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Recognition of Haptic Interaction Patterns
iIn Dyadic Joint Object Manipulation

Cigil Ece Madan, Ayse Kucukyilmaz, Tevfik Metin Sezgin, and Cagatay Basdogan

Abstract —The development of robots that can physically cooperate with humans has attained interest in the last decades.
Obviously, this effort requires a deep understanding of the intrinsic properties of interaction. Up to now, many researchers have
focused on inferring human intents in terms of intermediate or terminal goals in physical tasks. On the other hand, working side by
side with people, an autonomous robot additionally needs to come up with in-depth information about underlying haptic interaction
patterns that are typically encountered during human-human cooperation. However, to our knowledge, no study has yet focused
on characterizing such detailed information. In this sense, this work is pioneering as an effort to gain deeper understanding of
interaction patterns involving two or more humans in a physical task. We present a labeled human-human-interaction dataset,
which captures the interaction of two humans, who collaboratively transport an object in an haptics-enabled virtual environment.
In the light of information gained by studying this dataset, we propose that the actions of cooperating partners can be examined
under three interaction types: In any cooperative task, the interacting humans either 1) work in harmony, 2) cope with conflicts,
or 3) remain passive during interaction. In line with this conception, we present a taxonomy of human interaction patterns;
then propose five different feature sets, comprising force-, velocity- and power-related information, for the classification of these
patterns. Our evaluation shows that using a multi-class support vector machine (SVM) classifier, we can accomplish a correct
classification rate of 86 percent for the identification of interaction patterns, an accuracy obtained by fusing a selected set of most
informative features by Minimum Redundancy Maximum Relevance (nRMR) feature selection method.

Index Terms —Behavior recognition; classifier design and evaluation; feature evaluation and selection; haptic collaboration;
haptic interfaces; haptics-enabled virtual environments; interaction patterns; machine learning; pattern recognition; physical
human-X interaction; realistic haptic human-robot interaction; support vector machine classification
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INTRODUCTION

WITH the emergence of the idea of autonomy in the
robotics domain, a significant amount of research

has shifted towards discovering how to make robots act in a
more human-like manner in terms of their social, cognitive,
and motor abilities. Significant attention is now directed
towards building interactive and proactive robotic sysem
which are capable of cooperating with humans in everyday
situations instead of assisting with specific and possitly i
dustrial tasks. In order to build cooperative robotic syste
that allow natural and intuitive interaction, an underdiag

of human behavior and intentions, as well as a capability
for communication and coordination is required. In this
paper, we follow a human-centric experimental approach to
discover human behavior characteristics in everyday phfég
ical tasks. We believe that the information extracted frofff''Y @ table.
the operation of two humans is invaluable for developing a

. 1. Daily collaboration scenario: two humans jointly

robotic partner that can effectively cooperate with humansSense, cooperation addresses interaction charactetisit
Humans cooperate through numerous physical activitifsovide mutual benefit to the partners. Thus we expect
during their daily routines. These activities cover a widBartners to work in harmony or at least without inhibiting
range of tasks, such as jointly moving objects, asseminH'ge natural course of a given task. However, from time to
machine parts, hand shaking, and dancing. In its broadi&pe, the continuous and complex nature of physical tasks
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may necessitate partners to adopt some non-cooperative
behaviors (i.e. conflicts). Imagine a couple, which has
trouble in synchronizing their movements while dancing
waltz. The conflict they face can be solved as soon as
they manage to move along with the music simultaneously.
Such conflicts -unintentional as they are- may be due
to differences in partners’ intentions or discrepancies in
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reaction times to each other's actions. Determining ho®) forces applied by individual agents on the manipulated
and when interaction behaviors change is a key issue dbject, 2) net force applied by the partners on the manip-
understanding human collaboration. ulated object, 3) interactive force among the partners, 4)
A robot, which can comprehend how humans interactglocity of the manipulated object, and 5) power transtrre
would be able to either mimic the behaviors of one db the manipulated object by the partners. We formed five
the partners, or complement the interaction of humans @different feature sets, four of which are composed of haptic
an assistant. As a motivating example, think of a robotioformation, by extracting features from these descréptiv
system that aids two people with the installation of wariables. For the recognition of interaction patterns, we
rooftop car rack. The humans stand on both sides of thged multi-class support vector machine (SVM) classifiers
car and try to balance the rack in the correct pose whigth these 5 feature sets. The classification results inelica
the robotic system helps them with carrying the heavy loathat each individual feature set was successful in recegniz
In this case, humans do not act as dyads just because thngyat least 4 of the 6 interaction patterns.
need help from one another, but because dyadic interactiorEven though the individual feature sets fail to recognize
becomes the medium of communication. In this examplall interaction patterns, when the features are fused to
assume that the robot is not fitted with tools to determirabtain an optimal feature set by the Minimum Redundancy
where the rack should be installed, but is only capabMaximum Relevance (MRMR) feature selection method,
of lifting the rack up or down as well as monitoring thewe can accomplish a correct classification rate of 86 percent
interaction between humans. In this scenario, the tasksnedar the identification of interaction patterns.
to be led by the humans. However the robotic system canThis paper is organized as follows: Section 2 presents
effectively help in completing the task by speeding up thihe related work. The experimental setup used for data
operation in the right direction when it recognizes harmorgollection is described under Section 3. The interaction
between the partners and stabilizing the rack when it infepaitterns observed during the experiment, and the proposed
a conflict between them. In other words, the robotic systetaxonomy are discussed in Section 4. The machine learning
recognizes the interaction patterns of the humans partnerethod that is used for the classication of interaction
and assists them as needed. patterns is explained in Section 5. The results and the
This study is an effort to investigate interaction patdiscussion are presented in Section 6, finally followed by
terns in human-object-human scenarios, where two humaclusions in Section 7.
cooperate to move an object (see Fig. 1). We focus on
dyadic joint object manipulation tasks to identify huma
interaction patterns when partners collaborate in the ex-
istence of conflictd. In this sense, this study is a firstDeveloping robots that can collaborate with human partners
step towards exploring how the partners’ intentions changéring physical interaction requires the robots to display
over the interaction in a physical task. In order to obsen@oactive behavior. So far, the widespread approach to
the interaction patterns of the partners, we designed fdig@lize proactive behavior has been to improve the control
different dyadic object manipulation scenarios in a hapticschemes of the robots based on estimations of human
enabled virtual environment. Two of these scenarios welféentions. In an early study, Rahman et al. programmed the
designed to promote collaboration between the partndégbot to replay task-specific trajectories recorded in huma
without imposing any conflict on them, while the othefuman experiments to generate human-like velocity trajec-
two artificially invoke conflicts between the partners. RedPries in human-robot cooperation [22]. Later, Tsumugiwa
human-human interaction data is collected through a co#f-al. estimated human arm stiffness through the observatio
trolled user study with 20 dyads. Through offline examin&f measured position and forces, and adapted the admit-
tion of this data, we observed that partners exhibit specifignce parameters accordingly [27]. Similarly, Duchaine an
interaction patterns during joint operation. Specificalie  Gosselin implemented variable admittance based on the
first defined three possible interaction types (harmoniowglocity and force derivative information obtained froneth
conflicting, and neutral) and then identified six interactiohuman [6]. Corteville et al. developed a human-inspired
patterns based on the intentions of the dyad on the moti¢@pPotic assistant, which assumed that the humans follow a
A human annotator observed the video recordings of theinimum jerk trajectory [9] during motion, and estimated
trials, which were captured during the experiment, arifie intended motions of the human partner based on his/her
manually annotated the data. Through this process, Wesition and velocity profile [5]. The robot then adjusted
identified the meaningful parts of the collected data aritp velocity profile to fit along with the intended velocity.
labeled them with the aforementioned interaction patternsAlternatively, some other investigators have focused on
to form a labeled set of data for supervised learning. role allocation and sharing in human-robot interaction.
We conducted a set of statistical analyses on the datafiMrard and Kheddar defined two distinct extreme behaviors
order to find descriptive variables that are used to recegni¢eader and follower) for partners and switched between

