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QUASI-STATIC LIMIT FOR BURGERS EQUATION

STEFANO MARCHESANI, STEFANO OLLA, AND LU XU

Abstract. We study the quasi-static limit for the L
8 entropy weak solution

of the one-dimensional Burgers equation with boundary conditions. The quasi-
stationary profile evolves with the quasi-static Burgers equation, whose entropy
solution is determined by the stationary profile corresponding to the boundary
data at a given time.

1. Introduction

Quasti-static evolution refers to dynamics driven by external boundary con-
ditions or forces that change in a time scale much longer than the typical time
scale of the convergence to stationary state of the dynamics. In the time scale of
the changes of the exterior conditions the system is very close to the correspond-
ing stationary state. This ideal evolutions are fundamental in thermodynamics
and in many other situation. We are interested in studying dynamics where the
corresponding quasi-stationary state is of non-equilibrium, i.e. it presents non-
vanishing currents of conserved quantities.

In a companion article [4] we study the quasi-static limit for the one-dimensional
open asymmetric simple exclusion process (ASEP). This is a dynamics where the
stationary non-equilibrium states are well studied [5, 8, 9]. The macroscopic
equation for the ASEP is given by Burgers equation on the one-dimensional fi-
nite interval r0, 1s:

Btu` Bx pup1 ´ uqq “ 0, (1.1)

with boundary conditions, eventually time dependent, upt, 0q “ ρ´ptq, upt, 1q “
ρ`ptq, resulting from the interaction with external reservoirs. For time indepen-
dent boundary conditions and a special choice of the dynamics of the reservoirs
for the open ASEP, equation (1.1) is obtained as hydrodynamic limit in [1]. More
precisely the hydrodynamic limit generates the L8 entropy weak solution of (1.1)
in the sense of [6].

Let us consider now the situation when the boundary conditions change in a
slower time scale: for ε ą 0 small, consider for (1.1) the boundary conditions
upt, 0q “ ρ´pεtq, upt, 1q “ ρ`pεtq. In order to see the effect of the changes in
the boundaries, we need to look at the evolution in this time scale, i.e. defining

This work was partially supported by ANR-15-CE40-0020-01 grant LSD. We thank Anna
De Masi for inspiring discussions and remarks on this problem.
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uεpt, xq “ upε´1t, xq, it will satisfy the equation
"

εBtu
ε ` Bx puεp1 ´ uεqq “ 0,

uεpt, 0q “ ρ´ptq, uεpt, 1q “ ρ`ptq.
(1.2)

The main result in this article concerns the convergence of uε to the entropy weak
solution of the quasi-static equation (see section 3.1 for the definition)

BxJpuq “ 0, upt, 0q “ ρ´ptq, upt, 1q “ ρ`ptq. (1.3)

It turns out that such solutions can only achieve two values with at most one
upward discontinuity (shock) in the interior of the interval r0, 1s, so they are
necessarily of bounded variation (see Proposition 3.1). Outside the critical line
tρ´ptq ` ρ`ptq “ 1, ρ´ptq ă 1{2u the solution is unique and constant in space
(see Proposition 3.2). On the other hand on the critical line there are infinite
many entropy solutions, corresponding to different position of the single shock,
associated to the same value of the current. Consequently we can prove the con-
vergence of uε to the unique quasi-static solution of the quasi-static equation only
if pρ´ptq, ρ`ptqq remains outside the critical line for almost every t (see Theorem
3.5). On the critical line we can only prove the convergence to a measure-valued
solution (cf. Remark 4.4). In all cases the quasi-stationary current J ptq is con-
stant is space, and its value is determined by a variational problem (cf (3.11)): the
entropy quasi-stationary solution minimize Jpρq “ ρp1 ´ ρq when ρ´ptq ă ρ`ptq
(drift up-hill) and maximize it when ρ´ptq > ρ`ptq (drift down-hill).

