
HAL Id: hal-03177271
https://hal.science/hal-03177271v1

Submitted on 23 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Neural Architecture Search for Extreme Multi-label
Text Classification

Loc Pauletto, Massih-Reza Amini, Rohit Babbar, Nicolas Winckler

To cite this version:
Loc Pauletto, Massih-Reza Amini, Rohit Babbar, Nicolas Winckler. Neural Architecture Search for
Extreme Multi-label Text Classification. Neural Information Processing 27th International Confer-
ence, ICONIP 2020, Bangkok, Thailand, November 23–27, 2020, Proceedings„ , pp.282-293, 2020,
�10.1007/978-3-030-63836-8_24�. �hal-03177271�

https://hal.science/hal-03177271v1
https://hal.archives-ouvertes.fr

Neural Architecture Search for Extreme
Multi-Label Text Classification

Loc Pauletto1,2, Massih-Reza Amini2, Rohit Babbar3, and Nicolas Winckler1

1 ATOS, Grenoble, France
2 Université Grenoble Alpes, France
3 Aalto University, Helsinki, Finland

Abstract. Extreme classification and Neural Architecture Search (NAS)
are research topics, which have gain a lot of interest recently. While the
former has mainly been motivated and applied in e-commerce and Nat-
ural Language Processing (NLP) applications, the NAS approach has
been applied to a small variety of tasks, mainly in image processing. In
this study, we extend the scope of NAS to the extreme multi-label classi-
fication (XMC) tasks. We propose a neuro-evolution approach, that has
been found most suitable for a variety of tasks. Our NAS method au-
tomatically finds architectures that give competitive results to the state
of the art (and superior to other methods) with faster convergence. Fur-
thermore, the weights of the architecture blocks have been analyzed to
give insight on the importance of the various operations that have been
selected by the method.

Keywords: Neural architecture search · Machine Learning · Extreme
classification · Evolution algorithms.

1 Introduction

Neural networks (NNs) have shown impressive performance in many natural lan-
guage tasks, such as classification, generation, translation and many more. One
of the applications that has attracted a growing interest over the last few years
with the availability of large-scale textual data, is extreme multi-label text classi-
fication (XMC). The goal in XMC is to classify data to a small subset of relevant
labels from a large set of all possible labels [10,14]. A major problem in apply-
ing NNs to this task is to design an architecture which can capture effectively
the text semantic. Diverse methods have been employed such as convolutional
neural networks [23], recurrent neural networks [11] as well as a combination of
both [24]. However, this design phase is complex and often requires human prior,
with a good knowledge of the field and the data. Over the last few years, NAS
research has paved the way for the creation of dedicated neural architectures
for a given task or even dataset. Most of the studies, on NAS has focused on
search algorithms for a small number of applications. In this paper we propose
XMC-NAS, a method based on NAS to automatically design architecture for the
task of extreme multi-label text classification, using a minimal prior knowledge.

2 Pauletto et al.

Moreover, we define a search space with operations (e.g. RNN, Convolution,..)
specific to the NLP field. During our study XMC-NAS, automatically discover ar-
chitecture, based on macro (global) research architecture [26]. To evaluate our
solution we use 3 large scale XMC datasets with a increasing numbers of la-
bels. Like popular NAS methods we use a proxy dataset to train and evaluate
architectures during the search phase. The discovered architecture gives com-
petitive results with respect to the state of the art on the proxy dataset with a
faster convergence. We then transfer the most performing architecture to other
datasets and evaluate it. In these circumstances the discovered architecture get
close results to the state of the art. Furthermore, this paper presents a study on
the impact that each type of operation and the size of the network have on the
final results.

In the next section, we briefly review some related state-of-the-art. In Sec-
tion 3, we present our solution to extreme multi-label classification with neural
architecture search. The experimental results are shown in Section 4 and the
conclusion and an outcome of this work are presented in Section 5.

2 Related works

In this section we will present related works on neural architecture search and
extreme text classification.

