
HAL Id: hal-03177217
https://hal.science/hal-03177217v2

Submitted on 16 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quasi-static Limit for a Hyperbolic Conservation Law
Stefano Marchesani, Stefano Olla, Lu Xu

To cite this version:
Stefano Marchesani, Stefano Olla, Lu Xu. Quasi-static Limit for a Hyperbolic Conservation Law.
Nonlinear Differential Equations and Applications, 2021, 28 (53), �10.1007/s00030-021-00716-5�. �hal-
03177217v2�

https://hal.science/hal-03177217v2
https://hal.archives-ouvertes.fr


QUASI-STATIC LIMIT FOR A HYPERBOLIC CONSERVATION

LAW

STEFANO MARCHESANI, STEFANO OLLA*, AND LU XU

Abstract. We study the quasi-static limit for the L
8 entropy weak solution

of scalar one-dimensional hyperbolic equations with strictly concave or convex
flux and time dependent boundary conditions. The quasi-stationary profile
evolves with the quasi-static equation, whose entropy solution is determined
by the stationary profile corresponding to the boundary data at a given time.

1. Introduction

The term quasi-static evolution refers to dynamics driven by external boundary
conditions or forces that change in a time scale much longer than the typical time
scale of the convergence to stationary state of the dynamics. In the time scale of
the changes of the exterior conditions the system is very close to the corresponding
stationary state. This ideal evolutions are fundamental in Thermodynamics and
in many other situations. We are interested in studying dynamics where the
corresponding quasi-stationary state is of non-equilibrium, i.e. it presents non-
vanishing currents of conserved quantities.

In a companion article [4] we study the quasi-static limit for the one-dimensional
open asymmetric simple exclusion process (ASEP). The symmetric case was stud-
ied in [3]. This is a dynamics where the stationary non-equilibrium states are well
studied [5, 10, 11]. The macroscopic equation for the ASEP is given by the traffic
flow equation on the one-dimensional finite interval r0, 1s:

Btu` BxJ puq “ 0, (1.1)

with the flux Jpuq “ up1´uq, with time dependent boundary conditions upt, 0q “
ρ´ptq, upt, 1q “ ρ`ptq, resulting from the interaction with external reservoirs.
Notice that, after the linear transformation v “ 1 ´ 2u, (1.1) is equivalent to

Burger’s equation Btv ` Bxpv2

2
q “ 0.

For time independent boundary conditions and a special choice of the dynamics
of the reservoirs for the open ASEP, equation (1.1) is obtained as hydrodynamic
limit in [1]. More precisely the hydrodynamic limit generates the L8 entropy
weak solution of (1.1) in the sense of [8].
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Let us consider now the situation when the boundary conditions change in a
slower time scale: for ε ą 0 small, consider for (1.1) the boundary conditions
upt, 0q “ ρ´pεtq, upt, 1q “ ρ`pεtq. In order to see the effect of the changes in
the boundaries, we need to look at the evolution in this time scale, i.e. defining
uεpt, xq “ upε´1t, xq, it will satisfy the equation

"

εBtu
ε ` BxJ puεq “ 0,

uεpt, 0q “ ρ´ptq, uεpt, 1q “ ρ`ptq.
(1.2)

The main result in this article concerns the convergence of uε to the entropy weak
solution of the quasi-static equation (see section 3.1 for the definition)

BxJpuq “ 0, upt, 0q “ ρ´ptq, upt, 1q “ ρ`ptq. (1.3)

It turns out that such solutions can only achieve two values with at most one
upward discontinuity (shock) in the interior of the interval r0, 1s, so they are
necessarily of bounded variation (see Proposition 3.1). Outside the critical line
tρ´ptq ` ρ`ptq “ 1, ρ´ptq ă 1{2u the solution is unique and constant in space
(see Proposition 3.2). On the other hand on the critical line there are infinitely
many entropy solutions, corresponding to different position of the single shock,
associated to the same value of the current. Consequently we can prove the con-
vergence of uε to the unique quasi-static solution of the quasi-static equation only
if pρ´ptq, ρ`ptqq remains outside the critical line for almost every t (see Theorem
3.5). On the critical line we can only prove the convergence to a measure-valued
solution (cf. Remark 4.4). In all cases the quasi-stationary current J ptq is con-
stant is space, and its value is determined by a variational problem (cf. (3.10)):
the entropy quasi-stationary solution minimize Jpρq when ρ´ptq ă ρ`ptq (drift
up-hill) and maximize it when ρ´ptq > ρ`ptq (drift down-hill).