2. Burgers equation with boundary conditions

Consider the following initial–boundary problem of Burgers equation on the
one-dimensional finite interval r0, 1s

$

’

&

’

%

Btvpt, xq ` BxJpvpt, xqq “ 0, t ą 0, x P p0, 1q,

vpt, 0q “ ρ´ptq, vpt, 1q “ ρ`ptq, t ą 0,

vp0, xq “ v0pxq, x P r0, 1s,

(2.1)

where Jpvq “ vp1 ´ vq, ρ˘ P C1pR`q, v0 P L8pr0, 1sq. Assume that the boundary
and initial data are essentially bounded: }ρ˘}8 6 1 and }v0}8 6 1, where } ¨ }8

denotes the L8 norm. The solution v P L8pR` ˆ r0, 1sq is intended in the weak
sense: for any T ą 0 and ϕ P C8

0 pr0, T s ˆ p0, 1qq such that ϕpT, xq “ 0,
ż T

0

ż

1

0

“

vBtϕ ` JpvqBxϕ
‰

dx dt`

ż

1

0

v0pxqϕp0, xqdx “ 0. (2.2)

Furthermore, u satisfies the entropy inequality
ż T

0

ż

1

0

“

SpvqBtϕ ` QpvqBxϕ
‰

dx dt > 0 (2.3)

for all pairs of functions pS,Qq such that

S,Q P C2pRq, S2 > 0, Q1 “ J 1S 1 (2.4)
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and ϕ P C8
0 pp0, T q ˆ p0, 1qq such that ϕ > 0. Functions pS,Qq satisfies (2.4) is

called a Lax entropy–entropy flux pair associated to (2.1). Observe that (2.3) im-
plies the Rankine–Hugoniot jump condition for (2.1): inside the interval eventual
discontinuities must be upwards shocks.

Notice that discontinuities can appear in v at the boundaries. The boundary
conditions in (2.1) are satisfied in the following sense. Assume for the moment
that vptq are of bounded variation for each t, so that the limits

v´ptq “ lim
xÑ0`

vpt, xq, v`ptq “ lim
xÑ1´

vpt, xq

are well-defined. Then the Bardos–LeRoux–Nédélec boundary condition [2] of
the entropy solution v reads for all t ą 0,

signpv´ptq ´ ρ´ptqq
“

Jpv´ptqq ´ Jpkq
‰

6 0 (2.5)

for all k P Irv´ptq, ρ´ptqs and

signpv`ptq ´ ρ`ptqq
“

Jpv`ptqq ´ Jpkq
‰

> 0 (2.6)

for all k P Irv`ptq, ρ`ptqs, where Ira, bs denotes the closed interval with extremes
given by a and b.

The characterization of boundary conditions is extended to general entropy
solutions v P L8 in [6]. A pair of two-variable functions pS,Qq is called a boundary
entropy–entropy flux pair if S, Q P C2pR2q, pS,Qqp¨, wq is a entropy–entropy flux
pair for any w P R and

Spw,wq “ Qpw,wq “ BvSpv, wq|v“w “ 0, @ w P R. (2.7)

The boundary conditions in (2.1) are then given by

esslim
rÑ0`

ż T

0

Qpvpt, rq, ρ´ptqqβptqdt 6 0,

esslim
rÑ0`

ż T

0

Qpvpt, 1 ´ rq, ρ`ptqqβptqdt > 0,

(2.8)

for any flux Q and β P Cpr0, T sq such that β > 0.
The entropy solution v of (2.1) introduced above can be obtained through the

viscous approximation. For δ ą 0, let vδ “ vδpt, xq be the classical solution of the
viscous problem

#

Btv
δ ` BxJpvδq “ δBxxv

δ, t ą 0, x P p0, 1q,

vδp¨, 0q “ ρ´, vδp¨, 1q “ ρ`, vδp0, ¨q “ v0,δ,
(2.9)

where the mollified initial value v0,δ P C8pr0, 1sq satisfies that

lim
δÑ0`

ż

1

0

|v0,δpxq ´ v0pxq|dx “ 0 (2.10)

and the compatible conditions

v0,δp0, 0q “ ρ´p0q, v0,δp0, 1q “ ρ`p0q. (2.11)
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By [7, Theorem 8.20], vδ Ñ v in Cpr0, T s, L1r0, 1sq for each T ą 0.

3. Quasi-static evolution

3.1. The quasi-static equation. For ε ą 0, let uε P L8pR` ˆ r0, 1sq be the
entropy solution of

"

εBtu
ε ` BxJpuεq “ 0,

uεpt, 0q “ ρ´ptq, uεpt, 1q “ ρ`ptq, uεp0, xq “ u0pxq,
(3.1)

in the sense of (2.2), (2.3) and (2.8).
Our aim is to prove that, as ε Ñ 0, the entropy solution uε of (3.1) converge

to some u P L8 that is the entropy solution of the quasi-static conservation law

BxJpuq “ 0, upt, 0q “ ρ´ptq, upt, 1q “ ρ`ptq. (3.2)

The L8 entropy solution of the quasi-static problem (3.2) is defined as a function
u P L8pr0, T s ˆ r0, 1sq such that, for any function ϕ P C8

0
pp0, T q ˆ p0, 1qq,

ż T

0

ż

1

0

JpuqBxϕdx dt “ 0. (3.3)

Furthermore for a flux function Q associated to some convex entropy S,
ż T

0

ż

1

0

QpuqBxϕdx dt > 0, @ϕ P C8
0

pp0, T q ˆ p0, 1qq, ϕ > 0, (3.4)

while the boundary conditions are satisfied in the same sense as in (2.8) with
respect to a boundary entropy flux Qpv, wq.

