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We study the quasi-static limit for the L 8 entropy weak solution of scalar one-dimensional hyperbolic equations with strictly concave or convex flux and time dependent boundary conditions. The quasi-stationary profile evolves with the quasi-static equation, whose entropy solution is determined by the stationary profile corresponding to the boundary data at a given time.
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Introduction

The term quasi-static evolution refers to dynamics driven by external boundary conditions or forces that change in a time scale much longer than the typical time scale of the convergence to stationary state of the dynamics. In the time scale of the changes of the exterior conditions the system is very close to the corresponding stationary state. This ideal evolutions are fundamental in Thermodynamics and in many other situations. We are interested in studying dynamics where the corresponding quasi-stationary state is of non-equilibrium, i.e. it presents nonvanishing currents of conserved quantities.

In a companion article [START_REF] De Masi | Quasi-static limit for the asymmetric simple exclusion[END_REF] we study the quasi-static limit for the one-dimensional open asymmetric simple exclusion process (ASEP). The symmetric case was studied in [START_REF] De Masi | Quasi-static Hydrodynamic limits[END_REF]. This is a dynamics where the stationary non-equilibrium states are well studied [START_REF] Derrida | Exact solution of a 1D asymmetric exclusion model using a matrix formulation[END_REF][START_REF] Popkov | Steady-state selection in driven diffusive systems with open boundaries[END_REF][START_REF] Uchiyama | Asymmetric simple exclusion process with open boundaries and Askey-Wilson polynomials[END_REF]. The macroscopic equation for the ASEP is given by the traffic flow equation on the one-dimensional finite interval r0, 1s:

B t u `Bx J puq " 0, (1.1) 
with the flux Jpuq " up1´uq, with time dependent boundary conditions upt, 0q " ρ ´ptq, upt, 1q " ρ `ptq, resulting from the interaction with external reservoirs. Notice that, after the linear transformation v " 1 ´2u, (1.1) is equivalent to Burger's equation B t v `Bx p v 2 2 q " 0. For time independent boundary conditions and a special choice of the dynamics of the reservoirs for the open ASEP, equation (1.1) is obtained as hydrodynamic limit in [START_REF] Bahadoran | Hydrodynamics and Hydrostatics for a Class of Asymmetric Particle Systems with Open Boundaries[END_REF]. More precisely the hydrodynamic limit generates the L 8 entropy weak solution of (1.1) in the sense of [START_REF] Otto | Initial-boundary value problem for a scalar conservation law[END_REF].

Let us consider now the situation when the boundary conditions change in a slower time scale: for ε ą 0 small, consider for (1.1) the boundary conditions upt, 0q " ρ ´pεtq, upt, 1q " ρ `pεtq. In order to see the effect of the changes in the boundaries, we need to look at the evolution in this time scale, i.e. defining u ε pt, xq " upε ´1t, xq, it will satisfy the equation

" εB t u ε `Bx J pu ε q " 0, u ε pt, 0q " ρ ´ptq, u ε pt, 1q " ρ `ptq. (1.2)
The main result in this article concerns the convergence of u ε to the entropy weak solution of the quasi-static equation (see section 3.1 for the definition)

B x Jpuq " 0, upt, 0q " ρ ´ptq, upt, 1q " ρ `ptq. (1.3)
It turns out that such solutions can only achieve two values with at most one upward discontinuity (shock) in the interior of the interval r0, 1s, so they are necessarily of bounded variation (see Proposition 3.1). Outside the critical line tρ ´ptq `ρ`p tq " 1, ρ ´ptq ă 1{2u the solution is unique and constant in space (see Proposition 3.2). On the other hand on the critical line there are infinitely many entropy solutions, corresponding to different position of the single shock, associated to the same value of the current. Consequently we can prove the convergence of u ε to the unique quasi-static solution of the quasi-static equation only if pρ ´ptq, ρ `ptqq remains outside the critical line for almost every t (see Theorem 3.5). On the critical line we can only prove the convergence to a measure-valued solution (cf. Remark 4.4). In all cases the quasi-stationary current J ptq is constant is space, and its value is determined by a variational problem (cf. (3.10)): the entropy quasi-stationary solution minimize Jpρq when ρ ´ptq ă ρ `ptq (drift up-hill) and maximize it when ρ ´ptq ρ `ptq (drift down-hill).

