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to industrial applications [START_REF] Wojtara | Human-robot collaboration in precise positioning of a three-dimensional object[END_REF], surgery [START_REF] Tavakoli | A haptic interface for computer-integrated endoscopic surgery and training[END_REF], rehabilitation [START_REF] Pehlivan | Minimal assist-asneeded controller for upper limb robotic rehabilitation[END_REF] or mission critical tasks such as manipulation in hazardous environments [START_REF] Reintsema | DLR's Advanced Telerobotic Concepts and Experiments for On-Orbit Servicing[END_REF], collaboration of human and robot brings high performance solutions to complex problems (see the extensive reviews in [START_REF] Goodrich | Human-robot interaction: a survey[END_REF]- [START_REF] Losey | A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction[END_REF]). In such scenarios, the stability of the coupled system must be ensured and the controller should be sufficiently robust to the changes in both human and environment dynamics for safe operation while the dyad targets to achieve a high task performance, which typically calls for robot to be transparent to the human operator. However, the contradicting nature of robust stability and high transparency requirements creates challenges to researchers for the design of an interaction controller.

The controller design for pHRI systems must pay utmost attention on the coupled stability of the human-in-the-loop system. Coupled stability implies the safety of the human operator by guaranteeing the safe operation of the robot; therefore, it is an indispensable aspect of any pHRI application. However, due to the complexity introduced by the presence of human operator and possible contact interactions with uncertain environments, stability characteristics of pHRI systems cannot be analysed easily. For such analysis, one should consider that human dynamics display nonlinear, time and configuration dependent characteristics, and discontinuities may occur due to the loss of contact between human operator and robot. Moreover, the interaction with an environment makes this analysis even more challenging, as the impedance of the contact environment is also likely to be nonlinear and uncertain.

Linear second order mass-spring-damper models have been utilized to investigate human arm dynamics and environment, so that the well known classical control techniques can be adopted to analyse the stability of the coupled system. This commonly used simplifying assumption allows one to investigate the basic factors affecting the coupled stability. For instance, it has been reported in the literature that the stiffness components of both the human arm and the environment models are particularly important as they have a direct effect on the coupled stability of the closed-loop system [START_REF] Tsumugiwa | Stability analysis for impedance control of robot for human-robot cooperative task system[END_REF]- [START_REF] Aydin | Stable physical human-robot interaction using fractional order admittance control[END_REF]. Tsumugiwa et al. [START_REF] Tsumugiwa | Stability analysis for impedance control of robot for human-robot cooperative task system[END_REF] used root-locus method to determine the coupled stability of a control system designed for a pHRI task and showed that the environment stiffness is the most dominant factor contributing to the instability of the system. Duchaine and Gosselin [START_REF] Duchaine | Investigation of human-robot interaction stability using lyapunov theory[END_REF] estimated the human arm stiffness experimentally and utilized it in a Lyapunov stability analysis to determine the critical damping level that stabilizes the closed-loop system. This method relies on the maximum arm stiffness identified offline; hence, ignores the time-varying nature of human arm dynamics. In contrast, human arm stiffness was estimated online by Gallagher et al. [START_REF] Gallagher | Improved stability of haptic human-robot interfaces using measurement of human arm stiffness[END_REF] using EMG sensors in order to adjust the gains of an impedance controller on-the-fly based on the estimated arm stiffness to ensure stability of the coupled system. In [START_REF] Lamy | Achieving efficient and stable comanipulation through adaptation to changes in human arm impedance[END_REF], arm stiffness was estimated indirectly by measuring the grasping force applied by human. This method requires design of a gain scheduler and physical handles equipped with pressure sensors for the implementation.

In the absence of human and environment models, the coupled stability of pHRI systems can be also investigated using the frequency domain passivity framework [START_REF] Colgate | Robust control of dynamically interacting systems[END_REF]- [START_REF] Hulin | Passivity and stability boundaries for haptic systems with time delay[END_REF]. In this approach, the human operator and the environment are assumed to act as passive elements, not injecting energy to the closed-loop system, and, hence, they do not tend to destabilize the closed-loop system. If the rest of the control system is designed to be passive, then the closed-loop system is also passive, ensuring the coupled stability of the interaction. Passivity can guarantee the stability of the closed-loop system for a broad range of human/environment models; but, unfortunately, the resulting controller performs conservatively [START_REF] Colgate | Passivity of a class of sampled-data systems: Application to haptic interfaces[END_REF]- [START_REF]Stability guaranteed control: time domain passivity approach[END_REF], which leads to a less transparent system.

Hannaford and Ryu [START_REF] Hannaford | Time-domain passivity control of haptic interfaces[END_REF] proposed time-domain passivity approach to improve performance of haptic interfaces while preserving the passivity of the overall system. This approach utilizes a passivity observer (PO) to estimate the energy generated within the close-loop system and uses adaptive dissipative elements, called passivity controllers (PC), to damp out the excessive energy in the system. Utilizing time domain passivity framework helps relax the conservativeness of the frequency domain passivity framework and promises stable human-robot interactions, even in the absence of human and environment models. However, this method requires continual estimation of the exchanged energy between robot and human and/or environment through sensor measurements, which may prove challenging due to sampling, noise, and quantization. Furthermore, abrupt engagement of PC may significantly disturb the quality of interaction.

Satisfying passivity throughout the interaction ensures that robot behaviour is never active (i.e. energy is not generated), so that stability can be guaranteed. However, non-passive (i.e. active) systems are not necessarily unstable [START_REF] Buerger | Characterization and control of a screw-driven robot for neurorehabilitation[END_REF]. This is due to the fact that passivity only considers the phase bounds on the uncertainty and assumes that the magnitude of this uncertainty can be arbitrarily large. However, in practice, many systems are not exposed to such large changes or uncertainties. The conservativeness of the passivity framework can be relaxed by taking advantage of partial knowledge (e.g., magnitude, bounds) on the models of human and/or environment. For instance, even though the dynamics of human arm changes over time, human arm impedance varies in a relatively limited range [START_REF] Dolan | Dynamic and loaded impedance components in the maintenance of human arm posture[END_REF], [START_REF] Tsuji | Human hand impedance characteristics during maintained posture[END_REF]. Along these lines, Buerger and Hogan [START_REF] Buerger | Complementary stability and loop shaping for improved human-robot interaction[END_REF] proposed a complementary stability approach to design an interaction controller that can maintain robust stability for bounded ranges of human/environment impedances so that coupled stability can be ensured without the need for passivity.