Proposition 3.1. Let upt, xq be L8 entropy solution of (3.2). Then there exists
aptq P r0, 1{2s such that

upt, xq P taptq, 1 ´ aptqu, pt, xq ´ a.s. (3.5)

Furthermore, or upt, xq is a.s. constant in x P p0, 1q for almost every t, or there is
at most one upward jump from aptq to 1 ´ aptq inside p0, 1q. In particular upt, xq
is of bounded variation.

Proof. Since upt, xq solves BxJpuq “ 0 in the weak sense, there exists a bounded
function J ptq such that Jpupt, xqq “ J ptq almost surely in pt, xq. Since Jpuq “
up1 ´ uq let aptq such that Jpaptqq “ J ptq, and (3.5) follows.

The entropy condition (3.4) yields that BxQpupt, xqq is negative in the sense of
distribution. Observe now that for any 0 6 a 6 1{2,

Qpaq ´ Qp1 ´ aq “

ż

1´a

a

Q1puqdu “

ż 1

2

a

“

Q1puq ` Q1p1 ´ uq
‰

du

“

ż 1

2

a

J 1puq
“

S 1puq ´ S 1p1 ´ uq
‰

du

“ ´

ż 1

2

a

J 1puq

ˆ
ż

1´u

u

S2pu˚qdu˚

˙

du 6 0. (3.6)
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Hence, only upward jumps from aptq to 1 ´ aptq can decrease the entropy flux
Qpupt, xqq. This implies that we can have at most one such jump inside p0, 1q. �

Since, by Proposition 3.1, entropy solution must be of bounded variation, then
the boundary conditions are satified in the Bardos–LeRoux–Nédélec sense given
by (2.5) and (2.6).

Define the critical segment

Θ “ tpa, bq P r0, 1s2; a ă 1{2, a` b “ 1u. (3.7)

The entropy solution of (3.2) is unique outside Θ and it can be calculated explic-
itly.

Proposition 3.2. Suppose that pρ´ptq, ρ`ptqq R Θ for almost every t P r0, T s.
Then (3.2) has a unique entropy solution upt, xq given by

upt, xq “

$

’

&

’

%

ρ´ptq, if ρ´ptq ă 1{2, ρ´ptq ` ρ`ptq ă 1,

ρ`ptq, if ρ`ptq ą 1{2, ρ´ptq ` ρ`ptq ą 1,

1{2, if ρ´ptq > 1{2, ρ`ptq 6 1{2.

(3.8)

Proof. We have to specify aptq through the boundary values ρ˘. From the argu-
ment above, upt, ¨q has bounded total variation for each t, hence

u´ptq “ lim
xÑ0`

upt, xq, u`ptq “ lim
xÑ0´

upt, xq (3.9)

are well-defined. Furthermore, u˘ptq P taptq, 1´aptqu and u´ptq 6 u`ptq. Rewrite
(2.5) and (2.6) explicitly as

ρ´ ă 1{2 ñ u´ “ ρ´ or u´ P r1 ´ ρ´, 1s,

ρ´ > 1{2 ñ u´ > 1{2,

ρ` 6 1{2 ñ u` 6 1{2,

ρ` ą 1{2 ñ u` “ ρ` or u` P r0, 1 ´ ρ`s.

(3.10)

If ρ´ > 1{2, ρ` 6 1{2, then u´ “ u` “ 1{2 so that upt, xq “ 1{2. If ρ´ ă 1{2,
ρ` ă 1 ´ ρ´, then u´ 6 u` 6 maxt1{2, ρ`u ă 1 ´ ρ´, so that u´ “ ρ´. In view
of (3.5), we have aptq “ ρ´ and u` “ ρ´, hence upt, xq “ ρ´. The case in which
ρ` ą 1{2, ρ´ ą 1 ´ ρ` is proved similarly. �

Remark 3.3. If pρ´ptq, ρ`ptqq P Θ for an interval of time of positive measure,
then the entropy solution is not unique, but for any solution there exists one single
shock with position Xptq such that upt, xq “ ρ´ptq for x ă Xptq and upt, xq “
ρ`ptq “ 1 ´ ρ´ptq for x ą Xptq.

