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Introduction

In this paper we show the existence of an unbounded flux of the energy density of the solutions of two related partial differential equations which are completely integrable and have a connection with fluid mechanics. The first equation is the Schrödinger map in one dimension with values on the 2-D sphere, known in the physics literature as the classical continuous Heisenberg chain model in ferromagnetism:

(1)

T t = T × T xx .

Here t will represent time and x the spatial variable. Equation (1) can be also written in divergence form. This is due to the fact that (1) can be obtained by simple differentiation in the spatial variable from the following second equation on curves χ(t, x) in R 3 :

(2)

χ t = χ x × χ xx χ x = T, |T | = 1.
This latter equation, known as the Localized Induction Approximation (LIA), and also as the Vortex Filament Equation (VFE) and as the binormal flow (BF), appears naturally as a formal approximation (see [START_REF] Da Rios | On the motion of an unbounded fluid with a vortex filament of any shape[END_REF], [START_REF] Murakami | On the vibration of a vortex filament[END_REF], [START_REF] Arms | Localized-induction concept on a curved vortex and motion of an elliptic vortex ring[END_REF], [START_REF] Callegari | Motion of a curved vortex filament with decaying vertical core and axial velocity[END_REF]), after a renormalization of time, of the location evolution of vortex filaments that move according to Euler equations. This model is conjectured to give the right dynamics of vortex filaments in certain situations (see [START_REF] Jerrard | On the vortex filament conjecture for Euler flows[END_REF] and the references therein). Through this model, at any given time t, the curve χ(t, •) represents the location of the vortex filament, and the tangent vector to the curve T = χ x represents the direction of the vorticity. A simple use of the Frenet equations immediately gives that (2) can be written as

(3) χ t = cb, 1 which explains the binormal flow name, and that (4)

T x = cn,
where n is the normal vector, b the binormal vector, and c the curvature. It is also easy to see that c 2 (t, x)dx is an energy density that from (3) describes the kinetic energy of the filament and from (4) the interaction energy of the chain. More precisely [START_REF] Banica | On the energy of critical solutions of the binormal flow[END_REF] |χ t (t, x)| 2 dx = |T x (t, x)| 2 dx = c 2 (t, x)dx, and for smooth solutions these quantities are conserved in time if they are finite.

For analytical reasons it is much more convenient to use instead of the classical Frenet frame given by the tangent, normal and the binormal vectors, the one given by parallel frames (T, e 1 , e 2 ) constructed as solutions of ( 6)

     T x = αe 1 + βe 2 , e 1x = -α T, e 2x = -β T.
Above α and β are real scalars. A further simplification can be made defining the complex vector N = e 1 + ie 2 ∈ S 2 + iS 2 and the complex scalar [START_REF] Buttke | A numerical study of superfluid turbulence in the self-induction approximation[END_REF] u = α + iβ to obtain (8)

T x = (u N ), N x = -u T.
It was proved in [START_REF] Hasimoto | A soliton in a vortex filament[END_REF] that in order the constraint T xt = T tx to hold, u has to solve the one dimensional focusing non-linear Schrödinger equation (NLS)

(9) iu t + u xx + 1 2 (|u| 2 -a(t))u = 0,
with a(t) a real scalar, and the tangent and normal vector have to satisfy the linear system (10)

   T t = (u x N ), N t = -iu x T + i 2 (|u| 2 -a(t))N.
Finally, (2) writes ( 11)

χ t = (u N ).
It is a well known fact that equation ( 9) is completely integrable and belongs to the so called AKNS-ZS hierarchy ( [START_REF] Zakharov | Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media[END_REF], [START_REF] Zakharov | On the complete integrability of a nonlinear Schrdinger equation[END_REF], [START_REF] Ablowitz | The inverse scattering transform-Fourier analysis for nonlinear problems[END_REF]; for (1) see [START_REF] Takhtadzhyan | Integration of the continuous Heisenberg spin chain through the inverse scattering method[END_REF], [START_REF] Zakharov | Equivalence of the nonlinear Schrdinger equation and the equation of a Heisenberg ferromagnet[END_REF]). The geometric meaning of u is clarified when we write [START_REF] Buttke | A numerical study of superfluid turbulence in the self-induction approximation[END_REF] in polar form

(12) u(t, x) = ρ(t, x)e iθ(t,x)
as ρ(t) and θ x (t) are the curvature and the torsion respectively of the curve χ(t) ( [START_REF] Hasimoto | A soliton in a vortex filament[END_REF]).