Similarly, Haddadi and Hashtrudi-Zaad [START_REF] Haddadi | Bounded-impedance absolute stability of bilateral teleoperation control systems[END_REF] showed that the passivity constraints can be relaxed when the bounds of the environmental/human arm impedances are known.

Over the years, the researchers have searched for ways to relax the conservative constraints of robust stability, as conservative stability criteria adversely affect the performance in pHRI [START_REF] Lawrence | Stability and transparency in bilateral teleoperation[END_REF]. In particular, the trade-off between robust stability and transparency brings a challenge in pHRI tasks that require high transparency. This trade-off [START_REF] Hashtrudi-Zaad | Analysis of control architectures for teleoperation systems with impedance/admittance master and slave manipulators[END_REF]- [START_REF] Colonnese | M-width: stability, noise characterization, and accuracy of rendering virtual mass[END_REF], as well as the factors affecting the transparency have already been investigated in earlier studies [START_REF] Hirche | Transparency of haptic telepresence systems with constant time delay[END_REF]- [START_REF] Schauß | Parameter-space transparency analysis of teleoperation systems[END_REF]. As an indicator of the achievable transparency, the bounds of the dynamic range of achievable impedances, Z-width, was proposed by Colgate and Brown [START_REF] Colgate | Factors affecting the z-width of a haptic display[END_REF]. Methods to measure and improve the Z-width were investigated later by Weir et al. [START_REF] Weir | Measuring and increasing z-width with active electrical damping[END_REF] and Chawda et al. [START_REF] Chawda | Evaluation of velocity estimation methods based on their effect on haptic device performance[END_REF]. Yet, it is well known that attaining perfect transparency is practically infeasible [START_REF] Lawrence | Stability and transparency in bilateral teleoperation[END_REF]. Hence, while keeping stability intact, a controller allowing for a better compromise between transparency and robust stability is always desirable for pHRI studies [START_REF] Schauß | Parameter-space transparency analysis of teleoperation systems[END_REF].

Recently, we proposed fractional order admittance controller (FOAC) for pHRI and compared its performance with standard integer order admittance controller (IOAC) [START_REF] Aydin | Fractional order admittance control for physical human-robot interaction[END_REF] assuming the bounds of the combined impedance of human arm and environment are known. We provided evidence that FOAC can offer better robust stability characteristics while displaying higher transparency than IOAC [START_REF] Aydin | Fractional order admittance control for physical human-robot interaction[END_REF]. We introduced the concept of impedance matching to enable fair comparisons between FOAC and IOAC [START_REF] Aydin | Stable physical human-robot interaction using fractional order admittance control[END_REF] and by matching the impedance of FOAC to IOAC for a desired frequency value, we showed analytically that both stability robustness and transparency performance can be improved under FOAC.

Earlier studies including ours have already shown that a compromise between stability robustness and transparency is possible by manipulating the parameters of an interaction controller for pHRI [START_REF] Aydin | Stable physical human-robot interaction using fractional order admittance control[END_REF], [START_REF] Buerger | Complementary stability and loop shaping for improved human-robot interaction[END_REF], [START_REF] Aydin | Fractional order admittance control for physical human-robot interaction[END_REF]. Nevertheless, analytical methods have proven to be prohibitive for the design of an optimal interaction controller for pHRI mainly due to the difficulty in formulating the trade-off between stability robustness and transparency. On the other hand, computational approaches have been quite promising [START_REF] Buerger | Complementary stability and loop shaping for improved human-robot interaction[END_REF], [START_REF] Labrecque | Performance optimization of a multidof bilateral robot force amplification using complementary stability[END_REF]. Indeed, our approach in this paper relies on this reasoning and proposes a controller design framework based on computational techniques, which enables the designer to adjust the above tradeoff effectively.

A. Contributions

In this study, we propose a computational multi-criteria optimization approach to design LTI interaction controllers (admittance and impedance controllers) for pHRI tasks. To our knowledge, no such general multi-criteria optimization framework has been proposed to simultaneously optimize an interaction controller for a robust and transparent design. Since the dynamics of interactions between human, robot, and the environment are highly complex, it is prohibitive to develop an analytical framework for the same purpose, therefore a computational approach is followed in this study. Most of the earlier computational studies for optimizing the humanrobot interaction have focused on the joint manipulation trajectory [START_REF] Norouzzadeh | Towards safe physical human-robot interaction: an online optimal control scheme[END_REF], [START_REF] Losey | Trajectory deformations from physical human-robot interaction[END_REF], task performance [START_REF] Passenberg | Towards real-time haptic assistance adaptation optimizing task performance and human effort[END_REF]- [START_REF] Hulin | A practically linear relation between time delay and the optimal settling time of a haptic device[END_REF], collaborative task planning and scheduling [START_REF] Gombolay | Computational design of mixed-initiative human-robot teaming that considers human factors: situational awareness, workload, and workflow preferences[END_REF], [START_REF] Pearce | Optimizing makespan and ergonomics in integrating collaborative robots into manufacturing processes[END_REF], but not the trade-off between robust stability and transparency.

In the literature, Buerger and Hogan [START_REF] Buerger | Complementary stability and loop shaping for improved human-robot interaction[END_REF], and Labrecque and Gosselin [START_REF] Labrecque | Performance optimization of a multidof bilateral robot force amplification using complementary stability[END_REF] have sequentially optimized an admittance controller for stability and maximum performance. In their approach, the multi-objective optimization problem is formulated as consecutive single objective optimization problems. The drawback of such approach is that the preferences between objectives, and the order with which the single objective optimization problems are solved, are assigned a priori before having a complete knowledge on the trade-offs involved in the optimization problem. Thus, solutions obtained by such sequential approaches are in general sub-optimal.