Since the ideas contained to this article do not depend on the specific choice of the flux J, we will expose our results for a generic scalar equation (1.1) with Jpuq strictly convex or concave and with Jp0q " 0 " Jpu 1 q, with for some u 1 ą 0. Without losing generality we can set u 1 " 1 and Jpuq non-negative and strictly concave.

A scalar hyperbolic equation with boundary conditions

Consider the following initial-boundary problem for a scalar equation on the one-dimensional finite interval r0, 1s

$ ' & ' % B t vpt, xq `Bx Jpvpt, xqq " 0, t ą 0, x P p0, 1q, vpt, 0q " ρ ´ptq, vpt, 1q " ρ `ptq, t ą 0, vp0, xq " v 0 pxq, x P r0, 1s, (2.1) 
where ρ ˘P L 8 pR `q and v 0 P L 8 pr0, 1sq. Assume that

J P C 2 pRq, J 2 ă 0, Jp0q " Jp1q " 0. (2.2)
Also assume that the boundary and initial data are bounded: ρ ˘ptq P r0, 1s for all t ą 0 and v 0 P r0, 1s for almost all x P r0, 1s. The solution v P L 8 pR `ˆr0, 1sq is intended in the weak sense: for any φ P C 8 0 pR ˆp0, 1qq,

ż 8 0 ż 1 0 " vB t φ `JpvqB x φ ‰ dx dt `ż 1 0 v 0 pxqφp0, xqdx " 0. (2.3)
Furthermore, u satisfies the entropy inequality: for any ϕ P C 8 0 pR ˆp0, 1qq such that ϕ 0,

ż 8 0 ż 1 0 " SpvqB t ϕ `QpvqB x ϕ ‰ dx dt `ż 1 0 Spv 0 pxqqϕp0, xqdx 0, (2.4) 
where pS, Qq is any pairs of functions such that

S, Q P C 2 pRq, S 2 0, Q 1 " J 1 S 1 . (2.5) 
A pair of functions pS, Qq that satisfies (2.5) is called a Lax entropy-entropy flux pair associated to (2.1). Observe that (2.4) implies the Rankine-Hugoniot jump condition for (2.1): inside the interval eventual discontinuities must be upwards shocks.

Notice that discontinuities can appear at the boundaries. The boundary conditions in (2.1) are satisfied in the following sense. Assume for the moment that vpt, ¨q is of bounded variation for each t, so that the limits for all k P Irv `ptq, ρ `ptqs, where Ira, bs denotes the closed interval with extremes given by a and b.

v ´ptq " lim xÑ0`v pt, xq, v `ptq " lim
Otto in [START_REF] Otto | Initial-boundary value problem for a scalar conservation law[END_REF] extended the characterization of boundary conditions to general entropy solutions v P L 8 by the use of boundary entropy-entropy flux pair. A pair of two-variable functions pS, Qq is called a boundary entropy-entropy flux pair if S, Q P C 2 pR 2 q, pS, Qqp¨, wq is a entropy-entropy flux pair for each w P R and Spw, wq " Qpw, wq " B v Spv, wq| v"w " 0, @ w P R.