Neural architecture search. Studies on the subject of NAS date back to
the 1990s [6] and they have gained significant interest in the last few years.
Various NAS approaches have been investigated so far. One example is the use
of Reinforcement Learning (RL) [26,25]. In these approaches architectures are
first sampled from a controller, typically a RNN, and are further trained and
evaluated. The controller is updated from the evaluation results in a feedback
loop, improving the sampled architectures over time. Some other approaches use
Bayesian Optimization (BO) like [5] in order to predict the accuracy of a new and
unseen network and so select only the best operation or as in [8] which is used
Sequential model-based optimization (SMBO) to predict accuracy of network
based on network with less operations. Transfer Learning [20] has also been
used in NAS methods [16] allowing more efficient search by weight sharing of
overlapping operation, instead of training each new network from scratch. Other
NAS methods have used gradient descent based approaches like in [9] where
they use a relaxation, which allows to learn the architecture and the weight of
operation simultaneously, using the gradient descent. More recent studies have
shown great performances using the well known evolution algorithms like in
[13,18], which consists in starting with a base population and successively apply
mutation to the best performing architecture.

Extreme text classification. Different methods have been proposed to ad-
dress the stakes posed by the extreme multi-label text classification, the most

Neural Architecture Search for Extreme Multi-Label Text Classification 3

recent of those methods are Deep Learning based. One of the first methods,
XML-CNN[10], have applied what was widely used in the image domain, a struc-
ture of convolutional neural network (CNN) and pooling in order to get a precise
text representation. However it is hard for CNN to capture the most relevant
part of a text and the long term dependency. A second type more similar to
Seq2seq methods have been applied as discussed in MLC2Seq[14], SGM[21] and
AttentionXML [22]. Those methods used recurrent neural network (RNN) to
classify the text. Moreover, a significant interest has been given on attention
mechanism like in [7] the last few years. Attention mechanism has demonstrated
great performance in sequence modeling, in particular in NLP domain, and has
therefore been also applied in the context of XMC [21,22].

3 Framework and Model

We propose XMC-NAS, a tool to automatically design architecture for the extreme
multi-label classification task. Our approach relies on 3 main components: i) the
embedding of the text, ii) the search of the architecture, and iii) the classifica-
tion of the output. These three components form a pipeline in which components
i) and iii) are fixed and are excluded from the search task. Thus, the architec-
ture search task is done only on the component ii). The first component of our
methods transforms the text into word-embeddings, i.e. numerical vectors, which
reflect word embeddings. This step of embedding should allow the model to use
these representations in order to produce more accurate prediction. The second
step is the search phase for the most performing architecture, using an evolutive
algorithm (c.f. Fig. 1). Finally, the last component classifies the output, into
several categories. This step of classification relies on attention mechanism and
fully connected layers. An overview of XMS-NAS is given in Figure 1.

Search pool:
Convolutions,

BiLTSM,
...

Trained
population

Mutation
process

I

IIIII

Fig. 1: I. Architectures are constructed with randomly sampled operations and
then trained and evaluated, II. Sample randomly 10 architectures, and rank
them by Precision@5. The most performing one is selected for mutation, III.
The newly mutated architecture, is trained and evaluated. Then placed in the
trained population. The oldest architecture is removed from the population.

In the following we describe in details our approach. First, we present the
search space, the architecture search algorithm used and their specificities; and
finally, we describe the different parts of the discovered network.

4 Pauletto et al.

3.1 Architecture search phase

Search space. A neural network architecture, is represented in the form of a
Direct Acyclic Graph (DAG). Each node of this graph represents a layer. A layer,
is a single operation, which is chosen from the candidate operations set. The edges
of the graph represent the data flow, each node can have only one input. The
graph is constructed as follows: first the nodes are sequentially sampled (i.e. an
operation is selected) to create a graph of N nodes. Then the input of a node
j is selected in the set of previous nodes (i.e. nodes from 1 to j). These set is
initialized with a node which represents the embedding layer. Finally, when the
node j has an operation and an input, it is added to the set of the previous
nodes. To have a trade-off for performance and search efficiency, we set a limit
to the maximum number of previous nodes that a layer can take as input. We
fix this limit at 5. Figure 2 illustrates a simple architecture, with N = 6 nodes
where each node represents a layer.

