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QUASI-STATIC LIMIT FOR THE ASYMMETRIC SIMPLE EXCLUSION

ANNA DE MASI, STEFANO MARCHESANI, STEFANO OLLA, AND LU XU

Abstract. We study the one-dimensional asymmetric simple exclusion process on the
lattice {1, . . . , N} with creation/annihilation at the boundaries. The boundary rates are
time dependent and change on a slow time scale N−a with a > 0. We prove that at the
time scale N1+a the system evolves quasi-statically with a macroscopic density profile
given by the entropy solution of the stationary Burgers equation with boundary densities
changing in time, determined by the corresponding microscopic boundary rates. We con-
sider two different types of boundary rates: the “Liggett boundaries” that correspond to
the projection of the infinite dynamics, and the reversible boundaries, that correspond to
the contact with particle reservoirs in equilibrium. The proof is based on the control of
the Lax boundary entropy–entropy flux pairs and a coupling argument.

1. Introduction

The one-dimensional open asymmetric simple exclusion process (ASEP) is one of the
most interesting models in non-equilibrium statistical mechanics, in particular because
its stationary state can be explicitly computed (cf. [9, 13, 14, 3]). Particles perform
asymmetric random walks on the finite lattice {1, . . . , N} with the exclusion rule (the
jump is suppressed if the site is occupied), and at the boundaries particles are created
and absorbed with given rates. The dynamics is then characterized by 5 parameters (the
asymmetry of the random walks and the 4 boundary rates).

In a seminal article [10], Liggett introduced special boundary rates such that the cor-
responding dynamics approximates optimally the dynamics of the infinite system with
different densities at ±∞. These boundary conditions correspond to the projection of the
infinite dynamics with respect to the Bernoulli measures with different densities on the
left and on the right of the system. Under this choice of boundary conditions Bahadoran
[1] proved the hydrodynamic limit for the density profile: under the hyperbolic space-time
scaling the density profile converges to the unique L∞ entropy solution of the Burgers equa-
tion satisfying the Bardos–Leroux–Nédélec boundary conditions [2] in the sense of Otto
[11]. In [1] Bahadoran also proves the hydrostatic limit, i.e. the macroscopic limit of the
stationary profile satisfies the stationary Burgers equation with same boundary conditions.
This is the solution of the variational problem maximizing the stationary flux in case of a
density gradient with opposite sign to the drift generated by the asymmetry, or minimizing
the stationary flux in the other case. This is consistent with the phase diagram proved in
[9, 13]. The proof in [1] relies on an extension of the coupling argument used by Reza-
khanlou in [12] in the infinite dynamics, and on the particular boundary conditions which
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are such that at equal density (balanced case) the stationary measure is known explicitly
(given by the Bernoulli measure at the boundary density). As far as we know there is no
proof of the hydrodynamic limit for general boundary conditions.

In this article we study the quasi-static hydrodynamic limit for the open ASEP. This
limit is taken in a time scale that is larger than the typical one where the system converges
to equilibrium. Changing the boundary condition at this time scale, the system is globally
close to the corresponding stationary state. Quasi-static evolutions are usually presented
as idealization of real thermodynamic transformations among equilibrium states. They are
necessary concepts in order to construct thermodynamic potentials, for example to define
the thermodynamic entropy from Carnot cycles. Here we are interested in the quasi-static
evolution among non-equilibrium stationary states. These quasi-static hydrodynamic lim-
its have been already studied in the symmetric simple exclusion as well as in other diffusive
systems [4]. We are here interested in the asymmetric case where currents of density do
not vanish in the limit. Since in ASEP the typical time scale of convergence to stationarity
is hyperbolic, we look at larger time scales changing the boundary rates in this time scale.
Consequently, at each instant of time the system is close to the corresponding stationary
state determined by the varying boundary conditions. We prove that the density profile
converges to the entropy solution of the quasi-static Burgers equation with the correspond-
ing boundary condition, now time dependent. We prove this quasi-static evolution for two
types of boundary rates:

(1) Liggett boundaries: if p > 1
2
is the probability of jumping to the right in the bulk

of the system, at a macroscopic time t we choose [pρ̄−(t), (1−p)(1− ρ̄−(t))] as rates
of creation and destruction on the left side, [(1− p)(1− ρ̄+(t)), pρ̄+(t)] on the right
side.

(2) Reversible boundaries: we choose [ρ−(t), 1−ρ−(t)] as rates of creation and destruc-
tion on the left side, [ρ+(t), 1− ρ+(t)] on the right side, by accelerating this bound-
ary rates and the symmetric part of the exclusion process in the bulk. These rates
correspond to contact with reversible reservoirs of particles at the corresponding
densities ρ±(t), and are independent from the asymmetry bulk parameter p. Even
when ρ− = ρ+ and time independent, the stationary probability distribution is not
a product measure in general.

The proof of the result for both cases will proceed as follows.
We first prove it in the balanced but time dependent cases (ρ̄−(t) = ρ̄+(t) or ρ−(t) =

ρ+(t)). Surprisingly this is the most difficult part, and it is proven by controlling the time
average of the microscopic boundary entropy flux. The unbalanced situation is then proven
by a coupling argument.

The use of the microscopic entropy production associated to a Lax entropy–entropy flux
pair is already present in the seminal article of Rezakhanlou [12]. J. Fritz and collaborators
combined this idea with a stochastic version of compensated compactness in order to deal
with non-attractive dynamics [6, 7]. Otto [11] introduced the boundary entropy–entropy flux
pairs in order to characterize the boundary conditions in the scalar hyperbolic equations.
The main point of this article is to prove that, in the balanced case when we take the same
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density on the boundaries, the time average of the microscopic boundary entropy flux is
negligeable in the quasi-static time scale, even when boundary conditions change in time
(see Propositions 8.1 and 8.2).
Acknowledgments. This work was partially supported by ANR-15-CE40-0020-01 grant
LSD.

2. ASEP with open boundaries

For N ≥ 2, the asymmetric simple exclusion process (ASEP) with open boundary con-
ditions is the Markov process on the configuration space

ΩN :=
{
η = (η1, η2, . . . , ηN), ηi ∈ {0, 1}

}
, (2.1)

with generator

LNf = λ0Lexcf + λ−L−f + λ+L+f, (2.2)

where λ0, λ± > 0, f is any function on ΩN , Lexc is the generator of the simple exclusion:

Lexcf :=

N−1∑

i=1

ci,i+1

[
f
(
ηi,i+1

)
− f(η)

]
,

ci,j := pηi(1− ηj) + (1− p)ηj(1− ηi),

(2.3)

where 1/2 < p ≤ 1, ηi,i+1 is the configuration obtained from η upon exchanging ηi and
ηi+1. L± are the generators of creates/annihilates processes at the boundaries i = 1 and
i = N :

L−f := [ρ−(1− η1) + (1− ρ−)η1]
[
f(η1)− f(η)

]
,

L+f := [ρ+(1− ηN ) + (1− ρ+)ηN ]
[
f(ηN)− f(η)

]
,

(2.4)

where ρ± ∈ [0, 1], ηi is the configuration obtained from η by shifting the status at site i
from ηi to 1− ηi. Notice that L± are reversible for the Bernoulli probability with density
ρ±, respectively.

Remark 1 (Boundary rates). To relate the boundary parameters to the ones used in [14, 3],
define

α := λ−ρ− entry rate from the left,

γ := λ−(1− ρ−) exit rate to the left,

β := λ+(1− ρ+) exit rate to the right,

δ := λ+ρ+ entry rate from the right.

(2.5)

Note that λ− = α + γ and λ+ = γ + δ give the total rates at left and right boundaries.

Remark 2 (Stationary states). Following [3], defining

τ− :=
1

2α

(
2p− 1− α + γ +

√
(2p− 1− α + γ)2 + 4αγ

)
,

τ+ :=
1

2β

(
2p− 1− β + δ +

√
(2p− 1− β + δ)2 + 4βδ

)
,

(2.6)
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then if the following conditions are satisfied (see [3])

min(α, β) > 0, τ− = τ−1
+ , (2.7)

the stationary state of LN is given by the Bernoulli product measure with homogeneous
density

ρ̃ :=
1

τ− + 1
=

τ+
τ+ + 1

. (2.8)

2.1. Liggett boundaries. A special choice of the boundary rates has been introduced by
Liggett [10]: given ρ̄± ∈ [0, 1], choose the parameters in (2.2) as

λ0 = 1, λ− = pρ̄− + (1− p)(1− ρ̄−), λ+ = p(1− ρ̄+) + (1− p)ρ̄+,

ρ− =
pρ̄−

pρ̄− + (1− p)(1− ρ̄−)
, ρ+ =

(1− p)ρ̄+
p(1− ρ̄+) + (1− p)ρ̄+

.
(2.9)

This means to choose the boundary rates in (2.5) as

(α, β, γ, δ) =
(
pρ̄−, p(1− ρ̄+), (1− p)(1− ρ̄−), (1− p)ρ̄+

)
. (2.10)

This choice of boundaries correspond to the projection on the finite interval [[1, N ]] of the
infinite ASEP dynamics with Bernoulli distribution with density ρ− on the left of 1, and
with density ρ+ on the right of N (see formulas (5) and (6) in [1]). Liggett’s motivation
for this choice was to give the best approximation to the infinite dynamics of the ASEP
[10].

With the above choice of boundary rates, for ρ̄− = ρ̄+ = ρ̄, the corresponding stationary
measure is

νNρ̄ :=
N∏

i=1

νρ̄(ηi), νρ̄(η) := ρ̄η(1− ρ̄)1−η. (2.11)

Observe that in this case generally ρ− 6= ρ+, but for p→ 1/2 we have ρ± → ρ̄.
These are the boundary conditions chosen in [1] for the hydrodynamic limit.

3. Quasi-static evolution

3.1. Quasi-static Burgers’ equation. Let p̄ ∈ (0, 1] and consider two C1 functions
ρ̃± : [0,∞) → [0, 1]. For some technical reason (see Section 4), we assume the follow-
ing condition: for any T > 0,

[0, T ] = ∪i≥1Ii ∪A0, (3.1)

where A0 is a Lebesgue null set and Ii’s are closed intervals such that either ρ̃+(t) ≥ ρ̃−(t)
on Ii or ρ̃+(t) ≤ ρ̃−(t) on Ii.

The L∞ entropy solution of the quasi-static conservation law

∂xJ(ρ(x, t)) = 0, x ∈ (0, 1), J(ρ) = p̄ρ(1− ρ), (3.2)

with boundary data

ρ(0, t) = ρ̃−(t), ρ(1, t) = ρ̃+(t), (3.3)
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is defined as the unique limit, for ε→ 0+ of the L∞ entropy solution of

ε∂tρ
ε(x, t) + ∂xJ(ρ

ε(x, t)) = 0,

ρε(0, t) = ρ̃−(t), ρε(1, t) = ρ̃+(t).
(3.4)

The definition, existence and uniqueness of the entropy solution of (3.4), given an initial
condition, follow from the work of Otto [11], by the characterization of the boundary
entropy fluxes:

Definition 3.1. A boundary Lax entropy–entropy flux pair for (3.4) is a couple of C2

functions (F,Q) : [0, 1]× R → R
2 such that

J ′(u)∂uF (u, w) = ∂uQ(u, w), F (w,w) = Q(w,w) = ∂uF (w,w) = 0 (3.5)

for all u ∈ [0, 1] and w ∈ R. Moreover, we say that the pair (F,Q) is convex if F (u, w) is
convex in u for all w ∈ R.