Conversely, given a solution u of (9), t 0 , x 0 ∈ R and B an orthonormal basis of R 3 , one can construct a solution of (1) by imposing {T, N, N }(t 0 , x 0 ) = B and solving [START_REF] Cazenave | The Cauchy problem for the critical nonlinear Schrödinger equation in H s , Nonlinear Anal[END_REF] for (t, x 0 ) and then (6) for (t, x). Then, given a point P ∈ R 3 a solution of ( 2) is constructed by imposing χ(t 0 , x 0 ) = P and solving χ t = T ∧ T x for (t, x 0 ) and then χ x = T for (t, x). We shall call Hasimoto's method this way of constructing a solution of (1)-( 2) from a solution of (9). For x either in the real line R or in the torus T, the well-posedness theory of the initial value problem associated to [START_REF] Callegari | Motion of a curved vortex filament with decaying vertical core and axial velocity[END_REF] was established in the function spaces L 2 (R) in [START_REF] Tsutsumi | L 2 -solutions for nonlinear Schrödinger equations and nonlinear groups[END_REF] and L 2 (T) in [START_REF] Bourgain | Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations I. Schrödinger equations[END_REF]. Observe that ( 9) is invariant under the scaling u λ (t, x) := λu(λ 2 t, λx), and that according to this scaling L 2 (R) is subcritical. Moreover, among the homogenoeus Sobolev spaces, Ḣ- 1 2 is the one invariant with respect to the scaling, thus there is a gap of 1/2 derivative between L 2 and the critical space Ḣ-1 2 . Starting in [START_REF] Vargas | Global wellposedness of 1D cubic nonlinear Schrödinger equation for data with infinity L 2 norm[END_REF] a lot of attention has been devoted to extend the well-posedness theory to function and distribution spaces, not necessarily given by the Sobolev class, to make this gap as small as possible. As observed in [START_REF] Grünrock | Bi-and trilinear Schrödinger estimates in one space dimension with applications to cubic NLS and DNLS[END_REF] a good choice is to consider the so called Fourier-Lebesgue spaces that are defined using the L p norm of the Fourier transform of the solution. Therefore, they are invariant under translation in phase space or, equivalently, under the so-called Galilean symmetries. The Fourier-Lebesgue space of functions with Fourier transform in L ∞ is also invariant with respect to the scaling. Several results about ill-posedness, either in the sense that the map datum-solution is not uniformly continuous, or showing what is known as the norm inflation phenomena has been proved ( [START_REF] Kenig | On the ill-posedness of some canonical non-linear dispersive equations[END_REF], [START_REF] Christ | Asymptotics, frequency modulation, and low regularity illposedness for canonical defocusing equations[END_REF], [START_REF] Carles | Norm-inflation with infinite loss of regularity for periodic NLS equations in negative Sobolev spaces[END_REF], [START_REF] Kishimoto | Well-posedness of the Cauchy problem for the Korteweg-de Vries equation at the critical regularity[END_REF], [START_REF] Oh | A remark on norm inflation with general initial data for the cubic nonlinear Schrödinger equations in negative Sobolev spaces[END_REF]). On the other hand, (local) well-posedness holds for data with Fourier transform in L p spaces, for all 2 < p < +∞ ( [START_REF] Grünrock | Bi-and trilinear Schrödinger estimates in one space dimension with applications to cubic NLS and DNLS[END_REF], [START_REF] Christ | Power series solution of a nonlinear Schrödinger equation[END_REF], [START_REF] Grünrock | Low regularity local well-posedness of the derivative nonlinear Schrödinger equation with periodic initial data[END_REF]). This result can be proved using perturbation techniques and a fixed point argument. Making a strong use of the complete integrability the gap to the critical space has been also reduced, even in the quite remarkable case of the non-homogeneous Sobolev class and for global well-posedness as recently proved in [START_REF] Harrop-Griffiths | Sharp well-posedness for the cubic NLS and mKdV in H s (R)[END_REF] to all the subcritical cases, see also [START_REF] Killip | Low regularity conservation laws for integrable PDE[END_REF], [START_REF] Koch | Conserved energies for the cubic NLS in 1-d[END_REF], and [START_REF] Oh | Global well-posedness of the one-dimensional cubic nonlinear Schrödinger equation in almost critical spaces[END_REF] for the global in time result in the Fourier-Lebesgue class. As a consequence, no possible unbounded flux in the size of the Fourier transform of the solution can happen in this subcritical regime. In this paper we focus our attention in the critical case.

Geometrically, critical regularity for (2) means the possibility of having either corners or logarithmic spirals. We will concentrate ourselves in the particular case of corners that implies the existence of jumps for the corresponding tangent vectors. The case of logarithmic spirals has been considered in [START_REF] Gutierrez | Self-similar solutions of the localized induction approximation: singularity formation[END_REF], [START_REF] Gutierrez | On the stability of self-similar solutions of 1D cubic Schrödinger equations[END_REF] [START_REF] Lipniacki | Quasi-static solutions for quantum vortex motion under the localized induction approximation[END_REF], and [START_REF] Lipniacki | Shape-preserving solutions for quantum vortex motion under localized induction approximation[END_REF] and it is poorly understood. Nevertheless, we think that it is a quite relevant question to what extent the results showed in this work can be extended to that of the logarithmic spirals.

The simplest way of obtaining a corner is to look for selfsimilar solutions of (2). That is to say, solutions that can be written as χ(t, x) = √ tG(x/ √ t) for some well chosen G. A simple computation gives that such a curve G has to solve the non-linear ODE

(13) 1 2 G - y 2 G = G × G .
In [START_REF] Lakshmanan | On the evolution of higher dimensional Heisenberg continuum spin systems[END_REF], [START_REF] Lakshmanan | On the the dynamics of a continuum spin system[END_REF], and [START_REF] Buttke | A numerical study of superfluid turbulence in the self-induction approximation[END_REF] it is proved that a solution of ( 13) is characterized by the property that the curvature has to be a constant c = α, and the torsion τ has to be τ (y) = y/2. Thanks to [START_REF] Christ | Asymptotics, frequency modulation, and low regularity illposedness for canonical defocusing equations[END_REF] this amounts to say that

u α (t, x) = α √ t e i x 2 4t .
As a consequence, if in [START_REF] Callegari | Motion of a curved vortex filament with decaying vertical core and axial velocity[END_REF] we take a(t) = |α| 2 t we observe that u α solves (9) with initial condition

u α (0, x) = √ iαδ(x).
Here δ is the Dirac-δ function located at the origin.

