed by the computer
is computed as:

EC =

∫
PC

|FCIP · dxCIP | ,

where PC is the path traversed by CIP during the
trial.

Work done on the ball (W): The work done on the
ball is computed regarding the displacement of the
ball and the force acting on the ball by the human (or
the computer):

WH =

∫
PB

|FHIP · dxball| ,

WC =

∫
PB

|FCIP · dxball| ,

where PB is the path traversed by the ball during the
trial. The total work done on the ball by the partners
is computed as:

WTotal =

∫
PB

|(FHIP + FCIP ) · dxball| .
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Efficiency (η): Efficiency, in its broad sense defines
the ability to produce the desired output with min-
imum expenditure of time or effort. In [27], Groten
et al. proposed an efficiency measure for human
computer interaction, which related energy and task
performance. On the other hand, our efficiency metric
takes the performed work and the energy consump-
tion into account; hence it establishes a well defined
way of measuring the mechanical efficiency in a phys-
ical task. We define efficiency as the work done on the
ball divided by the consumed energy:

η =
work done on the ball

consumed energy
.

It should be noted that the individual efficiencies of
the partners are independent of the stiffness and the
damping coefficients used for the haptic negotiation
model, hence it enables us to compare different guid-
ance conditions. Upon closer inspection, we see that
the human partner can maximize his/her individual
efficiency, ηH = WH

EH
, if (s)he does a large amount of

work on the ball with a small effort. However, the
joint efficiency of the dyad, ηTotal =

WTotal

ETotal
, is mostly

affected by the harmony of the collaborating partners.
If, for example, the human partner continuously acts
against the will of the computer, both parties will
spend significant effort, yet will fail to move the ball.
In such a case, even though the effort is high, the
work done on the ball will be small; hence the joint
efficiency will be low for the dyad.

5.3.2 Subjective Measures
After experimenting with each condition, the subjects
are given a questionnaire, which is designed with
the technique Basdogan et al. [28] have used in the
past for investigating haptic collaboration in shared
virtual environments. The questionnaire asks users to
comment on their experiences under the 3 guidance
conditions (EC, RE, and VHC). Some questions are
rephrased and asked again within the questionnaire in
random order. For the answers, a 7-point Likert scale
is used. The questions are asked in the following cat-
egories and the average of the subjects’ responses to
the questions in each category is used for evaluation:

• Performance: 3 questions are asked to the subjects
to assess their self-performance.

• Collaboration: 2 questions investigate whether the
subjects had a sense of collaborating with the
computer or not.

• Role exchange frequency: A single question is asked
to evaluate how frequently the subjects per-
formed role exchanges.

• Degree of control: 2 questions ask the subjects
about their perceived degree of control on the
ball.

• Interaction: 5 questions explore the level of inter-
action the subjects experienced during the task.

• Haptic cues: 1 question investigates whether hap-
tic cues increased the subjects’ awareness of their
control level on the ball.

• Visual cues: 1 question investigates whether visual
cues increased the subjects’ awareness of their
control level on the ball.

• Trust: 2 questions investigate if the subjects
trusted their computer partner on controlling the
ball.

• Ease of use: 2 questions explore if the interface of
the system was easy for the subjects to use.

• Role exchange visibility: A single question explores
whether or not the subjects could observe the role
exchanges during the task.

• Human-likeness: 2 questions ask the subjects
whether the forces felt through the device resem-
bled that of a human.

6 RESULTS AND DISCUSSION

We present the results of the experiments in terms of
the quantitative and subjective measures defined in
Section 5.3. We also present the role exchange patterns
observed under RE and VHC during the experiment.