Otto’s boundary conditions reads in this case as

esslim
r→0+

∫ T

0

Q(ρε(t, r), ρ̃−(t))β(t)dt ≤ 0,

esslim
r→0+

∫ T

0

Q(ρε(t, 1− r), ρ̃+(t))β(t)dt ≥ 0,

(3.6)

for any boundary entropy flux Q and β ∈ C(0, T ) such that β(t) ≥ 0. In the case of bounded
variation solutions, this coincides with the Bardos–Leroux–Nédélec boundary conditions
[2].

The existence and uniqueness of the quasi-static limit ρε → ρ as ε → 0 is proven in [8].
Moreover, the ρ = ρ(x, t) satisfies the variational conditions ([9, 13, 1, 8]):

J(ρ(x, t)) =

{
sup{J(ρ); ρ ∈ [ρ̃+(t), ρ̃−(t)]}, if ρ̃−(t) > ρ̃+(t),

inf{J(ρ); ρ ∈ [ρ̃−(t), ρ̃+(t)]}, if ρ̃−(t) ≤ ρ̃+(t).
(3.7)

Observe that on the line

Θ := {(a, b) ∈ [0, 1]2; a < 1/2, a+ b = 1}, (3.8)

ρ(x, t) may attain two values and it may be not constant, while if (ρ̃−(t), ρ̃+(t)) /∈ Θ, then
ρ(x, t) = ρ(t), i.e. is constant in x and it is explicitly given by

ρ(t) =





ρ̃−(t), if ρ̃−(t) < 1/2, ρ̃−(t) + ρ̃+(t) < 1 (low density),

ρ̃+(t), if ρ̃−(t) > 1/2, ρ̃−(t) + ρ̃+(t) > 1 (high density),

1/2, if ρ̃−(t) ≥ 1/2, ρ̃+(t) ≤ 1/2 (max current).

(3.9)

In particular if (ρ̃−(t), ρ̃+(t)) ∈ Θ, the solution may not be unique.
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3.2. Quasi-static hydrodynamic limit. In this article, we consider time dependent
parameters ρ±(t) ∈ [0, 1] and λ±(t) > 0. As in (2.2), define the Markov generator

LN,t = λ0Lexc + λ−(t)L−,t + λ+(t)L+,t, t ≥ 0, (3.10)

where L±,t are operators defined by (2.4) with ρ± replaced by ρ±(t). We multiply LN,t

by N1+a for some a > 0 and study the macroscopic limit of the corresponding dynamics.
We now distinguish two cases: the Liggett boundaries, where we only have speed up
the generator by N1+a to the quasi-static time scale, and the general reversible boundaries
where there is a further speeding of the symmetric part of the generator and of the boundary
rates.

3.2.1. Liggett boundaries. In this case, we fix λ0 = 1 and take two C1 functions ρ̄± :
[0,∞) → [0, 1] satisfying the condition expressed in (3.1) for ρ̃±(t).

Define p̄ = 2p− 1 > 0, then the exclusion part of LN,t can be rewritten as

λ0Lexc = p̄Ltasep +
1− p̄

2
Lssep, (3.11)

where Lssep and Ltasep are respectively given by

Lssepf :=
N−1∑

i=1

[
f
(
ηi,i+1

)
− f(η)

]
,

Ltasepf :=

N−1∑

i=1

ηi(1− ηi+1)
[
f
(
ηi,i+1

)
− f(η)

]
.

(3.12)

Define also L±,t by (2.4) with (λ±, ρ±) = (λ±, ρ±)(t) given by (2.9).
For some a > 0, denote by η(t) = (η1(t), . . . , ηN(t)) ∈ ΩN the process generated by

N1+aLN,t. Let χi,N be the indicator function

χi,N(x) := 1{[ i
N
− 1

2N
, i
N
+ 1

2N )∩[0,1]}(x), ∀ x ∈ [0, 1]. (3.13)

For each N , define the empirical density ζN = ζN(x, t) as

ζN(x, t) :=
N∑

i=1

χi,N(x)ηi(t), (x, t) ∈ [0, 1]× R+. (3.14)

Our aim is to show that, as N → ∞, ζN converges to the L∞ entropy solution of the
quasi-static conservation law (3.2)–(3.3) with ρ̃±(t) = ρ̄±(t).

Denote by PN the distribution on the path space of η(·). Let EN be the corresponding
expectation. For ρ ∈ [0, 1], recall that νρ is the product Bernoulli measure with density ρ.
Given a local function f on ΩN , denote

〈f〉(ρ) :=
∫
fdνρ. (3.15)
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Theorem 3.2 (Liggett boundaries). Suppose that ρ̄± satisfies (3.1) and (ρ̄−, ρ̄+) /∈ Θ for
almost all t ≥ 0, where Θ is given by (3.8). Assume further that a > 1/2, then for local
function f and ϕ ∈ C([0, 1]× [0,∞)) we have the following convergence in probability: for
all T > 0,

lim
N→∞

∫ T

0

1

N

N−kf∑

i=1

ϕ

(
i

N
, t

)
f
(
τiη(t)

)
dt =

∫ T

0

[∫ 1

0

ϕ(x, t)dx

]
〈f〉(ρ(t))dt, (3.16)

where τi is the shift operator, [[1, kf ]] is the support of the local function f , and ρ(t) is
given by (3.9) with ρ̃±(t) = ρ̄±(t).

3.2.2. Reversible boundaries. In Liggett boundary rates, λ±(t) and ρ±(t) are chosen in
accordance with p. To deal with more general case in which the boundary rates are
independent of p, we need to speed up the boundary operators. We also need to apply a
speed change at symmetric exclusion. Let σN and σ̃N be two sequences satisfying

lim
N→∞

σN
N

= 0, lim
N→∞

σ̃N = ∞, lim
N→∞

σN σ̃N√
N

= ∞. (3.17)

Fix some p̄ ∈ [0, 1] and C1 functions

λ̄± : [0,∞) → (0,∞), ρ± : [0,∞) → [0, 1].

Define the generator LN,t with the following choices of parameters

λ0 = σN , p =
1

2
+

p̄

2σN
, λ±(t) = σ̃N λ̄±(t). (3.18)

Notice that with the generators defined in (3.12),

λ0Lexc = p̄Ltasep +
σN − p̄

2
Lssep. (3.19)

Hence, σN and σ̃N correspond to the speed of the symmetric part of the exclusion dynamics
and boundaries, respectively. These are necessary in order to obtain the macroscopic quasi-
static law. Observe that this dynamic is not the so called weakly asymmetric exclusion,
since with our choice of the parameters the asymmetry is always strong.

For a > 0, let η(t) = (η1(t), . . . , ηN(t)) ∈ ΩN be the Markov process generated by
N1+aLN,t and some initial distribution µN,0. We show that ζN defined by (3.14) converges,
as N → ∞, to the L∞ entropy solution of the quasi-static conservation law (3.2)–(3.3)
with ρ̃±(t) = ρ±(t). Observe that the macroscopic limit equation, and in particular the
boundary conditions, do not depend on the choice of λ̄±(t).

Theorem 3.3 (Reversible boundaries). Assume that ρ± satisfies (3.1) and (ρ−, ρ+) /∈ Θ
for almost all t ≥ 0. In additional, assume (3.17) and

lim
N→∞

Na− 1

2σN = ∞. (3.20)

Then, the convergence in (3.16) holds for local function f , ϕ ∈ C([0, 1] × [0,∞)) and
ρ = ρ(t) given by (3.9) with ρ̃±(t) = ρ±(t).
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Remark 3. Observe from (3.17) and (3.20) that, if a is large enough, the sequence σN
does not have to grow with N .

4. Proof of the main theorem

In this section we give the proof of Theorem 3.2 and 3.3 as a consequence of three
main steps that will be proven in the following sections. Fix some T > 0 and denote
ΣT = [0, 1]× [0, T ].

By a Young measure ν we mean a family {νx,t; (x, t) ∈ ΣT } of probability measures on
[0, 1] such that the mapping

(x, t) 7→
∫
f(x, t, y)νx,t(dy)

is measurable for all f ∈ C(ΣT × [0, 1]). Denote by Y the set of all Young measures,
endowed with the vague topology, i.e. a sequence νn → ν if for all f ∈ C(ΣT × [0, 1]),

lim
n→∞

∫∫

ΣT

dx dt

∫ 1

0

f(x, t, y)νnx,t(dy) =

∫∫

ΣT

dx dt

∫ 1

0

f(x, t, y)νx,t(dy). (4.1)

Under the vague topology, Y is metrizable, separable and compact.
Recall the empirical distribution function ζN = ζN(x, t) defined in (3.14). Since ζN ∈

[0, 1] for any N , the corresponding Young measures

νN :=
{
νNx,t = δζN (x,t); (x, t) ∈ ΣT

}
∈ Y . (4.2)

Denote by QN the distribution of νN on Y .
Since Y is compact, the sequence QN is tight, thus we can extract a subsequence QNh

that converges weakly to some measure Q on Y , which means that for all f ∈ C(ΣT × [0, 1])
we have

ENh

[∫∫

ΣT

f
(
x, t, ζNh

(x, t)
)
dx dt

]
= EQNh

[∫∫

ΣT

dx dt

∫ 1

0

f(x, t, y)νx,t(dy)

]

−→
h→∞

EQ

[∫∫

ΣT

dx dt

∫ 1

0

f(x, t, y)νx,t(dy)

] (4.3)

In both Liggett and reversible cases, it suffices to show that any limit point Q of QN is
concentrated on δρ(x,t) with ρ(x, t) = ρ(t) the entropy solution of (3.2)–(3.3) characterized
by (3.9)1, i.e.

Q
{
νx,t = δρ(t), (x, t) -a.s. in ΣT

}
= 1. (4.4)

The uniqueness of the entropy solution implies the uniqueness of the limit of QN and thus
the convergence in probability.

The proof of (4.4) is divided into several steps.

1Hereafter ρ̃±(t) = ρ̄±(t) for the Liggett case and ρ̃±(t) = ρ±(t) for the reversible case.
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First step: macroscopic current. The microscopic currents are defined by the conservation
law LN,t[ηi] = ji−1,i− ji,i+1 for i = 1, 2, ..., N . In Section 5 we show that for a.e. t ∈ [0, T ],
there exists J (t) <∞ such that

J (t) = lim
N→∞

EN [ji,i+1(t)], ∀ i = 0, . . . , N. (4.5)

J (t) relates to the current J(ρ) = p̄ρ(1 − ρ) in (3.2) in the following way:

J (t) = EQ

[∫ 1

0

dx

∫ 1

0

J(ρ)νx,t(dρ)

]
, t -a.s. in [0, T ]. (4.6)

Formula (4.6) is obtained in Section 7.1. The proof relies on the estimates on the Dirichlet
forms and the mesoscopic block averages. These results are established in Section 6 and 7,
respectively.
Second step: the balanced case. Next, we show the result for the balanced case, i.e. when
ρ̃−(t) = ρ̃+(t). The following lemma is proved in Section 8:

Lemma 4.1. If ρ̃−(t) = ρ̃+(t) for all t ∈ [0, T ], (4.4) holds.