Observe that (2) is invariant under rotations. Therefore, it is enough to give the Frenet frame of the curve given by G at say x = 0 to construct all the solutions of [START_REF] Colliander | Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation[END_REF]. Take this frame, {T (0), n(0), b(0)}, to be the canonical orthonormal basis of R 3 , and call G α the corresponding solution. It was proved in [START_REF] Gutiérrez | Formation of singularities and self-similar vortex motion under the localized induction approximation[END_REF] that if

χ α (t, x) = √ tG α ( x √ t ),
then χ α solves (2) for t > 0 and there exists χ α (0, x) such that

|χ α (t, x) -χ α (0, x)| ≤ 2α √ t, t > 0.
Moreover, χ α (0, x) is given by two half lines joined at a corner at the origin. Calling θ α the corresponding interior angle, it is proved in [START_REF] Gutiérrez | Formation of singularities and self-similar vortex motion under the localized induction approximation[END_REF] that

(14) sin θ α 2 = e -π 2 |α| 2 .
In our previous works we have considered two different scenarios for finding a functional setting that includes this example and such that at least a local well-posedness result can be established for the corresponding initial value problem.

The first scenario is when the polygonal line given by χ α (0, x) is perturbed in such a way that the angle remains to be θ α but outside of the corner location the curve is smooth and tends to two, possibly different, lines at infinity. To find these solutions we study first [START_REF] Callegari | Motion of a curved vortex filament with decaying vertical core and axial velocity[END_REF] with a(t) = |α| 2 t , then we use Hasimoto's method for positive times and eventually we deal with the limit curves at t = 0. Regarding (9) we use the pseudo-conformal transformation. More concretely, we look for v with u = T (v) where ( 15)

T (v)(t, x) = e i x 2 4t √ t v( 1 t , x t ).
Observe that above we also make a change of variables so that the time interval (0, 1) becomes (1, ∞). A standard calculation gives that v has to solve ( 16)

iv t + v xx + 1 2t (|v| 2 -ã(t))v = 0, ã(t) = 1 t a( 1 t ) = |α| 2 .
Solutions of the above equation ( 16) formally preserve the L 2 norm (17) |v| 2 dx, and ( 18)

E(v)(t) := 1 2 |v x (t)| 2 dx - 1 4t (|v| 2 -|α| 2 ) 2 dx satisfies ∂ t E(v)(t) = 1 4t 2 (|v| 2 -|α| 2 ) 2 dx. Finally xv x v dx
is also a conserved quantity. We could also consider any of the infinitely many conserved quantities of ( 9) but observe that from the definition of ( 15) it would be necessary to assume regularity and decay on v for these quantities to be finite.

Notice that v α (t, x) := α is a particular solution of ( 16), and the corresponding binormal flow solution is χ α . In a series of papers, see the introduction of [START_REF] Banica | The initial value problem for the binormal flow with rough data[END_REF] for a survey of the results, we prove well posedness and small data modified scattering results for v -v α , t ≥ 1, in some appropriate function spaces such that E(t) given in ( 18) is finite.

The second scenario was started in [START_REF] Banica | Evolution of polygonal lines by the binormal flow[END_REF] and considers solutions of (2) that at time t = 0 are given by a skew polygonal line χ 0 (x) that tends to two lines when x → ±∞. The corners are all located at integers j ∈ Z. We use the Hasimoto's method, and at the level of [START_REF] Callegari | Motion of a curved vortex filament with decaying vertical core and axial velocity[END_REF] this problem is related to consider data j α j δ(x -j) with some appropriate conditions in the size of α j . Following [START_REF] Kita | Mode generating property of solutions to the nonlinear Schrödinger equations in one space dimension, Nonlinear dispersive equations[END_REF] 1 we look for solutions of (9) with a(t) = M/t, where M := j |α j | 2 , for t > 0, of the type

(19) u(t, x) = j A j (t) e i (x-j) 2 4t √ t , with (20) A j (t) = e -i(|α j | 2 -M ) log √ t (α j + R j (t)),
and R j (t) satisfying decay properties as t goes to zero. The construction is performed for

{α j } such that (21) j |j| 2s ||α j | 2 < ∞ for s > 1/2.
1 The authors acknowledge Tohru Ozawa for having pointed to them this article.

Using Hasimoto's method we construct a solution of the binormal flow for t > 0 such that we recover at time t = 0 the curve χ 0 , provided that we choose α j in a precise way determined by the curvature and torsion angles of χ 0 at x = j. In particular, as [START_REF] Constantin | Geometric constraints on potentially singular solutions for the 3-D Euler equations[END_REF] for self-similar solutions, we choose

(22) sin θ j 2 = e -π 2 |α j | 2 .
The need of weights in [START_REF] Grinstein | Near field dynamics of subsonic free square jets. A computational and experimental study[END_REF] comes from integrating [START_REF] Cazenave | The Cauchy problem for the critical nonlinear Schrödinger equation in H s , Nonlinear Anal[END_REF] because the coefficients of that system involve u x . Notice that making the expansion of the square phases in [START_REF] Gérard | A two-soliton with transient turbulent regime for the cubic half-wave equation on the real line[END_REF] one immediately computes which is the pseudo-conformal transformation (15) of u. Indeed, we can write u = T (v) with v the 2π-periodic function in the x-variable:

v(t, x) = j A j ( 1 t )e -itj 2 +ijx ,
solution of ( 16) with ã(t) = M . Observe that ( 17), the L 2 conservation law of ( 16), and [START_REF] Gutiérrez | Formation of singularities and self-similar vortex motion under the localized induction approximation[END_REF] give that for t > 0 (23