Since the ideas contained to this article do not depend on the specific choice
of the flux J , we will expose our results for a generic scalar equation (1.1) with
Jpuq strictly convex or concave and with Jp0q “ 0 “ Jpu1q, with for some u1 ą 0.
Without losing generality we can set u1 “ 1 and Jpuq non-negative and strictly
concave.

2. A scalar hyperbolic equation with boundary conditions

Consider the following initial–boundary problem for a scalar equation on the
one-dimensional finite interval r0, 1s

$

’

&

’

%

Btvpt, xq ` BxJpvpt, xqq “ 0, t ą 0, x P p0, 1q,

vpt, 0q “ ρ´ptq, vpt, 1q “ ρ`ptq, t ą 0,

vp0, xq “ v0pxq, x P r0, 1s,

(2.1)

where ρ˘ P L8pR`q and v0 P L8pr0, 1sq. Assume that

J P C2pRq, J2 ă 0, Jp0q “ Jp1q “ 0. (2.2)
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Also assume that the boundary and initial data are bounded: ρ˘ptq P r0, 1s for
all t ą 0 and v0 P r0, 1s for almost all x P r0, 1s. The solution v P L8pR` ˆ r0, 1sq
is intended in the weak sense: for any φ P C8

0
pR ˆ p0, 1qq,

ż 8

0

ż

1

0

“

vBtφ` JpvqBxφ
‰

dx dt`

ż

1

0

v0pxqφp0, xqdx “ 0. (2.3)

Furthermore, u satisfies the entropy inequality: for any ϕ P C8
0

pR ˆ p0, 1qq such
that ϕ > 0,

ż 8

0

ż

1

0

“

SpvqBtϕ ` QpvqBxϕ
‰

dx dt`

ż

1

0

Spv0pxqqϕp0, xqdx > 0, (2.4)

where pS,Qq is any pairs of functions such that

S,Q P C2pRq, S2 > 0, Q1 “ J 1S 1. (2.5)

A pair of functions pS,Qq that satisfies (2.5) is called a Lax entropy–entropy flux
pair associated to (2.1). Observe that (2.4) implies the Rankine–Hugoniot jump
condition for (2.1): inside the interval eventual discontinuities must be upwards
shocks.

Notice that discontinuities can appear at the boundaries. The boundary con-
ditions in (2.1) are satisfied in the following sense. Assume for the moment that
vpt, ¨q is of bounded variation for each t, so that the limits

v´ptq “ lim
xÑ0`

vpt, xq, v`ptq “ lim
xÑ1´

vpt, xq

are well-defined. Then the Bardos–LeRoux–Nédélec boundary conditions [2] of
the entropy solution v reads for all t ą 0,

signpv´ptq ´ ρ´ptqq
“

Jpv´ptqq ´ Jpkq
‰

6 0 (2.6)

for all k P Irv´ptq, ρ´ptqs and

signpv`ptq ´ ρ`ptqq
“

Jpv`ptqq ´ Jpkq
‰

> 0 (2.7)

for all k P Irv`ptq, ρ`ptqs, where Ira, bs denotes the closed interval with extremes
given by a and b.

Otto in [8] extended the characterization of boundary conditions to general
entropy solutions v P L8 by the use of boundary entropy–entropy flux pair. A
pair of two-variable functions pS,Qq is called a boundary entropy–entropy flux
pair if S, Q P C2pR2q, pS,Qqp¨, wq is a entropy–entropy flux pair for each w P R

and

Spw,wq “ Qpw,wq “ BvSpv, wq|v“w “ 0, @ w P R. (2.8)

The boundary conditions in (2.1) are then given by

esslim
rÑ0`

ż 8

0

Qpvpt, rq, ρ´ptqqβptqdt 6 0,

esslim
rÑ0`

ż 8

0

Qpvpt, 1 ´ rq, ρ`ptqqβptqdt > 0,

(2.9)
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for any boundary flux Q and β P C0pRq such that β > 0. Later on it has been
proven that entropy solution of (2.1) has strong traces at the boundaries even
for initial condition in L8 (cf. [12, 9, 6]), so that the Bardos–LeRoux–Nédélec
boundary conditions still holds. Nevertheless, boundary entropy–entropy flux
pairs are useful in our proof of the quasi-static limit.