In this study, we propose a Pareto optimization approach which uses the concept of dominance to reach non-dominated, that is truly optimal, set of solutions. Pareto optimization methods allow the designer to make an informed decision by studying all possible optimal solutions that form the Pareto front. Once the trade-off among objectives is carefully analyzed for the interaction controller using the Pareto approach, an optimal set of controller parameters can be selected. Furthermore, Pareto optimization enables a fair comparison among different controller structures, as the comparison can be made based on their best possible performance. We demonstrate such a comparison as a case study in this paper by comparing FOAC and IOAC.

The rest of this article is organized as follows: Section II introduces our computational interaction controller design approach. Section III presents the running examples for which the interaction control architectures, and transparency and stability robustness metrics are introduced. Pareto optimization is presented in Section II-C. Human subject experiments conducted to assess the transparency under optimal FOAC and IOAC are reported in Section IV. Discussions and conclusions are provided in Section V.

II. COMPUTATIONAL MULTI-CRITERIA DESIGN OPTIMIZATION APPROACH

A. Designing Controllers for Multiple Objectives

Stability robustness and transparency performance analyses of interaction controllers are challenging, as the standard tools used for servo control cannot be applied to controller design because, as noted by Buerger and Hogan [START_REF] Buerger | Complementary stability and loop shaping for improved human-robot interaction[END_REF], (i) the closed-loop stability and performance cannot be predicted and characterized using the open-loop transfer function alone, and (ii) the controller parameters do not directly affect the stability and performance of the coupled system. Consequently, there exists no straightforward way to investigate the stability and performance of such systems analytically, while computational approaches have been shown to provide promising results [START_REF] Hulin | Passivity and stability boundaries for haptic systems with time delay[END_REF], [START_REF] Buerger | Complementary stability and loop shaping for improved human-robot interaction[END_REF], [START_REF] Labrecque | Variable admittance for phri: from intuitive unilateral interaction to optimal bilateral force amplification[END_REF].

Buerger and Hogan [START_REF] Buerger | Complementary stability and loop shaping for improved human-robot interaction[END_REF] used a computational loop shaping approach where they treated stability and performance separately and optimized an interaction controller for maximum performance while satisfying a stability constraint. In their approach, the stability of the closed-loop system is evaluated in the controller parameter space, which corresponds to all possible combinations of controller parameters that are studied. Then, a set of controller parameters that yields to the maximum performance among the stable set is selected.

In this paper, we propose to use the Pareto methods for multi-criteria optimization of interaction controllers. For a general multi-criteria optimization problem, all non-dominated set of solutions constitute the Pareto front, which is a curve, surface, or hypersurface for the cases of two, three, or more objectives, respectively [START_REF] Papalambros | Principles of Optimal Design: Modeling and Computation[END_REF], [START_REF] Marler | The weighted sum method for multiobjective optimization: new insights[END_REF]. All optimization criteria are handled simultaneously to compute the Pareto front, and the decision making is carried out after having a thorough knowledge of the trade-offs involved in the optimization. Hence, Pareto methods provide a deeper insight to the optimization problem, and the designer can make an informed decision by studying the set of solutions captured on the Pareto front which are truly optimal, unlike sub-optimal solutions provided by scalarization-based methods [START_REF] Unal | A multi-criteria design optimization framework for haptic interfaces[END_REF]. In this study, we utilize the weighted sum approach with weight scanning [START_REF] Marler | The weighted sum method for multiobjective optimization: new insights[END_REF] to obtain the Pareto front as this approach is easier to implement.

B. Objectives of the Multi-criteria Optimization

Depending on the task, the performance of a pHRI application can be assessed using various criteria. In this study, we focus on the two fundamental ones which have an inherent trade-off: stability robustness and transparency.

The first objective function is the stability robustness of the closed-loop system. The stability is an integral part of robotic applications, especially in the human-robot interaction domain, where it implies inherent safety for the human operator. Moreover, for pHRI applications, the designer has to guarantee a degree of robustness in the stability of the closed-loop system, since the elements of the closed-loop transfer function, e.g. human and environment models, are subject to change during the task execution. Under these circumstances, a controller which can provide closed-loop stability over a wide range of parameter variation is desirable.

The second objective is the transparency of the pHRI application. The impedance that a human feels during interactions with an environment has critical importance in pHRI tasks. For instance, in a robotic assisted surgery, the control architecture for the interaction should ensure that the impedance of the soft tissue is reflected to the surgeon so that she/he can have a realistic understanding of the operation, which is not shadowed by the robot's dynamics. Alternatively, in a different task, human may wish to move the robot in free space, where she/he does not desire to feel any dynamics due to the robot.

C. Multi-criteria Optimization

Assuming an LTI model of the robot is available and an LTI controller to regulate the interaction between the robot and the human is selected, the following steps are proposed to optimize the controller parameters for a robust and transparent design.

1) A range of values is chosen and discretized for each parameter of the interaction controller. All possible sets of controller parameters are obtained by taking all possible combinations of each controller parameter in the selected range. 2) A metric for transparency is defined and transparency is evaluated for each set of controller parameters obtained in step 1. 3) A metric for stability robustness is defined and robustness is evaluated for each set of controller parameters obtained in step 1. 4) Using a Pareto technique, the Pareto front is constructed by considering the transparency and robustness objectives for all sets of controller parameters. The proposed Pareto optimization approach opens door to rewarding results. The first benefit of the proposed approach is the design of an optimal interaction controller. The second benefit is that it enables fair comparison of interaction controllers having different types, structures, and parameters of different physical interpretations. Such a comparison is possible since the Pareto front for each controller provides all the best performing controller parameters for all possible trade-offs.

D. Design Selection

The result of the proposed approach is the Pareto front, which represents all optimal solutions for the given design problem and these solutions reflect different preferences between the selected metrics. Once the Pareto front is obtained, one can further study the solutions for all trade-offs and an informed decision can be made to finalize the controller design by selecting an optimal solution from the Pareto set.