the interaction patterns. These descriptive variables atae behaviors via two independently-varying functions [8]
Later, Kheddar illustrated the use of this mechanism during

1. Note that even though we focus on dyadic interaction is gaper, collaboration with a humanoid robot [_13]-.Sim"ar|_y’ Bulssy
the ideas we present can be easily extended to multi-agenasos. et al. proposed a control law for physical interaction with a

BACKGROUND
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humanoid robot in an object transportation task [3]. Theiions in physical dyadic tasks, where a robot collaborated
control law enabled the robot to proactively switch betwequroactively with its human partner. Schrempf et al. pre-
standalone (i.e. performing the task alone) and collab@ratsented a new approach that allows a robot to plan its actions
(i.e. leader or follower) roles depending on the intentioreven if the human intention estimation was uncertain [24].
of its human partner. Oguz et al. [20] and Kucukyilmain their system, the robot computed a confidence for
et al. [15], [16] proposed a method to infer the intentiongossible actions and executed the task by selecting actions
of the human during a joint object manipulation taskproactively. Carlson and Demiris defined certain actions
They implemented a dynamic role exchange model, whetet can be performed while driving a powered wheelchair,
the robot inferred human’s intentions based on the forcteen dynamically predicted the most probable actions that
applied by him/her, and chose between leader or followshall be taken in the near future [4]. Even though these
roles. Later, Mortl et al. presented a similar dynamic rolstudies presented task-independent solutions to intentio
exchange mechanism for a joint object manipulation task, iacognition, they fell short in interpreting the meaning of
which a man-sized mobile robot sensed the human partnahe intentions and the interaction patterns.
intentions through the evaluation of an agreement criterio Characterization of interaction patterns is an emerging
based on the human’s force input, and helped accordingypic in human-human and human-robot interaction do-
[19]. These studies enhanced human-robot interaction wigains. As the name implies, interaction patterns describe
generating more natural trajectories. However, the rulle interaction between agents, not the behavior of an
based nature of the control laws utilized in these studigslividual. In this sense, it provides a different perspeact
makes them difficult to generalize for different tasks. Fute the same problem. There are a few studies in literature,
thermore, even though the robots are capable of adaptingateich identify a taxonomy of interaction patterns and per-
their human partners, they lack the ability to compreheridrm task-dependent classification. Recently, Jarrasaé et
how human behaviors change during interaction, and whadve introduced a general taxonomy of interaction patterns
these changes signify. in physical tasks [12]. They formulated the human-robot
A widely accepted perspective advocates the investigateraction patterns as controllers. The proposed framewo
tion of human-human interaction to learn from the beprovided a description of interaction patterns of a dyad
havioral mechanisms utilized by humans. Based on tegecuting a joint task, along with an interpretation of the
insight gained from human-human interaction data, Re@atterns. Even though the utility of this taxonomy was
and Peshkin illustrated that two opposing intentions, to ademonstrated by simulated interactions of two humans, it
celerate or to decelerate, exist in a dyadic target aceprisit lacked the identification of patterns in real data. Melerdez
task [23]. Similarly, Stefanov et al. specified conductaCalderon et al. defined five human interaction patterns in
and executor roles, which bear information about how tracking task where two humans worked together [18].
two humans cooperate in a joint manipulation task [25Fhe patterns were defined as templates, which described the
They presented a model based on velocities and interactigtion of each partner, such as one agent accelerating the
forces to define the roles. Groten et al. focused on theovement while the other is braking. They proposed a rule-
consistency of dominance behavior during a tracking taslased classification system using the interaction torques
where two humans collaborated [10]. They demonstrataddd EMG recordings of partners’ activities to identify
that the participants’ interaction can be represented bytiiese patterns. However, their technique was highly task-
personal dominance distribution. Later, they investidatelependent. Besides, it required manual construction of
how partners communicate through intentions, and sugmplates and a lot of fine tuning when the task dynamics
gested that in order to achieve a joint goal, partners needcitanges. Furthermore, the system was not robust against
integrate their individual action plans in both collaborat the addition of new interaction strategies.
and conflicting situations [11]. Even though these studiesEven though the aforementioned studies provide valuable
adopt a similar approach to that of ours, in a sense that thasormation about human interaction patterns, to our krowl
examine human-human interaction data, they are inheremdyge, no effort has yet been put into building a systematic
different. All these studies focus on presenting the eriste way of defining and recognizing these patterns. In this
of different patterns in human behaviors; however, none génse, our work is a first to both present a taxonomy and
them attempt a systematic classification of such pattemns Bgopose a recognition framework for real human-human
ing machine learning techniques. Additionally, they mginlinteraction data. Additionally, the classification method
define individual labels for human intentions, but do n@iroposed in this paper aims at discovering the descriptive
focus on how partners work with each other over time. features of interaction, hence, given training data, our