Remark 3.4. The entropy solution can also be characterized as the solution of
the following variational problem:

J ptq “

#

sup tJpρq; ρ P rρ`ptq, ρ´ptqsu, if ρ´ptq > ρ`ptq,

inf tJpρq; ρ P rρ´ptq, ρ`ptqsu, if ρ´ptq ă ρ`ptq.
(3.11)
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This also includes the critical line pρ´ptq, ρ`ptqq P Θ, where the current J “
Jpρ´q “ Jpρ`q is minimal in the interval rρ´ptq, 1 ´ ρ´ptqs.

3.2. The quasi-static limit.

Theorem 3.5. Suppose that pρ´ptq, ρ`ptqq R Θ, for almost every t, then the
solution uε of (3.1) converges to u “ upt, xq defined in (3.8) with respect to the
weak-‹ topology of L8pr0, T s ˆ r0, 1sq for all T ą 0.

Remark 3.6. As ε Ñ 0, Jpuεptqq
˚

á J ptq given by (3.11). Particularly, in
the case pρ´ptq, ρ`ptqq P Θ we can prove that uε converges weakly-‹ to a Young

measure concentrated on tρ˘ptqu, thus Jpuεq
˚

á J “ Jpρ´q “ Jpρ`q. See Remark
4.4 at the end the the section.

Remark 3.7. Notice that the quasi-static limit in Theorem 3.5 does not depend
on the initial condition u0 for uε.

Remark 3.8. For δ ą 0, let vδ “ vδpt, xq be the classical solution of the quasi-
static problem associated to the viscous equation (2.9):

BxJpvδq “ δBxxv
δ, vδpt, 0q “ ρ´ptq, vδpt, 1q “ ρ`ptq. (3.12)

When pρ´ptq, ρ`ptqq R Θ, it is not hard to see that vδ also converges pointwisely
to the function u given by (3.8):

lim
δÑ0`

vδpt, xq “ upt, xq, @x P p0, 1q, (3.13)

and the convergence is uniform on rγ, 1 ´ γs for any γ ą 0. On the other hand,
on the critical segment pρ´ptq, ρ`ptqq P Θ, vδ is explicitly given by

vδpt, xq “
1

2
` δCpδ, tq tanh

„

Cpδ, tq

ˆ

x ´
1

2

˙

, (3.14)

where C “ Cpδ, tq is such that C tanhpC{2q “ δ´1p2ρ`ptq´1q. Then vδ converges
pointwisely to the profile with an upward shock at 1{2:

lim
δÑ0`

vδpt, xq “ ρ´ptq1r0, 1
2

qpxq ` ρ`ptq1p 1

2
,1spxq, @x P r0, 1s, (3.15)

and the convergence is uniform on any closed interval does not contain 1{2.

4. Proof of Theorem 3.5

For ε ą 0, δ ą 0, consider viscous approximation of (3.1) given by
#

εBtu
ε,δ ` BxJpuε,δq “ δBxxu

ε,δ, t ą 0, x P p0, 1q,

uε,δpt, 0q “ ρ´ptq, uε,δpt, 1q “ ρ`ptq, uε,δp0, xq “ u0,δpxq,
(4.1)

where u0,δ is the mollified initial function satisfying (2.10) and the compatible
conditions. Let uε,δ “ uε,δpt, xq be the classical smooth solution of (4.1). We first
present a priori estimate for }Bxu

ε,δ}L2.
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Proposition 4.1. For any t > 0, there is a constant C “ Ct such that

ε

ż

1

0

uε,δpt, xq2dx` δ

ż t

0

ż

1

0

`

Bxu
ε,δps, xq

˘2
dx ds 6 C. (4.2)

Proof. Denote by Gpuq a primitive of uJ 1puq “ u ´ 2u2. Multiply (4.1) by uε,δ

and integrate over p0, tq ˆ p0, 1q to obtain

ε

2

ż

1

0

uε,δpt, xq2dx´
ε

2

ż

1

0

u0,δpxq2dx`

ż t

0

“

Gpρ`psqq ´ Gpρ´psqq
‰

ds

“ δ

ż t

0

“

ρ`psqBxu
ε,δps, 1q ´ ρ´psqBxu

ε,δps, 0q
‰

ds ´ δ

ĳ

pBxu
ε,δq2dx ds.