The next section presents a case study which follows the design approach introduced in this section. In particular, for stability robustness and transparency, a family of admittance controllers are studied and optimal parameter values are selected from the Pareto front for each controller. Later in the paper, the performance of the pHRI system is evaluated experimentally under each optimal controller.

III. CASE STUDY: INTERACTION CONTROLLER DESIGN FOR A PHRI APPLICATION A. The pHRI Tasks

Three different pHRI scenarios are considered to demonstrate the proposed computational optimization framework in designing an interaction controller. S1 Only the human and robot physically interact. Ideally, human operator desires not to feel the robot dynamics while moving the robot in free space. S2 The human operator continuously interacts with a nominal environment using the robot. Note that the dynamics of the environment does not change during the execution of the pHRI task (in other words, an LTI model for the environment is assumed). S3 The human operator interacts with an environment using the robot, while the dynamics of the environment changes.

B. The Closed-Loop System

Figure 1 shows the admittance control architecture used in our pHRI studies [START_REF] Aydin | Stable physical human-robot interaction using fractional order admittance control[END_REF], [START_REF] Aydin | Fractional order admittance control for physical human-robot interaction[END_REF], where the human, robot, and environment are physically interacting with each other. The transfer function of the closed loop system is given by

T (s) = V (s) F int (s) = G(s)Y (s) 1 + G(s)Y (s)H(s)Z eq (s) (1) 
where G(s) is the LTI model of robot, V (s) is its measured (actual) end-effector velocity, Y (s) is the admittance controller and H(s) is a filter to eliminate the noise in force measurements. Human and environment are assumed to be coupled, and the equivalent impedance is represented as

Z eq = Z h + Z e ,
where Z h and Z e represent linearized human and environment impedances, respectively. The equivalent impedance used in our study is Z eq (s) = m eq s 2 +b eq s+k eq s

, where equivalent stiffness, damping, and mass are read as k eq = k h + k e , b eq = b h + b e , and m eq = m h + m e , respectively.

FOAC used in this study has the following form,

Y (s) = 1 Z FOAC = 1 m F s α + b F (2)
where α corresponds to the fractional order of the integrator, i.e. integration order, while m F and b F are the admittance controller parameters. In this study, the integration order is kept in the range of 0 < α ≤ 1. In the limit case when α = 1, the FOAC is equivalent to IOAC; therefore, the admittance controller becomes

Y (s) = 1/Z IOAC = 1/(m F s + b F ).
As the unit of m F is kg s α-1 , the physical interpretation of it changes depending on the integration order α, whereas the unit of b F is always Ns/m. The effective mass and damping provided by FOAC are m F ω α-1 sin( απ 2 ) kg and b F + m F ω α cos( απ 2 ) Ns/m, respectively, where ω is the frequency. A thorough analysis of the effective impedance of the fractional order interaction controllers can be found in [START_REF] Aydin | Stable physical human-robot interaction using fractional order admittance control[END_REF], [START_REF] Aydin | Fractional order admittance control for physical human-robot interaction[END_REF], [START_REF] Tokatli | Stability of haptic systems with fractional order controllers[END_REF], [START_REF]Using Fractional Order Elements for Haptic Rendering[END_REF].

Knowing that the structure of an admittance controller is different for each integration order α, a fair comparison is challenging, as each controller parameter has a different physical interpretation. Therefore, to investigate the trade-off between stability robustness and transparency under various integration orders thoroughly by using the optimization framework proposed in this study is a rewarding practice. 
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C. Bounds of Equivalent Impedance (Z eq ) for each pHRI Scenario

For the first scenario (S1), only the bounds of the human arm impedance is considered since Z e (s) = 0 for this scenario. Lower and upper bounds for the human arm stiffness are taken as k h = 0 when human is not in contact with the endeffector of the robot and k h = 600 N/m in light of [START_REF] Dolan | Dynamic and loaded impedance components in the maintenance of human arm posture[END_REF], [START_REF] Tsuji | Human hand impedance characteristics during maintained posture[END_REF], respectively. Moreover, the lower and upper bounds for the mass parameter are m h = 0, which happens when human releases her/his contact, and m h = 5 kg, respectively, whereas the range of damping for the human arm b h is taken as 0 to 41 Ns/m [START_REF] Dolan | Dynamic and loaded impedance components in the maintenance of human arm posture[END_REF], [START_REF] Tsuji | Human hand impedance characteristics during maintained posture[END_REF].

For the second scenario (S2), the contact interaction with a spring-like environment having a stiffness of k e is considered. Therefore, the damping, and the mass of the equivalent impedance are the same as damping and mass of human arm as in S1: b eq = b h and m eq = m h . The environment is assumed to have a nominal stiffness of k e = 610 N/m, thus the range for the equivalent stiffness is 610 N/m ≤ k eq ≤ 1210 N/m.

For the third scenario (S3), the environment stiffness is assumed to vary between 610 N/m ≤ k e ≤ 1010 N/m, thus, the range for the equivalent stiffness is 610 N/m ≤ k eq ≤ 1610 N/m.

D. Objective Functions 1) Transparency:

The closed-loop impedance displayed to the human operator Z disp (s), which is also depicted in Figure 1, can be written as:

Z disp (s) = F h (s) V (s) = 1 + G(s)Y (s)H(s)Z e (s) G(s)Y (s)H(s) (3) 
The parasitic impedance ΔZ(s) is defined as the difference between the desired impedance Z des (s) and the impedance reflected to human Z disp (s);

ΔZ(s) Z des (s) -Z disp (s) (4) 
As long as the parasitic impedance ΔZ(s) is small (large), then the transparency of the coupled system is high (low). In most pHRI applications, the desired impedance equals to the environment impedance, Z des (s) = Z e (s). Using this information, together with (3) and ( 4), the magnitude of parasitic impedance in frequency domain is given as

|ΔZ( jω)| = 1/|G( jω)Y ( jω)H( jω)| (5)
Clearly 

|Z FOAC | 2 = m 2 F ω 2α + b 2 F + 2m F b F cos πα 2 ω α ( 6 
)
|Z IOAC | 2 = m 2 F ω 2 + b 2 F ( 7 
)
As expected, lower values of m F and b F result in higher transparency. Especially at lower frequencies, the effect of b F is more dominant on the parasitic impedance. Therefore, lower values of b F are more desirable for higher transparency at low frequencies. Moreover, effects of α and m F become more dominant at higher frequencies, and lower values of m F are also more desirable for higher transparency at high frequencies.