In order to address this shortcoming, some researchgsghnique can be applied to a diversity of tasks.
have used statistical learning models to infer about the

intentions of the human partner. Evrard et al. implemented

a learning-by-demonstration technique [2] to differet®ia3 ExpeRIMENT

between leader and follower roles [7]. Their system was

able to capture the role switching moments using Gaussife conducted an experimental study to generate data that
Mixture Models. Takeda et al. [26] and Wang et al. [28tan be used to identify human-human haptic interaction
proposed HMM based algorithms to estimate human intepatterns and learn models for capturing salient charac-
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(a) Screens of Agent 1 and 2 Fig. 3. The straight scene
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(b) Agent 1 and 2 Fig. 4. The bifurcated scene

Fig. 2. Two humans interact through haptic devices in reaches the desired configuration, the target turns blue and
order to jointly move an object, resembling a table with  a counter appears in the middle of the screen to alert the
caster wheels, in a virtual environment. user. If the agents succeed in staying on the target until
the end of the countdown, a new target appears somewhere
teristics of dyadic interactiorfsThis section presents theelse in the scene. In both scenes, boundaries constrain the
experimental design and the scenarios used in this stuthgvement of the object. Hitting the boundaries during the
as well as the physics-based engine underlying the virtuabk is considered an error. In order to signal such errors
environment and the experimental procedures. to the users, the boundaries turn red on collision.

3.1 Experimental Environment 3.2 Physics-Based Engine

In order to identify human interaction patterns, we havehis section details the physics-based engine underljieg t
developed an application where two human subjects intergftual environment. Note that bold-face symbols are used
in a virtual environment through the haptic channel. Duringy denote vectors throughout the section.
the experiment, the subjects were situated in differentThe manipulated object is modeled as a rigid body that
rooms, so that they only interact through haptic devicesmoves in 2D in a way similar to the movement of a
The application requires the subjects to coordinate theilble moving on caster wheels. The physics based engine
actions in order to move the rectangular object together gynveys the dynamic nature of the task to the agents both
a 2D maze-like scene (see Figs. 2). Due to the selectigigually and through haptics. The agents interact with the
of friction coefficients, the object rotates easily withitet environment via haptic devices. The end-effector position
environment, resembling the motion of a table moving osf haptic styli along x- and z-axes map to the positions
caster wheels. The goal of the task is to move the objest the individualhaptic interface points (HIPs). A spring
toward a target parking configuration and stay there forghd damper model is used between each agent’s HIP and
predetermined period of 5 seconds. the grasping point on the object, as shown in Fig. 5. The
During the experiment, the subjects are presented Wiifodel is used to calculate the individual forces applied by
two different scenes to observe interaction patterns ih bahe agents on the object:
translational and rotational motion. The first scene, which
will be called thestraight scene from now on, depicts FHip, = Kp(THIP, — Tg,) + Ka(EHIP, — Tg,) (1)
a horizontal path, whereas the second scene, called th
bifurcated scene, presents a fork-shaped path for the users
to follow. Obviously, the straight scene involves transiat where K, and K, are spring and damper coefficients,
along a straight line, while the bifurcated scene entaitbboxs;;p,, xHrp,, EHrp,, THIP, are the positions and
translation and rotation. Screenshots of the applicatwn fvelocities of HIPs, ande,,, z4,, 4,, ¢4, are the po-
each scene can be seen in Figs. 3 and 4. sitions and velocities of the grasping points of the agents.
As seen in the screen visuals, the jointly manipulateReciprocally, the agents are fed back with foreeBgrp,
object is depicted as a pink rectangular block. The graspiagd — Firrp, through the haptic devices, so that they can
points of agents are represented as blue and green sphgsesthe dynamics of the objegt.
attached to its short edges. The target is visually repteden Note that this design utilizes equal gains for the spring-
with a green rectangle that resembles the object and cleatbmper model of each agehfhis implies that the agents
conveys the desired final orientation. Once the object
3. Due to mechanical constraints of the haptic devices, dhee$ fed
2. The raw data generated through this experiment and thelethb back to the humans are thresholded at 4.0 N.

dataset of annotated interaction segments are publicljabla through 4. The values of the spring and damper coefficients were césply
http://rml.ku.edu.tr/HHIBehaviorDataset. set to K = 0.25 N/mm and K4 = 0.001 Ns/mm.

HIP, = Kp(THIP, — Tg,) + Ki(THIP, — $4,) (2)
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= K Ky Xuim 2 thorough discussion on this). The scenarios are designed
- R L e only to improve the diversity of the resulting behaviors.
Surface Kq Ka The following manipulation scenarios are considered in

the experimental study:
Fig. 5. HIPs are connected to the object with
spring/damper systems. K, and Kgq are spring and  gcenario 1: Harmony

damper coefficients . . . .
In this scenario, both subjects are given the same target.

Hence, we expect no conflict in terms of final goals.

are of assumed to be of equal strength. However, it Eg. 6(a) represents the screen visual shown to each subject

worth noting that this design choice does not prevent t @r both straight and bifurcated scenes.

partners from applying different forces on the object dgrin

the interaction by moving the end-effectors of their haptiecenario 2: Full Conflict

devices. In fact, discrepancies in interaction dynamies arhe subjects are presented with conflicting goals in this

naturally manifested through the way the agents appdgenario. The target configurations are arranged so thyat onl

forces on the object. one of them can be achieved at the end of the task. As a
In addition to the applied forces, in case the objeeésult, one of the subjects needs to yield to the authority of

collides with the boundaries, an impact fordg, is applied the other in order to accomplish the task. Fig. 6(b) shows

on the object to prevent penetration of the object into ththe screen visual shown to each subject for both scenes.

boundaries. Furthermore, since the object acts as a rigid

body, moments are generated due to the forces applied $¥knario 3: Partial Conflict

the object by the agent =1,2) and due to the _. . . . -
im actjforcey(\/[) F?)r sii/(qii:lijtu’édeanics is assumeds'm'lar to the previous scenario, conflicting targets are
P o Plctty, y iven to subjects. The achievement of both tasks is not

and the direction of momentum is considered to be always . . . . .
ossible, yet the conflict manifests itself later during the
orthogonal to the movement plane.