(4.3)

In order to estimate the last line of (4.3) we test (4.1) against ψps, xq :“ ρ´psq `
xrρ`psq ´ ρ´psqs, obtaining that

ε

ż

1

0

“

ψpt, xquε,δpt, xq ´ ψp0, xqu0,δpxq
‰

dx´ ε

ĳ

uε,δBsψ dx ds

`

ż t

0

“

Jpρ`psqqρ`psq ´ Jpρ´psqqρ´psq
‰

ds ´

ĳ

Jpuε,δqBxψ dx ds

“ δ

ż t

0

“

ρ`psqBxu
ε,δps, 1q ´ ρ´psqBxu

ε,δps, 0q
‰

ds ´ δ

ĳ

Bxu
ε,δBxψ dx ds.

Then, Young inequality allows to estimate
ˇ

ˇ

ˇ

ˇ

δ

ż t

0

“

ρ`psqBxu
ε,δps, 1q ´ ρ´psqBxu

ε,δps, 0q
‰

ds

ˇ

ˇ

ˇ

ˇ

6 C `
ε

4

ż

1

0

uε,δpt, xq2dx`
δ

2

ż t

0

ż

1

0

pBxu
ε,δps, xqq2dxds,

which, inserted into (4.3) gives the conclusion. �

In the following we denote ΩT “ r0, T s ˆ r0, 1s, Ω “ R` ˆ r0, 1s. As stated in
§2, for each fixed ε ą 0,

lim
δÑ0

ĳ

ϕpt, xqF pt, x, uε,δpt, xqqdx dt “

ĳ

ϕpt, xqF pt, x, uεpt, xqqdx dt,

for all F P CpΩT ˆr0, 1sq and ϕ P L1pΩT q, where uε P L8pΩT q is the entropy solu-
tion of (3.1). Observe that uε is uniformly bounded: }uε}L8pΩT q 6 1. Therefore,
we can extract a weakly-‹ convergent subsequence:

lim
εnÑ0

ĳ

ϕpt, xqF pt, x, uεnpt, xqqdx dt “

ĳ

ϕpt, xq

ż

1

0

F pt, x, λqνt,xpdλqdx dt

where tνt,xpdλqupt,xqPΩT
is the limit Young measure.

It suffices to show that νt,x coincides with the delta measure concentrated on
upt, xq given by (3.8). To this end, given boundary entropy–entropy flux pair
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pS,Qq, define the boundary entropy production

Q˘pt, xq :“

ż

Qpλ, ρ˘ptqqνt,xpdλq, pt, xq P ΩT . (4.4)

The following proposition is the key argument.

Proposition 4.2. For any boundary entropy flux Q,

Q´pt, xq 6 0, Q`pt, xq > 0, pt, xq ´ a.s. (4.5)

Moreover, BxQ˘ 6 0 in the sense of distribution.

Proof. Recall that uε,δ is the classical solution of (4.1). For w P C1pr0, T sq and
boundary entropy–entropy flux pS,Qq,

εBtSpuε,δ, wq “ εBuSpuε,δ, wqBtu
ε,δ ` εBwSpuε,δ, wqw1

“ δB2

xSpuε,δ, wq ´ δB2

uSpuε,δ, wqpBxu
ε,δq2 ´ BxQpuε,δ, wq ` εBwSpuε,δ, wqw1.

Therefore, for ϕ P C8pΩT q such that ϕp0, xq “ ϕpT, xq “ 0,
ĳ

“

εSpuε,δ, wqBtϕ ` Qpuε,δ, wqBxϕ ` εBwSpuε,δ, wqw1ϕ
‰

dx dt

“ δ

ĳ

“

BxSpuε,δ, wqBxϕ ` B2

uSpuε,δ, wqpBxu
ε,δq2ϕ

‰

dx dt

`

ż T

0

“

Qpuε,δpt, 1q, wptqq ´ δBxSpuε,δpt, 1q, wptqq
‰

ϕpt, 1qdt

´

ż T

0

“

Qpuε,δpt, 0q, wptqq ´ δBxSpuε,δpt, 0q, wptqq
‰

ϕpt, 0qdt.