Inspecting the magnitude of Y ( jω) alone gives information about how controller parameters affect the transparency. However, for more conclusive results, the parasitic impedance function should be inspected since the robot itself contributes to the parasitic impedance as well, as seen in ( 5). The fact that the contributions of controller and robot on parasitic impedance change as functions of frequency calls for a quantitative metric for parasitic impedance. Such a metric was defined by Buerger and Hogan [START_REF] Buerger | Complementary stability and loop shaping for improved human-robot interaction[END_REF] and computed over a discrete range of frequencies. Adopting that cost function, the following measure for parasitic impedance cost is defined

C = ω U ∑ ω L W (ω) log |ΔZ( jω)| ( 8 
)
where W (ω) is a weight function which can be used to adjust the contribution of each frequency. In addition, ω L and ω U are the lower and upper boundaries of the frequency range, respectively.

In this study, a logarithmically spaced frequency ranging from 0.01 Hz to 30 Hz is chosen for the discretization of the parasitic impedance function. Since the frequency range of human voluntary movements is around 2 Hz [START_REF] Dimeas | Online stability in human-robot cooperation with admittance control[END_REF], [START_REF] Brooks | Telerobotic response requirements[END_REF], the magnitude of a fifth order Butterworth filter having a cut-off frequency of 5 Hz is used as a weight function to boost the effect of low frequency content on the parasitic impedance cost and reduce the contribution of higher frequencies. Thus, achieving lower parasitic impedance for higher transparency is more desirable at lower frequencies. Using [START_REF] Santis | An atlas of physical human-robot interaction[END_REF], parasitic impedance cost for each set of controller parameters is evaluated, and the resulting parasitic impedance cost maps are constructed in Figure 2. As expected, lowering m F , and b F reduce the parasitic impedance cost, leading to higher transparency.

2) Robust Stability: In our earlier study [START_REF] Aydin | Stable physical human-robot interaction using fractional order admittance control[END_REF], we utilized the vector margin, which is the inverse of the maximum magnitude of loop sensitivity function S(s) [START_REF] Åström | Feedback Systems: An Introduction for Scientists and Engineers[END_REF], as an indicator of the stability robustness for LTI systems. The sensitivity transfer function can be defined as S( jω) = 1/(1 + L( jω)) for our system, where L( jω) = G( jω)Y ( jω)H( jω)Z eq ( jω) denotes the loop transfer function. From this equation, one can note that the larger the loop gain, the more robust the system is. Then, the vector margin, which is considered as the robustness margin, can be defined as

ρ = 1 max (|S( jω)|) (9) 
where max(|S( jω)|) represents the maximum magnitude of the loop sensitivity function, S( jω).

In this paper, three sets of robustness maps for α ∈ {1, 0.7, 0.4} are generated (Figure 3). Note that the robustness maps are only constructed for the stable sets of controller parameters for the first pHRI scenario (S1). This case is treated as a baseline for other scenarios (S2 and S3), which involve interaction with an environment.

For each integration order α, four different robustness margins are calculated for each stable parameter set: one for each combination of extreme values of equivalent mass m eq and damping b eq . For a controller parameter set, the minimum of the robustness margins calculated for the four combinations of extreme values of m eq and b eq is taken as the conservative robustness margin, so that the worst cases for uncertainties in m eq and b eq are accounted for in the refined robustness maps.

In Figure 4, refined robustness maps under each integration order of interest are illustrated. By inspecting Figure 4, the relation between the robustness margin and how much increase in equivalent stiffness can be tolerated in S2 and S3 is deduced: we have a maximum increase of 610 N/m, and 1010 N/m in the equivalent stiffness for S2, and S3, respectively; therefore, the maximum expected equivalent stiffness value is k eq = 1210 N/m, and k eq = 1610 N/m, respectively.

Employing the principles introduced in [START_REF] Aydin | Stable physical human-robot interaction using fractional order admittance control[END_REF] for constructing the stability maps, stability boundaries for k eq = 1210 N/m and k eq = 1610 N/m are computed and superimposed on top of the robustness maps given in Figure 4. Using Figure 4a, we observe that, among the controller parameter sets laying on the stability boundary for k eq = 1210 N/m (k eq = 1610 N/m) under IOAC, the most robust set is the one having the robustness margin value of ρ = 0.42 (ρ = 0.55). In other words, any controller parameter set of IOAC having ρ = 0.42 (ρ = 0.55) ensures the robust stability for the bounds defined by environment and human arm impedances in S2 (S3). Any controller parameter set of FOAC (α =0.7 and 0.4) having the same robustness margin ρ = 0.42 (ρ = 0.55) also maintains the stability up to k eq = 1210 N/m (k eq = 1610 N/m) (Figures 4b and4c). Note that the sets of controller parameters for FOAC having the robustness margin of ρ = 0.42 (ρ = 0.55) can tolerate equivalent stiffness values larger than k eq = 1210 N/m (k eq = 1610 N/m) as all of these sets lay slightly further away from the stability boundary.