. . . trial and the amount of conflict is expected to be less than
The object is also affected by frictional forces due t : : .
: . . : at of Scenario 2. Fig. 6(c) represents the screen visual
its contact with the surface. Translational and rotationg ;
- : shown to the subjects for both scenes.
friction (Fy and My) are calculated using the Coulomb
friction model® Thus, the net force and moment acting on . )
the object becomes: Scenario 4: Single Blind
In this scenario, only one subject is assigned a goal. The
Frnet = Furp, + Furp, + F1 + Fy (3)  other subject (i.e. the blinded subject) is informed thiids
Mpet = Mpurp, + Murp, + My +M; . (4) needs to observe and follow the actions of his/her partner.
) ) It is possible to accomplish the task, but the blinded subjec
The state of the object at each time step expected to get confused. Fig. 6(d) represents the screen
(Zoby, Tobj: Oobjr Oob;) IS calculated from M. and yisual shown to the subjects for both scenes. Note that in
Fnet using Euler integration. this figure, the blinded subject is agent 1, however a dual
scenario, where agent 2 acts as the blinded subject, is also

3.3 Scenarios considered in the experiments.

In order to elicit different interaction patterns, we pnesel N
the subjects with different manipulation scenarios, inakhi 3.4 Procedure and Participants

conflicts between partners are artificially invoked by progq subjects (6 female and 34 male), aged between 21
viding each agent with different visual information about,q 29, participated in our study. The subjects were ran-
the location of the target configuration. Apart from thejomy divided into two groups to form dyads that should
target locations, both subjects observe the motion of )&,k a5 partners during the experiment. The partners were
object and view the same path. The subjects are not awgggarated in two different rooms, so that they could not
of the whereabouts of their partner's target, but they at@e or hear each other. They interacted with the object
informed that it can be different from that of their owngnq each other through Geomagftormerly Sensabl®)

or either they or the other agent might not be given gnanton®Premiuni”haptic devices using a stylus attach-
target at all. Note that the scenarios do not force partershont. The haptic devices were connected to separate PCs
act in a well-defined and straightforward manner. Insteaglhq communicated through a UDP connection over the
collaborating agents can display different behaviorsruri |ocal area network.

interaction, which are shaped with respect to the chamcter p; the beginning of the experiments, each participant
and emotional states of the individuals (See [29] for @as presented with the same goals (i.e. Scenario 1) for

) o . two practice trials in order to familiarize him/her with
5. The values of the static and kinetic friction coefficientsre respec- h Duri h . h ipulati
tively set tops s = 0.19 and u, ,, = 0.15 for the translational case andt e Sy_Stem' uring the e).(pe”ments’ each manipulation
10 ir,s = 0.20 and 1., = 0.19 for the rotational case. scenario was presented twice, hence, there were a total of
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Agent 1’s screen: Agent 1’s screen: Agent 1’s screen: Agent 1’s screen:
ok b4 P R aop R o
Start Goal Start Goal |||| Start Goal Start
Agent 2's screen: Agent 2’s screen: Agent 2’s screen: Agent 2's screen:
P P33 b3 P P R ||| = ®
Start Goal ||| Goal Start Start Goal ||| Start Goal
(i) Straight scene (i) Straight scene (i) Straight scene (i) Straight scene
Agent 1’s screen Agent 1’s screen Agent 1’s screen Agent 1’s screen
Goal Goal® Goal®
o~ E — -~ = I
Start Start Start Start
Agent 2’s screen Agent 2’s screen Agent 2’s screen Agent 2’s screen
Goal GoalR Goal
o ﬂ o o
Start Start Start Start
(i) Bifurcated scene (i) Bifurcated scene (i) Bifurcated scene (i) Bifurcated scene

(a) Scenario 1 - Harmony: The
agents are provided with the same
goals, which lie at the farthest end
of the path.

(b) Scenario 2 — Full Conflict: The
agents have conflicting goals,
which lie (i) at opposing ends of the
corridor for the straight path and (ii)

(c) Scenario 3 - Partial Conflict:
Both agents’ goals are on the
same path, however one of the
agent’s goal is closer.

at the end of different branches of
the bifurcated path.

Fig. 6. Four scenarios in straight and bifurcated scenes.

10 trialé to be analyzed. In order to balance the learning
effects, the order of the scenarios were permuted using a
Latin square design. The subjects were not given detailed
descriptions of the scenarios or the interaction pattdouts,
they were informed that their partners may have conflicting
goals or no goal at all.

4 A TAXONOMY OF HUMAN INTERACTION

PATTERNS

Based on our interpretations of user interactions after the
experiments, we identified a set of interaction patterns tha

were observed frequently in our dyadic object manipulation

task. These constitute our taxonomy of human interaction
patterns as illustrated in Fig. 7. In the proposed taxonomy,
the first layer presents a very general categorization of any
physical interaction involving multiple agents. In thigés,

an interaction-based perspective is adopted to classdy th

task as being either harmonious, conflicting, or neutral.

The second layer is concerned with the “intentions” of the

agents. In this sense, it is not related to the resultinganoti
of the object itself, but is rather responsible for defining
whether the agents’ motion plans agree or not. Finally, the
last layer describes interaction patterns that are comynonl
encountered in our task. These patterns can be explained
within the scope of the proposed taxonomy as follows:

1. Harmonious interaction:

The partners move the object while agreeing on the direc- i)
tion of the movement. In other words, the intention of both
agents are the same; thus, no conflict exists between the
agents. We examine this interaction type in two subclasses:

a) Common intention to start/continue motion: The

(d) Scenario 4 — Single Blind: Only
one agent is provided with a goal
at the farthest end of the path,
whereas the other agent does not
see any goal on screen.

Interaction Motion Interaction
Types Intentions Patterns
'
c1
( ) Harmonious
Common translation
intention to - J
start/continue ( ~oy )
motion C2.
Harmonious
Harmonious — rotation with
Interaction PR translation
Common C3
intention to ——— Harmonious
stop motion Braking
-/
. c4
Dyadic ) Persistent
Interaction . Conflict
Conflicting Conflicting
. 1 intention for
Interaction motion
\ J C5
— Jerky Conflict
( ) Conflict-free ( \
but no C6
In't\:aer:gtailcl)n f—— common —— Passive
intention for Agreement
motion \ )

Fig. 7. Taxonomy of interaction patterns in dyadic
bject manipulation

i) Harmonious translation (C1): The partners
agree on translating the object. In other words,
both agents apply forces in the same direction
to translate the object.

Harmonious rotation with translation (C2):
The partners voluntarily rotate the object by
agreeing on moving it along an arc or about
its center.

manipulated object accelerates or moves with a con-

stant velocity.