The entropy solution v of (2.1) introduced above can be obtained through the
viscous approximation. For δ ą 0, let vδ “ vδpt, xq be the classical solution of the
viscous problem

#

Btv
δ ` BxJpvδq “ δBxxv

δ, t ą 0, x P p0, 1q,

vδp¨, 0q “ ρ´, vδp¨, 1q “ ρ`, vδp0, ¨q “ v0,δ,
(2.10)

where the mollified initial value v0,δ P C8pr0, 1sq satisfies that

lim
δÑ0`

ż

1

0

|v0,δpxq ´ v0pxq|dx “ 0 (2.11)

and the compatibility conditions

v0,δp0, 0q “ ρ´p0q, v0,δp0, 1q “ ρ`p0q. (2.12)

By [7, Theorem 8.20], vδ Ñ v in Cpr0, T s, L1r0, 1sq for each T ą 0.

3. Quasi-static evolution

3.1. The quasi-static equation. For ε ą 0, let uε P L8pR` ˆ r0, 1sq be the
entropy solution of

"

εBtu
ε ` BxJpuεq “ 0,

uεpt, 0q “ ρ´ptq, uεpt, 1q “ ρ`ptq, uεp0, xq “ u0pxq,
(3.1)

in the sense of (2.3), (2.4) and (2.9).
Our aim is to prove that, as ε Ñ 0, the entropy solution uε of (3.1) converge

to some u P L8 that is the entropy solution of the quasi-static conservation law

BxJpuq “ 0, upt, 0q “ ρ´ptq, upt, 1q “ ρ`ptq. (3.2)

We assume now that ρ˘ptq P C1pR`q. There is a physical reason for such assump-
tion, as this macroscopic changes at the boundaries should be slow and smooth.
Also we need such condition in the proof of the quasi-static limit (see proof of
Proposition 4.2).

The entropy solution of the quasi-static problem (3.2) is defined as a function
u P L8pr0,`8q ˆ r0, 1sq such that, for any ϕ P C8

0
pp0,`8q ˆ p0, 1qq,

ż 8

0

ż

1

0

JpuqBxϕdx dt “ 0. (3.3)

Furthermore for a flux function Q associated to a convex entropy S,
ż 8

0

ż

1

0

QpuqBxϕdx dt > 0, @ϕ P C8
0

pp0,`8q ˆ p0, 1qq, ϕ > 0, (3.4)
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while the boundary conditions are satisfied in the same sense as in (2.9) with
respect to a boundary entropy flux Qpv, wq. Notice the difference with respect
(2.4): quasi-static solutions are determined by the boundary conditions ρ˘ptq,
there is no need to specify an initial condition.

Observe from (2.2) that the current function J reaches its maximum at some
unique m P p0, 1q. Moreover, for any y P r0, Jpmqs the equation Jpuq “ y has two
solutions: u1pyq P r0, ms and u2pyq P rm, 1s.

Proposition 3.1. Let upt, xq be L8 entropy solution of (3.2). Then there exists
z1ptq P r0, ms, z2ptq P rm, 1s such that Jpz1ptqq “ Jpz2ptqq and

upt, xq P tz1ptq, z2ptqu, pt, xq ´ a.s. (3.5)

Furthermore, or upt, xq is a.s. constant in x P p0, 1q for almost every t, or there
is at most one upward jump from z1ptq to z2ptq inside p0, 1q. In particular upt, ¨q
is of bounded variation for a.e. t.

Proof. Since upt, xq solves BxJpuq “ 0 in the weak sense, there exists a bounded
function J ptq such that Jpupt, xqq “ J ptq almost surely in pt, xq. Due to (2.2),
we can find z1ptq 6 m 6 z2ptq such that Jpz1ptqq “ Jpz2ptqq “ J ptq, and (3.5)
thus follows.