Taking w “ ρ´, since u
ε,δp¨, 0q “ ρ´ and Qpw,wq “ BuSpw,wq “ 0 for all w P R,

the last line above is 0. Hence, choosing ϕ “ ϕ` such that

ϕ`pt, 1q “ 0, ϕ`p0, xq “ 0, ϕ`pT, xq “ 0, (4.6)

we obtain for any convex boundary entropy S that
ĳ

“

εSpuε,δ, ρ´qBtϕ` ` Qpuε,δ, ρ´qBxϕ` ` εBwSpuε,δ, ρ´qρ1
´ϕ`

‰

dx dt

> δ

ĳ

BuSpuε,δ, ρ´qBxu
ε,δBxϕ`dx dt.

Let δ Ñ 0` and apply the priori estimate in Proposition 4.1,
ĳ

“

εSpuε, ρ´qBtϕ` ` Qpuε, ρ´qBxϕ` ` εBwSpuε, ρ´qρ1
´ϕ`

‰

dx dt > 0.

Eventually, let ε Ñ 0` along the convergent subsequence,
ĳ

Q´pt, xqBxϕ`pt, xqdx dt > 0. (4.7)
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Since this holds for all nonnegative, smooth test function ϕ` satisfying (4.6), we
conclude that Q´ 6 0 almost everywhere and BxQ´ 6 0 as a distribution. For

Q`, we replace pρ´, ϕ`q with pρ`, ϕ´q such that

ϕ´pt, 0q “ 0, ϕ´p0, xq “ 0, ϕ´pT, xq “ 0, (4.8)

and repeat the same argument. �

Theorem 3.5 follows directly from the following consequence.

Corollary 4.3. The followings hold for a.e. pt, xq:

(1) If ρ´ptq ă 1{2, ρ´ptq ` ρ`ptq ă 1 then νt,x “ δρ´ptq,
(2) If ρ`ptq ą 1{2, ρ´ptq ` ρ`ptq ą 1 then νt,x “ δρ`ptq,
(3) If ρ´ptq > 1{2, ρ`ptq 6 1{2 then νt,x “ δ1{2.

Proof. Consider the following boundary entropy

Spu, wq “

#

w ^ 1

2
´ u, u P r0, w ^ 1

2
q,

0, u P rw ^ 1

2
, 1s.

Note that S is not smooth, but it can be approximated by convex, smooth func-
tions easily. For instance, let s P C8pRq be such that

spuq “ ´u, @ u 6 ´1, spuq “ 0, @ u > 1, s1p0q “ 0, s2 > 0.

Then Sap¨, wq Ñ Sp¨, wq as a Ñ 0`, where

Sapu, wq :“ as
`

a´1pu ´ wq
˘

, a ą 0.

The flux corresponding to S is

Qpu, wq “

#

Jpw ^ 1

2
q ´ Jpuq, u P r0, w ^ 1

2
q,

0, u P rw ^ 1

2
, 1s.

Since Qpu, ρ´q > 0 for all u P r0, 1s and Q´ 6 0, we know that νt,x concentrates
on its zero set rρ´ptq ^ 1{2, 1s. A similar argument yields that νt,x concentrates
on r0, ρ`ptq _ 1{2s. Hence, νt,x concentrates on the interval

It “

„

ρ´ptq ^
1

2
, ρ`ptq _

1

2



.

Case 3 follows directly. In order to prove case 1 and 2, we choose

S˚pu, wq “ |u´ w|, Q˚pu, wq “ signpu´ wqpJpuq ´ Jpwqq.

In case 1, Q˚pu, ρ´ptqq > 0 on It and the only zero point is ρ´ptq. As Q´ 6 0, we
know that νpt,xq “ δρ´

. In Case 2, Q˚pu, ρ`ptqq 6 0 on It and the only zero point
is ρ`ptq, so the conclusion holds similarly. �

Remark 4.4. Concerning the case pρ´, ρ`qptq P Θ, Q˚pu, ρ˘ptqq has opposite sign
in It except two zero points ρ˘ptq, therefore νt,x concentrates on tρ´ptq, ρ`ptqu.
Suppose fpt, xq “ νt,xpρ`ptqq, then

νt,xpdλq “ r1 ´ fpt, xqsδρ´ptqpdλq ` fpt, xqδρ`ptqpdλq. (4.9)
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Observing that Jpρ`q “ Jpρ´q, so that

Jpuεpt, xqq
˚

á

ż

1

0

Jpλqνt,xpdλq “ Jpρ´ptqq “ Jpρ`ptqq, ε Ñ 0, (4.10)

as stated in Remark 3.4.
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