The proof exploits the boundary entropy–entropy flux pair defined in 3.1. In fact in the
balanced case we expect equality in (3.6), and we prove in section 8.1 that the time average
of the boundary entropy flux on the microscopic scale is negligible, see Proposition 8.1 and
8.2.
Third step: coupling. With Lemma 4.1 and a coupling argument with the balanced dy-
namics, we show in Section 9 that the limit Young measures concentrate in the interval
between ρ̃−(t) and ρ̃+(t):

Lemma 4.2. The following holds Q-almost surely:

νx,t
{
I[ρ̃−(t), ρ̃+(t)]

}
= 1, (x, t) -a.s. in ΣT . (4.7)

where I[a, b] is the closed interval with extremes a and b.

Meanwhile, the same coupling argument applied to the current J (t) yields the following
proposition:

Proposition 4.3. If ρ̃−(t) ≥ ρ̃+(t) for all t ∈ [0, T ],

∫ T

0

J (t)dt =

∫ T

0

sup
{
J(ρ); ρ̃+(t) ≤ ρ ≤ ρ̃−(t)

}
dt. (4.8)

If ρ̃−(t) ≤ ρ̃+(t) for all t ∈ [0, T ],

∫ T

0

J (t)dt =

∫ T

0

inf
{
J(ρ); ρ̃−(t) ≤ ρ ≤ ρ̃+(t)

}
dt. (4.9)
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Proof of Theorem 3.2 and 3.3. From the third step we have all the information to conclude
the proof of the main theorems.

Proofs of Theorem 3.2 and 3.3. First observe that if ρ̃−(s)− ρ̃+(s) does not change sign in
[0, t], (4.4) holds up to time t. Indeed, suppose that ρ̃− ≥ ρ̃+ for s ∈ [0, t], then ρ = ρ(s)
given by (3.9) is the unique solution such that

J(ρ(s)) = sup
{
J(ρ), ρ̃+(s) ≤ ρ ≤ ρ̃−(s)

}
. (4.10)

Therefore, by (4.8),
∫ t

0
J (s)ds =

∫ t

0
J(ρ(s))ds. This together with (4.6) yields that

∫ t

0

EQ

[∫ 1

0

dx

∫ ρ̃−(s)

ρ̃+(s)

[
J(ρ)− J(ρ(s))

]
νx,s(dρ)

]
ds = 0. (4.11)

Since J(ρ)− J(ρ(s)) ≤ 0 for all ρ ∈ [ρ̃+(s), ρ̃−(s)], the Young measure can only be concen-
trated in its zero set, more precisely: with Q-probability 1, νx,s = δρ(s) a.s. in Σt. For the
case ρ̃−(s) ≤ ρ̃+(s), since (ρ̃−, ρ̃+) /∈ Θ, ρ = ρ(s) is the unique solution such that

J(ρ(s)) = inf
{
J(ρ), ρ̃−(s) ≤ ρ ≤ ρ̃+(s)

}
, (4.12)

and the argument is similar.
For general ρ̃±(t), by (3.1), ρ̃+− ρ̃− keeps its sign in each Ii = [ti, t

′
i]. Denote by µN,ti the

distribution of η(ti) on ΩN . Consider the process generated by N1+aLN,s, 0 ≤ s ≤ t′i − ti
and initial distribution µN,ti . As the arguments above are valid for any initial distribution,
the result holds almost surely in each Ii, and hence in the whole interval [0, T ]. �

5. Microscopic currents

The microscopic currents ji,i+1 associated to the generator LN,t are defined by the con-
servation law LN,t[ηi] = ji−1,i − ji,i+1 and they are equal to

ji,i+1 =





pρ̄−(t)−
[
pρ̄−(t) + (1− p)(1− ρ̄−(t))

]
η1, i = 0,

p̄ηi(1− ηi+1) +
1−p̄
2
(ηi − ηi+1), 1 ≤ i ≤ N − 1,[

p(1− ρ̄+(t)) + (1− p)ρ̄+(t)
]
ηN − (1− p)ρ̄+(t), i = N.

(5.1)

in the case of Liggett boundary rates and

ji,i+1 =





σ̃N λ̄−(t)(ρ−(t)− η1), i = 0,

p̄ηi(1− ηi+1) +
σN−p̄

2
(ηi − ηi+1), 1 ≤ i ≤ N − 1,

σ̃N λ̄+(t)(ηN − ρ+(t)), i = N.

(5.2)

in the case of reversible boundary rates.
Follow the argument as in [5, Section 2], for i = 1, ... N−1 define the counting processes

associated to the process {η(t)}t≥0 generated by N1+aLN,t by

h+(i, t) := number of jumps i→ i+ 1 in [0, t].

h−(i, t) := number of jumps i+ 1 → i in [0, t].

h(i, t) := h+(i, t)− h−(i, t).

(5.3)
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These definitions extend to the boundaries i = 0 and i = N as

h+(0, t) := number of particles created at 1 in [0, t],

h−(0, t) := number of particles annihilated at 1 in [0, t],

h+(N, t) := number of particles annihilated at N in [0, t],

h−(N, t) := number of particles created at N in [0, t].

(5.4)

The conservation law is microscopically given by

ηi(t)− ηi(0) = h(i− 1, t)− h(i, t), ∀ x = 1, . . . , N. (5.5)

Furthermore, for i = 0, . . . , N there is a martingale Mi(t) such that

h(i, t) = N1+a

∫ t

0

ji,i+1(s)ds+Mi(t).

As |ηi(t)| ≤ 1, (5.5) yields that |h(i, t)− h(i′, t)| ≤ |i− i′|. Therefore,

EN

[∫ t′

t

(
ji,i+1(s)− ji′,i′+1(s)

)
ds

]
= O(N−a), ∀ t < t′.

Hence, there exists J (t) <∞ such that (4.5) holds for all 0 ≤ i ≤ N .
In particular for the reversible boundary rates,

σ̃N λ̄−(t)E
η(0)
N [η1(t)− ρ−(t)] = −J (t) +O(N−a),

σ̃N λ̄+(t)E
η(0)
N [ηN(t)− ρ+(t)] = J (t) +O(N−a).

(5.6)

Since generally J (t) 6= 0, we obtain that for the reversible boundaries case that
∣∣∣Eη(0)

N

[
η1(t)

]
− ρ−(t)

∣∣∣ +
∣∣∣Eη(0)

N

[
ηN (t)

]
− ρ+(t)

∣∣∣ ≤ C

σ̃N

This means the acceleration of the boundary rates (σ̃N → ∞) obliges the boundary condi-
tions ρ±(t) in this microscopic sense. Observe that this is not true in the Liggett boundary
case.

6. Microscopic entropy production: bounds on the Dirichlet forms

For any ρ ∈ [0, 1], let νρ be the product Bernoulli measure on ΩN = {0, 1}N with rate ρ.
In particular, for the time dependent parameters ρ̃± = ρ̃±(t) denote

ν±,t(η) := νρ̃±(t)(η) =

N∏

i=1

ρ̃±(t)
ηi
[
1− ρ̃±(t)

]1−ηi , ∀ η ∈ ΩN . (6.1)

Recall that η(t) is the process generated by N1+aLN,t and denote by µN,t the distribution
of η(t) in ΩN . For N ≥ 2, define the Dirichlet form

Dexc,N(t) :=
1

2

∑

η∈ΩN

N−1∑

i=1

(√
µN,t(ηi,i+1)−

√
µN,t(η)

)2

. (6.2)
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Let f±
N,t be the density of µN,t with respect to ν±,t and define the boundary Dirichlet forms

as

D−,N(t) :=
1

2

∑

η

ρ̃1−η1
− (1− ρ̃−)

η1
(√

f−
N,t(η

1)−
√
f−
N,t(η)

)2

ν−,t(η),

D+,N(t) :=
1

2

∑

η

ρ̃1−ηN
+ (1− ρ̃+)

ηN
(√

f+
N,t(η

N)−
√
f+
N,t(η)

)2

ν+,t(η).

(6.3)

In this section we establish some useful bounds for these Dirichlet forms. We start from
the Liggett boundaries in which ρ̃±(t) = ρ̄±(t) and prove the next result.

Proposition 6.1 (Liggett boundary). For all t < t′, there exists C such that
∫ t′

t

[
D−,N(s) +Dexc,N(s) +D+,N(s)

]
ds ≤ C (6.4)

for all N . Moreover if ρ̄−(s) = ρ̄+(s) for all s ∈ [t, t′], then
∫ t′

t

[
D−,N(s) +Dexc,N(s) +D+,N(s)

]
ds ≤ C

Na
. (6.5)

Proof. In this proof, any function f on ΩN is viewed as a local function on {0, 1}Z in the
standard way.

Given any probability measure µ on ΩN , for a given t ≥ 0 we extend it as a measure
µ̄ on {0, 1}Z ∼ ΩN ×

∏
i/∈{1,..,N}{0, 1} where outside {1, .., N} is a product measure with

µ̄{ηi = 1} = ρ̄−(t) for i ≤ 0 and µ̄{ηi = 1} = ρ̄+(t) for i > N .
Recall that LN,t is the generator with Liggett boundary rates in (2.9). Also define for

all local function f on {0, 1}Z

LZ

excf :=
∑

i∈Z

ci,i+1

[
f
(
ηi,i+1

)
− f(η)

]
, ci,j = pηi(1− ηj) + (1− p)ηj(1− ηi).

LZ

exc generates the asymmetric simple exclusion process on {0, 1}Z. As obtained in [10, p.
244] in the proof of Theorem 2.4, for a function g = g(η1, . . . , ηN),

LN,tg(η)− LZ

excg(η)

=
[
p(ρ̄− − η0)(1− η1) + (1− p)(η0 − ρ̄−)η1

][
g(η1)− g(η)

]

+
[
(1− p)(ρ̄+ − ηN+1)(1− ηN) + p(ηN+1 − ρ̄+)ηN

][
g(ηN)− g(η)

]
.

(6.6)

Observe that the integral of the right hand side is 0 with respect to a measure µ̄ on {0, 1}Z
obtained by extending any measure µ on ΩN as above.