The entropy condition (3.4) yields that BxQpupt, xqq is negative in the sense of
distribution. Observe that for any z1 P r0, ms, z2 P rm, 1s s.t. Jpz1q “ Jpz2q “
J0 P r0, Jpmqs,

Qpz1q ´ Qpz2q “

ż z2

z1

Q1puqdu “

ż m

z1

S 1puqJ 1puqdu`

ż z2

m

S 1puqJ 1puqdu

“

ż Jpmq

J0

S 1pu1pyqqdy `

ż J0

Jpmq

S 1pu2pyqqdy

“ ´

ż Jpmq

J0

ż u2pyq

u1pyq

S2pvqdv dy 6 0,

as S is convex. Hence, only upward jumps from z1ptq to z2ptq can decrease the
entropy flux Qpupt, xqq. This implies that we can have at most one such jump
inside p0, 1q. �

Since, by Proposition 3.1, entropy solution must be of bounded variation, then
the boundary conditions are satified in the Bardos–LeRoux–Nédélec sense given
by (2.6) and (2.7).

For u P r0, 1sztmu, let u˚ P r0, 1sztmu be such that Jpu˚q “ Jpuq. Furthermore
we fix u˚ “ m for u “ m.

Define the critical segment

Θ “ tpz, z˚q P r0, 1s2; z ă mu. (3.6)

The entropy solution of (3.2) is unique outside Θ and it can be calculated explic-
itly as below.
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Proposition 3.2. Suppose that pρ´ptq, ρ`ptqq R Θ for almost every t > 0. Then
(3.2) has a unique entropy solution upt, xq given by

upt, xq “

$

’

&

’

%

ρ´ptq, if ρ´ptq ă m, ρ`ptq ă ρ˚
´ptq,

ρ`ptq, if ρ`ptq ą m, ρ´ptq ą ρ˚
`ptq,

m, if ρ´ptq > m, ρ`ptq 6 m.

(3.7)

Proof. We have to specify z1ptq through the boundary values ρ˘ptq. From the
argument above, upt, ¨q has bounded total variation for each t, hence

u´ptq “ lim
xÑ0`

upt, xq, u`ptq “ lim
xÑ0´

upt, xq (3.8)

are well-defined. Furthermore, u˘ptq P tz1ptq, z˚
1 ptqu and u´ptq 6 u`ptq. Rewrite

(2.6) and (2.7) explicitly as

ρ´ptq ă m ñ u´ptq “ ρ´ or u´ptq P rρ˚
`ptq, 1s,

ρ´ptq > m ñ u´ptq > m,

ρ`ptq 6 m ñ u`ptq 6 m,

ρ`ptq ą m ñ u`ptq “ ρ` or u`ptq P r0, ρ˚
`ptqs.

(3.9)

If ρ´ > m, ρ` 6 m, then u´ “ u` “ m so that upt, xq “ m. If ρ´ ă m, ρ` ă ρ˚
´,

then u´ 6 u` 6 maxtm, ρ`u ă ρ˚
´, so that u´ “ ρ´. In view of (3.5), we have

z1ptq “ ρ´ and u` “ ρ´, hence upt, xq “ ρ´. The case in which ρ` ą m, ρ´ ą ρ˚
`

is proved similarly. �

Remark 3.3. If pρ´ptq, ρ`ptqq P Θ for an interval of time of positive measure,
then the entropy solution is not unique, but for any solution there exists one single
shock with position Xptq such that upt, xq “ ρ´ptq for x ă Xptq and upt, xq “
ρ`ptq “ ρ˚

´ptq for x ą Xptq.

Remark 3.4. The entropy solution can also be characterized as the solution of
the following variational problem:

J ptq “

#

sup tJpρq; ρ P rρ`ptq, ρ´ptqsu, if ρ´ptq > ρ`ptq,

inf tJpρq; ρ P rρ´ptq, ρ`ptqsu, if ρ´ptq ă ρ`ptq.
(3.10)

This also includes the critical line pρ´ptq, ρ`ptqq P Θ, where J “ Jpρ´q “ Jpρ`q
minimizes the current Jpρq in the interval rρ´, ρ`s.