) j |A j (t)| 2 = M.
Recall that from ( 6)

|T x (t, x)| 2 = |u(t, x)| 2 = 1 t v( 1 t , x t ) 2 . 
Hence for any t > 0 the function |T x (t, x)| 2 is a 2πt-periodic function in the x-variable and by [START_REF] Grünrock | Low regularity local well-posedness of the derivative nonlinear Schrödinger equation with periodic initial data[END_REF] the integral on each of the periods is M . Nevertheless, this "conservation law" does not give any information about Tx , the Fourier transform of T x . We proved in [START_REF] Banica | On the energy of critical solutions of the binormal flow[END_REF] that [START_REF] Grünrock | Low regularity local well-posedness of the derivative nonlinear Schrödinger equation with periodic initial data[END_REF] can be also understood as a kind of scattering energy of Tx for the solutions of ( 1) and ( 2) that we constructed in [START_REF] Banica | Evolution of polygonal lines by the binormal flow[END_REF]. More precisely, if

(24) Ξ(T (t)) := lim k→∞ k+1 k | T x (t, ξ)| 2 dξ,
then for t > 0 we have the following conservation law:

(25) Ξ(T (t)) = 4π j |α j | 2 .
It was also proved in [START_REF] Banica | On the energy of critical solutions of the binormal flow[END_REF] that there is a jump discontinuity of Ξ(T (t)) at t = 0. From [START_REF] Gutierrez | Self-similar solutions of the localized induction approximation: singularity formation[END_REF] we can see | T x (t, ξ)| 2 dξ as an asymptotic energy density in phase space. The main result of this paper is to prove that this energy density can grow in time at specific Fourier modes. The procedure used in [START_REF] Banica | Evolution of polygonal lines by the binormal flow[END_REF] to construct the solution u with the shape given in ( 19) is to solve the infinite dimensional non-homogeneous dynamical system generated by A j (t). The choice [START_REF] Grünrock | Low regularity local well-posedness of the derivative nonlinear Schrödinger equation with periodic initial data[END_REF] kills all the resonant frequencies except those generated by the interaction of any mode j with itself. This interaction is easily absorbed by a logarithmic modification of the phase of A j (t) that has been already incorporated in [START_REF] Gutiérrez | Formation of singularities and self-similar vortex motion under the localized induction approximation[END_REF]. Hence, a fixed point argument can be performed to solve the system and to obtain the decay properties of R j (t) mentioned above. As a consequence, there is no possible growth for A j (t).

The appearance of the logarithmic correction in the phases mentioned above is analogous to the long-range modified scattering that smooth small solutions of ( 9) satisfy ( [START_REF] Ozawa | Long range scattering for nonlinear Schrödinger equations in one space dimension[END_REF]). This modified scattering is behind the growth results of high Sobolev norms proved in [START_REF] Hani | Modified scattering for the cubic Schrödinger equation on product spaces and applications[END_REF] for the scalar cubic NLS on R × T d with d ≥ 2. In that setting, which is a mixture of periodic and continuous variables, the authors prove a loglog growth in time of the amplitudes of the Fourier modes. The key ingredient for this growth is that, differently to what happens in one dimension, for d ≥ 2 the corresponding infinite dimensional system has a non-trivial resonant subsystem that generates solutions whose high Sobolev norms grow in time -see [START_REF] Colliander | Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation[END_REF], [START_REF] Guardia | Growth of Sobolev norms in the cubic defocusing nonlinear Schrödinger equation[END_REF], [START_REF] Hani | Long-time instability and unbounded Sobolev orbits for some periodic nonlinear Schrödinger equations[END_REF]. All these equations are not integrable. At this purpose we recall that growth of Sobolev norms for an integrable equation was proved in the case of the cubic Szegő equation ( [START_REF] Gérard | The cubic Szegő equation[END_REF], see also [START_REF] Gérard | A two-soliton with transient turbulent regime for the cubic half-wave equation on the real line[END_REF]).

In Theorem 1.1 below we obtain a precise logarithmic growth in time for Tx , being T a solution of (1) and the tangent vector of a curve that evolves according to [START_REF] Arms | Localized-induction concept on a curved vortex and motion of an elliptic vortex ring[END_REF]. This curve at time t = 0 is a polygonal line with just two corners of the same angle that are located at x = 1 and x = -1. Recall that T x represents the variation of the direction of the vorticity that as proved in [START_REF] Constantin | Geometric constraints on potentially singular solutions for the 3-D Euler equations[END_REF] plays a crucial role in the possible formation of singularities of Euler equations.

Theorem 1.1. Consider a polygonal line χ 0 (x) with two corners of angle θ located at x ∈ {-1, 1}. Let χ(t, x) be its evolution by the binormal flow (2) as explained above and let T (t, x) be its tangent vector.

There exist t θ , tθ ∈ (0, 1) and

n θ ∈ N such that for n ∈ N, n ≥ n θ , t ∈ ( tθ n 2 log 2 n , t θ n 2 ) and ξ satisfying either |ξ -1 2πt | ≤ 1 n or |ξ + 1 2πt | ≤ 1
n the following growth holds:

(26) | T x (t, ξ) -V log n| ≤ 1 2 |V | log n,
where V is the non-null vector i(-2 π ) log(sin θ 2 )(T -∞ -2T 0 + T +∞ ), and the vectors T -∞ , T 0 , T +∞ are the directions of the polygonal line χ 0 (x) on x < -1, -1 < x < 1 and 1 < x respectively.