Candidate operations. To build our candidate operation set we chose the most
common operations in the NLP domain, which consist in a mix of Convolutional,
Pooling and Recurrent Layers. We define four variants of 1D-Convolutional layer,
each with different kernel size 1, 3, 5 and 7 respectively. All the convolutional
layers use a stride of 1 and use padding if necessary to keep a consistent shape.
The two kind of pooling layers compute the average or the maximum over the
filter size, this size is set to 3 for both. Similar to the convolutional layer, the
pooling layer uses a stride of 1 and uses padding if necessary. Finally, there are
two popular of recurrent layers, namely the gated recurrent unit (GRU)[2] and
the Long-Short Term Memory (LSTM)[3], which are able to capture long term
dependencies. Specifically, we use bidirectional LSTM and GRU, so the results at
time t contains information from past (backwards) and future (forward). Figure 2
illustrate how operations can be placed in the network, each color here illustrates
an operation.

0

1

23

45

6

Fig. 2: Illustration of a simple architecture, with 6 layers. The node 0 represents
the embedding layer. The numbers represent the sampling order of the layers.
The limit of maximum number of previous layers that could be used as input is
set to 5. In this example, the layer 6 could hence take as input only nodes from
1 to 5. In this scheme, different colors represent different operations.

Neural Architecture Search for Extreme Multi-Label Text Classification 5

Search Algorithm. As NAS algorithm we use the regularized evolution as
described in [18]. We chose this approach because it allows us to have a fine-
grained vision of the impact of each operation on the final result, this method
has also demonstrated these capabilities in other areas as well. Regarding the
mutation aspect, we use the same setup as described in [18], which consist mainly
in two kind:

– Randomly choose an input link of an node in the network and change it by
a new input.

– Randomly choose an operation in the networks and change it by a newly
sampled.

Figure 2 illustrates the search algorithm, of the regularized evolution. In order
to see the impact of the number of layers on the final results, a third mutation,
corresponding to the addition of a new layer, has been introduced. We also aim
to have a better understanding on how blocks perform together, i.e. evaluating
the importance of the various operations with respect to the final results. For
this purpose we have used a linear combination of weights on the output of each
layer. The weights of those combination are learned during the training process.

3.2 Text embedding, Attention and classification modules

Text embedding. The embedding layer produces a fixed length representation.
This layer is a word level embedding which means each words is transformed to
a vector. We use the pre-trained embedding GloVe [15], which allows us to save
the step of learning a new embedding from scratch. We use the 840B tokens,
with a dimension 3004.

Attention module. We use a self-attention mechanism based on the one demon-
strated in [7], similarly as done in [22]. The attention process helps to catch the
important part of the text. This mechanism uses a vector ct which represents
the relevant context for the label t, where t is in 1, . . . , T . For an input sequence
of size N , the context vector is given in equation 1.

ct =
N∑
i=1

αt,ihi, (1) αt,i =
eWt

T ·hi∑N
k=1 e

Wt
T ·hk

(2)

where, hi denotes the hidden representation, that is, the output of RNN
encoder states or of the convolution. In the case of BiLSTM, layer hi is the

concatenation of vectors from the forward
−→
hi and backward

←−
hi passes. The term

αt,i is called attention factor (equation (2)). The set of attention factors {αt,i}
represents how much of each inputs should be considered for each output. In
equation 2, Wt is the attention weight (i.e a learnable weight matrix) for the
t-th label. As proposed in [12], we use here a dot product.

4 http://nlp.stanford.edu/data/wordvecs/glove.840B.300d.zip

http://nlp.stanford.edu/data/wordvecs/glove.840B.300d.zip

6 Pauletto et al.

Classification module. The final part of the network is composed of 1 or 2 fully
connected layers, which are used to reduce the output of the attention module.
The reduced result is then fed into an output layer which classify it into different
labels.

3.3 Analysis of operation importance

This section presents the linear combination weight analysis, specifically the
impact of each operation on the final results, and how the operations perform
together. We tackle this analysis in two steps. In the first step, we focus on the
combination of operations. In the second step, we analyze the results and the
impact of operations when networks become deeper.