3.2. The quasi-static limit.

Theorem 3.5. Suppose that ρ˘ P C1pR`q and pρ´ptq, ρ`ptqq R Θ for almost all t,
then the solution uε of (3.1) converges to u “ upt, xq defined in (3.7) with respect
to the weak-‹ topology of L8pr0, T s ˆ r0, 1sq for all T ą 0.

Remark 3.6. As ε Ñ 0, Jpuεptqq
‹

á J ptq given by (3.10). Particularly, in
the case pρ´ptq, ρ`ptqq P Θ we can prove that uε converges weakly-‹ to a Young

measure concentrated on tρ˘ptqu, thus Jpuεq
‹

á J “ Jpρ´q “ Jpρ`q. See Remark
4.4 at the end of the section.
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Remark 3.7. Notice that the quasi-static limit in Theorem 3.5 does not depend
on the initial condition u0 for uε.

Example 3.8. Consider the current function Jpuq “ up1´ uq in (1.1). Proposi-
tion 3.2 and Theorem 3.5 hold in this case with m “ 1{2 and u˚ “ 1 ´ u.

On the other hand, let vδ “ vδpt, xq be the classical solution of the quasi-static
problem associated to the viscous equation (2.10):

BxJpvδq “ δBxxv
δ, vδpt, 0q “ ρ´ptq, vδpt, 1q “ ρ`ptq. (3.11)

When pρ´ptq, ρ`ptqq R Θ, it is not hard to see that vδ also converges pointwisely
to the solution u of quasi-static problem given by (3.7):

lim
δÑ0`

vδpt, xq “ upt, xq, @x P p0, 1q, (3.12)

and the convergence is uniform on rγ, 1 ´ γs for any γ ą 0. On the critical line
pρ´ptq, ρ`ptqq P Θ, vδ is explicitly given by

vδpt, xq “
1

2
` δCpδ, tq tanh

„

Cpδ, tq

ˆ

x ´
1

2

˙

, (3.13)

where C “ Cpδ, tq is such that C tanhpC{2q “ δ´1p2ρ`ptq´1q. Then vδ converges
pointwisely to the profile with an upward shock at 1{2:

lim
δÑ0`

vδpt, xq “ ρ´ptq1r0, 1
2

qpxq ` ρ`ptq1p 1

2
,1spxq, @x P r0, 1s, (3.14)

and the convergence is uniform on any closed interval excludes 1{2.

4. Proof of Theorem 3.5

For ε ą 0, δ ą 0, consider viscous approximation of (3.1) given by
#

εBtu
ε,δ ` BxJpuε,δq “ δBxxu

ε,δ, t ą 0, x P p0, 1q,

uε,δpt, 0q “ ρ´ptq, uε,δpt, 1q “ ρ`ptq, uε,δp0, xq “ u0,δpxq,
(4.1)

where u0,δ is the mollified initial function satisfying (2.11) and the compatibility
conditions. Let uε,δ “ uε,δpt, xq be the classical smooth solution of (4.1). We first
present a priori estimate for }Bxu

ε,δ}L2.

Proposition 4.1. For any t > 0, there is a constant C “ Ct such that

ε

ż

1

0

uε,δpt, xq2dx` δ

ż t

0

ż

1

0

`

Bxu
ε,δps, xq

˘2
dx ds 6 C. (4.2)

Proof. Denote by Gpuq a primitive of uJ 1puq: G1puq “ uJ 1puq. Multiply (4.1) by
uε,δ and integrate over p0, tq ˆ p0, 1q to obtain

ε

2

ż

1

0

uε,δpt, xq2dx´
ε

2

ż

1

0

u0,δpxq2dx`

ż t

0

“

Gpρ`psqq ´ Gpρ´psqq
‰

ds

“ δ

ż t

0

“

ρ`psqBxu
ε,δps, 1q ´ ρ´psqBxu

ε,δps, 0q
‰

ds ´ δ

ĳ

pBxu
ε,δq2dx ds.