As a consequence, for t ∈ (0, t θ n 2

θ

) there exists C θ > 0 such that

(27) sup ξ | T x (t, ξ)| ≥ C θ log t.
Finally for ξ satisfying |ξ - Let us first note that our result concerns the growth of T x ∞ , the L ∞ norm of the Fourier transform of T x , and therefore we are a looking at a critical norm in the class of Fourier-Lebesgue spaces.

The proof Theorem 1.1, which is given in §2, is based on the computation of Tx (ξ) using ( 8) with u = α + iβ satisfying [START_REF] Gérard | A two-soliton with transient turbulent regime for the cubic half-wave equation on the real line[END_REF]. This generates a first sum in j with the corresponding Āj and their quadratic phases. Then, we use again [START_REF] Carles | Norm-inflation with infinite loss of regularity for periodic NLS equations in negative Sobolev spaces[END_REF] to integrate by parts, and a second sum appears with some new amplitudes A r and new quadratic phases. It was observed in [START_REF] Banica | On the energy of critical solutions of the binormal flow[END_REF] that a resonance can happen if j -r ∈ Z is properly chosen. It is easy to obtain a logarithmic upper bound for this resonance. It involves a small set of frequencies ξ which does not prevent [START_REF] Gutierrez | Self-similar solutions of the localized induction approximation: singularity formation[END_REF] to hold. Our purpose in this paper to obtain a lower bound.

In §3 we prove the extension of Theorem 1.1 to the case of polygonal lines with many corners. The exhibited logarithmic growth is a hint that the numerical computations given in [START_REF] De La Hoz | On the relationship between the one-corner problem and the M -corner problem for the vortex filament equation[END_REF] about the unboundedness of T x ∞ , are correct -see equation [START_REF] Carles | Norm-inflation with infinite loss of regularity for periodic NLS equations in negative Sobolev spaces[END_REF] in §5 in that paper. In that case the initial condition of ( 2) is a planar regular polygon. The dynamics becomes then periodic also in time and exhibits a Talbot effect, in the sense that at rational p/q multiples of the time period, skew polygons emerge with typically as many sides as q, see [START_REF] Jerrard | On the motion of a curve by its binormal curvature[END_REF]. So this (numerical) logarithmic growth also happens at these rational times. A rigorous proof of this fact is a very challenging question that we propose to address in the future.

We shall denote systematically by C( A j (t) l 1 ) constants depending only on universal constants and on a finite number of positive powers of A j (t) l 1 .

Proof of Theorem 1.1

Let n ∈ N * . First we recall that for s > 1 2 , 0 < γ < 1, it was proved in [START_REF] Banica | Evolution of polygonal lines by the binormal flow[END_REF] that equation ( 28)

iu t + u xx + 1 2 (|u| 2 - j |α j | 2 t )u = 0,
has an unique local solution for t ∈ (0, T ) of type ( 29)

u(t, x) = j∈Z e -i(|α j | 2 -M ) log √ t (α j + R j (t)) e i (x-j) 2 4t √ t , with (30) 
sup 0<t<T t -γ R j (t) l 2,s + t ∂ t R j (t) l 2,s < C(γ) α j 3 l 2,s .
The time of existence T is in terms of s, γ, α j l 2,s .

As explained in the Introduction, the evolution χ(t) of χ 0 on (0, T ), is constructed by Hasimoto's method from the solution ( 29) of ( 28) with, in view of [START_REF] Grünrock | Bi-and trilinear Schrödinger estimates in one space dimension with applications to cubic NLS and DNLS[END_REF],

α j = (- 2 π
) log(sin θ 2 ) =: α for j ∈ {±1}, α j = 0 otherwise.

2.1.

A general analysis on locating possible growth scenarios. We shall start with a lemma that highlights the part of T x (t, ξ) that can grow for small times, in general cases of polygonal lines.

Lemma 2.1. Let {α j } ∈ l 2, 1 2 + and let χ(t) be the evolution through the binormal flow of the corresponding polygonal line. For t ∈ (0, 1 4πn 2 ) and ξ ∈ R the tangent vector of χ(t) satisfies

T x (t, ξ) -i |j-r+4πtξ|<2nt A j (t)A r (t) e -i j 2 -r 2 4t × |x-j-4πtξ|> 1 n , |x-r+4πtξ|> 1 n e i x(j-r+4πtξ) 2t 1 x -j -4πtξ - 1 x -r + 4πtξ T (t, x) dx ≤ C( A j (t) l 1 ) n √ t .
Proof. From ( 8) we have T x (t, x) = (uN )(t, x) so

T x (t, ξ) = ∞ -∞ e i2πxξ (uN )(t, x)dx = ∞ -∞ e i2πxξ ( j A j (t) e -i (x-j) 2 4t √ t N (t, x))dx = e i4π 2 tξ 2 2 √ t ±,j e i2πjξ A j (t) ∞ -∞ e -i (x-j-4πtξ) 2 4t N (t, x)dx + e -i4π 2 tξ 2 2 √ t ±,j e i2πjξ A j (t) ∞ -∞ e i (x-j+4πtξ) 2 4t N (t, x)dx.
We start by removing bounded pieces of the integral centered in j ± 4πtξ, by using a cutoff function ψ n vanishing on B(0, 1 4n ) and valued 1 on c B(0, 1 2n ). These pieces are easy to estimate by C A j (t) l 1 n √ t , as the integrants are of constant modulus. On the remaining pieces we integrate by parts:

T x (t, ξ) + i √ te i4π 2 tξ 2 ±,j e i2πjξ A j (t) ∞ -∞ e -i (x-j-4πtξ) 2 4t N (t, x)ψ n (x -j -4πtξ) x -j -4πtξ x dx -i √ te -i4π 2 tξ 2 ±,j e i2πjξ A j (t) ∞ -∞ e i (x-j+4πtξ) 2 4t N (t, x)ψ n (x -j + 4πtξ) x -j + 4πtξ x dx ≤ C A j (t) l 1 n √ t .
When the derivative falls on ψ n and on the denominator we get terms bounded by Cn √ t {A j (t)} l 1 , and n

√ t ≤ 1 n √ t as t ∈ (0, 1 4πn 
2 ). We are left with the part from N x = -uT . We get then

T x (t, ξ) -i j A j (t) ∞ -∞ r A r (t)e i x(j-r+4πtξ) 2t e -i j 2 -r 2 4t x -j -4πtξ T (t, x)ψ n (x -j -4πtξ)dx +i j A j (t) ∞ -∞ r A r (t)e i x(r-j+4πtξ) 2t e i j 2 -r 2 4t x -j + 4πtξ T (t, x)ψ n (x -j + 4πtξ)dx ≤ C A j (t) l 1 n √ t .
For | ±(j-r)+4πtξ 2t | ≥ n we perform an integration by parts using the linear phase and get terms bounded by Ct {A j (t)} 2 l 1 when the derivative falls on ψ n and on the denominator.

When the derivative falls on T we get (uN ) which yields a quadratic phase. We complete to a quadratic phase incorporating the linear one and we remove bounded pieces localized where the quadratic phases cancel, which are upper-bounded by C √ t {A j (t)} 3 l 1 . Then we perform an integration by parts from the quadratic phase and get terms upper-bounded by Cnt √ t {A j (t)} 3 l 1 + Cnt {A j (t)} 4 l 1 . Summarizing we have obtained for all ξ ∈ R

T x (t, ξ) -i |j-r+4πtξ|<2nt A j (t)A r (t) I + (t, ξ, j, r) + i |-(j-r)+4πtξ|<2nt A j (t)A r (t) I -(t, ξ, j, r) ≤ C( A j (t) l 1 ) n √ t ,
where

I ± (t, ξ, j, r) := e ∓i j 2 -r 2 4t |x-j∓4πtξ|> 1 n e i x(±(j-r)+4πtξ) 2t x -j ∓ 4πtξ T (t, x) dx.
The first discrete summation holds for (j, r) if and only if the second discrete summation holds for (r, j), so

T x (t, ξ) -i |j-r+4πtξ|<2nt A j (t)A r (t) (I + (t, ξ, j, r) -I -(t, ξ, r, j)) ≤ C( A j (t) l 1 ) n √ t .
We then have

T x (t, ξ) -i |j-r+4πtξ|<2nt A j (t)A r (t) e -i j 2 -r 2 4t × |x-j-4πtξ|> 1 n , |x-r+4πtξ|> 1 n e i x(j-r+4πtξ) 2t 1 x -j -4πtξ - 1 x -r + 4πtξ T (t, x) dx ≤ C( A j (t) l 1 ) n √ t .
2.2. An analysis on locating particular solutions that can exhibit growth. To get the logarithmic growth of the theorem we shall restrict to a particular class of polygonal lines and we shall look for values of ξ n such that |4π t n 2 ξ n | is close to the distance between the corners. We note that in the case of a single corner we have α 1 α -1 = 0 so the following Lemma ensures us that T x ( t n 2 , ξ n ) is bounded. Therefore the logarithmic growth comes from the interaction of several corners. Lemma 2.2. Let {α j } such that [START_REF] Jerrard | On the motion of a curve by its binormal curvature[END_REF] α j = 0 for |j| > 1.

We have for all t ∈ (0, 1 4πn 2 ) and |δ| < 1 n :

(32) T x (t, 1 2πt + δ) -iα -1 α 1 |x-1|> 1 n , |x+1|> 1 n , |x|<2 1 x -1 - 1 x + 1 T (t, x) dx ≤ C( A j (t) l 1 ) n √ t .
A similar estimate holds at -1 2πt + δ. Proof. Denoting ξ = 1 2πt + δ implies 4πtξ = 2 + 4πtδ so we have

|j -r + 4πtξ| < 2nt < 1 2πn ⇐⇒ r = j + 2,
and Lemma 2.1 gives us

(33) T x (t, ξ) -i j A j (t)A j+2 (t) e i (j+2) 2 -j 2 4t × |x-j-2-4πtδ|> 1 n , |x-j+4πtδ|> 1 n e ix2πδ 1 x -j -2 -4πtδ - 1 x -j + 4πtδ T (t, x) dx ≤ C( A j (t) l 1 ) n √ t .
First we note that, as |4πtδ| < 1 n , we obtain by Cauchy-Schwarz

|x-j-2-4πtδ|> 1 n , |x-j+4πtδ|> 1 n , |x-j-1|>2 1 x -j -2 -4πtδ - 1 x -j + 4πtδ dx = |y-1-4πtδ|> 1 n , |y+1+4πtδ|> 1 n , |y|>2 2 + 8πtδ (y -1 -4πtδ)(y + 1 + 4πtδ) dy ≤ C
Thus we can reduce the integration in (33) to |x -j -1| < 2. The remaining integrals are upper-bounded by log n, and as |x2πδ| ∈ (0, 4π n ) and |4πtδ| < 1 n we obtain

T x (t, ξ) -i j A j (t)A j+2 (t) e i (j+2) 2 -j 2 4t × |x-j-2|> 1 n , |x-j|> 1 n , |x-j-1|<2 1 x -j -2 - 1 x -j T (t, x) dx ≤ C( A j (t) l 1 ) n √ t .
Now using the fact that α j = 0 for |j| > 1 and again that the integrals are upper-bounded by log n we have

T x (t, ξ) -iα -1 α 1 |x-1|> 1 n , |x+1|> 1 n , |x|<2 1 x -1 - 1 x + 1 T (t, x) dx ≤ C( A j (t) l 1 ) n √ t + |j|≤1 |α j ||R j+2 (t)| log n + |j+2|≤n |R j (t)||α j+2 | log n + j |R j (t)||R j+2 (t)| log n.
By using the decay (30) of R j (t) with γ > 1 2 , we get

(34) |R j (t)| ≤ R k (t) l 2,s ≤ C(γ)t γ α k 3 l 2,s ≤ C n α k 3 l 2,s ,
thus the conclusion (32) of the Lemma. For ξ = -1 2πt + d we proceed the same.