(2.8)

The boundary conditions in (2.1) are then given by esslim

rÑ0`ż 8 0 Qpvpt, rq, ρ ´ptqqβptqdt 0, esslim rÑ0`ż 8 0 Qpvpt, 1 ´rq, ρ `ptqqβptqdt 0, (2.9) 
for any boundary flux Q and β P C 0 pRq such that β 0. Later on it has been proven that entropy solution of (2.1) has strong traces at the boundaries even for initial condition in L 8 (cf. [START_REF] Vasseur | Strong Traces for Solutions of Multidimensional Scalar Conservation Laws[END_REF][START_REF] Yu | Existence of strong traces for generalized solutions of multidimensional scalar conservation laws[END_REF][START_REF] Kwon | Strong Traces for Solutions to Scalar Conservation Laws with general flux[END_REF]), so that the Bardos-LeRoux-Nédélec boundary conditions still holds. Nevertheless, boundary entropy-entropy flux pairs are useful in our proof of the quasi-static limit.

The entropy solution v of (2.1) introduced above can be obtained through the viscous approximation. For δ ą 0, let v δ " v δ pt, xq be the classical solution of the viscous problem

# B t v δ `Bx Jpv δ q " δB xx v δ , t ą 0, x P p0, 1q, v δ p¨, 0q " ρ ´, v δ p¨, 1q " ρ `, v δ p0, ¨q " v 0,δ , (2.10) 
where the mollified initial value v 0,δ P C 8 pr0, 1sq satisfies that lim δÑ0`ż

1 0 |v 0,δ pxq ´v0 pxq|dx " 0 (2.11)
and the compatibility conditions v 0,δ p0, 0q " ρ ´p0q, v 0,δ p0, 1q " ρ `p0q.

(2.12)

By [7, Theorem 8.20], v δ Ñ v in Cpr0, T s, L 1 r0, 1sq for each T ą 0.
3. Quasi-static evolution 3.1. The quasi-static equation. For ε ą 0, let u ε P L 8 pR `ˆr0, 1sq be the entropy solution of

" εB t u ε `Bx Jpu ε q " 0, u ε pt, 0q " ρ ´ptq, u ε pt, 1q " ρ `ptq, u ε p0, xq " u 0 pxq, (3.1) 
in the sense of (2.3), (2.4) and (2.9). Our aim is to prove that, as ε Ñ 0, the entropy solution u ε of (3.1) converge to some u P L 8 that is the entropy solution of the quasi-static conservation law B x Jpuq " 0, upt, 0q " ρ ´ptq, upt, 1q " ρ `ptq.

(3.2)

We assume now that ρ ˘ptq P C 1 pR `q. There is a physical reason for such assumption, as this macroscopic changes at the boundaries should be slow and smooth.

Also we need such condition in the proof of the quasi-static limit (see proof of Proposition 4.2). The entropy solution of the quasi-static problem (3.2) is defined as a function u P L 8 pr0, `8q ˆr0, 1sq such that, for any ϕ P C 8 0 pp0, `8q ˆp0, 1qq,

ż 8 0 ż 1 0 JpuqB x ϕ dx dt " 0. (3.3)
Furthermore for a flux function Q associated to a convex entropy S,

ż 8 0 ż 1 0
QpuqB x ϕ dx dt 0, @ ϕ P C 8 0 pp0, `8q ˆp0, 1qq, ϕ 0, (3.4) while the boundary conditions are satisfied in the same sense as in (2.9) with respect to a boundary entropy flux Qpv, wq. Notice the difference with respect (2.4): quasi-static solutions are determined by the boundary conditions ρ ˘ptq, there is no need to specify an initial condition.

Observe from (2.2) that the current function J reaches its maximum at some unique m P p0, 1q. Moreover, for any y P r0, Jpmqs the equation Jpuq " y has two solutions: u 1 pyq P r0, ms and u 2 pyq P rm, 1s. The entropy condition (3.4) yields that B x Qpupt, xqq is negative in the sense of distribution. Observe that for any z 1 P r0, ms, z 2 P rm, 1s s.t. Jpz 1 q " Jpz 2 q " J 0 P r0, Jpmqs, Qpz 1 q ´Qpz 2 q "

ż z 2 z 1 Q 1 puqdu " ż m z 1 S 1 puqJ 1 puqdu `ż z 2 m S 1 puqJ 1 puqdu " ż Jpmq J 0 S 1 pu 1 pyqqdy `ż J 0 Jpmq S 1 pu 2 pyqqdy " ´ż Jpmq J 0 ż u 2 pyq u 1 pyq
S 2 pvqdv dy 0, as S is convex. Hence, only upward jumps from z 1 ptq to z 2 ptq can decrease the entropy flux Qpupt, xqq. This implies that we can have at most one such jump inside p0, 1q.