6.1 Quantitative Analysis
During the experiments, we noticed that some of the
subjects failed to perform the task as instructed. For
instance, in some trials, the subjects worked against
the computer and tried to hit the cylinders in the
wrong order, causing an increase in their energy
consumption; in others, we observed a high number
of faults, which causes the game to restart and even-
tually results in significantly long completion times.
Hence, we concluded that the data contains some
outliers which should be addressed. Hence, prior to
analysis, we detected the outliers in the data for
each of the 7 independent quantitative measurements:
completion time, number of faults, energy consumed
by the human and the computer, the work done on the
ball by the human, the computer, and the dyad. The
detection of outliers in data is done by examining the
boxplots generated by SPSS. In our outlier elimination
procedure, we considered the samples as outliers if
they were more than 3 interquartile ranges (IQR)
away from the lower or upper quartiles. As a result,
1.6% of the data are identified as outliers and replaced
with the grand mean values.

One-way repeated measures ANOVA is used to
discover statistically significant effects of the guidance
conditions. Mauchly’s test was conducted to check
if the assumption of sphericity was violated. If so,
the degrees of freedom were corrected using Huynh-
Feldt estimates of sphericity. Finally, post-hoc t-tests
with Bonferroni correction were used for the multiple
comparisons between conditions to assess which con-
dition pairs exhibit statistically significant differences
between one another.
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6.1.1 Task Performance

Fig. 8. Average completion time and number of faults under each
condition with SEM error bars

Fig. 8 illustrates the mean completion times and
the number of faults in each condition and the stan-
dard errors of the means (SEM). We observe that the
completion time is the shortest under RE, followed
by VHC and EC; and the number of faults is the
least under RE, again followed by VHC and EC. We
observe a significant effect of using the role exchange
mechanism on completion time, however a similar
effect is not observable on the number of faults done
through the task (See Table 1). Although RE condition
significantly improves the time performance, adding
visual and vibrotactile cues on top of RE, as in VHC,
deteriorates the performance significantly probably
due to some extra cognitive effort (See Table 2).

TABLE 1
ANOVA results for the completion time and the number of faults

Source df F p η2partial
Time 1.685 24.617 .000 .142
Faults 2 .667 .514 .004

TABLE 2
The pairwise comparison of the guidance conditions for the

completion time and the number of faults
p-values

EC-RE EC-VHC RE-VHC
Time .000(*) .809 .000(*)
Faults .759 1.000 1.000
* The mean difference is significant at p = .05 level.

6.1.2 Consumed Energy
Fig. 9(a) shows the mean values of the energy con-
sumed by the partners and the total energy consumed
by the dyad under each condition. The error bars
represent the standard error of the means.

(a) (b)

Fig. 9. (a) The average energy consumed and (b) the work done
by the human, computer, and the dyad under each condition with
SEM error bars

We observe a significant effect of the guidance
condition on the energy consumed by the human

and the computer (See Table 3). We notice that the
humans consume significantly more energy under RE
and VHC than they do under EC (See Table 4). This
indicates that the subjects consume some extra energy
when they are presented with a role exchange scheme.
Similarly, RE and VHC conditions exhibit similarities
in the computer’s energy consumption. Finally, we
observe that the total energies consumed by the dyad
under RE and VHC are significantly more than that
of EC. This indicates that, the partners jointly spend
more energy under a role exchange scheme.

TABLE 3
ANOVA results for the consumed energy (EH : energy consumed by
human, EC : energy consumed by computer, ETotal: total energy)

Source df F p η2partial
EH 2 7.950 .000 .051
EC 2 48.742 .000 .246
ETotal 1.945 27.094 .000 .154

TABLE 4
The pairwise comparison of the guidance conditions for the

consumed energy
p-values

EC-RE EC-VHC RE-VHC
EH .044(*) .001(*) .269
EC .000(*) .000(*) 1.000
ETotal .000(*) .000(*) .092
* The mean difference is significant at p = .05 level.