2.3. Proof of the logarithmic growth. Lemma 2.2 ensures us that for ξ n = n 2 2πt + δ with t ∈ (0, 1 4π ) and |δ| < 1 n we have:

T x ( t n 2 , ξ n ) -i|α| 2 |x-1|> 1 n , |x+1|> 1 n , |x|<2 1 x -1 - 1 x + 1 T ( t n 2 , x) dx ≤ C( A j ( t n 2 ) l 1 ) √ t .
Now we note that we can further reduce to

T x ( t n 2 , ξ n ) -i|α| 2 1 3 >|x-1|> 1 n , 1 3 >|x+1|> 1 n 1 x -1 - 1 x + 1 T n ( t n 2 , x) dx ≤ C( A j ( t n 2 ) l 1 ) √ t . Therefore T x ( t n 2 , ξ n ) -i|α| 2 1 3 >|x-1|> 1 n , 1 3 >|x+1|> 1 n 1 x -1 - 1 x + 1 T t n 2 , x dx ≤ C( A j ( t n 2 ) l 1 ) √ t .
We recall also that from Lemma 4.1 in [START_REF] Banica | Evolution of polygonal lines by the binormal flow[END_REF] we have the convergence

|T ( t n 2 , x) -T (0, x)| ≤ C( α j l 1,1 )(1 + |x|) t n 2 1 d(x, 1 2 Z) + 1 d(x, Z) , so T x ( t n 2 , ξ n ) -i|α| 2 1 3 >|x-1|> 1 n , 1 3 >|x+1|> 1 n 1 x -1 - 1 x + 1 T (0, x) dx ≤ C( A j ( t n 2 ) l 1 ) √ t + C|α| 3 √ t log n.
As χ 0 is a polygonal line with T -∞ , T 0 and T +∞ the directions on x < -1, -1 < x < 1 and 1 < x respectively,

1 3 >|x-1|> 1 n , 1 3 >|x+1|> 1 n 1 x -1 - 1 x + 1 T (0, x) dx = T -∞ log |x -1| |x + 1| -1-1 n -4 3 +T 0 log |x -1| |x + 1| -2 3 -1-1 n +T 0 log |x -1| |x + 1| 1-1 n 2 3 +T +∞ log |x -1| |x + 1| 4 3 1+ 1 n ,
and a logarithmic growth in n comes from the boundary terms at -1 -1 n , -1 + 1 n , 1 -1 n and 1 + 1 n . Therefore we obtain

T x ( t n 2 , ξ n ) -i|α| 2 (T -∞ -2T 0 + T +∞ ) log n ≤ C( A j ( t n 2 ) l 1 ) √ t + C|α| 3 √ t log n.
Now we compute:

(35) |T -∞ -2T 0 + T +∞ | = 2(1 -cos(π -θ)).
The smallest values of this modulus appears for θ close to π, equivalent to α close to zero im view of ( 22):

1

- (π -θ) 2 8 θ→π ≈ cos π -θ 2 = sin θ 2 = e -π 2 |α| 2 α→0 ≈ 1 - π 2 |α| 2 , thus |T -∞ -2T 0 + T +∞ | = 2(1 -cos(π -θ)) θ→π ≈ (π -θ) 2 ≈ 4π|α| 2 .
We then choose t small enough such that

C|α| 3 √ t < 1 8 |α| 2 |T -∞ -2T 0 + T +∞ |,
that reduces to √ t < C|α|, and large enough such that

C( A j ( t n 2 ) l 1 ) √ t < 1 8 |α| 2 |T -∞ -2T 0 + T +∞ | log n,
that is implied, in view of (34) by

C(|α| + |α| 3 n ) |α| 4 log n < √ t.
Therefore the conditions on t and n with respect to α are (36)

C(|α| + |α| 3 n ) |α| 4 log n < √ t < min{C|α|, 1 4π }.
We note that the upper and lower condition on t imply that n has to be chosen large with respect to α.

Summarizing we have obtained the existence of t θ , tθ ∈ (0, 1) and n θ ∈ N such that for n ∈ N, n ≥ n θ and t ∈ ( tθ log 2 n , t θ ) the following growth holds

| T x ( t n 2 , n 2 2πt +δ)-i|α| 2 (T ∞ -2T 0 +T +∞ ) log n)| ≤ 1 2 |α| 2 |T -∞ -2T 0 +T +∞ | log(n), ∀δ, |δ| < 1 n .
This yields (26) in Theorem 1.1. For the analysis at -n 2 2πt + δ we proceed the same way.