6. Note that Scenario 4 was presented in a twofold fashiohaeach
agent gets to act as the blinded user in the experiment.

b) Harmonious braking (C3): One or both partners
voluntarily decelerate the object with the purpose of
stopping the motion. In practice, at least one agent
starts applying force in the direction opposite to the
movement until the object is stationary.
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2. Conflicting interaction: validation, and test sets by randomly selecting instances

The interaction is dominated by some form of conflictom the whole data. The training and validation sets are
between the agents. In other words, the partners have 4&§d to estimate parameters of the classifier, while the test
common intention for motion. In this type of interactionSet iS used to assess the performance of the fully trained

smoothly nor achieve their goal. Two patterns can gy hold-out cross validation. This process separates stir te
defined for this interaction type: set by setting aside 30 percent of the data. This guarantees
i) Persistent conflict (C4):The partners insist on mov- that the test set is only used to assess the learned model.
ing the object in opposite directions and hence tthe remaining 70 percent is then divided into training and
object does not move much validation sets via 5-fold cross validation in order to sele
i) Jerky conflict (C5): The users disagree on the movet-he best parameters and train the model using a separate set.
ment of the object, but not in a persistent fashioﬁo‘fter the creation of the datasets, features are extracted f
This typically causes the object to rotate involuntaril ach O_f '_[hem, and r_nod_el training is performed using _only
or follow undessired trajectories, possibly ending wit he training and validation sets. Once the SVM is trained
’ ith the optimal parameters, it is used for the classificatio

collisions with the environment. In more genera . )
terms, this pattern can be thought of any appare { patterns using the test set. The steps of our learning
' procedure is as follows:

conflict between agents that is not persistent.
1) Annotate raw data

2) Divide the data into training, validation, and test sets

3) Extract features from training, validation, and tessset
This interaction type implies no conflict between the part- 4) Select model parameters

ners. However, the agents share no common intention fors) Train the model using the training set
the motion, either. Interaction is mainly governed by an ) Evaluate the model using the validation set
agent being passive, which defines a single interaction7) Repeat steps 4 - 6 with different model parameters
pattern: 8) Select the best parameters and train the model using
i) Passive agreement (C6)At least one of the partners the training and validation sets
remains passive by not contributing much to the task. 9) Assess the final model using the test set

The details of these stages will be explained in the rest
5 RECOGNITION OF HUMAN INTERACTION of this section.

PATTERNS

3. Neutral interaction:

5.1 Annotation of Interaction Pattens

Annotated Dataset After the experiment, we generated videos of the trials
data generation by simulating the recorded data in Matfdnvironment.
Regarding the videos, the data is manually annotated with

the interaction behaviors using the ELAN annotation tool
[1]. The annotation is performed by a human, who has a

| Training | | validation || thorough understanding of the proposed taxonomy and the
| set i set interaction behavior classés.
At the end of the annotation process, variable-length la-
Feature Feature beled interaction segments were obtained. Segments shorte
extraction extraction than 4 seconds were discarded to eliminate the noise due

to instantaneous behavior changes during interaction. As a
result, we obtained a populated dataset of 1944 instances.
The percentage of instances per interaction pattern ctass i
shown in Fig. 9. The number of instances are particularly
small in harmonious rotation with translation (C2), har-
monious braking (C3), and persistent conflict (C4) classes.
Upon examining the dataset, we observed that these classes
of behaviors are indeed encountered infrequently during

Model
selection

Fig. 8. Stages of classifier Ieammg‘ 7. The reliability of the annotation process is crucial fog ficcuracy of

Our statistical pattern classification system possesses #Y supervised learning task and it is possible that the afatatated by
a single annotator may suffer from human-error and subjgctin order

structure given in Fig. 8. First, raw data_ is annotated by #validate the primary annotator’s reliability in labajirthe behaviors,
annotator, who has a good understanding of the taxonommyinstructed another annotator to independently perftwerannotations.

and the interation behaviors, to obtain a set of meaninngle”v an inter-rater agreement analysis was conductedsenabwhether

labeled int ti ts. Th . der t id the resulting annotations are consistent across diffexanbtators. As a
abeled Interaction segments. 1hen, In oraer 10 avold OVeLy i a Krippendorff's alpha value of 0.91, which is highoagh to

fitting, the data is split into 3 distinct parts, namely tiagy indicate the consistency of the behavior definitions, is poied [14].
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C1:13% force exerted by the agents is calculated by:

C2: 7% 1
MPFoee = 7 / |Ferp, + Faiplldt . (6)
C6: 43% T

C4:7% 5.2.3 Mean Magnitude of the Interactive Force Acting

on the Object

C5:23% The interactive forcef; acting on the object reflects the
internal force that acts on the object. Interactive force is
defined in the redundant task space [17] and occurs if the
agents apply “compressive or tensile forces that do not
contribute to the motion of the object” [10]. Interactive
force is defined as:

Furp, SigNFurp,,) # Sign(Furp,,)
NFurp,| < |Fuip,, |
—Fpurp,, SiQN(Fuip,) # sign(Furp,,)

Fig. 9. Percentage of instances per interaction pattern
class in the dataset. C1: Harmonious translation, C2:
Harmonious rotation with translation, C3: Harmonious
braking, C4: Persistent conflict, C5: Jerky conflict, C6:
Passive agreement

the experiment. A possible explanation for this can be as
follows: C2 is only required in the bifurcated scene at or,
near the bifurcation region. Since any rotation caused by’ — AP ISP |

conflicts is considered to be either in C5 or C6 classes, C2 is 0 S r(lng )= Z{Pr"kmF )

less populated than the others. Similarly, C3 is encoudtere ONFH1P,) = SIGNHIP,, @
typically at the end of the trials only once, when the useWhereFpr“ and Fy;;p,. stand for ther components of

attempt to park the object. Finally, the frequency of C4 ig,o agent's applied forces in the object frame. The mean
low, since it is mostly encountered in full or partial coriflic

X X magnitude of the interactive force acting on the object
scenarios, and resolved easily. (MF)) is calculated as:
i :

5.2 Identification of Meaningful Features MF,; = i/ |fildt . (8)
T Jr

The success of any pattern recognition system relies on
the presence of informative features. At the end of the . . )
annotation process, we obtain a bulk set of labeled dat24 Mean Magnitude of the Linear Velocity of the
consisting of the agents’ forces as well as variables relat®PIeCt
to the movement of the object, such as its position, oriehe mean magnitude of the linear velocity of the object is
tation, linear and angular velocity, and accelerationotfPricalculated as follows:
to classification, in order to have an initial idea about the
descriptive power of the these variables, we ran ANOVAs Mi = l/ | Eobs|ldt 9)
to seek differences between class means for each variable. T Jr

Fig. 10 shows the means and the standard errors of
means for each pattern class for each of these variable€.5 Mean Magnitude of the Angular Velocity of the
Statistically significant effectsp( < 0.001) are detected Object about the y-axis
for all the variables. However, it is important t0 noterpe mean magnitude of the angular velocity of the object
that statlst|ca!ly _S|gn|f|cgnt dlﬁerenggs between _clasd;e _about the y—axisé(ab,-) is calculated as follows:
not necessarily imply high recognition accuracies during '
classifications. The predictive classification accurafies 1 /