(4.3)
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In order to estimate the last line of (4.3) we test (4.1) against ψps, xq :“ ρ´psq `
xrρ`psq ´ ρ´psqs, obtaining that

ε

ż

1

0

“

ψpt, xquε,δpt, xq ´ ψp0, xqu0,δpxq
‰

dx´ ε

ĳ

uε,δBsψ dx ds

`

ż t

0

“

Jpρ`psqqρ`psq ´ Jpρ´psqqρ´psq
‰

ds ´

ĳ

Jpuε,δqBxψ dx ds

“ δ

ż t

0

“

ρ`psqBxu
ε,δps, 1q ´ ρ´psqBxu

ε,δps, 0q
‰

ds ´ δ

ĳ

Bxu
ε,δBxψ dx ds.

Then, Young inequality allows to estimate
ˇ

ˇ

ˇ

ˇ

δ

ż t

0

“

ρ`psqBxu
ε,δps, 1q ´ ρ´psqBxu

ε,δps, 0q
‰

ds

ˇ

ˇ

ˇ

ˇ

6 C `
ε

4

ż

1

0

uε,δpt, xq2dx`
δ

2

ż t

0

ż

1

0

pBxu
ε,δps, xqq2dxds,

which, inserted into (4.3) gives the conclusion. �

In the following we denote ΩT “ r0, T s ˆ r0, 1s, Ω “ R` ˆ r0, 1s. As stated in
§2, for each fixed ε ą 0,

lim
δÑ0

ĳ

ϕpt, xqF pt, x, uε,δpt, xqqdx dt “

ĳ

ϕpt, xqF pt, x, uεpt, xqqdx dt,

for all F P CpΩT ˆr0, 1sq and ϕ P L1pΩT q, where uε P L8pΩT q is the entropy solu-
tion of (3.1). Observe that uε is uniformly bounded: }uε}L8pΩT q 6 1. Therefore,
we can extract a weakly-‹ convergent subsequence:

lim
εnÑ0

ĳ

ϕpt, xqF pt, x, uεnpt, xqqdx dt “

ĳ

ϕpt, xq

ż

1

0

F pt, x, λqνt,xpdλqdx dt

where tνt,xpdλqupt,xqPΩT
is the limit Young measure.

It suffices to show that νt,x coincides with the delta measure concentrated on
upt, xq given by (3.7). To this end, given boundary entropy–entropy flux pair
pS,Qq, define the boundary entropy production

Q˘pt, xq :“

ż

Qpλ, ρ˘ptqqνt,xpdλq, pt, xq P ΩT . (4.4)

The following proposition is the key argument.

Proposition 4.2. For any boundary entropy flux Q,

Q´pt, xq 6 0, Q`pt, xq > 0, pt, xq ´ a.s. (4.5)

Moreover, BxQ˘ 6 0 in the sense of distribution.
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Proof. Recall that uε,δ is the classical solution of (4.1). For w P C1pr0, T sq and
boundary entropy–entropy flux pS,Qq,

εBtSpuε,δ, wq “ εBuSpuε,δ, wqBtu
ε,δ ` εBwSpuε,δ, wqw1

“ δB2

xSpuε,δ, wq ´ δB2

uSpuε,δ, wqpBxu
ε,δq2 ´ BxQpuε,δ, wq ` εBwSpuε,δ, wqw1.

Therefore, for ϕ P C8pΩT q such that ϕp0, xq “ ϕpT, xq “ 0,
ĳ

“

εSpuε,δ, wqBtϕ ` Qpuε,δ, wqBxϕ ` εBwSpuε,δ, wqw1ϕ
‰

dx dt

“ δ

ĳ

“

BxSpuε,δ, wqBxϕ ` B2

uSpuε,δ, wqpBxu
ε,δq2ϕ

‰

dx dt

`

ż T

0

“

Qpuε,δpt, 1q, wptqq ´ δBxSpuε,δpt, 1q, wptqq
‰

ϕpt, 1qdt

´

ż T

0

“

Qpuε,δpt, 0q, wptqq ´ δBxSpuε,δpt, 0q, wptqq
‰

ϕpt, 0qdt.