Since, by Proposition 3.1, entropy solution must be of bounded variation, then the boundary conditions are satified in the Bardos-LeRoux-Nédélec sense given by (2.6) and (2.7).

For u P r0, 1sztmu, let u ˚P r0, 1sztmu be such that Jpu ˚q " Jpuq. Furthermore we fix u ˚" m for u " m.

Define the critical segment Θ " tpz, z ˚q P r0, 1s 2 ; z ă mu.

(3.6)

The entropy solution of (3.2) is unique outside Θ and it can be calculated explicitly as below. (3.9)

If ρ ´ m, ρ ` m, then u ´" u `" m so that upt, xq " m. If ρ ´ă m, ρ `ă ρ ˚, then u ´ u ` maxtm, ρ `u ă ρ ˚, so that u ´" ρ ´.
In view of (3.5), we have This also includes the critical line pρ ´ptq, ρ `ptqq P Θ, where J " Jpρ ´q " Jpρ `q minimizes the current Jpρq in the interval rρ ´, ρ `s.

z 1 ptq " ρ ´and u `" ρ ´, hence upt, xq " ρ ´.
3.2. The quasi-static limit.

Theorem 3.5. Suppose that ρ ˘P C 1 pR `q and pρ ´ptq, ρ `ptqq R Θ for almost all t, then the solution u ε of (3.1) converges to u " upt, xq defined in (3.7) with respect to the weak-‹ topology of L 8 pr0, T s ˆr0, 1sq for all T ą 0.

Remark 3.6. As ε Ñ 0, Jpu ε ptqq ‹ á J ptq given by (3.10). Particularly, in the case pρ ´ptq, ρ `ptqq P Θ we can prove that u ε converges weakly-‹ to a Young measure concentrated on tρ ˘ptqu, thus Jpu ε q ‹ á J " Jpρ ´q " Jpρ `q. See Remark 4.4 at the end of the section. Remark 3.7. Notice that the quasi-static limit in Theorem 3.5 does not depend on the initial condition u 0 for u ε . Example 3.8. Consider the current function Jpuq " up1 ´uq in (1.1). Proposition 3.2 and Theorem 3.5 hold in this case with m " 1{2 and u ˚" 1 ´u.

On the other hand, let v δ " v δ pt, xq be the classical solution of the quasi-static problem associated to the viscous equation (2.10):

B x Jpv δ q " δB xx v δ , v δ pt, 0q " ρ ´ptq, v δ pt, 1q " ρ `ptq.
(3.11)

When pρ ´ptq, ρ `ptqq R Θ, it is not hard to see that v δ also converges pointwisely to the solution u of quasi-static problem given by (3.7):

lim δÑ0`v δ pt, xq " upt, xq, @x P p0, 1q, (3.12) 
and the convergence is uniform on rγ, 1 ´γs for any γ ą 0. On the critical line pρ ´ptq, ρ `ptqq P Θ, v δ is explicitly given by

v δ pt, xq " 1 2 `δCpδ, tq tanh " Cpδ, tq ˆx ´1 2 ˙ , (3.13) 
where C " Cpδ, tq is such that C tanhpC{2q " δ ´1p2ρ `ptq ´1q. Then v δ converges pointwisely to the profile with an upward shock at 1{2: lim δÑ0`v δ pt, xq " ρ ´ptq1 r0, 1 2 q pxq `ρ`p tq1 p 1 2 ,1s pxq, @x P r0, 1s, (

and the convergence is uniform on any closed interval excludes 1{2.