6.1.3 Work Done on the Ball
In each trial, we computed the work done by the
human and the computer on the ball. Fig. 9(b) illus-
trates the means and the standard errors of the means
for the work done on the ball under each condition.
The guidance method has a significant effect on the
work done by the human, the computer, and the dyad
(See Table 5). We note that the work done by the
human under VHC and RE are significantly higher
than that of EC. Similarly, the amounts of work done
by the computer under RE and VHC are significantly
higher than that of EC (See Table 6). This is another
sign of the similarity in role exchange patterns in RE
and VHC. The total work is significantly higher in
VHC, followed by RE, and then EC; which means
that beside spending more energy, the dyads also
colectively do more work under RE and VHC.

TABLE 5
ANOVA results for the work done on the ball (WH : work done by
human, WC : work done by computer, WTotal: total work done by

the dyad)
Source df F p η2partial
WH 2 15.192 .000 .093
WC 2 27.239 .000 .155
WTotal 2 84.953 .000 .363

In order to understand the role exchange patterns
under RE and VHC, we examined the role exchange
moments during the task under these two conditions.
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TABLE 6
The pairwise comparison of the guidance conditions for the work

done on the ball
p-values

EC-RE EC-VHC RE-VHC
WH .042(*) .000(*) .318
WC .000(*) .000(*) 1.000
WTotal .000(*) .000(*) .048(*)
* The mean difference is significant at p = .05 level.

(a) user gets control (RE)

(b) computer gets control (RE)

(c) user gets control (VHC)

(d) computer gets control (VHC)

Fig. 10. The positions on the board where role exchanges were
initiated by the user during the game for guidance conditions RE and
VHC. Note that the users tend to take control more often outside
pit regions, whereas the computer takes control often when entering
and exiting pits.

Fig. 10 illustrates the positions on the board that the
users took control from the computer - 10(a) and 10(c)-
or handed over control to it - 10(b) and 10(d) - during
the experiment. These plots show the distribution of
the role exchanges outside pit regions, as well as the
distribution at the entrances and exits of the pits. It
can be observed from the plots that the pits forced
the users to exchange roles: In general, the users took
control of the ball outside the pits to move faster. On
the other hand, they frequently gave control to the
computer when entering and exiting the pits to reduce
the number of faults.

Also, we observed that the subjects typically de-
creased their contribution on the movement of the
ball after the 1st trial, taking advantage of computer
guidance until the end of the 5th trial (See Fig. 11).

Fig. 11. Average time spent in each state for 5 trials.

These observations indicate that the computer holds
control for similar durations and at similar instants
during the task in both RE and VHC.

6.1.4 Efficiency
Fig. 12 displays the mean values of the efficiencies and
the standard error of the means for each condition.
The efficiency of the human under EC is significantly
lower than that of both RE and VHC (See Table 8).
On the other hand, we observe that the computer’s
efficiency is maximized under EC. This might suggest
that as the subjects take less initiative in performing
the task and mostly surrender to computer guid-
ance under EC, the energy consumed by the subjects
and their work done is low. As a result of this,
the human’s efficiency decreases whereas that of the
computer increases. However, the joint efficiency of
the dyad under RE is significantly higher than that
of EC. Even though the difference between the joint
efficiencies under RE and VHC is not significant, the
joint efficiency of the partners under VHC is slightly
lower than it is under RE because of the extra energy
consumed by the subjects under this condition.

Fig. 12. Average total efficiency and individual efficiencies of the
human and the computer under each condition with SEM error bars

TABLE 7
ANOVA results for efficiency (ηH : efficiency of human, ηC :
efficiency of computer, ηTotal: joint efficiency of the dyad)

Source df F p η2partial
ηH 2 10.080 .000 .063
ηC 2 19.733 .000 .117
ηTotal 2 3.094 .047 .020

TABLE 8
The pairwise comparison of the guidance conditions for the

efficiency
p-values

EC-RE EC-VHC RE-VHC
ηH .000(*) .011(*) .465
ηC .001(*) .000(*) .085
ηTotal .027(*) .866 .547
* The mean difference is significant at p = .05 level.
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6.2 Subjective Evaluation

Fig. 13 plots the mean values of the subjects’ responses
to the questions in the questionnaire, as grouped in
Section 5.3.2. Table 9 and 10 present the ANOVA
results and p-values for multiple comparisons.