T

each feature set are further discussed in Section 6. Mo = T

Oop;| dt . (10)

5.2.1 Mean Magnitude of the Individual Forces Ap- 556 Mean Normalized Power Transferred by the

plied by the Agents Agents to the Object

Individual forces exerted by the subject®rrp, and

Frup,) are averaged over the duration of the interactionThe power transferred by agents to the object is calculated
X :

as follows:
2
MFiarp, = 52> [ | Faarm, 6) Py = [ (IFaie. -dons| + [ Mure o) dt. @1
2T = Jr w ’ HIP, = /T (| HIP, - Tobj| + ‘ HIP,Oob; ) t, (11)

where T is the length of the interaction sequence. whereu = 1,2. Using this, the mean normalized power

) ) transferred by the agents to the objekf Pyp,) is calcu-
5.2.2 Mean Magnitude of the Net Force Applied by |5ieq as:
the Agents 12
The net forge is the ve_ctor sum of the agent. forces applied MPgips = T Z Pyrp, . (12)
on the manipulated object. The mean magnitude of the net u=1
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10
16.3

8 15
= _
—~ 6 =

= =10
2
0 0
C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6

(a) Mean magnitude of the individual (b) Mean magnitude of the net force (c) Mean magnitude of the interac-
forces applied by the agents applied by the agents tive force acting on the object

59.2

44.2

C1C2C3C4 C5C6

(d) Mean magnitude of the linear ve- (e) Mean magnitude of the angular () Mean normalized power trans-
locity of the object velocity of the object about the y-axis ferred by the agents to the object

C1 C2 C3 C4 C5 C6

Fig. 10. Mean values of variables for each pattern class. The error bars indicate standard errors of the means.
C1: Harmonious translation, C2: Harmonious rotation with translation, C3: Harmonious braking, C4: Persistent
conflict, C5: Jerky conflict, C6: Passive agreement

5.3 Dataset Generation and Feature Extraction Computing 4 features (mean, standard deviation, median,

The annotation process results in variable length intinact @d interquartile range) for each variable separately over
e aforementioned 12 support regions, 5 datasets are

segments. However, in order to be used in classificatiotﬂ, -~ : ’ )
we need to represent the data using a fixed number @@nstructed. Specifically, Set 1 is related to the inteoacti

features for each annotated interaction segment. In oedef@rces, which are measured in 2-dimensions for each agent;
come up with the most informative features, we followed Bence it contains 192 features (12 support regions x 4
systematic subdivision approach, which divides the wholgatures x 2 dimensions x 2 agents). Set 2 is related to
interaction segment into support regions and then computB§ Net forces and stores 96 features (12 support regions

the mean, standard deviation, median, and interquartiie# features x 2 dimensions); Set 3 is related to the

range values for each region. This is motivated by tHateractive forces and stores 48 features _(12 supportmegio
features); Set 4 is related to the linear and angular

idea that some behaviors are not consistent throughout hé

interaction segment and it is not possible to capture thodglocities of the object and stores 144 features (12 support

behaviors using descriptive statistics from the wholerintg€9i0ns x 4 features x 3 dimensions); and finally Set 5 is

action segment. For instance, during braking, we expd€fated to the power consumed by agents and stores 96

the magnitude of the velocity to drop over time. In ordef€atures (12 support regions x 4 features x 2 agents). Table

to capture such temporal properties, we divide the wholgPresents the feature sets used in this study. Each row
interaction segment into 12 support regions as shown G this table defines a separate feature set, which will be
Figure 11. The support regions cover the following range@sSessed for its discriminative power.

R1 0 7] TABLE 1
Feature sets
R2 : [0 AY
[ Set [ Set Name | Features | Count |
R3 [T — At T] Set 1 | Agent force-related Furp,, Fuip, | 192
R4 : [T/2—At T/2+ At Set 2 | Net force-related Fret 96
. . . Set 3 | Interactive force-related f; 48
R5, R6 [(iT/3— At iT/3+ At],i=1,2 Set 4 | Velocity-Related Eobj, Dobj 144
R7—28 [iT/4 — At iT/4 4 At],i =1,3 Set 5| Power-Related Pyip,, PaIp, 96
Total 576
RO—12 : [iT/5—At iT/5+Ali=1,234 , L2 | |

whereAt = 1 s. The number of support regions is selectee4 Classifier Design
empirically to span the whole interaction segment as mutlle utilize a multi-class Support Vector Machine (SVM)
as possible without inflating the total feature count. classifier with a Gaussian radial basis function kernel to
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R9 R10

Fig. 11. Twelve support regions are constructed through systematic subdivision of the whole interaction. Equal
number of features are computed over each region.

recognize interaction patterns. In order to deal with the &0
multi-class learning problem, we adopt the one-against-on &
strategy, which builds one SVM for each pair of classes.In §
order to obtain the optimal hyper-parameters, cost and 3
of the model, we perform model selection by 5-fold cross- < 2o
validation using grid search.

60

Cu

07 Set! Set2 Se3 Sew# Sets 0" Set1 Sel2 Set3 Setd Sets

. a) Accurac b) Balanced Error Rate
5.5 Evaluation @ Y ®)

For the evaluation of the classifier performance, we utiliZeig. 12. Classification results of individual feature
the following metrics: sets. Set 1: Agent force-related feature set, Set 2:
1) Normalized Confusion Matrix is a table which Net force-related feature set, Set 3: Interactive force-

displays the correct and incorrect classification ratéglated feature set, Set 4: Velocity-related feature set,

of each class. The values in the columns and row! > Power-related feature set.
respectively represent the number of instances in the

predicted and the actual classes normalized by thgyh (> 0.3). Examining the confusion matrices in depth
class size. Hence, it clearly displays the classifierigee Fig. 13), we observe that each individual feature set
confusion between two classes, if exists. is successfdlin recognizing at least 4 interaction patterns,
2) Correct Classification Rate (Accuracy)is assessed pyt have confusions in one or two classes. Specifically, the
by comparing the classification rate with ground trut@|assifiers trained individually with Sets 1 and 2 perform
labeling of the test set. The accuracy is defined as thgorly in the classification of C3: Agent-force related
number of correct classifications divided by the totgbatures in Set 1 suffer from confusion between C3 and C5,
number of examples in the test set. whereas net force-related features in Set 2 confuses C3 with
3) Balanced Error Rate (BER) is the average of the poth C5 and C6. As seen in Fig. 10, the mean magnitudes
number of incorrect classifications for each clasgf individual forces are close to each other for C3 and
normalized by the class size. The BER criteria ig5 and so are the net force magnitudes of C3, C5, and
especially useful when the number of instances vatys, Hence classifiers trained with these features are indeed

highly among different classes. expected to confuse the patterns, as isolated featurestre n
descriptive on their own for differentiating between these
6 RESULTS AND DISCUSSION pattern classes. Similarly, it is no surprise for the cleessi

trained with the interactive-force related features in $et
to confuse C2 and C3 with C5 and C6. Finally, a similar
case holds also for the Set 4's velocity- and Set 5's power-