E. Pareto Optimization

We minimize the parasitic impedance cost C while maximizing the value of the robustness margin ρ. To eliminate the scale difference between the two metrics, we normalize each one with its maximum value attained. We then use their convex combination in the final objective function. The maximum values are acquired from the parasitic impedance cost maps (Figure 2), and robustness maps (Figure 4). Hence, the convex combination of normalized objectives for our multi-criteria optimization is

J = w C n + (1 -w)(-ρ n ) (10) 
where C n and ρ n are the normalized values of parasitic impedance cost and robustness margin, respectively, and w ∈ [0, 1] represents the weighting. Each value of the weighting parameter w gives a different problem realization for the multicriteria optimization, and the resulting set of optimal solutions for all realizations yield the Pareto front. Weighting parameter w is equally spaced by 0.001 increments to construct the Pareto front curve. Figure 5 shows the optimal controller design solution for the integration order α = 1. A close inspection of Figure 5 shows the trade-off between the selected metrics. The maximum robustness margin is achieved when the parasitic impedance cost is at its maximum value, resulting in a poor transparency performance. On the contrary, the parasitic impedance cost function attains its minimum, yielding to the highest transparency, when the robustness margin is at its minimum, leading to the worst stability robustness.

F. Design Selection

An optimal solution is selected from the Pareto front curve in three steps. Using the pHRI scenarios given in Section III-A, we explain and illustrate by examples how to i) consider possible constraints on the optimization objectives, ii) impose secondary design criteria, and iii) complete the design selection by choosing an optimal solution on the Pareto front curve.

1) Constraints on the Optimization Objectives: A particular pHRI task may require specific constraints on the optimization objectives. We will focus on the pHRI scenarios given in Section III-A in order to provide an in-depth understanding of applying additional constraints onto the Pareto set.

Let us assume that there is an upper bound on the parasitic impedance cost for a specific pHRI task (see the horizontal dashed-line in Figure 5 for C = 11). Inspecting this line and Pareto front curve suggests that a robustness margin of ρ = 0.35 can be achieved under the given constraint on the parasitic impedance cost. On the other hand, for another pHRI task, robustness margin could be more critical than parasitic impedance if the environment and/or human arm impedance is prone to significant change. For example, inspecting Figure 4 reveals that any controller parameter set having robustness margin of ρ = 0.55 maintains the robust stability up to k eq = 1610 N/m, which is also the highest stiffness allowable in scenario S3 (see the vertical dashed-line in Figure 5 for ρ = 0.55). Therefore, all the optimal solutions leading to ρ < 0.55 is eliminated from any further consideration. Same procedure is also applied to the optimal solutions on Pareto front curves of other integration orders presented in Figure 6. Note that, when both criteria are considered (C ≤ 11, ρ ≥ 0.55), there is no optimal solution for IOAC while there are optimal solutions for FOAC (α = 0.4, α = 0.7).

2) Imposing Other Design Criteria: For the case study given in this paper, it is assumed that the stability robustness and the transparency are the optimization objectives. However, once a good understanding of the trade-off between the optimization objectives is achieved, the designer is free to introduce a new criterion to narrow down the set of optimal solutions further. For the pHRI task used in this paper, we, for example, introduce an additional criterion, requiring the cut-off frequency of the closed-loop system to be larger than the bandwidth of the human arm's intended movements. It is well known that intended movements of human arm is band-limited [START_REF] Brooks | Telerobotic response requirements[END_REF]. When human physically interacts with a system, it is desired that the cut-off frequency of the system should be larger than that bandwidth. During the execution of a pHRI task, human physically interacts with a robot and environment whose reflected impedance is characterized by Z disp (s) = F h (s)/V (s), as described in Equation ( 3) for our system. To study the cut-off frequency of this closed-loop system, the transfer function T disp (s) = X(s)/F h (s) is calculated using the reflected impedance. The cut-off frequency, ω c , of the closed-loop system is investigated for the remaining solutions on the Pareto front.

3) Deciding on an Optimal Controller: Figure 7 shows the cut-off frequencies, ω c , of the remaining optimal solutions on the Pareto front for our pHRI system. As k e = 610 N/m is the lower bound of the environment stiffness for scenario S3, the cut-off frequencies ω c under this stiffness value were considered for the design, noting that, increase in the stiffness, k e , increases ω c (Figure 7). Since the bandwidth of the intended movements of human arm is around 2 Hz [START_REF] Dimeas | Online stability in human-robot cooperation with admittance control[END_REF], [START_REF] Brooks | Telerobotic response requirements[END_REF], the solutions leading to ω c < 2.3 Hz (a tolerance of 15% was considered on ω c ) were also eliminated from any further consideration. Thus, an optimal solution that satisfies ω c ≥ 2.3 was selected as the final design for each integration order (see Table I). We observe that FOAC (α = 0.4, α = 0.7) is a better choice than IOAC (α = 1) since FOAC results in higher ρ and lower C, leading to more robust and transparent design as seen in Table I.

G. Comparison of Interaction Controllers

Using Pareto optimization approach not only allows the designer to make an informed decision by studying the tradeoff between the objectives, but also enables fair comparisons among various interaction controllers having different structures and/or physical interpretations.

A close inspection of the Pareto front reveals a significant result: The Pareto front curve for the IOAC is completely dominated by those of the FOACs (see Figure 6). In other words, parasitic impedance cost under IOAC is always larger than those of FOACs for the same robustness margin, therefore, FOAC allows a better compromise between the stability robustness and transparency. Furthermore, it can be easily observed that the Pareto front curve for integration order α = 0.4 is superior to the others. Hence, the best compromise between stability robustness and transparency is obtained under α = 0.4 among the controllers considered in this study.

IV. A CONTROLLED PHRI EXPERIMENT: CONTINUOUS CONTACT WITH ENVIRONMENT

We designed FOAC of different integration orders (α = 0.4 and α = 0.7) to result in the same robustness margin as IOAC (see Table II for the optimal control parameters for ρ = 0.553) to compare their transparency experimentally. The controllers tabulated in Table II were implemented for a pHRI experiment conducted with 10 human subjects, and a thorough comparison is reported in this section. The task involved contact interactions with a nonlinear environment formed by two linear springs.

A. Experimental Procedure

In our experimental setup, human operator manipulates the robot to interact with an environment where its stiffness is varied based on the depth of compression (see Figure 8). This is achieved using two different springs (spring 1 and spring 2 in Figure 8a). Spring 1 (k 1 = 610 N/m) is connected between a fixed support and the end-effector of UR5 robot, as shown in Figure 8a. Spring 2 (k 2 = 400 N/m) becomes active when the depth of compression is more than 45 mm. Hence, the environment stiffness (k e ) may change abruptly from 610 N/m to 1010 N/m during the interaction.