Recall the Bernoulli measure ν±,t defined in (6.1) and the corresponding density function
f±
N,t: µN,t = f±

N,tν±,t. Consider the relative entropy H±,N(t) given by

H±,N(t) :=
∑

η∈ΩN

f±
N,t(η) log f

±
N,t(η)ν±,t(η) =

∑

η∈ΩN

log f±
N,t(η)µN,t(η).
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Using Kolmogorov equation and (6.6), we obtain for the entropy production that

d

dt
H−,N(t) = N1+a

∑

η∈ΩN

LN,t[log f
−
N,t]µN,t −

∑

η∈ΩN

f−
N,t

d

dt
ν−,t

= N1+a
∑

η∈{0,1}Z

LZ

exc[log f
−
N,t]µ̄N,t −

∑

η∈ΩN

f−
N,t

d

dt
ν−,t

= N1+a
∑

η∈{0,1}Z

f−
N,tL

Z

exc

[
log f−

N,t

]
ν̄−,t −

∑

η∈ΩN

f−
N,t

d

dt
ν−,t,

(6.7)

where ν̄−,t =
∏

i≤N νρ̄−(t)(ηi)
∏

i>N νρ̄+(t)(ηi). Observe that the last term in (6.7) is bounded
by CN .

Exploiting the inequality x(log y− log x) ≤ 2
√
x(
√
y−√

x) for all x, y > 0, and denoting

that p̄ = 2p− 1, g−N,t = (f−
N,t)

1/2,
∑

η∈{0,1}Z

f−
N,tL

Z

exc

[
log f−

N,t

]
ν̄−,t ≤ 2

∑

η∈{0,1}Z

g−N,tL
Z

exc

[
g−N,t

]
ν̄−,t

=
∑

η∈{0,1}Z

∑

i∈Z

[
1 + p̄(ηi − ηi+1)

] [
g−N,t(η

i,i+1)− g−N,t

]
g−N,tν̄−,t

= I1 + I2 + I3 + I4,

(6.8)

where the right-hand side reads

I1 = −1

2

∑

η∈{0,1}Z

∑

i∈Z

[
g−N,t(η

i,i+1)− g−N,t(η)
]2
ν̄−,t(η),

I2 = −1

2

∑

η∈{0,1}Z

∑

i∈Z

(g−N,t)
2(η)

[
ν̄−,t(η)− ν̄−,t(η

i,i+1)
]

=
1

2

∑

η∈{0,1}Z

f−
N,t(η)

[
ν̄−,t(η

N,N+1)− ν̄−,t(η)
]
,

I3 = p̄
∑

η∈{0,1}Z

∑

i∈Z

(ηi − ηi+1)g
−
N,t(η

i,i+1)g−N,tν̄−,t

=
p̄

2

∑

η∈{0,1}Z

(ηN+1 − ηN)g
−
N,t(η

N,N+1)g−N,t

[
ν̄−,t(η

N,N+1)− ν̄−,t

]
,

I4 = p̄
∑

η∈{0,1}Z

∑

i∈Z

(ηi − ηi+1)
[
−(g−N,t)

2(η)
]
ν̄−,t(η) = p̄

[
ρ̄+(t)− ρ̄−(t)

]
.

Notice that I2, I3, I4 are uniformly bounded in N and they vanish when ρ̄− = ρ̄+. On the
other hand, since f−

N,t depends only on {η1, . . . , ηN},
I1 = −Dexc,N(t)− I1,l − I1,r,
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where I1,l and I1,r are computed respectively as

I1,l =
1

2

∑

η∈ΩN

[
g−N,t(η

1)− g−N,t

]2
ν−,t(η)

∑

η0

(
η0(1− η1) + η1(1− η0)

)
νρ̄−(t)(η0)

=
1

2

∑

η∈ΩN

(
ρ̄−(t)(1− η1) + η1(1− ρ̄−(t))

) [
g−N,t(η

1)− g−N,t

]2
ν−,t = D−,N(t),

I1,r =
1

2

∑

η∈ΩN

[
g−N,t(η

N)− g−N,t

]2
ν−,t(η)

∑

ηN+1

(
ηN (1− ηN+1) + ηN+1(1− ηN)

)
νρ̄+(t)(ηN+1) ≥ 0.

Hence, from (6.8) we obtain a constant C > 0 such that
∑

η∈{0,1}Z

f−
N,tL

Z

exc

[
log f−

N,t

]
ν−,t ≤ −D−,N (t)−Dexc,N(t) + C.

Plugging this into (6.7) and integrating in time,
∫ t

0

[
D−,N(s) +Dexc,N(s)

]
ds ≤ C.

The proof of (6.4) is completed by repeating the argument with H+
N,t.

Now suppose that ρ̄−(t) = ρ̄+(t), then ν−,t = ν+,t and we have I1,r = D+,N(t). Therefore,
(6.8) yields that

∑

η∈Z

fN,tL
Z

exc

[
log fN,t

]
νt ≤ −D−,N(t)−Dexc,N(t)−D+,N(t).

Since HN(0) = O(N), (6.5) follows similarly. �

For reversible boundaries ρ̃±(t) = ρ±(t), the following estimate holds.

Proposition 6.2 (Reversible boundary). For all t < t′, there exists C such that
∫ t′

t

[
σ̃N λ̄−(s)D−,N(s) + σNDexc,N(s) + σ̃N λ̄+(s)D+,N(s)

]
ds ≤ C (6.9)

for all N . Moreover if ρ−(s) = ρ+(s) for all s ∈ [t, t′], then
∫ t′

t

[
σ̃N λ̄−(s)D−,N(s) + σNDexc,N(s) + σ̃N λ̄+(s)D+,N(s)

]
ds

≤ p̄

σ̃N

∫ t

0

[ J (s)

λ̄−(s)
+

J (s)

λ̄+(s)

]
ds+

C

Na
≤ C ′

(
1

σ̃N
+

1

Na

)
.

(6.10)

Proof. Similarly to (6.7), we obtain for the entropy production that

d

dt
H−,N(t) ≤ N1+a

∑

η∈ΩN

f−
N,tLN,t[log f

−
N,t]ν−,t + CN. (6.11)
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Applying the argument used in (6.8),
∑

η∈ΩN

f−
N,t

(
LN,t − σ̃N λ̄+(t)L+,t

)
[log f−

N,t]ν−,t

≤ − σ̃N λ̄−(t)D−,N(t)− σNDexc,N(t) + p̄
∑

η∈ΩN

(ηN − η1)f
−
N,tν−,t.

In view of (5.6), the last term can be bounded as

p̄
∑

η

(ηN − η1)f
−
N,tν−,t = p̄

[
ρ+(t)− ρ−(t) +

J (t)

σ̃N λ̄−(t)
+

J (t)

σ̃N λ̄+(t)

]
+

C

Na
.

For L+,t, since f
−
N,tν−,t = f+

N,tν+,t,

∑

η

f−
N,tL+,t[log f

−
N,t]ν−,t ≤ −D+,N(t) +

∑

η

f−
N,tL+,t

[
log

(
ν+,t

ν−,t

)]
ν−,t.

Standard manipulation shows that

L+,t

[
log

(
ν+,t

ν−,t

)]
= −

{
log

[
ρ+(t)

1− ρ+(t)

]
− log

[
ρ−(t)

1− ρ−(t)

]}
(ηN − ρ+(t)).

Let F (ρ) = ρ log ρ+ (1− ρ) log(1− ρ), so that F ′(ρ) = log(ρ/(1− ρ)). By (5.6),

∑

η

f−
N,tL+,t

[
log

(
ν+,t

ν−,t

)]
ν−,t ≤ −

[
F ′(ρ+(t))− F ′(ρ−(t))

]J (t) +O(N−a)

σ̃N λ̄+(t)
.

Putting all these estimates together, we obtain from (6.11) that

d

dt
H−,N(t) ≤−N1+a

[
2σ̃N λ̄−(t)D−,N(t) + σNDexc,N(t) + 2σ̃N λ̄+(t)D+,N(t)

]

+N1+a
[
C(ρ±, t) + σ̃−1

N C(λ̄±, t)
]
+ CN,

where C(ρ±, t) and C(λ̄±, t) are constants given by

C(ρ±, t) = p̄
[
ρ+(t)− ρ−(t)

]
−J (t)

[
F ′(ρ+(t))− F ′(ρ−(t))

]
,

C(λ̄±, t) = p̄J (t)
[
λ̄−1
+ (t) + λ̄−1

− (t)
]
.

We can then conclude (6.9) by integrating in time. For (6.10), it suffices to observe that
C(ρ±, t) = 0 when ρ−(t) = ρ+(t). �

Remark 4. The condition ρ−(s) = ρ+(s) is necessary for C(ρ±, s) = 0. Indeed, in view
of Proposition 4.3, if ρ+(s) < ρ−(s), J (s) = sup{J(ρ); ρ+(s) ≤ ρ ≤ ρ−(s)}, so

C(ρ±, s) =

∫ ρ−(s)

ρ+(s)

( J (s)

ρ(1− ρ)
− p̄

)
dρ =

∫ ρ−(s)

ρ+(s)

J (s)− J(ρ)

ρ(1− ρ)
dρ > 0.

Meanwhile if ρ+(s) ≥ ρ−(s), J (s) = inf{J(ρ); ρ−(s) ≤ ρ ≤ ρ+(s)}, so

C(ρ±, s) =

∫ ρ+(s)

ρ−(s)

(
p̄− J (s)

ρ(1− ρ)

)
dρ =

∫ ρ+(s)

ρ−(s)

J(ρ)− J (s)

ρ(1− ρ)
dρ > 0.
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Hence, better bounds are available only when ρ− = ρ+.

7. Block average estimates

For 1 ≤ k ≤ N , define the left-sided uniform block averages by

η̄i,k :=
1

k

k−1∑

i′=0

ηi−i′ , ∀ i = k, k + 1, . . . , N. (7.1)

Recall that µN,t is the distribution of η(t) on ΩN and νρ is the Bernoulli measure with
rate ρ. In this section we show that, in both Liggett and reversible cases, µN,t on the k-
block {ηi−k+1, . . . , ηi} can be estimated by νη̄i,k with errors bounded by the corresponding
Dirichlet forms in Section 6. The main results are stated below.

Proposition 7.1. Given a local function f = f(η0, . . . , ηℓ) and a vector
wk = (wk,0, . . . , wk,k−1), define

Fi,k =

k−1∑

i′=0

wk,i′
(
f ◦ τi−i′ − 〈f〉(η̄i+ℓ,k+ℓ)

)
.

Then there is a constant C independent from N , t, k or ℓ, such that

∫ N−ℓ∑

i=k

∣∣Fi,k

∣∣2dµN,t ≤ C‖wk‖2
[
ℓ(k + ℓ)3Dexc,N(t) +N

]
, (7.2)

where ‖ · ‖ denotes the Euclidean norm.

Typically we will apply Proposition 7.1 for choices of wk such that ‖wk‖2 ∼ k−1.
The next proposition deals with the blocks located at the boundaries.

Proposition 7.2. There is a constant C independent from N , t or k, such that
∫ ∣∣G±.k

∣∣2dµN,t ≤ C‖wk‖2
[
k2Dexc,N(t) + kD±,N(t) + 1

]
(7.3)

for any wk = (wk,1, . . . , wk,k) ∈ R
k, where

G−,k =

k∑

i=1

wk,i

(
ηi − ρ̃−(t)

)
, G+,k =

k∑

i=1

wk,i

(
ηN−k+i − ρ̃+(t)

)
.