4. Proof of Theorem 3.5

For ε ą 0, δ ą 0, consider viscous approximation of (3.1) given by # εB t u ε,δ `Bx Jpu ε,δ q " δB xx u ε,δ , t ą 0, x P p0, 1q, u ε,δ pt, 0q " ρ ´ptq, u ε,δ pt, 1q " ρ `ptq, u ε,δ p0, xq " u 0,δ pxq, (

where u 0,δ is the mollified initial function satisfying (2.11) and the compatibility conditions. Let u ε,δ " u ε,δ pt, xq be the classical smooth solution of (4.1). We first present a priori estimate for }B x u ε,δ } L 2 .

Proposition 4.1. For any t 0, there is a constant C " C t such that Then, Young inequality allows to estimate

ε ż 1 0 u ε,δ pt, xq 2 dx `δ ż t 0 ż 1 0 `Bx u ε,
ˇˇˇδ ż t 0 " ρ `psqB x u ε,δ ps, 1q ´ρ´p sqB x u ε,δ ps, 0q ‰ ds ˇˇˇ C `ε 4 ż 1 0 u ε,δ pt, xq 2 dx `δ 2 ż t 0 ż 1 0 pB x u ε,δ ps, xqq 2 dxds,
which, inserted into (4.3) gives the conclusion.

In the following we denote Ω T " r0, T s ˆr0, 1s, Ω " R `ˆr0, 1s. As stated in §2, for each fixed ε ą 0,

lim δÑ0 ij ϕpt, xqF pt, x, u ε,δ pt, xqqdx dt " ij ϕpt, xqF pt, x, u ε pt, xqqdx dt,
for all F P CpΩ T ˆr0, 1sq and ϕ P L 1 pΩ T q, where u ε P L 8 pΩ T q is the entropy solution of (3.1). Observe that u ε is uniformly bounded: }u ε } L 8 pΩ T q 1. Therefore, we can extract a weakly-‹ convergent subsequence: The following proposition is the key argument. Proof. Recall that u ε,δ is the classical solution of (4.1). For w P C 1 pr0, T sq and boundary entropy-entropy flux pS, Qq, εB t Spu ε,δ , wq " εB u Spu ε,δ , wqB t u ε,δ `εB w Spu ε,δ , wqw 1 " δB 2

x Spu ε,δ , wq ´δB 2 u Spu ε,δ , wqpB x u ε,δ q 2 ´Bx Qpu ε,δ , wq `εB w Spu ε,δ , wqw 1 . Therefore, for ϕ P C 8 pΩ T q such that ϕp0, xq " ϕpT, xq " 0, ij " εSpu ε,δ , wqB t ϕ `Qpu ε,δ , wqB x ϕ `εB w Spu ε,δ , wqw Taking w " ρ ´, since u ε,δ p¨, 0q " ρ ´and Qpw, wq " B u Spw, wq " 0 for all w P R, the last line above is 0. Hence, choosing ϕ " ϕ `such that ϕ `pt, 1q " 0, ϕ `p0, xq " 0, ϕ `pT , xq " 0, (

we obtain for any convex boundary entropy S that ij " εSpu ε,δ , ρ ´qB t ϕ ``Qpu ε,δ , ρ ´qB x ϕ ``εB w Spu ε,δ , ρ ´qρ 1 ´ϕ`‰ dx dt δ ij B u Spu ε,δ , ρ ´qB x u ε,δ B x ϕ `dx dt.

Let δ Ñ 0`and apply the priori estimate in Proposition 4.1, ij " εSpu ε , ρ ´qB t ϕ ``Qpu ε , ρ ´qB x ϕ ``εB w Spu ε , ρ ´qρ 1 ´ϕ`‰ dx dt 0.

Eventually, let ε Ñ 0`along the convergent subsequence, ij Q ´pt, xqB x ϕ `pt, xqdx dt 0. (4.7)

Since this holds for all nonnegative, smooth test function ϕ `satisfying (4.6), we conclude that Q ´ 0 almost everywhere and B x Q ´ 0 as a distribution. For Q `, we replace pρ ´, ϕ `q with pρ `, ϕ ´q such that ϕ ´pt, 0q " 0, ϕ ´p0, xq " 0, ϕ ´pT , xq " 0, (4.8) and repeat the same argument.