First step: In this step, the base population is randomly initialized, i.e. the
input, the operation and the skip connections, are randomly chosen. Here, we
are looking which operation is the most important in the first layers by scal-
ing their outputs by trainable weights. Figure 3 shows three examples of the
first layers for different combinations of operations as well as the corresponding
learned weights assigned to each operations. The block ”Rest of the network”
represents the attention module and the chain of fully-connected. The blocks
in the hatched areas of the figure 3 were not part of the mutation process and
were ”constrained”. For each architecture examples, the displayed weights are
the obtained means over several NAS runs. The different grey scales denote dif-
ferent experiments. We observe in figure 3 that operation pairs of same kind,
i.e. BiLSTM, tend to have nearly equal weights. However some trends could be
noticed in the case of the two convolution combination, the convolutions with
larger kernel sizes have larger weights. This effect is particularly pronounced in
the case of the kernel size of 1, which reflects the necessity of sequence modeling
blocks at that level. In the case of mixed operations, it turned out that BiLSTM
operations systematically have larger weights. An example of a run with mixed
operation is shown in the right-hand side of figure 3. More generally, we observe
that architectures which contain BiLSTM at the first layer, perform better. In
addition, we also found that networks with BiGRU tended to be less successful.
While GRU cells are known to converge faster, LSTM cells have generally better
performance.

Second step: This second stage of analysis aims to quantify the impact of
the number of layers on the final results as well as the weights attributed to
each operation. According to the results obtained in the first one, which show
that the network with BiLSTM layers works better, in this second series, part
of the population has the constraint to start with at least one BiLSTM block,
which takes as input the embedding. For the impact analysis of the number of
layers, we calculated the average P@5 based on the number of layers. We vary
the number of layers from 2 to 6. We observe that the averaged precision is
nearly constant, regardless of the number of layers in the network, with a range
of results close to what we get previously. This result is corroborated by the
operations weights analysis. Figure 4 shows architecture examples for different

Neural Architecture Search for Extreme Multi-Label Text Classification 7

Embedding Embedding Embedding

BiLSTM

Rest of the
network

P@5 = [0.618; 0.622]

BiLSTM Conv

Rest of the
network

P@5 = [0.56; 0.58]

Conv Conv

Rest of the
network

BiLSTM

P@5 = [0.59; 0.61]

0.490.51 0.60.4 0.330.67

Fig. 3: Network architecture visualization with the weight applied on each oper-
ation by the linear combination during step one of search step. The weights have
been averaged over multiple runs, the range of P@5 show the variation. For the
middle case we also averaged over the kernel size.

combinations of operations together with their associated weights, which are this
time assigned in a sequential way. The blocks in hatched areas in figure 4 are
partially or totally part of a constraint like in the previous subsection. Here,
the blocks ”Rest of the network” represent the following layers in the network,
not shown for the sake of clarity, and still followed by the attention module
and the chain of fully connected. As previously, the displayed weights for each
architecture type are the averages obtained from several NAS runs. We note
in figure 4 that the weights on additional layers are small compared to those
that bypass it. This trend has been observed in all experiments and suggests
that, given our operations pool, additional layers does not bring much more
information.

BiLSTM

Conv

Rest of the
network

BiLSTM

BiLSTM

Rest of the
network

Conv

BiLSTM

Rest of the
network

Conv

Conv

Rest of the
network

Embedding Embedding Embedding Embedding

0.71

0.29

0.67

0.33

0.65

0.35

0.69

0.31

Fig. 4: Visualization of the network architecture, when the network is deeper.
The dotted line represent the linear combination of all the layers outputs, with
the weight applied on each outputs. The weight indicates that layers which take
the embedding layer as input, have a predominant importance on the final result.

8 Pauletto et al.

4 Experimental results

We conducted a number of experiments aimed at evaluating how the proposed
XMC-NAS method can help to design an efficient neural network model for multi-
label text classification.