Proof of Proposition 7.1. For ρ∗ ∈ {i/k; i = 0, 1, . . . , k}, let νk(·|ρ∗) be the uniform mea-
sure on

Ωk,ρ∗ =

{
η = (η1, . . . , ηk) ∈ Ωk

∣∣∣∣
1

k

k∑

i=1

ηi = ρ∗

}
. (7.4)
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For i = k, k + 1, ..., N , define the measures

µ̄i,k
N,t(ρ∗) := µN,t {(ηi−k+1, . . . , ηi) ∈ Ωk,ρ∗} ,

µi,k
N,t(ηi−k+1, . . . , ηi|ρ∗) :=

µN,t(ηi−k+1, . . . , ηi)

µ̄i,k
N,t(ρ∗)

.
(7.5)

By the relative entropy inequality, for each i = k, k + 1,..., N − ℓ,
∫ ∣∣Fi,k

∣∣2dµN,t =
∑

ρ∗

µ̄i+ℓ,k+ℓ
N,t (ρ∗)

∫ ∣∣Fi,k

∣∣2dµi+ℓ,k+ℓ
N,t ( · |ρ∗)

≤ 1

a

∑

ρ∗

µ̄i+ℓ,k+ℓ
N,t (ρ∗)

{
H

(
µi+ℓ,k+ℓ
N,t ( · |ρ∗); νk+ℓ( · |ρ∗)

)

+ log

∫
exp

{
a|Fi,k|2

}
dνk+ℓ( · |ρ∗)

}
, ∀ a > 0,

(7.6)

where H is the relative entropy: for two measures µ, ν on Ωk,ρ∗ ,

H(µ; ν) :=

∫
(logµ− log ν)dµ. (7.7)

The logarithmic Sobolev inequality (A.1) yields that there is an universal constant CLS,
such that for each i, k and ρ∗,

H
(
µi+ℓ,k+ℓ
N,t ( · |ρ∗); νk+ℓ( · |ρ∗)

)
≤ CLS(k + ℓ)2Di+ℓ,k+ℓ

N,ρ∗
(t), (7.8)

where the Dirichlet form in the right-hand side is defined as

D
i,k
N,ρ∗

(t) :=
1

2

∑

η∈Ωk,ρ∗

k−1∑

i′=1

(√
µi,k
N,t(η

i′,i′+1|ρ∗)−
√
µi,k
N,t(η|ρ∗)

)2

. (7.9)

Plugging (7.8) into (7.6) and summing up for i ≥ k, and using Schwarz inequality, we
obtain

∫ N−ℓ∑

i=k

∣∣Fi,k

∣∣2dµN,t ≤
CLS(k + ℓ)3

2a
Dexc,N(t)

+
1

a

N−ℓ∑

i=k

∫
µ̄i+ℓ,k+ℓ
N,t (dρ∗) log

∫
exp

{
a|Fi,k|2

}
dνk+ℓ( · |ρ∗).

The desired estimate then follows if we can show that

log

∫
exp

{
a|Fx,k|2

}
dνk+ℓ( · |ρ∗) ≤ C, ∀ a < 1

(ℓ+ 1)‖wk‖2
, (7.10)

where C is a universal constant C.
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We are left with the proof of (7.10). Without loss of generality, we assume that the local
function f ∈ [0, 1]. By Hoeffding’s lemma, for all ρ ∈ [0, 1],

log

∫
ea[f−νρ(f)]dνρ ≤

a2

8
, ∀ a ∈ R. (7.11)

As f ◦ τi is independent from f if |i| ≥ ℓ + 1, by splitting the family {f ◦ τi−i′} into
independent groups and applying Cauchy–Schwarz inequality,

log

∫
exp

{
a

k−1∑

i′=0

wk,i′
(
f ◦ τi−i′ − 〈f〉(ρ)

)
}
dνρ ≤

(ℓ+ 1)‖wk‖2a2
8

. (7.12)

Hence, if a−1 ≥ (ℓ+ 1)‖wk‖2,

log

∫
exp

{
a

∣∣∣∣
k−1∑

i′=0

wk,i′
(
f ◦ τi−i′ − 〈f〉(ρ)

)∣∣∣∣
2
}
dνρ ≤ 3. (7.13)

In order to get (7.10) it suffices to replace νρ with its conditional measure νk+ℓ( · |ρ∗). It
follows from an elementary estimate that

νk+ℓ
(
η|Γ = η̃

∣∣ ρ∗
)
≤ Cνρ∗(η|Γ = η̃) (7.14)

for all Γ ⊂ {x− k + 1, . . . , x+ ℓ} such that |Γ| ≤ 2k/3. �

Proof of Proposition 7.2. Without loss of generality, we show the result for G−,k. The proof
goes similarly to the previous one. Denote by µk

N,t the distribution of {η1, . . . , ηk} at time

t and let fk
N,t = µk

N,t/νρ̃− . By the relative entropy inequality,

EµN,t

[
G2
−,k

]
≤ 1

a

[
H
(
µk
N,t; νρ̃−

)
+ log

∫
eaG

2
−,kdνρ̃−

]
, ∀ a > 0.

Applying Proposition A.1 proved in Appendix A,

H(µk
N,t; νρ̃−) ≤

Ck2

2

∑

η∈Ωk

k−1∑

j=1

(√
fk
N,t(η

j,j+1)−
√
fk
N,t(η)

)2

νρ̃−(η)

+
Ck

2

∑

η∈Ωk

ρ̃1−η1
− (1− ρ̃−)

η1
(√

fk
N,t(η

1)−
√
fk
N,t(η)

)2

νρ̃−(η),

with some constant independent of N , t or k. Therefore,

H(µk
N,t; νρ̃−) ≤ Ck2Dexc,N(t) + CkD−,N(t).

Similarly to (7.10), we can bound the exponential moment as

log

∫
exp

{
a|G−,k|2

}
dνρ̃− ≤ 3, ∀ a < 1

‖wk‖2
.

We only need to put these estimate together and integrate in time. �
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7.1. Macroscopic current. A direct consequence of Proposition 7.1 and the bounds on
the Dirichlet forms is the explicit formula (4.6) for the macroscopic current function J (t)
defined in (4.5). Define empirical density corresponding to η̄i,k by

ζN,k(x, t) :=
N∑

i=k

χi,N(x)η̄i,k(t), (x, t) ∈ [0, 1]× R+. (7.15)

Observe that for any T > 0 and ϕ ∈ C1([0, 1]× R+),
∫ T

0

∫ 1

0

ϕ(x, t)
(
ζN(x, t)− ζN,k(x, t)

)
dx dt ≤ Ck

N
, (7.16)

where ζN is the density in (3.14). Recall the distribution Q on the space of Young measures
defined in (4.3). From the observation above, for fixed k or k = k(N) ≪ N , one can view
Q as the weak limit of the same subsequence ζN ′,k. To prove (4.6), we distinguish the two
cases.
Liggett boundary. Recall the (microscopic) currents ji,i+1 given by (5.1). For 1 ≤ i ≤ N−1,
we can furthermore write that

ji,i+1 = Ji,i+1 −
1− p̄

2
∇ηi, Ji,i+1 := p̄ηi(1− ηi+1). (7.17)

Direct computation then shows that for fixed k,

J (t) = lim
N→∞

1

N

N−1∑

i=1

EµN,t
[ji,i+1] = lim

N→∞

1

N

N−1∑

i=1

EµN,t
[Ji,i+1]

= lim
N→∞

1

N

N−1∑

i=k

1

k

k−1∑

i′=0

EµN,t
[Ji−i′,i−i′+1].

(7.18)

Choose ℓ = 1, f = p̄η0(1− η1) and note that

f ◦ τi = Ji,i+1, 〈f〉(ρ) = J(ρ) = p̄ρ(1− ρ). (7.19)

Now take arbitrarily t, t′ ∈ [0, T ] such that t < t′. Applying Proposition 7.1 with wk =
(k−1, . . . , k−1) and using the estimate in Proposition 6.1,

∫ t′

t

ds

∫ N−1∑

i=k

∣∣∣∣∣
1

k

k−1∑

i′=0

Ji−i′,i−i′+1 − J(η̄i+1,k+1)

∣∣∣∣∣

2

dµN,s ≤ C

(
k2 +

N

k

)
. (7.20)

Dividing the above estimate by N and let N → ∞, we get
∣∣∣∣∣

∫ t′

t

J (s)ds− lim
N→∞

1

N

∫ t′

t

N−1∑

i=k

EµN,s
[J(η̄i+1,k+1)]ds

∣∣∣∣∣ ≤
C

k
, (7.21)

for any k ≥ 1. From (7.15) and the discussion below it,
∣∣∣∣∣

∫ t′

t

J (s)ds−EQ

[∫ t′

t

ds

∫ 1

0

dx

∫ 1

0

J(ρ)νx,s(dρ)

]∣∣∣∣∣ ≤
C

k
. (7.22)
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As t, t′ and k are arbitrary we conclude (4.6).
Reversible boundary. In this case, ji,i+1 is given by (5.2) and

ji,i+1 = Ji,i+1 −
σN − p̄

2
∇ηi, ∀ i = 1, . . . , N − 1. (7.23)

Note that from (3.17), σN = o(N) so that (7.18) remains valid. By applying Proposition
7.1 in the same way as before and Proposition 6.2,

∫ t′

t

ds

∫ N−1∑

i=k

∣∣∣∣∣
1

k

k−1∑

i′=0

Ji−i′,i−i′+1 − J(η̄i+1,k+1)

∣∣∣∣∣

2

dµN,s ≤ C

(
k2

σN
+
N

k

)
. (7.24)

Hence, (4.6) can be proved similarly to the previous case.

8. The boundary entropy

This section is devoted to the proof of Lemma 4.1 under both Liggett and reversible
boundaries. Throughout this section, K ≥ 1 represents some mesoscopic scale that is
growing with N such that K = o(N).

Define the smoother weighted averages by

η̂i,K :=
∑

|j|<K

wjηi−j , wj =
K − |j|
K2

. (8.1)

Recall the non-gradient current Ji,i+1 in (7.17) and let

Ĵi,K :=
∑

|j|<K

wjJi−j,i−j+1. (8.2)

The empirical process ρN = ρN,K is defined by

ρN (x, t) :=

N−K∑

i=K+1

χi,N(x)η̂i,K(t), (x, t) ∈ [0, 1]× R+, (8.3)

with χi,N in (3.13). Observe that η1 and ηN do not appear in ρN , so that the boundary
generator does not contribute to the time evolution.

Remark 5. Recall the function ζN defined in (3.14) and observe that

∫ T

0

∫ 1

0

ϕ(x, t)
(
ζN(x, t)− ρN (x, t)

)
dx dt ≤ CϕTK

N
, (8.4)

for any T > 0 and ϕ ∈ C1(ΣT ). As K = o(N), ρN can be identified with ζN in the limit
N → ∞, in the sense that (4.3) holds with ζN replaced by ρN .
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8.1. The boundary entropy production. Recall the boundary entropy–entropy flux
pair (F,Q) defined in Definition 3.1. For ψ ∈ C1(ΣT ) and w ∈ C1([0, T ]), define the
boundary entropy production as

XF
N(ψ,w) = N−a

∫∫

ΣT

[
F (ρN , w)∂tψ + ∂wF (ρN , w)w

′ψ
]
dx dt

+

∫∫

ΣT

Q(ρN , w)∂xψ dx dt,

(8.5)

where ρN is defined in (8.3).
From now on we fix an arbitrary C1 smooth function ρ = ρ(t) on [0, T ] such that

ρ(t) ∈ [0, 1]. Our aim is to prove the following results.