Initially, we investigate the utility of using isolated fee related features not being able to differentiate between C4
sets for classifying the pattern classes. A separate medebhd C6.

trained with each feature set in Table 1 to discover how well
these features capture the significant characteristicheof 6.2 Classification Results with the Combined
interaction pattern classes. The recognition performzmhcel:'eature Set

training with individual feature sets can be seen in Fig. 12 ) i
along with the confusion matrices in Fig. 13. The approach described above emphasizes the performance

The classifier trained with Set 1 (agent force-relatedf isolated individual feature sets. However, some feature

features) achieves the best classification performande wie" be used in combination to enhance the accuracy of

an accuracy oR0.6% and a BER 0f0.33. On the other the recognition of interaction patterns. We construct a
hand, the classifier trained with Set 3 (interactive forcé_:-ombIned feature set, comprising of all of the features

related features) yields the lowest performance Wit % in the aforementioned 5 feature sets. Using the combined
accuracy and BER of.52 feature set, we achieve an increased accuraéy.af% and

6.1 Classification Results with Individual Feature
Sets

Note Fhat e_ven though all classifiers achieve reco_gnltlon& We consider a classification to be unsuccessful in casé¢hthaorrect
accuracies higher tha0%, the BERs are comparativelyclassification rate is lower than random recognition raj in our case.
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Set PREDICTED INSTANCES Set2 PREDICTED INSTANCES Set3 PREDICTED INSTANCES
C1]/C2|C3 /C4|C5]|C6 C1]C2|C3 C4 C5]|cC6 C1/C2/C3 /C4/C5|C6
|C1/0.94/0.01/0.01]0.00/0.02|0.02 ¢ €1/0.95/0.03/0.00/0.00/0.000.02 ¢ C1/0.75/0.00/0.00|0.00|0.03 | 0.22
z 1(1)1 C2/0.03/0.41|0.02/0.01/0.43|0.10 z IEUJ C2/0.05/0.45/0.05/0.00(/0.32/0.13 £ $C2/0.05/0.10/0.03/0.00/0.470.35
5 Zz/C3/0.05/0.03]/0.14/0.10|0.45|0.23 5 Zz|/C3/0.03|0.05/0.16 | 0.000.36|0.40 > z|/C3/0.08/0.01/0.03/0.060.490.33
'5 X/ C4/0.00/0.00/0.05/0.80|0.15|0.00 5 £/ C4/0.00/0.00/0.00/0.170.11]0.72 5 £/C4/0.00/0.01/0.10/0.55/0.30 0.04
< £/ C50.000.030.030.04 0.78/0.12] < £ C5/0.00/0.08/0.03/0.02/0.60 0.27| <X 2/C5/0.02/0.06/0.04 0.040.59/0.25
—|C6/0.00/0.00/0.00/0.00{0.030.97 —|C6/0.00/0.00/0.00/0.01/0.10|0.89 —/C6/0.11/0.01/0.00/0.000.02 0.86
(a) Agent force-related feature set (b) Net force-related feature set (c) Interactive force-related feature set

Sets PREDICTED INSTANCES Set5 PREDICTED INSTANCES Combined| PREDICTED INSTANCES
C1|/C2|C3 C4|C5]|C6 C1]C2|C3 C4|C5]|C6 Set Cilcz2lc3lcal cs51cCe
! C1/0.88/0.02/0.01]0.00/0.040.05 1) C1]0.86/0.05/0.04|0.00/0.03]0.02 o C1 10.95(0.00/0.00/0.00 0.0210.03
z 8 C2/0.06/0.60/0.02/0.00(/0.20/0.12 3 3 C2/0.11/0.25/0.10/0.00|0.47|0.07 2 (u_')’ C2 0.03/0.73]0.000.02/0.14/0.08
5 Zz/C3/0.08/0.02]/0.62|0.00|0.07 |0.21 5 Z|/C3/0.02/0.040.64 0.00/0.16/0.14 S =| C3 /10.00/0.01/0.70/0.03/0.14/0.12
5 £/C4/0.00/0.00/0.00/0.00/0.12/0.88 5 Z[Cc4/0.00]0.00/0.02|0.04 0.10|0.84 5 </ C4 [0.00[0.00/0.02[0.86 0.08/0.04
< ©/C5/0.01/0.02/0.02/0.00 0.61/0.34| |< £/C5[0.02/0.08/0.05(0.01/0.58/0.26| |< 2L C5 0.00 0.01/0.03 0.05/0.74 0.17
—/C6/0.00/0.01/0.01/0.00/0.11/0.87 —/C6/0.00/0.01/0.01/0.00/0.05/0.93 —| C6 /0.00/0.00/0.01/0.00/0.070.92

(d) Velocity-related feature set (e) Power-related feature set (f) Combined feature set

Fig. 13. Confusion matrices of classifiers trained with individual feature sets and the combined set. Highlighted
cells indicate significant misclassifications. C1: Harmonious translation, C2: Harmonious rotation with translation,
C3: Harmonious braking, C4: Persistent conflict, C5: Jerky conflict, C6: Passive agreement

e

mean +/- std
——mean
% max

a reduced BER 06.19. The reduced BER value illustrates
the increased discriminative power of the combined set in
inhibiting the misclassifications. The confusion matrix of
the classifier trained with the combined feature set is given
in Fig. 13(f). Upon closer inspection, we observe that wnlik
the classifiers trained with individual feature sets, this
classifier is able to recognize all of the interaction pater
without significant confusion. Particularly, it achievdeet 200 400 600
highest improvement for classification of C2 (Harmonious Number of features
rotation with translation), C3 (Harmonious braking) and. L )
C4 (Persistent conflict), all of which had poor recognitioﬁ'g} 14. Clasglflgatlon accurames_for the feature sets,
performance with individual feature sets. wh|qh are built incrementally using mRMR, plotted
against the number of features in the features sets.
The red cross denotes the optimum feature set, which
6.3 Selection of the Optimal Feature Set yields the highest accuracy.