4.1 Datasets and evaluation metrics

We conducted our study on three of the most popular XMC benchmark datasets
downloaded from the XMC repository5. These datasets are considered large
scale, with the number of class labels varying from 4,000 to 30,000, which are
listed from smallest to largest (in term of number of labels) by EURLex-4K,
AmazonCat-13K, and Wiki10-31K summarized in Table 1. We followed the same
pre=processing pipeline as used in [22]. To create the validation set we perform
a split with the same random seed initialization for all experiments.

Table 1: Statistics of XMC datasets considered in our experiments. L: # of
classes.

Dataset
of Training

examples
of Test
examples

L
Avg. of class labels

per example

Avg. size of
classes

EURLex-4K 15,539 3,809 3,993 25.73 5.31
Wiki10-31k 14,146 6,616 30,938 8.52 18.64
AmazonCat-13K 1,186,239 306,782 13,330 448.57 5.04

As evaluation metrics we used the Precision at k denoted by P@k, and the
normalized discounted cumulative gain at k denoted by nDCG@k [4]. Both
metrics are standard and widely used in the state of the art references.

4.2 Architecture search evaluation

This section presents the data and the hyper-parameters that we use the the
search phase of our method. Finally, we present the most performing architecture
discovered on the proxy dataset.

Parameters and data We conducted the search phase on the relatively small
EURLex-4K dataset for scalability consideration, we call that a proxy dataset.
In each experiment we create a base population of 20 networks. We then apply 50
rounds of mutations. Some hyper-parameters have been fixed during the training
of each network, namely the learning rates were set to 0.001, and the maximum
number of epochs were set to 30 epochs with early stopping. The training stops
if the performance of the network does not increase during 50 consecutive steps.
We use the cross-entropy loss function proposed in [22] and [10] for training the
models.
5 http://manikvarma.org/downloads/XC/XMLRepository.html

http://manikvarma.org/downloads/XC/XMLRepository.html

Neural Architecture Search for Extreme Multi-Label Text Classification 9

The discovered architecture The architecture found by XMC-NAS, is made
of two BiLSTM which take the same inputs and holds their own weights and
features. The output of the two BiLSTM is then concatenated along the hidden
dimension, and given as input of the self-attention block. Finally we use a chain
of fully connected network to classify the sequence. For the training detail we
use the same as presented in the previous paragraph and more dataset related
training details are presented in table 2.

Table 2: Hyper-parameters used for the training of the discovered model.
Dataset Valid size BiLSTM Hidden size Fully connected

EURLex-4K 200 256 [256]
Wiki10-31k 200 256 [256]
AmazonCat-13K 4000 512 [1024,512,256]

The architecture of the network found by XMC-NAS is presented in Figure 5.

Embedding

BiLSTM

BiLSTM

Concat Attention module Classification module

Fig. 5: The discovered network by XMC-NAS, is composed of two BiLSTM which
results are concatenated, then passed in an attention module and finally in a
part of fully connected layers.

4.3 Performance evaluation

In this section we will present the results obtained by the XMC-NAS discovered
architecture (Figure 5) on various XMC datasets (Table 1). First we present
the results obtained on the EURLex-4K dataset used for the search phase, also
named proxy dataset. Finally we evaluate the performance of this discovered
architecture, transferred on the other datasets. To train our network we use 2
Nvidia GV100, with data parallelism training. We compare the results of our
method to the most representative methods on XMC (with the implementation
and the results provided by the authors). Some of theses techniques are deep
learning base like MLC2Seq[14], XML-CNN[10], Attention-XML[22]. The oth-
ers are more specific techniques, AnnexML[19], DiSMEC[1], PfastreXML[4],and
Parabel[17].

EURLex-4K results On this dataset, the network got an improvement re-
garding the precision at k to the state of the art. As presented in the left side

10 Pauletto et al.

Table 3: Comparison performance table on three datasets. Our methods surpass
the state of the art in 4 cases, and get competitive results that really close to
the state of the art otherwise.