Proposition 8.1 (Liggett boundary). Assume that ρ̄−(t) = ρ̄+(t) = ρ(t) and a > 1/2.
With K = K(N) satisfying that

√
N ≪ K ≪ min{Na, N}, (8.6)

we have

lim
N→∞

E
µN,0

N

[∣∣XF
N(ψ, ρ)

∣∣] = 0, (8.7)

for any initial distribution µN,0, boundary entropy–entropy flux pair (F,Q) and ψ ∈ C2(ΣT )
such that ψ(·, 0) = ψ(·, T ) = 0.

Proposition 8.2 (Reversible boundary). Assume that ρ−(t) = ρ+(t) = ρ(t) and (3.17),
(3.20). With K = K(N) satisfying that

max
{√

N, σN

}
≪ K ≪ min{NaσN , σ̃NσN , N}, (8.8)

the result in Proposition (8.1) still holds. Observe that (3.17) and (3.20) assure the exis-
tence of such K(N).

The proofs of Proposition 8.1 and 8.2 are similar, and are postponed to Sections 8.2 and
8.3. From (8.7) we can conclude the proof of Lemma 4.1 as follows.

Proof of Lemma 4.1. Given any boundary entropy–entropy flux pair (F,Q), define the
boundary entropy flux of a Young measure ν ∈ Y with respect to boundary data w ∈
C([0, T ]) as the functional

Q̃(ψ; ν, w) :=

∫∫

ΣT

ψ(x, t)dx dt

∫ 1

0

Q(y, w(t))νx,t(dy), ∀ψ ∈ C(ΣT ). (8.9)

Let ν̂N be the Young measure associated to ρN , i.e. ν̂
N
x,t = δρN (x,t). Since F and ∂wF are

bounded and a > 0, for all ψ ∈ C1(ΣT ),

lim
N→∞

E
µN,0

N

[∣∣∣Q̃(∂xψ; ν̂N , ρ)−XF
N(ψ, ρ)

∣∣∣
]
= 0, (8.10)
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where ρ(t) = ρ̃±(t). Since the map ν 7→ Q̃(∂xψ; ν, ρ) is a bounded linear functional on Y ,

it is continuous and consequently the set {ν; |Q̃(∂xψ; ν, ρ)| < ε} is open. Recall that the
distribution of ν̂N converges (along a subsequence) to Q. By (8.7) we have

Q

(∣∣∣Q̃(∂xψ; ν, ρ)
∣∣∣ > ε

)
≤ lim inf

N→∞
PN

(∣∣XF
N (ψ, ρ)

∣∣ > ε
)
= 0 (8.11)

for any ε > 0 and ψ ∈ C2(ΣT ) such that ψ(·, 0) = ψ(·, T ) = 0. Hence, the following holds
with Q-probability 1:

Q̄(x, t) :=

∫ 1

0

Q
(
y, ρ(t)

)
νx,t(dy) = 0, (x, t) -a.s. in ΣT . (8.12)

To prove Lemma 4.1, it suffices to show that νx,t = δρ(t) if (8.12) holds for all boundary
entropy flux Q. We make use of the boundary entropy

F (u, w) =

{
w ∧ 1

2
− u, u ∈ [0, w ∧ 1

2
),

0, u ∈ [w ∧ 1
2
, 1],

(8.13)

The corresponding boundary entropy flux is

Q(u, w) =

{
J(w ∧ 1

2
)− J(u), u ∈ [0, w ∧ 1

2
),

0, u ∈ [w ∧ 1
2
, 1].

(8.14)

As Q(u, w) ≥ 0 for all (u, w) but Q̄(x, t) = 0, we conclude that νx,t concentrates on the
zero set of Q, which is [ρ(t) ∧ 1/2, 1]. Similarly, choose

F (u, w) =

{
0, u ∈ [0, w ∨ 1

2
],

u− w ∨ 1
2
, u ∈ (w ∨ 1

2
, 1],

Q(u, w) =

{
0, u ∈ [0, w ∨ 1

2
],

J(u)− J(w ∨ 1
2
), u ∈ (w ∨ 1

2
, 1].

As Q(u, w) ≤ 0. the condition Q̄(x, t) = 0 then implies that νx,t concentrates on [0, ρ(t) ∨
1/2]. Hence, νx,t(Λt) = 1 almost surely on ΣT , where

Λt =

[
ρ(t) ∧ 1

2
, ρ(t) ∨ 1

2

]
. (8.15)

Finally, to close the proof we choose

F (u, w) = |u− w|, Q(u, w) = sign(u− w)(J(u)− J(w)). (8.16)

If ρ(t) < 1/2, Q(u, ρ(t)) ≥ 0 on Λt = [ρ(t), 1/2] and the only zero point is ρ(t), so that
Q̄ = 0 implies ν(x,t) = δρ(t). If ρ(t) ≥ 1/2 the argument is similar. �

Before proceeding to prove Proposition 8.1 and 8.2, we prepare some notations. For each
N ≥ 1,

BN :=

[
0,

2K + 1

2N

)
∪
[
1− 2K − 1

2N
, 1

]
. (8.17)
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Observe that for G : ΣT → R and w : [0, T ] → R,

G(ρN (x, t), w(t)) =

N−K∑

i=K+1

χi,N(x)G(η̂i,K , w(t)) +G(0, w(t))1BN
(x).

For ψ : ΣT → R and each i = 1, ..., N ,

ψ̄i(t) := N

∫ 1

0

ψ(x, t)χi,N(x)dx, ψ̃i(t) := ψ

(
i

N
− 1

2N
, t

)
. (8.18)

We shall fix some boundary Lax entropy–entropy flux pair (F,Q) and write XN instead of
XF

N for short. We also omit the arbitrary initial measure µN,0 and denote the expectation
with respect to {η(t); t ∈ [0, T ]} by EN .

8.2. Proof of Proposition 8.1. Throughout this part we assume the conditions in Propo-
sition 8.1.

Lemma 8.3. XN satisfies the following decomposition:

XN(ψ,w) =MN (ψ,w)−
4∑

i=1

A
(i)
N (ψ,w), (8.19)

where MN is a square integrable martingale and A
(i)
N are given by

A
(1)
N :=

∫ T

0

N−K∑

i=K+1

ψ̄i∂uF (η̂i,K , w)∇∗
[
Ĵi,K − J(η̂i,K)

]
dt,

A
(2)
N :=

1− p̄

2

∫ T

0

N−K∑

i=K+1

ψ̄i∂uF (η̂i,K , w)∆η̂i,K dt,

A
(3)
N :=

1

N

∫ T

0

N−K∑

i=K+1

ψ̄i

(
ε
(1)
i,K + ε

(2)
i,K

)
dt−

∫ T

0

∫

BN

Q(0, w)∂xψ dx dt,

A
(4)
N :=

∫ T

0

N−K∑

i=K+1

[
ψ̄i∂uQ(η̂i,K , w)∇∗η̂i,K −∇ψ̃iQ(η̂i,K , w)

]
dt.

(8.20)

Here ε
(1)
i,K and ε

(2)
i,K are respectively given by

ε
(1)
i,K :=

N

2

i+K−1∑

j=i−K

(
p̄ηi +

1− p̄

2

)
∂2uF (η̃i,j,K, w)

(
η̂j,j+1
i,K − η̂i,K

)2
,

ε
(2)
i,K := N

[
∇∗J(η̂i,K)− J ′(η̂i,K)∇∗η̂i,K

]
.

(8.21)

where η̃i,j,K is some intermediate value between η̂i,K and η̂j,j+1
i,K .
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Proof. We omit in this proof the dependence on w in (F,Q). By applying an integration
by parts in time and recalling the fact that ρN is independent of η1 and ηN , (8.5) can be
rewritten as

XN(ψ,w) = XL,N(ψ,w) + QN(ψ,w) +MN (ψ,w), (8.22)

where XL,N , QN are respectively given by

XL,N(ψ,w) := −
∫ T

0

N−K∑

i=K+1

ψ̄iLexc[F (η̂i,K)] dt,

QN(ψ,w) :=

∫ T

0

N−K∑

i=K+1

Q(η̂i,K)∇ψ̃i dt+

∫ T

0

∫

BN

Q(0)∂xψ dx dt,

and MN is a square integrable martingale. For each i,

Lexc[F (η̂i,K)] =
i+K−1∑

j=i−K

(
p̄ηi +

1− p̄

2

)[
F
(
η̂j,j+1
i,K

)
− F (η̂i,K)

]

= ∂uF (η̂i,K)Lexc[η̂i,K ] +N−1ε
(1)
i,K

= ∂uF (η̂i,K)

(
∇∗Ĵi,K +

1− p̄

2
∆η̂i,K

)
+N−1ε

(1)
i,K,

where the last equality follows from (7.17). Moreover,

∇∗Ĵi,K = ∇∗
[
Ĵi,K − J(η̂i,K)

]
+ J ′(η̂i,K)∇∗η̂i,K +N−1ε

(2)
i,K . (8.23)

Therefore, we can rewrite XL,N as

XL,N(ψ,w) =− A
(1)
N − A

(2)
N − 1

N

∫ T

0

N−K∑

i=K+1

ψ̄i

(
ε
(1)
i,K + ε

(2)
i,K

)
dt

−
∫ T

0

N−K∑

i=K+1

ψ̄i∂uF (η̂i,K)J
′(η̂i.K)∇∗η̂i,K dt.

The conclusion follows from (8.22) and that J ′∂uF = ∂uQ. �

To show Proposition 8.1, we evaluate each term in the right-hand side of (8.19). We
begin with the martingale MN .

Lemma 8.4. If a > 0, limN→∞ EN [|MN (ψ, ρ)|] = 0.
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Proof. By Dynkin’s formula, the quadratic variance of MN satisfies that

〈MN〉 =
∫ T

0

N−1∑

j=1

cj,j+1

N1+a

[
N−K∑

i=K+1

ψ̄i

(
F (η̂j,j+1

i,K )− F (η̂i,K)
)
]2

dt

≤ 1

N1+a

∫ T

0

N−1∑

j=1

[
N−K∑

i=K+1

ψ̄i∂uF (η̃i,j,K)
(
η̂j,j+1
i,K − η̂i,K

)
]2

dt,

where η̃i,j,K is some intermediate value between η̂i,K and η̂j,j+1
i,K . Direct computation shows

that

η̂j,j+1
i,K = η̂i,K − sgn

(
i− j − 1

2

) ∇ηj
K2

, j −K + 1 ≤ i ≤ j +K (8.24)

and otherwise η̂j,j+1
i,K − η̂i,K = 0. Hence, define the block

Λj := {K + 1 ≤ i ≤ N −K} ∩ {j −K + 1 ≤ i ≤ j +K}. (8.25)

Since |Λj| ≤ 2K, we obtain from (8.24) the estimate

〈MN〉 ≤
|∂uF |2∞
N1+a

∫ T

0

N−1∑

j=1

∑

i∈Λj

ψ̄2
i

∑

i∈Λj

(
η̂j,j+1
i,K − η̂i,K

)2
dt

≤ C|∂uF |2∞
N1+aK3

∫ T

0

N−1∑

j=1

∑

i∈Λz

ψ̄2
i dt =

C|∂uF |2∞
NaK2

‖ψ‖2L2(ΣT ).