Fig. 13. Means and standard errors of the subjective measures
under each guidance condition.

TABLE 9
ANOVA results for the subjective measures

Source df F p η2partial
Performance 2 1.889 .160 .061
Collaboration 2 3.847 .027 .117
Role ex. frequency 1.747 8.671 .001 .230
Degree of control 2 7.992 .001 .216
Interaction 1.736 5.315 .011 .155
Ease of use 2 3.959 .024 .120
Trust 2 4.306 .018 . 129
Role ex. visibility 2 6.324 .003 .179
Haptic cues 2 9.370 .000 .244
Visual cues 1.270 53.831 .000 .650
Human-likeness 1.480 .470 .571 . 016

TABLE 10
The pairwise comparison of the guidance conditions for the

subjective measures
p-values

EC-RE EC-VHC RE-VHC
Performance .208 .796 1.000
Collaboration 1.000 .062 .094
Role ex. frequency .031(*) .005(*) .374
Degree of control .053 .005(*) .265
Interaction .499 .017(*) .095
Ease of use 1.000 .032(*) .232
Trust .963 .033(*) .109
Role ex. visibility .312 .011(*) .135
Haptic cues .056 .001(*) .242
Visual cues .680 .000(*) .000(*)
Human-likeness 1.000 1.000 1.000
* The mean difference is significant at p = .05 level.

The results can be summarized as follows:
• Performance: The users thought that they achieved

the best performance under RE, followed by VHC
and EC, however the differences between the
conditions are not significant.

• Collaboration: The users reported that the sense
of collaboration during the task was the most
under VHC, followed by RE and EC, however

the differences between the conditions are not
significant.

• Role exchange frequency: The subjects believed that
they effectively utilized the role exchange mech-
anism when applicable and they performed role
exchanges equally frequently under RE and VHC.

• Degree of control: Under both RE and VHC, on
the average, the subjects held control of the ball
for about 37% of the total duration of the task.
However, their perceived degree of control on the
ball under EC is significantly higher than that of
only VHC. This indicates that even though their
control levels were similar under RE and VHC,
the subjects could not clearly distinguish between
different control levels when no informative cues
were present. Hence, we conclude that the addi-
tional cues are successful in increasing the user’s
awareness.

• Interaction: The results suggest that the level of
interaction during the task is significantly higher
when additional sensory cues are displayed to the
users to signal the control state (VHC).

• Ease of use: The results suggest that the interface
is significantly easier to use when additional cues
are present (VHC).

• Trust: Role exchange let the users trust in their
computer partner during collaboration, such that
they believe that the computer would move the
ball correctly when needed. This sense of trust is
significantly higher when additional sensory cues
are present (VHC).

• Role exchange visibility, the effect of additional sensory
cues: The subjects reported that when additional
cues were present, the role exchange process
was significantly more visible and they could
understand the current state of the system better.
They also reported that both visual and vibrotac-
tile haptic cues were effective in enabling them
to understand which party had control on the
task. However, the visual cues are dominantly
preferred by the subjects to determine the control
state over the vibrotactile haptic cues.

• Human-likeness: The users reported that none of
the guidance conditions created a sense of inter-
acting with a human partner. Interestingly, more
than half of the subjects verbally stated that
the control provided by the computer was too
smooth to be human-like.