EURLex-4K Wiki10-31K AmazonCat-13K

Methods P@1 P@3 P@5 P@1 P@3 P@5 P@1 P@3 P@5

AnnexML 0.796 0.649 0.535 0.864 0.742 0.642 0.935 0.783 0.633
DiSMEC 0.832 0.703 0.587 0.841 0.747 0.659 0.938 0.791 0.640

PfastreXML 0.731 0.601 0.505 0.835 0.686 0.591 0.917 0.779 0.636
Parabel 0.821 0.689 0.579 0.841 0.724 0.633 0.930 0.791 0.645
MLC2Seq 0.627 0.591 0.513 0.807 0.585 0.546 0.942 0.694 0.575
XML-CNN 0.753 0.601 0.492 0.814 0.662 0.561 0.932 0.770 0.614

AttentionXML-1 0.854 0.730 0.611 0.870 0.777 0.678 0.956 0.819 0.669
XMC-NAS 0.858 0.738 0.620 0.869 0.772 0.681 0.950 0.811 0.661

of the Table 3 we got an improvement on P@1, P@3 and P@5. A significant
improvement is obtained on precision at 3 and 5, where we get 0.738 and 0.620
respectively compared to 0.730 and 0.611 before. The figure 6a presents the evo-
lution of P@5 and the nDCG@5 on the validation set with respect to the number
of epochs. We observe on figure 6a that our network have a faster convergence.
The results is obtained around 15 epochs and after this point, we only get small
improvement which indicates that the network might overfit.

Architecture transfer results We train and evaluate the discovered architec-
ture following the same training procedure as defined in Section 4.2 and using
the hyper-parameters presented in Table 2 on the two other datasets. The mid-
dle and right side of table 3 show the comparison of the architecture found by

0 5 10 15 20 25 30

Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
et
ri
cs

XMC-NAS nDCG@5

XMC-NAS P@5

AttentionXML-1 nDCG@5

AttentionXML-1 P@5

(a) EURLex-4K

0 5 10 15 20 25 30

Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
et
ri
cs

XMC-NAS nDCG@5

XMC-NAS P@5

AttentionXML-1 nDCG@5

AttentionXML-1 P@5

(b) Wiki10-31K

Fig. 6: Plot of the nDCG@5 and P@5 on the validation set, on two different
datasets. We notice, the discovered architecture have a faster convergence com-
pared to the current state of the art. In the 6a our methods get better final
results, in 6b the final results are close, the final results are obtained around 15
epochs.

Neural Architecture Search for Extreme Multi-Label Text Classification 11

XMC-NAS on EURLex-4K with others methods. We notice that the discovered
architecture transferred to larger datasets get close results to the current state
of the art, even slightly surpassing them like on Wiki10-31K for P@5. Moreover
we notice in Fig. 6b that our methods still have a faster convergence, the same
trend as on the proxy dataset on which we searched the architecture.

5 Summary & Outlook

We have presented in this work an automated method to discover architecture
for the specific task of extreme multi-label classification, based on the regularized
evolution [18] and with a domain-oriented pool of operations. This method has
found architectures that provided competitive results with the existing state of
the art methods [22], and in some cases overpassed them. Moreover, our method
showed faster convergence rates on all datasets. Moreover, trainable weights
have been introduced on each operations of the pool in order to provide more
understanding on the impact of each architecture blocks. Many directions are
possible as future steps. This involves creating a method that can manage large
datasets while still speeding up the search process. The use of transfer learning
to speed up the training portion may be a partial solution to the latter point.

Acknowledgment

This work has been partially supported by MIAI@Grenoble Alpes (ANR-19-
P3IA-0003).