Theorem 3.5 follows directly from the following consequence.

Corollary 4.3. The followings hold for a.e. pt, xq:

(1) If ρ ´ptq ă m, ρ `ptq ă ρ ˚ptq then ν t,x " δ ρ ´ptq , (2) If ρ `ptq ą m, ρ ´ptq ą ρ ˚ptq then ν t,x " δ ρ `ptq ,

  xÑ1´v pt, xq are well-defined. Then the Bardos-LeRoux-Nédélec boundary conditions [2] of the entropy solution v reads for all t ą 0, signpv ´ptq ´ρ´p tqq " Jpv ´ptqq ´Jpkq ‰ 0 (2.6) for all k P Irv ´ptq, ρ ´ptqs and signpv `ptq ´ρ`p tqq " Jpv `ptqq ´Jpkq ‰ 0 (2.7)

Proposition 4 . 2 .

 42 For any boundary entropy flux Q, Q ´pt, xq 0, Q `pt, xq 0, pt, xq ´a.s. (4.5) Moreover, B x Q ˘ 0 in the sense of distribution.

  Proposition 3.1. Let upt, xq be L 8 entropy solution of (3.2). Then there exists z 1 ptq P r0, ms, z 2 ptq P rm, 1s such that Jpz 1 ptqq " Jpz 2 ptqq and upt, xq P tz 1 ptq, z 2 ptqu, pt, xq ´a.s. (3.5) Furthermore, or upt, xq is a.s. constant in x P p0, 1q for almost every t, or there is at most one upward jump from z 1 ptq to z 2 ptq inside p0, 1q. In particular upt, ¨q is of bounded variation for a.e. t. Proof. Since upt, xq solves B x Jpuq " 0 in the weak sense, there exists a bounded function J ptq such that Jpupt, xqq " J ptq almost surely in pt, xq. Due to (2.2), we can find z 1 ptq m z 2 ptq such that Jpz 1 ptqq " Jpz 2 ptqq " J ptq, and (3.5) thus follows.

  Proposition 3.2. Suppose that pρ ´ptq, ρ `ptqq R Θ for almost every t 0. Then (3.2) has a unique entropy solution upt, xq given by if ρ ´ptq ă m, ρ `ptq ă ρ ˚ptq, ρ `ptq, if ρ `ptq ą m, ρ ´ptq ą ρ ˚ptq, m, if ρ ´ptq m, ρ `ptq m. Proof. We have to specify z 1 ptq through the boundary values ρ ˘ptq. From the argument above, upt, ¨q has bounded total variation for each t, hence Furthermore, u ˘ptq P tz 1 ptq, z 1 ptqu and u ´ptq u `ptq. Rewrite (2.6) and (2.7) explicitly as ρ ´ptq ă m ñ u ´ptq " ρ ´or u ´ptq P rρ ˚ptq, 1s,

		$		
	upt, xq "	' & ρ ´ptq, (3.7)
		'		
		%		
	u ´ptq " lim xÑ0`u	pt, xq, u `ptq " lim xÑ0´u	pt, xq	(3.8)
	are well-defined.			

ρ ´ptq m ñ u ´ptq m, ρ `ptq m ñ u `ptq m, ρ `ptq ą m ñ u `ptq " ρ `or u `ptq P r0, ρ ˚ptqs.