As a consequence we get the existence of C θ > 0 such that for n ≥ n θ and t ∈ ( tθ n 2 , t θ n 2 ) we have sup

ξ | T x (t, ξ)| ≥ C θ log n.
We can choose n θ large enough such that for all τ ∈ ( tθ , t θ )

| log τ | < 1 2 log t θ n 2 θ < 1 2 log τ n 2 θ . Then, for t = τ n 2 ∈ ( tθ n 2 , t θ n 2 ) sup ξ | T x (t, ξ)| ≥ C θ 2 (| log t| -| log τ |) ≥ C θ 4 log t.
By choosing moreover n θ large enough such that 

t θ (n + 1) 2 > tθ n 2 , we have that (0, t θ n 2 θ ) = ∪ n≥n θ ( tθ n 2 , t θ n 2 ) so ( 
) | T x ( t n 2 , ξ)| ≤ j |A j ( t n 2 )||A j+2m ( t n 2 )| |x-j-2m-d|> 1 n , |x-j+d|> 1 n 1 x -j -2m -d - 1 x -j + d dx + C( A j ( t n 2 ) l 1 ) √ t .
The piece of integration |x -j -m| > 4m is bounded and the remaining part is upperbounded by C log(max{ m , n}). Since m / ∈ {±1} then

j |A j ( t n 2 )||A j+2m ( t n 2 )| ≤ |j|≤1 |α j ||R j+2m ( t n 2 )|+ |j+2m|≤1 |R j ( t n 2 )||α j+2m |+ j |R j ( t n 2 )||R j+2m ( t n 2 )| = |α|(|R -1+2m ( t n 2 )|+|R 1+2m ( t n 2 )|+|R -1-2m ( t n 2 )|+|R 1-2m ( t n 2 )|)+ j |R j ( t n 2 )||R j+2m ( t n 2 )|.
From [START_REF] Jerrard | On the vortex filament conjecture for Euler flows[END_REF] we have: For N = 1 we recover the vector V in Theorem 1.1, as

V m = i(- 2 
V 1 = i(- 2 π 
) log(sin θ 2 )(T ((-2N + 1) -) -T ((-2N + 1) + ) -T ((2N -1) -) + T ((2N -1) + ).

We note that for at least one m ∈ {1, ..., N } we have V m = 0.

Continuing similarly as in §2.3-2.4 we obtain the following result.

Theorem 3.1. Consider a polygonal line χ 0 (x) with 2N corners of angle θ located at x ∈ {-2N +1, ..., 2N -1}. Let χ(t, x) be its evolution by the binormal flow by the Hasimoto method and denote T (t, x) the tangent vector. There exists t θ,N , tθ,N ∈ (0, 1) and n θ,N ∈ N such that for n ∈ N, n ≥ n θ,N , for t ∈ ( 

π ) log(sin θ 2 )

 2 j∈{(-2N +1),..,(2N -2m-1)} (T (j -)-T (j + )-T ((j+2m) -)+T ((j+2m) + )) ((-2N +1) -)-T ((-2N +1+2m) -)-T ((2N -1-2m) + )+T ((2N -1) + )

  Instead of 2 corners we consider a planar polygonal line with 2N corners located at -2N + 1, ..., 2N -1, with same angle θ. Let m ∈ {1, ..., N }. Proceeding similarly as in the proof of Lemma 2.2 we obtain (with constants that can depend on N ) for |δ| < 1 n :Now we restrict to t and n such that n 2 t ∈ 8πZ to get rid of the phases in front of the integrals. Arguing as for the end of the proof of Theorem 1.1 in §2.3, we get

	so for all j ∈ Z							
										|R j (	t n 2 )| ≤	C|α| 3 √ n j s .
	Thus							
					| T x (	t n 2 , ξ)| ≤ C(α) log(max{ m , n})	√	1 n m s +	C(α) √ t	.
	Therefore for ξ such that |ξ -n 2 2πt | ≥ 3n 2 2πt and |ξ + n 2 2πt | ≥ 3n 2 2πt and t ∈ (0, 1 4π ) we obtain
										| T x (	t n 2 , ξ)| ≤	C(α) √ t	,
	and the proof of Theorem 1.1 is completed.
										3. Several corners
					T x (	t n 2 ,	mn 2 2πt	+ δ) -i|α| 2	j∈{(-2N +1),..,(2N -2m-1)}
	×e	i	(j+2m) 2 -j 2 4 t n 2	1 n <|x-(j+2m)|< 1 3 , 1 n <|x-j|< 1 3	1 x -(j + 2m)	-	1 x -j	T (t, x) dx ≤	C( A j ( t n 2 ) l 1 ) √ t	.
			T x (	t n 2 ,	mn 2 2πt	+ δ) -V m log n ≤	C( A j (t) l 1 ) √ t	+ C|α| 3 √	t log n.
	where							
	(37)							
											j	|j| 2s |R j (	t n 2 )| 2 ≤ C	|α| 3 n	,

  tθ,N n 2 log 2 n , t θ,N n 2 ) satisfying 1 t ∈ 8πZ, for m ∈ {1, ..., N } and for ξ satisfying either |ξ-m 2πt | ≤ 1 (t, ξ)| ≥ C θ,N log t. Finally for ξ such that |ξ -m 2πt | ≥ 3 8πt and |ξ + m 2πt | ≥ 3 8πt for all m ∈ {1, ..., N }, and t ∈ (0, 1 4π ) we have an upper-bound of | T x (t, ξ)| depending only on θ and N .

					n
	or |ξ + m 2πt | ≤ 1 n , the following holds	
	(38)	| T x (t, ξ) -V m log(n)| ≤	1 2	|V m | log n,
	where V m is defined in (37).		
	As a consequence, for t ∈ (0,	t θ,N n 2 θ,N	) there exists C θ,N > 0 such that
	(39)		sup

ξ | T x
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