The subject grasps the handle to guide the end-effector and compresses the springs. The springs simply represent a layered environment in which the robot guided by a human operator is in continuous contact, as in drilling a wall or inserting a needle into soft tissue. In the experiments, the subjects are asked to compress the springs up to a depth of 55 mm, (called as ramp phase, Figure 8b), and then, hold it at that position for 5 seconds (called as hold phase, Figure 8c). In order to make the compression rate equal for each subject, a visual cursor (i.e. the dark blue rectangle, labelled as "C" in Figure 8b) moving with a constant speed (v c = 2 cm/s) is displayed on the computer screen. The other details of the experimental procedure is the same as the one reported in [START_REF] Aydin | Fractional order admittance control for physical human-robot interaction[END_REF].

We compared subjects' performance for the controllers tabulated in Table II. Hence, three different controllers, IOAC (α = 1), FOAC (α = 0.7), and FOAC (α = 0.4) were tested in this experiment. The task was repeated 10 times for each controller. Thus, there were 30 (3×10) trials in the experiment, which were displayed to the subjects in random order, while the order was same for each subject. Prior to the actual experiment, each subject was given a training session of 15 (3 × 5) trials to get her/him familiar with the setup. 10 subjects (5 males and 5 females, average age = 29±6) participated in this experiment. The subjects gave informed consent about their participation in the experiment. The experimental study was approved by the Ethical Committee for Human Participants of Koc University.

B. Data Collection and Performance Metrics

During the experiment, the robot constrains the motion of the subjects along a horizontal line while they compress II.

the springs. The force F h applied by subject is the sum of the forces required for compressing the springs (F e ) and generating the motion trajectory of the robot (i.e. interaction force F int ); F h = F e + F int , where F e = k e Δx (Δx is the amount of compression) is not influenced by the controller. F int is the interaction force measured by a force sensor (Mini40, ATI Inc.), filtered, and fed back to the admittance controller. The force applied by subject F h (measured by a second sensor, Mini40, ATI Inc.) and the interaction force F int are linearly dependent on each other since F e depends on the amount of compression only, and is independent of viscous and inertial effects coming from the controller and the robot. As the portion of force applied by subject to overcome the parasitic impedance of the robot is the interaction force, by inspecting this force alone, we can compare the transparency performance of the admittance controller for α = 1, α = 0.7, and α = 0.4. We use average interaction force (F ave int = 1/(t et b ) t e t b |F int (t)| dt) to quantify the interaction performance un- 

= 1/(t e -t b ) t e t b |F h (t)| dt)
to investigate the human effort, where, t b and t e are the beginning and ending times of a phase (ramp or hold), respectively. We also inspect the energy consumed to overcome the parasitic impedance of the robot (E int (t) = t t i F int (t)v(t)dt) as a function of time t, and then use it for estimating the total energy consumption (E tot int = E int (t f )), where t i and t f are the beginning and ending times of a trial. Moreover, the total work done by the human (W h = t f t i F h (t)v(t)dt) is also investigated. In addition, peak amplitude of oscillations in interaction force A F int , force applied by human A F h , and end-effector position A P are computed using FFT analysis as measures to compare the robustness under each controller.

C. Data Analysis

For each subject, the performance metrics E tot int and W h were calculated for the entire duration, F ave int and F ave h were computed for the ramp phase, A F int , A F h , and A P were evaluated for the hold phase of all trials and then the mean values were normalized for the analysis (Figures 9, 10, and 11). We performed one-way ANOVA to investigate the statistical significance of these results. In all statistical analyses, a significance level of p = 0.005 was used to test the null hypothesis.

D. Results

Figures 9a, 9b, and 9c show average peak amplitude of oscillations in force applied by the subjects A F h , interaction force A F int , and end-effector position A P during the hold phase, respectively. Although these values were slightly lower under FOAC, the differences were not significant.

Figures 10a and10b illustrate the average energy consumed to overcome the parasitic impedance of the robot E tot int , and the work done by the subjects W h , respectively. We observed a statistically significant effect of controller on E tot int . Specifically, it was significantly lower under FOAC than that of IOAC. Moreover, it was the lowest under FOAC (α = 0.4). In addition, FOAC also reduced the work done by the subjects slightly.

Average interaction force F ave int , and force applied by the subjects F ave h during the ramp phase were depicted in Figures 11a and11b, respectively. We observed a statistically significant effect of controller on F ave int . Specifically, F ave int was significantly lower under FOAC than that of IOAC. Moreover, F ave int was the lowest under FOAC (α = 0.4). 

E. Discussion of the Experimental Results

We compared the performance of FOAC with that of IOAC for a pHRI task involving contact interactions with an environment whose stiffness changes as a function of compression depth to imitate the behaviour of a nonlinear and layered structure. A set of optimal admittance controllers at the same level of stability robustness were tested in our experiment, and their transparency performances were compared.

None of the subjects experienced any instability while interacting with the robot during the experiments. Note that robust stability was especially needed during the hold phase as the highest equivalent stiffness was expected during this phase.

In order to compare the energy dissipation characteristics of these controllers, the amplitude of oscillations in force applied by the subjects, A F h , interaction force A F int , and endeffector position of the robot, A P , were used. We did not expect a significant difference between these values during the hold phase (Figure 9), where the equivalent stiffness is the highest. Since each controller was designed to maintain the robust stability up to k eq = 1610 N/m, their energy dissipation capacities should be similar.

We expected that the energy consumed to overcome the parasitic impedance of the robotic system during the ramp phase would be significantly lower under FOAC for α = 0.4 as it was found to yield the lowest parasitic impedance cost in our computational analysis (Table II). Indeed, it was lower under FOAC in our experimental study (Figures 10a and12). Furthermore, average interaction force during the ramp phase was reduced as the integration order was lowered (Figure 11a). The fact that both the energy consumption and the force to overcome the parasitic impedance were lower under FOAC revealed that higher transparency was achieved. On the other hand, the difference between IOAC and FOAC in terms of the average force applied (Figure 11b) and the work done by the subjects (Figure 10b) was not significant during the ramp phase since compressing the springs required a significant portion of the total energy consumed by the subjects during the task.