  δ ps, xq ˘2dx ds C.Proof. Denote by Gpuq a primitive of uJ 1 puq: G 1 puq " uJ 1 puq.In order to estimate the last line of (4.3) we test (4.1) against ψps, xq :" ρ ´psq xrρ

	`psq ´ρ´p sqs, obtaining that	
		ε	ż 1	"	ψpt, xqu ε,δ pt, xq ´ψp0, xqu 0,δ pxq	‰	dx	´ε ij	u ε,δ B s ψ dx ds
			0					
		`ż t		"	Jpρ `psqqρ `psq ´Jpρ ´psqqρ ´psq	‰	ds ´ij Jpu ε,δ qB x ψ dx ds
			0				
	" δ	ż t	"	ρ `psqB x u ε,δ ps, 1q ´ρ´p sqB x u ε,δ ps, 0q	‰ ds	´δ ij	B x u ε,δ B x ψ dx ds.
			0					
									(4.2)
									Multiply (4.1) by
	u ε,δ and integrate over p0, tq ˆp0, 1q to obtain
	ε 2 " δ	ż 1 0 ż t " u ε,δ pt, xq 2 dx ρ `psqB x u ε,δ ps, 1q ´ρ´p sqB x u ε,δ ps, 0q ż 1 u 0,δ pxq 2 dx `ż t ´ε 2 0 0	" ‰ ds Gpρ `psqq ´Gpρ ´psqq pB x u ε,δ q 2 dx ds. ‰ ds ´δ ij	(4.3)
		0					

  F pt, x, λqν t,x pdλqdx dt where tν t,x pdλqu pt,xqPΩ T is the limit Young measure.It suffices to show that ν t,x coincides with the delta measure concentrated on upt, xq given by (3.7). To this end, given boundary entropy-entropy flux pair pS, Qq, define the boundary entropy production

	ij		ij		ż 1
	lim εnÑ0	ϕpt, xqF pt, x, u εn pt, xqqdx dt "	ϕpt, xq	0
		ż		
		Q ˘pt, xq :"	Qpλ, ρ ˘ptqqν t,x pdλq, pt, xq P Ω T .	(4.4)

  Spu ε,δ , wqB x ϕ `B2 u Spu ε,δ , wqpB x u ε,δ q 2 ϕ Qpu ε,δ pt, 1q, wptqq ´δB x Spu ε,δ pt, 1q, wptqq Qpu ε,δ pt, 0q, wptqq ´δB x Spu ε,δ pt, 0q, wptqq ‰ ϕpt, 0qdt.

				1 ϕ	‰	dx dt
	ij			
	" δ	"	B x ‰	dx dt
	`ż T	"	‰ ϕpt, 1qdt
	0			
	´ż T	"	
	0			
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(3) If ρ ´ptq m, ρ `ptq m then ν t,x " δ m , where for u P r0, 1s, u ˚is defined above (3.6).

Proof. Consider the following boundary entropy

Spu, wq " # w ^m ´u, u P r0, w ^mq, 0, u P rw ^m, 1s.

Note that S is not smooth, but it can be approximated by convex, smooth functions easily. For instance, let s P C 8 pRq be such that spuq " ´u, @ u ´1, spuq " 0, @ u 1, s 2 0.

Then S a p¨, wq Ñ Sp¨, wq as a Ñ 0`, where S a pu, wq :" as `a´1 pu ´wq ˘, a ą 0.

The flux corresponding to S is Qpu, wq " # Jpw ^mq ´Jpuq, u P r0, w ^mq, 0, u P rw ^m, 1s.

Since Qpu, ρ ´q 0 for all u P r0, 1s and Q ´ 0, we know that ν t,x concentrates on its zero set rρ ´ptq ^m, 1s where Qpu, ρ ´q " 0. A similar argument yields that ν t,x concentrates on r0, ρ `ptq _ ms. Hence, ν t,x concentrates on

Case 3 follows directly. In order to prove case 1 and 2, we choose S ˚pu, wq " |u ´w|, Q ˚pu, wq " signpu ´wqpJpuq ´Jpwqq.

In case 1, Q ˚pu, ρ ´ptqq 0 on I t and the only zero point is ρ ´ptq. As Q ´ 0, we know that ν pt,xq " δ ρ ´. In Case 2, Q ˚pu, ρ `ptqq 0 on I t and the only zero point is ρ `ptq, so the conclusion holds similarly.