References

1. Babbar, R., Schölkopf, B.: Dismec: Distributed sparse machines for extreme multi-
label classification. In: Proceedings of the Tenth ACM International Conference on
Web Search and Data Mining. pp. 721–729 (2017)

2. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., Bengio, Y.: Learning phrase representations using rnn encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

3. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation
9(8), 1735–1780 (1997)

4. Jain, H., Prabhu, Y., Varma, M.: Extreme multi-label loss functions for recom-
mendation, tagging, ranking & other missing label applications. In: Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. pp. 935–944 (2016)

5. Jin, H., Song, Q., Hu, X.: Auto-keras: An efficient neural architecture search
system. In: Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. pp. 1946–1956 (2019)

6. Kitano, H.: Designing neural networks using genetic algorithms with graph gener-
ation system. Complex Systems 4 (1990)

7. Lin, Z., Feng, M., Santos, C.N.d., Yu, M., Xiang, B., Zhou, B., Bengio, Y.: A struc-
tured self-attentive sentence embedding. arXiv preprint arXiv:1703.03130 (2017)

12 Pauletto et al.

8. Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L.J., Fei-Fei, L., Yuille,
A., Huang, J., Murphy, K.: Progressive neural architecture search. In: Proceedings
of the European Conference on Computer Vision (ECCV). pp. 19–34 (2018)

9. Liu, H., Simonyan, K., Yang, Y.: Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055 (2018)

10. Liu, J., Chang, W.C., Wu, Y., Yang, Y.: Deep learning for extreme multi-label text
classification. In: Proceedings of the 40th International ACM SIGIR Conference
on Research and Development in Information Retrieval. pp. 115–124 (2017)

11. Liu, X., Gao, J., He, X., Deng, L., Duh, K., Wang, Y.Y.: Representation learning
using multi-task deep neural networks for semantic classification and information
retrieval (2015)

12. Luong, M.T., Pham, H., Manning, C.D.: Effective approaches to attention-based
neural machine translation. arXiv preprint arXiv:1508.04025 (2015)

13. Maziarz, K., Tan, M., Khorlin, A., Chang, K.Y.S., Jastrzebski, S., de Laroussilhe,
Q., Gesmundo, A.: Evolutionary-neural hybrid agents for architecture search. arXiv
preprint arXiv:1811.09828 (2018)

14. Nam, J., Menćıa, E.L., Kim, H.J., Fürnkranz, J.: Maximizing subset accuracy
with recurrent neural networks in multi-label classification. In: Advances in neural
information processing systems. pp. 5413–5423 (2017)

15. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word repre-
sentation. In: Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP). pp. 1532–1543 (2014)

16. Pham, H., Guan, M.Y., Zoph, B., Le, Q.V., Dean, J.: Efficient neural architecture
search via parameter sharing. arXiv preprint arXiv:1802.03268 (2018)

17. Prabhu, Y., Kag, A., Harsola, S., Agrawal, R., Varma, M.: Parabel: Partitioned
label trees for extreme classification with application to dynamic search advertising.
In: Proceedings of the 2018 World Wide Web Conference. pp. 993–1002 (2018)

18. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image clas-
sifier architecture search. In: Proceedings of the aaai conference on artificial intel-
ligence. vol. 33, pp. 4780–4789 (2019)

19. Tagami, Y.: Annexml: Approximate nearest neighbor search for extreme multi-
label classification. In: Proceedings of the 23rd ACM SIGKDD international con-
ference on knowledge discovery and data mining. pp. 455–464 (2017)

20. Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., Liu, C.: A survey on deep transfer
learning. In: International conference on artificial neural networks. pp. 270–279.
Springer (2018)

21. Yang, P., Sun, X., Li, W., Ma, S., Wu, W., Wang, H.: Sgm: sequence generation
model for multi-label classification. arXiv preprint arXiv:1806.04822 (2018)

22. You, R., Dai, S., Zhang, Z., Mamitsuka, H., Zhu, S.: Attentionxml: Extreme multi-
label text classification with multi-label attention based recurrent neural networks.
arXiv preprint arXiv:1811.01727 (2018)

23. Zhang, X., Zhao, J., LeCun, Y.: Character-level convolutional networks for text
classification. In: Advances in neural information processing systems. pp. 649–657
(2015)

24. Zhou, C., Sun, C., Liu, Z., Lau, F.: A c-lstm neural network for text classification.
arXiv preprint arXiv:1511.08630 (2015)

25. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. arXiv
preprint arXiv:1611.01578 (2016)

26. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures
for scalable image recognition. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 8697–8710 (2018)

	Neural Architecture Search for Extreme Multi-Label Text Classification