7 CONCLUSIONS

This paper summarizes the results of an experimental
study on the utility of a role exchange mechanism as
a dynamic and personalized framework for human-
computer collaboration. In this framework, a human
dynamically interacts with a computer partner by
communicating through the haptic channel to trade
control levels on the task.
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In our approach, we used user-specific and dy-
namically adaptable force thresholds to initiate role
exchanges. As the adaptation was done transparently,
and since the range for the thresholds was narrow due
to the limited output capacity of the haptic device,
no user reported any inconsistency or difficulty in
adapting to the newly calculated thresholds during
the experiment. In this study, we assumed that the
computers are better than humans in terms of pre-
cision, hence it is reasonable to give control to the
computer in case the user decreases the forces (s)he
applies as an attempt to do fine-positioning. In order
to take over the control, the users were required
to generate only a sufficiently large displacement to
exceed the force threshold. It is important to empha-
size that once the user takes over the control, the
spring constant between HIP and NIP is increased
gradually, and the force applied to the user through
the haptic device builds up smoothly and slowly. This
causes the ball (virtually coupled to HIP, see Fig. 1)
to approach HIP, reducing the large displacement.
Due to our blending approach and the simultaneous
reduction in the distance between HIP and the ball,
the increase in force magnitude was easily handled
by the users. During our experiments, the subjects
have not reported any instabilities or oscillations in
the force response of the device.

In [25], we observed that the role exchange mech-
anism presents the users with an option to choose
and optimize between accuracy and energy when
the users were not given any information on how
to use the underlying mechanism. In the current
study, we explained the role exchange mechanism to
the users first and then evaluated their performance.
Our results suggest that the proposed role exchange
mechanism (RE) improves task performance when
compared to the equal control guidance scheme (EC).
Also, we observed that the efficiency of the users and
the joint efficiency of the dyad are significantly higher
under RE3. This implies that the users accomplish a
higher amount of work with less effort when they
are capable of exchanging roles with the computer. In
contrast to [25], this result shows that the users can
effectively benefit from a role exchange mechanism
when they are explicitly instructed on the principles
of interacting with the computer.

Additionally, we sought the benefits of supplement-
ing the system with additional visual and vibrotactile
cues to inform the users on the control state regarding
the negotiation process. With the integration of these
cues (VHC), we observed that task performance dete-
riorates, probably due to an extra cognitive load intro-

3. Note that the collected data contained outliers, which are
addressed before analyzing the data. The trends in our results
remain intact regardless of whether we apply outlier elimination or
not. In case no outliers are eliminated, we fail to observe any sta-
tistically significant differences between the performances achived
under different experimental conditions. On the other hand, the
conclusions about the efficiency do not change.

duced by these cues. However, subjectively, the users
reported that these additional cues made the interface
of the system easier to use, the task more interactive,
and their computer partner more trusted. Under both
RE and VHC, we observed that the movement of
the ball was predominantly controlled by the com-
puter. Moreover, the role exchanges were performed
at similar instants during the task and their numbers
were close under both conditions. However, without
the additional cues (under RE), we observed that the
users mistakenly thought that they held control of the
ball more often then they did under VHC. This is a
sign that additional cues were helpful in conveying
the control state to the users.

Even though the study presented in this paper
focuses only on human-computer cooperation in a vir-
tual task, the proposed mechanism can also enhance
the assistive capability of a robotic partner in physical
cooperation with humans. In physical cooperation,
two humans communicate dominantly through forces
for negotiating action plans for accomplishing a task.
However, in the context of human-robot interaction,
communication through the haptic channel has not
been explored in sufficient detail yet. We suggest that
as the robots are being more capable of perform-
ing a broader variety of tasks, more sophisticated
robotic partners that can recognize and respond to the
force signals acquired from the humans, will be built.
Recently, we have investigated how a dynamic role
exchange mechanism adds to the physical cooperation
between a human and a robot. The details of this
study can be found in [29].

As future work, we would like to investigate the
utility of statistical learning models to explore the
role of human characteristics in collaboration. We
hypothesize that certain human characteristics, such
as aggressiveness, submissiveness, and the levels in
between, exist in human-computer collaboration. Dis-
covering such characteristics can be beneficial to alter
the extent of guidance provided by the collaborating
partner (human or computer) and also to program
the computer partner to display more human-like
behavior since the results of the questionnaire show
that no guidance mechanism as is was able to generate
this effect.
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