(8.26)

The conclusion then follows from Doob’s inequality. �

To estimate the other terms appeared in the right-hand side of (8.19), we make use of
the following block estimates.

Proposition 8.5 (One-block estimate). If ρ̄− = ρ̄+ for t ∈ [0, T ],

EN

[∫ T

0

N−K∑

i=K

[
Ĵi,K − J(η̂i,K)

]2
dt

]
≤ C

(
K2

Na
+
N

K

)
, (8.27)

with some constant C independent of K or N .

Proposition 8.6 (Two-block estimate). If ρ̄− = ρ̄+ for t ∈ [0, T ],

EN

[∫ T

0

N−K∑

i=K

(∇η̂i,K)2dt
]
≤ C

(
1

Na
+

N

K3

)
, (8.28)

with some constant C independent of K or N .
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Proposition 8.7 (Boundary estimates). If ρ̄−(t) = ρ̄+(t) = ρ(t),

EN

[∫ T

0

∣∣η̂K+1,K − ρ(t)
∣∣2dt

]
≤ C

(
K

Na
+

1

K

)
,

EN

[∫ T

0

∣∣η̂N−K+1,K − ρ(t)
∣∣2dt

]
≤ C

(
K

Na
+

1

K

)
,

EN

[∫ T

0

∣∣∇η̂K+1,K

∣∣2dt
]
≤ C

(
1

NaK
+

1

K3

)
,

EN

[∫ T

0

∣∣∇η̂N−K+1,K

∣∣2dt
]
≤ C

(
1

NaK
+

1

K3

)
,

with some constant C independent of K or N .

Remark 6. From Proposition 6.1 and the proofs below, the factor N−a in the upper bounds
in Proposition 8.5–8.7 is available only when ρ̄− = ρ̄+. Without this condition we obtain
these estimates with N−a replaced by 1.

Proof of Proposition 8.5. In Proposition 7.1 take f = η0, k = 2K − 1 and

w2K−1,j =
K − |j −K + 1|

K2
, j = 0, 1, . . . , 2K − 2.

Then 〈f〉(ρ) = ρ and for 2K − 1 ≤ i ≤ N ,

Fi,k =

2K−2∑

j=0

w2K−1,j(ηi−j − η̄i,2K−1) = η̂i−K+1,K − η̄i,2K−1.

Therefore, we obtain some constant C such that
∫ N−K+1∑

i=K

[η̂i,K − η̄i+K−1,2K−1)
2 dµN,t ≤ C

[
K2

Dexc,N(t) +
N

K

]
. (8.29)

Similarly, take f = p̄η0(1 − η1), k = 2K − 1 and the same vector wk as above, we obtain
that 〈f〉(ρ) = J(ρ) and

∫ N−K∑

i=K

(
Ĵi,K − J(η̄i+K,2K)

)2

dµN,t ≤ C ′

[
K2

Dexc,N(t) +
N

K

]
. (8.30)

Note that for each i, |η̄i+K,2K − η̄i+K−1,2K−1| ≤ K−1, so the conclusion follows from (8.29),
(8.30) and Proposition 6.1. �

Proof of Proposition 8.6. Observe that for all i = K, K + 1, ..., N −K,

∇η̂i,K =
η̄x+K,K − η̄x,K

K
. (8.31)

In Proposition 7.1 take f = η0, k = 2K and

w2K,j =
1

K2
sgn

(
K − j − 1

2

)
, j = 0, 1, . . . , 2K − 1,
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we have Fi,k = ∇η̂i,K . The result follows again from Proposition 6.1. �

Proof of Proposition 8.7. In Proposition 7.2 take k = 2K + 1 and

w2K+1 =

(
0,

1

K2
, . . . ,

K

K2
=

1

K
,
K − 1

K2
, . . . , 0

)
.

The first inequality then follows from Proposition 6.1. The other estimates can be proved
in the same way. �

Now we bound each term in (8.20) under the condition ρ̄− = ρ̄+.

Lemma 8.8. Assume a > 1/2 and (8.6), then

lim
N→∞

EN

[∣∣A(1)
N (ψ, ρ)

∣∣2
]
= 0. (8.32)

Proof. By summation by parts and the intermediate value theorem,

A
(1)
N (ψ, ρ) = A

(1,1)
N + A

(1,2)
N + A

(1,−)
N − A

(1,+)
N ,

A
(1,1)
N =

∫ T

0

N−K∑

i=K+1

∇ψ̄i∂uF
(
η̂i+1,K , ρ(t)

) [
Ĵi,K − J(η̂i,K)

]
dt,

A
(1,2)
N =

∫ T

0

N−K∑

i=K+1

ψ̄i∂
2
uF

(
ξx,K, ρ(t)

)
∇η̂i,K

[
Ĵi,K − J(η̂i,K)

]
dt,

A
(1,−)
N =

∫ T

0

ψ̄K+1∂uF
(
η̂K+1,K, ρ(t)

) [
ĴK,K − J(η̂K,K)

]
dt,

A
(1,+)
N =

∫ T

0

ψ̄N−K+1∂uF
(
η̂N−K+1,K, ρ(t)

) [
ĴN−K,K − J(η̂N−K,K)

]
dt,

where ξi,K is some intermediate value between η̂i,K and η̂x+1,K . By the one-block estimate
in Proposition 8.5,

EN

[∣∣A(1,1)
N

∣∣2
]
≤ C|∂xψ|2∞|∂uF |2∞

(
K2

N1+a
+

1

K

)
. (8.33)

For A
(1,2)
N , using Cauchy–Schwarz inequality, Proposition 8.5 and 8.6,

EN

[∣∣A(1,2)
N

∣∣2
]
≤ C|ψ|2∞|∂2uF |2∞

(
K2

N2a
+
N2

K4

)
. (8.34)

For the boundary terms, recall that ∂uF (u, w)|u=w ≡ 0, then

∂uF (η̂K+1,K, ρ(t)) = ∂2uF (η−, ρ(t))
(
η̂K+1,K − ρ(t)

)
, (8.35)

for some intermediate value η− between η̂K+1,K and ρ(t). Hence,

EN

[∣∣A(1,−)
N

∣∣2
]
≤ C|ψ|2∞|∂2uF |2∞

(
K

Na
+

1

K

)
, (8.36)
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thanks to Proposition 8.7 and the boundedness of J . The right boundary term A
(1,+)
N can

be estimated similarly. When N → ∞, all the upper bounds vanish since K is chosen to
satisfy (8.6). �

Lemma 8.9. Assume a > 0 and K ≫ N1/3, then

lim
N→∞

EN

[∣∣A(2)
N (ψ, ρ)

∣∣
]
= 0. (8.37)

Proof. Similarly to A
(1)
N , with some ξi,K between η̂i,K and η̂i+1,K ,

A
(2)
N (ψ, ρ) = A

(2,1)
N + A

(2,2)
N + A

(2,−)
N + A

(2,+)
N ,

A
(2,1)
N = −1 − p̄

2

∫ T

0

N−K∑

i=K

∇ψ̄i∂uF
(
η̂i+1,K , ρ(t)

)
∇η̂i,K dt,

A
(2,2)
N = −1 − p̄

2

∫ T

0

N−K∑

i=K

ψ̄i∂
2
uF

(
ξx,K , ρ(t)

)(
∇η̂i,K

)2
dt,

A
(2,−)
N = −1− p̄

2

∫ T

0

ψ̄K∂uF
(
η̂K,K , ρ(t)

)
∇η̂K+1,K dt,

A
(2,+)
N =

1− p̄

2

∫ T

0

ψ̄N−K+1∂uF
(
η̂N−K+1,K, ρ(t)

)
∇η̂N−K,K dt.

Due to the two-block estimate in Proposition 8.6,

EN

[∣∣A(2,1)
N

∣∣2 +
∣∣A(2,2)

N

∣∣
]
≤ C(ψ, F )

(
1

N
+ 1

)(
1

Na
+

N

K3

)
. (8.38)

For the boundary terms, similarly to (8.35),

EN

[∣∣A(2,−)
N

∣∣2
]
≤ C|ψ|2∞|∂2uF |2∞ × EN

[∫ T

0

(
∇η̂K+1,K

)2
dt

]

× EN

[∫ T

0

(
η̂K,K − ρ(t)

)2
dt

]

≤ C ′|ψ|2∞|∂2uF |2∞
(

1

N2a
+

1

K4

)
,

where the last line follows from Proposition 8.7. The last term is bounded similarly.
Observe that all bounds vanish under our conditions. �

Lemma 8.10. Assume a > 1/2 and (8.6), then A
(3)
N (ψ, ρ) → 0 uniformly.

Proof. Observe from (8.21) and (8.24) that for any i,

lim
N→∞

∣∣∣ε(1)i,K

∣∣∣ ≤ lim
N→∞

CN |∂2uF |∞
K3

= 0. (8.39)
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Meanwhile, noting that J = p̄ρ(1− ρ) and J ′′ = −2p̄, we obtain that
∣∣∣ε(2)i,K

∣∣∣ = N
∣∣J ′(cη̂i−1,K + (1− c)η̂i,K)− J ′(η̂i,K)

∣∣∣∣∇∗η̂i,K
∣∣

= 2Np̄(1− c)
∣∣∇∗η̂i,K

∣∣2 ≤ CN

K2
,

with some ξ ∈ [0, 1]. Therefore, they vanish uniformly as N → ∞.
We are left with the integral with respect to BN . Recall the definition of BN in (8.17)

and note that it has Lebesgue measure 2K/N , so that
∣∣∣∣
∫ T

0

∫

BN

Q(0, ρ)∂xψ dx dt

∣∣∣∣ ≤
C|∂xψ|∞|Q|∞K

N
. (8.40)

Thus, this term also vanishes uniformly as N → ∞. �

Lemma 8.11. Assume a > 1/2 and (8.6), then

lim
N→∞

EN

[∣∣A(4)
N (ψ, ρ)

∣∣
]
= 0. (8.41)

Proof. Similarly to A
(2)
N , with some ξi,K between η̂i,K and η̂i+1,K ,

A
(4)
N (ψ, ρ) = A

(4,1)
N + A

(4,2)
N + A

(4,bd)
N ,

A
(4,1)
N =

∫ T

0

N−K∑

i=K+1

(
ψ̄i − ψ̃i

)
∂uQ

(
η̂i,K , ρ(t)

)
∇∗η̂i,K dt,

A
(4,2)
N = −

∫ T

0

N−K∑

i=K+1

ψ̃i

[
∂uQ(η̂i,K , ρ)∇∗η̂i,K −∇∗Q(η̂i,K , ρ)

]
dt,

A
(4,bd)
N =

∫ T

0

ψ̃K+1Q
(
η̂K,K , ρ(t)

)
dt−

∫ T

0

ψ̃N−K+1Q
(
η̂N−K,K , ρ(t)

)
dt.