Taking w “ ρ´, since u
ε,δp¨, 0q “ ρ´ and Qpw,wq “ BuSpw,wq “ 0 for all w P R,

the last line above is 0. Hence, choosing ϕ “ ϕ` such that

ϕ`pt, 1q “ 0, ϕ`p0, xq “ 0, ϕ`pT, xq “ 0, (4.6)

we obtain for any convex boundary entropy S that
ĳ

“

εSpuε,δ, ρ´qBtϕ` ` Qpuε,δ, ρ´qBxϕ` ` εBwSpuε,δ, ρ´qρ1
´ϕ`

‰

dx dt

> δ

ĳ

BuSpuε,δ, ρ´qBxu
ε,δBxϕ`dx dt.

Let δ Ñ 0` and apply the priori estimate in Proposition 4.1,
ĳ

“

εSpuε, ρ´qBtϕ` ` Qpuε, ρ´qBxϕ` ` εBwSpuε, ρ´qρ1
´ϕ`

‰

dx dt > 0.

Eventually, let ε Ñ 0` along the convergent subsequence,
ĳ

Q´pt, xqBxϕ`pt, xqdx dt > 0. (4.7)

Since this holds for all nonnegative, smooth test function ϕ` satisfying (4.6), we
conclude that Q´ 6 0 almost everywhere and BxQ´ 6 0 as a distribution. For

Q`, we replace pρ´, ϕ`q with pρ`, ϕ´q such that

ϕ´pt, 0q “ 0, ϕ´p0, xq “ 0, ϕ´pT, xq “ 0, (4.8)

and repeat the same argument. �

Theorem 3.5 follows directly from the following consequence.

Corollary 4.3. The followings hold for a.e. pt, xq:

(1) If ρ´ptq ă m, ρ`ptq ă ρ˚
´ptq then νt,x “ δρ´ptq,

(2) If ρ`ptq ą m, ρ´ptq ą ρ˚
`ptq then νt,x “ δρ`ptq,
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(3) If ρ´ptq > m, ρ`ptq 6 m then νt,x “ δm,

where for u P r0, 1s, u˚ is defined above (3.6).

Proof. Consider the following boundary entropy

Spu, wq “

#

w ^ m ´ u, u P r0, w ^ mq,

0, u P rw ^ m, 1s.

Note that S is not smooth, but it can be approximated by convex, smooth func-
tions easily. For instance, let s P C8pRq be such that

spuq “ ´u, @ u 6 ´1, spuq “ 0, @ u > 1, s2
> 0.

Then Sap¨, wq Ñ Sp¨, wq as a Ñ 0`, where

Sapu, wq :“ as
`

a´1pu ´ wq
˘

, a ą 0.

The flux corresponding to S is

Qpu, wq “

#

Jpw ^ mq ´ Jpuq, u P r0, w ^ mq,

0, u P rw ^ m, 1s.

Since Qpu, ρ´q > 0 for all u P r0, 1s and Q´ 6 0, we know that νt,x concentrates
on its zero set rρ´ptq ^m, 1s where Qpu, ρ´q “ 0. A similar argument yields that
νt,x concentrates on r0, ρ`ptq _ ms. Hence, νt,x concentrates on

It “
“

ρ´ptq ^ m, ρ`ptq _ m
‰

.

Case 3 follows directly. In order to prove case 1 and 2, we choose

S˚pu, wq “ |u´ w|, Q˚pu, wq “ signpu´ wqpJpuq ´ Jpwqq.

In case 1, Q˚pu, ρ´ptqq > 0 on It and the only zero point is ρ´ptq. As Q´ 6 0, we
know that νpt,xq “ δρ´

. In Case 2, Q˚pu, ρ`ptqq 6 0 on It and the only zero point
is ρ`ptq, so the conclusion holds similarly. �

Remark 4.4. Concerning the case pρ´, ρ`qptq P Θ, Q˚pu, ρ˘ptqq has opposite sign
in It except two zero points ρ˘ptq, therefore νt,x concentrates on tρ´ptq, ρ`ptqu.
Suppose fpt, xq “ νt,xpρ`ptqq, then

νt,xpdλq “ r1 ´ fpt, xqsδρ´ptqpdλq ` fpt, xqδρ`ptqpdλq. (4.9)

Observing that Jpρ`q “ Jpρ´q, so that

Jpuεpt, xqq
‹

á

ż

1

0

Jpλqνt,xpdλq “ Jpρ´ptqq “ Jpρ`ptqq, ε Ñ 0, (4.10)

as stated in Remark 3.4.
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