[e]
o

o

Accuracy (%)
N -IS (o]

o

<DO

The final step in our learning approach is to select the .
most informative features in the combined feature set. Opfimal C1PRECEZ)'CTC%D”£TAEEESCG
This is motivated by the fact that the combined set gets C110.940.00 001 000/0.030.02
quite large as a result of aggregating 5 individual feature C2(0.03/0.72/0.02/0.03/0.15(0.05
sets. This manifests itself in a gradual increase in the €30.00/0.01/0.72 0.04 0.12 0.11
running time of model selection and t.raining as the datasgts cs 8:88 8:82 g:g? g:gi 8:3? 8:%
get larger. Furthermore, the combined set may contain C6 0.0010.00/0.00/0.00/0.04|0.96
some unnecessary and even irrelevant features, which may
lead to inferior classification performance. Such featur&dg. 15. Confusion matrix of classifier trained with the
should be removed to enhance the recognition accuragptimal feature set. C1: Harmonious translation, C2:
Hence, we utilize the Minimum Redundancy Maximuniiarmonious rotation with translation, C3: Harmonious
Relevance (MRMR) feature selection algorithm to selebtaking, C4: Persistent conflict, C5: Jerky conflict, C6:
most promising features [21]. Passive agreement

The mRMR algorithm computek maximally relevant
and minimally redundant features from a larger featuset with an accuracy o86% and a BER 0f0.18. The
space of sizéX, consisting of all 576 features in our casegonfusion matrix of the classifier trained with the optimal
wherek = 1,2, ...., K. In the end, the feature set that yield$eature set is given in Fig. 15. We observe that the classifier
the highest accuracy is declared as the optimal feature sat successfully recognize all six interaction patterns.
for the recognition of interaction patterns. Fig. 14 shows Fig. 16 presents the numbers and the percentages of the
the classification accuracies against the number of femtufeatures in the optimal feature set taken from individual
in the set. This diagram illustrates that the optimal featusets. At first glance, Fig. 16(a) gives the impression that
set consists of 243 features. This optimal set achievesSat 4 (velocity-related features) is a superior feature rep
performance even better than that of the combined featuesentation because of its large contribution to the optima

ACTUAL
INSTANCES
O
N
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“Motion Intentions” and “Interaction Types”, are general,
whereas the last layer, “Interaction Patterns”, is mork-tas
dependent. However, the interaction patterns defined & thi
layer can be modified based on the particular task in hand.
On the other hand, the machine learning approach we
present here is generic, and given training data, general-
O Set1 Se2 Set3 Seté Sets O Sett ser2 Set3 sew Sets izable to numerous tasks, which involve the interaction of
(a) Number of features. (b) Percentages of features. multiple humans and/or robots in both direct or indirect
communication. The classification and feature selection
ideas we adopt are completely task independent and are
usable whenever the behavior labels are defined and de-
scriptive features are extracted from data. However, it
should be noted that the features that we have identified
feature set; however this is partly due to the high numbas descriptive in our task may not directly apply to other
of features in the initial set. The percentages of featuressks. Hence, more labor should be paid to discovering the
contributed by each individual feature set provides moraost appropriate features in a task-dependent manner.
meaningful information. As demonstrated in Fig. 16(b), One shortcoming of our learning approach is its being
almost all of the features in Set 3 (interactive force-eat fully supervised, requiring all interaction data to be aoita
features) eventually contribute to the optimal feature seind labeled before classification. This effectively makes t
On the other hand, almost half of Set 4 is discarded durigigita collection and annotation stages very time consuming;
feature selection. thus puts a restriction on the amount of data we worked
In this study, we demonstrate that feature sets presentgith in this paper. Upon collecting and annotating the data,
in Section 5.3 are complementary. Moreover, we illusve obtained a labeled data set consisting of 1944 instances.
trate the significance of feature selection in accomplghirEven though the data size seems moderate, we would like to
higher recognition accuracies. As happened in our cagxpress that it was already large and the proposed analysis
the inclusion of many features may diminish recognitiotbok significant amount of tim&.In the future, we intend
performance unless all are collectively relevant. Howeved apply unsupervised or semi-supervised learning methods
it is worth noting that there is a trade-off between théor classification to enable online intention predictiorr-du
processing required for optimal feature selection and tiveg an ongoing collaboration. Our final goal is to develop
resulting gains in the accuracy. a robot, which can infer about interaction patterns in real-
time and collaborate with its human partner(s) accordingly
7  CONCLUSIONS AND FUTURE WORK Th_is study reveals that interaction behaviors can be
manifested through the forces that the agents apply when
This work is a first step in discovering patterns in haptigteracting with each other. However, we would like to
interaction between humans. Specifically, we presente@press that these behaviors are also strongly influenced
taxonomy of conflict-originated interaction patterns and lgy the characters and emotional states of the individuals.
method for the classification of these patterns in physic@l fact, such characteristics can be discovered through dat
collaboration scenarios, where two humans communicatning techniques by investigating the way each agent
through the haptic channel. Six interaction patterns weggplies forces on the object. For instance, a human who
identified based on the interaction of 20 human dya%plies large forces on the object might be considered
who transport a virtual object to certain goal positiondominant, whereas another who changes his/her forces
in a haptics-enabled simulation environment. Time-seri@@quently can be seen as being inept. A future direction
interaction data was divided into segments, each of whiglins at discovering such individual characteristics dygn
was labeled by an annotator, who monitors the interacti@allaboration task. Similarly, the findings of this studynca
from outside.We proposed five distinct feature sets, four gt supported through a data-driven approach to build an
which consist of haptic features, to recognize the intéact interaction behavior taxonomy from observations.
patterns. We demonstrated that haptic features exhibit sig
nificant information about the interaction between pagner
and the classifier trained with a combination of haptic afd EFERENCES
velocity-related features achieves a correct classifinatii;; A L. Berezm. Review of eudico linguistic annotator (®a In
rate of86%. Language Documentation and Conservation, volume 1, pages 283—
The proposed taxonomy offers several layers to undT]i- i?%i@?g?“;‘f‘eé:&?ﬁy R. Dilmann, and S. Schaal. Roub-
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high Ievel,_ .SUCh as Whether agents act harmoniOUSIy ;SHrameter optimization was 65 minutes. Additionally, theMR feature
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Fig. 16. Number and percentage of features from indi-
vidual feature sets, contributing to the optimal feature
set.
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