V. DISCUSSION AND CONCLUSION

In this study, we presented a computational multi-criteria optimization framework for synthesizing an interaction controller. In particular, we investigated the trade-off between transparency and stability robustness in a pHRI system. Given the fact that an interaction controller affects the coupled system dynamics in a non-trivial manner, developing analytical design methods is infeasible. As a remedy to this problem, we proposed a computational approach for optimal design of interaction controller.

Our computational approach resembles to the complementary stability analysis suggested by Buerger and Hogan [START_REF] Buerger | Complementary stability and loop shaping for improved human-robot interaction[END_REF]. Their method relies on prioritization of one objective over another, leading to sub-optimal solutions (see Figure 5), while our approach is based on Pareto optimization that allows the designer to make an informed decision by studying all possible sets of optimal solutions on the Pareto front.

Furthermore, when the coupled system is destabilized due to an unforeseen change in the environment and/or human arm dynamics, selecting a new design on the Pareto front curve allows alternative optimal controllers, and informs the designer about their degree of stability (i.e. robustness) without a need for re-run of any analysis.

The proposed design framework not only enables to optimize the controller parameters for the best trade-off performance, but also allows for interaction controllers with different structures to be compared. Note that for interaction controllers having different forms or types than the ones considered in this study, Pareto front curves do not necessarily dominate each other, that is, some could be superior to others for a specific range of robustness margin objective while inferior to the others for another range. In general, Pareto methods do not suggest that one structure is always superior to other, but show which structure is better for which range of objectives. Consequently, it can be stressed out that the Pareto front approach provides an objective comparison tool for interaction controllers of different forms and types since they allow the designer to study, inspect, and compare all optimal controllers and trade-offs simultaneously.

We demonstrated the practical implementation of our approach for the design of integer and fractional order admittance controllers. A fair comparison between FOAC and IOAC is presented, thanks to Pareto front curves. Analyzing the Pareto front curves suggested that the curve for IOAC is inferior to that of FOAC. Hence, FOAC allowed a better compromise between stability robustness and transparency. Moreover, the results of our computational analysis showed that, for the same robustness margin, α = 0.4 results in the lowest parasitic impedance allowing the highest transparency among the integration orders considered in this study. We also verified the computational design by experimental evidence coming from a pHRI study that involves contact interactions with a nonlinear environment.

In our current study, adaptive controllers were not considered in order to use powerful analysis tools of LTI systems. In the future, we plan to investigate adaptive interaction controllers, as suggested in [START_REF] Ficuciello | Variable impedance control of redundant manipulators for intuitive human-robot physical interaction[END_REF], [START_REF] Ferraguti | A variable admittance control strategy for stable physical human-robot interaction[END_REF].
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 1 Fig. 1. Control architecture of the pHRI system
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 42 Fig. 2. Parasitic impedance cost maps of our pHRI system under (a) IOAC α = 1, (b) FOAC α = 0.7, and (c) FOAC α = 0.4.
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 3 Fig. 3. Robustness maps of our pHRI system for k eq = 600 N/m under IOAC α = 1, FOAC α = 0.7, and FOAC α = 0.4.
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 44 Fig. 4. Refined robustness maps of our pHRI system for k eq = 600 N/m under (a) IOAC α = 1, (b) FOAC α = 0.7, and (c) FOAC α = 0.4. Solid and dashed, thickened black curves show the stability boundaries for k eq = 1210 N/m and k eq = 1610 N/m, respectively.
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 567 Fig.5. Pareto front curve (consisting of non-dominated, i.e. truly optimal, solutions denoted by empty squares) for IOAC (α =1) obtained by multicriteria optimization, and an exemplary dominated (i.e. sub-optimal) solution (denoted by filled square) obtained by sequential optimization (where ρ = 0.55 is used as a constraint prior to optimization). The horizontal dashed-line denotes an exemplary upper bound for parasitic impedance cost of C = 11. The vertical dashed-line represents the robustness margin of ρ = 0.55. dominated (i.e. sub-optimal) solutions obtained by sequential optimization are demoted by filled squares where ρ ≥ 0.55 is used as a constraint prior to optimization.
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 8 Fig. 8. The experimental setup (a), and visual feedback (b,c) displayed to the subjects during the experiments.
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 910 Fig.9. The means and the standard errors of means of normalized performance metrics; peak amplitude of oscillations in (a) force applied by the subjects, A F h , (b) interaction force, A F int , and (c) end-effector position, A P , during the hold phase.
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 11 Fig. 11. The means and the standard errors of means of normalized performance metrics; (a) average interaction force, F ave int , and (b) force applied by the subjects, F ave h , during the ramp phase (Horizontal bars with * on top indicate statistical significance between the results of the two corresponding controllers).
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 12 Fig.[START_REF] Dimeas | Online stability in human-robot cooperation with admittance control[END_REF]. Energy consumed to overcome the parasitic impedance of the robot as a function of time, E int (t).

TABLE I THE

 I CONTROLLER PARAMETER AND COST FUNCTION VALUES, AND OPTIMIZATION WEIGHTS FOR ω c ≥ 2.3 HZ AND ρ ≥ 0.55.

	α	m F [kgs α-1 ] b F [Ns/m]	ρ	C	w
	1	3.2		90	0.553 16.9 0.796
	0.7	6.0		74	0.568 14.5 0.755
	0.4	16.7	56	0.594 13.0 0.737
				TABLE II	
	PARAMETERS AND THE PARASITIC IMPEDANCE COST OF THE OPTIMAL
		CONTROLLERS FOR SCENARIO S3.
	α	m F [kgs α-1 ] b F [Ns/m]	C	w
	1		3.2	90		16.9 0.796
	0.7	5.8	71		13.9 0.770
	0.4	15.4	49		11.5 0.776
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