For A
(4,1)
N , direct calculation shows that |ψ̄i − ψ̃i| ≤ C|∂xψ|∞N−1, so that |A(4,1)

N | ≤
C(ψ,Q)K−1. Meanwhile, |A(4,2)

N | ≤ C(ψ,Q)NK−2 because
∣∣∂uQ(η̂i,K , ρ)∇∗η̂i,K −∇∗Q(η̂i,K , ρ)

∣∣ ≤ |∂2uQ|∞
∣∣∇∗η̂i,K

∣∣2. (8.42)

Therefore, these two terms vanish uniformly if K2 ≫ N .
We are left with the boundary term. Recalling that Q(w,w) ≡ 0 for all w ∈ R, we have

|Q(η̂K,K, ρ(t))| ≤ |∂uQ|∞|η̂K,K − ρ(t)|. Since similar estimate holds for Q(η̂N−K,K , ρ(t)), in
view of Proposition 8.7,

EN

[∣∣A(4,bd)
N

∣∣2
]
≤ C|ψ|2∞|∂uQ|2∞

(
K

Na
+

1

K

)
.

The desired estimate then follows from (8.6). �
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8.3. Proof of Proposition 8.2. Throughout this part we assume the conditions in Propo-
sition 8.2. The proof goes parallel to the previous case. We here emphasize the difference.

By the same computation as in Lemma 8.3, XN satisfies the decomposition formula

(8.19), where A
(i)
N , i = 1, 3, 4 and ε

(2)
i,K are given in (8.20), (8.21),

A
(2)
N :=

σN − p̄

2

∫ T

0

N−K∑

i=K+1

ψ̄i∂uF (η̂i,K, w)∆η̂i,K dt,

ε
(1)
i,K :=

N

2

i+K−1∑

j=i−K

(
p̄ηi +

σN − p̄

2

)
∂2uF (η̃i,j,K, w)

(
η̂j,j+1
i,K − η̂i,K

)2
,

with proper intermediate value η̃i,j,K between η̂i,K and η̂j,j+1
i,K .

To continue, we make use of the following block estimates. Observe that they differ
from those obtained for Liggett boundaries in Proposition 8.5–8.7, since the Dirichlet forms
possess different upper bounds here (Proposition 6.2).

Proposition 8.12 (One-block estimate). If ρ− = ρ+ for t ∈ [0, T ],

EN

[∫ T

0

N−K∑

i=K

[
Ĵi,K − J(η̂i,K)

]2
dt

]
≤ C

[
K2

σN

(
1

Na
+

1

σ̃N

)
+
N

K

]
, (8.43)

with some constant C independent of K or N .

Proposition 8.13 (Two-block estimate). If ρ− = ρ+ for t ∈ [0, T ],

EN

[∫ T

0

N−K∑

i=K

(∇η̂i,K)2dt
]
≤ C

[
1

σN

(
1

Na
+

1

σ̃N

)
+

N

K3

]
, (8.44)

with some constant C independent of K or N .

Proposition 8.14 (Boundary estimates). If ρ−(t) = ρ+(t) = ρ(t),

EN

[∫ T

0

∣∣η̂K+1,K − ρ(t)
∣∣2dt

]
≤ C

(
K

σN
+

1

σ̃N

)(
1

Na
+

1

σ̃N

)
+
C

K
,

EN

[∫ T

0

∣∣η̂N−K+1,K − ρ(t)
∣∣2dt

]
≤ C

(
K

σN
+

1

σ̃N

)(
1

Na
+

1

σ̃N

)
+
C

K
,

EN

[∫ T

0

∣∣∇η̂K+1,K

∣∣2dt
]
≤ C

K2

(
K

σN
+

1

σ̃N

)(
1

Na
+

1

σ̃N

)
+

C

K3
,

EN

[∫ T

0

∣∣∇η̂N−K+1,K

∣∣2dt
]
≤ C

K2

(
K

σN
+

1

σ̃N

)(
1

Na
+

1

σ̃N

)
+

C

K3
,

with some constant C independent of K or N .

The proofs are omitted as they are same as the Liggett case. The only modification is
to estimate the Dirichlet forms by Proposition 6.2 instead of Proposition 6.1.

To show Proposition 8.2, it suffices to evaluate each term in the decomposition (8.19).
We sketch the proof in two lemmas.
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Lemma 8.15. Assume (3.17), (3.20) and (8.8), then

lim
N→∞

EN

[
|MN |+

∣∣A(1)
N

∣∣2 +
∣∣A(3)

N

∣∣2 +
∣∣A(4)

N

∣∣2
]
= 0. (8.45)

Proof. For the martingale MN , its quadratic variance 〈MN 〉 reads

1

N1+a

∫ T

0

N−1∑

j=1

(
p̄ηi +

σN − p̄

2

)[
N−K∑

i=K+1

ψ̄i

(
F (η̂j,j+1

i,K )− F (η̂i,K)
)
]2

dt. (8.46)

Using (8.24) and the same argument as in proving Lemma 8.4,

〈MN〉 ≤
C(σN + p̄)

N1+aK

∫ T

0

N−1∑

j=1

ψ̄2
i dt =

C(σN + p̄)

NaK2
‖ψ‖2L2(ΣT ). (8.47)

The other terms are estimated by Proposition 8.12–8.14. For A
(1)
N , applying the argument

we have used in proving Lemma 8.8,

EN

[∣∣A(1)
N

∣∣2
]
≤ C1(ψ, F )

[
K2

NσN

(
1

Na
+

1

σ̃N

)
+

1

K

]

+ C2(ψ, F )

[
K

σN

(
1

Na
+

1

σ̃N

)
+

N

K2

]2

+ C3(ψ, F )

[(
K

σN
+

1

σ̃N

)(
1

Na
+

1

σ̃N

)
+

1

K

]
.

For A
(3)
N , it vanishes uniformly as

∣∣∣ε(1)i,K

∣∣∣ ≤ CNσN
K3

,
∣∣∣ε(2)i,K

∣∣∣ ≤ CN

K2
,

∣∣∣∣
∫

BN

dx

∣∣∣∣ ≤
CK

N
. (8.48)

For A
(4)
N , we can argue similarly to Lemma 8.11 to obtain that

EN

[∣∣A(4)
N

∣∣2
]
≤ C(ψ,Q)

(
1

K
+

N

K2

)

+ C ′(ψ,Q)

[(
K

σN
+

1

σ̃N

)(
1

Na
+

1

σ̃N

)
+

1

K

]
.

Thanks to (3.17) and (8.8), we have as N → ∞,

K

N
= o(1),

K

σN

(
1

Na
+

1

σ̃N

)
= o(1),

N

K2
= o(1),

NσN
K3

= o(1), (8.49)

which assures the vanishing of all the bounds above. �

Lemma 8.16. Assume (3.17), (3.20) and (8.8), then

lim
N→∞

EN

[∣∣A(2)
N (ψ, ρ)

∣∣
]
= 0. (8.50)
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Proof. With some ξi,K between η̂i,K and η̂i+1,K we have

A
(2)
N (ψ, ρ) = A

(2,1)
N + A

(2,2)
N + A

(2,−)
N + A

(2,+)
N ,

A
(2,1)
N = −σN − p̄

2

∫ T

0

N−K∑

i=K

∇ψ̄i∂uF
(
η̂i+1,K , ρ(t)

)
∇η̂i,K dt,

A
(2,2)
N = −σN − p̄

2

∫ T

0

N−K∑

i=K

ψ̄i∂
2
uF

(
ξx,K , ρ(t)

)(
∇η̂i,K

)2
dt,

A
(2,−)
N = −σN − p̄

2

∫ T

0

ψ̄K∂uF
(
η̂K,K , ρ(t)

)
∇η̂K+1,K dt,

A
(2,+)
N =

σN − p̄

2

∫ T

0

ψ̄N−K+1∂uF
(
η̂N−K+1,K, ρ(t)

)
∇η̂N−K,K dt.

Due to Proposition 8.13 and the assumption σN ≪ N ,

EN

[∣∣A(2,1)
N

∣∣2 +
∣∣A(2,2)

N

∣∣
]
≤ C(ψ, F )

(
σ2
N

N
+ σN

)(
1

NaσN
+

1

σ̃NσN
+

N

K3

)

≤ C ′(ψ, F )

(
1

Na
+

1

σ̃N
+
NσN
K3

)
.

We are left with the boundary terms. Similarly to (8.35),

EN

[∣∣A(2,−)
N

∣∣2
]
≤ C(ψ, F )× σ2

N × EN

[∫ T

0

(
∇η̂K,K

)2
dt

]

× EN

[∫ T

0

(
η̂K,K − ρ−(t)

)2
dt

]

≤ C ′(ψ, F )

[(
1 +

σN
Kσ̃N

)(
1

Na
+

1

σ̃N

)
+
σN
K2

]2
,

where the last line follows from Proposition 8.14. As we choose σN ≪ K ≪ N and σ̃N ≫ 1,
this term is bounded from above by

EN

[∣∣A(2,−)
N

∣∣2
]
≤ C ′′(ψ, F )

(
1

N2a
+

1

σ̃2
N

+
N2

K4

)
. (8.51)

The right boundary term is estimated similarly. Finally, the proof is completed by noting
that all the bounds vanish as N → ∞ under our conditions. �

Remark 7. From the proof above we see that the expectation of A
(2)
N does not vanish if

ρ− 6= ρ+. Hence, it is responsible for the non-zero entropy production associated to the
solution of (3.2) and (3.3) in this case.
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9. Coupling

In this section we prove Lemma 4.2 and Proposition 4.3 by a coupling argument. To
establish the result for both Liggett and reversible boundaries, we use the time dependent
entry/exit rate functions (α, β, γ, δ) = (α, β, γ, δ)(t). For Liggett boundaries, these are
given by

(α, β, γ, δ) =

(
1 + p̄

2
ρ̄−,

1 + p̄

2
(1− ρ̄+),

1− p̄

2
(1− ρ̄−),

1− p̄

2
ρ̄+

)
, (9.1)

while for reversible boundaries,

(α, β, γ, δ) = σ̃N
(
λ̄−ρ−, λ̄+(1− ρ+), λ̄−(1− ρ−), λ̄+ρ+

)
. (9.2)

Recall that we have defined in (4.3) the limit distribution Q and in (4.5) the current J (t),
both associated to the boundary rates (α, β, γ, δ).

Lemma 9.1. If α ≤ α∗, γ ≥ γ∗ on [0, t], then for each y ∈ [0, 1],

EQ
[
νx,s([y, 1])

]
≤ EQ∗

[
νx,s([y, 1])

]
, (x, s) -a.s. in Σt, (9.3)

where Q∗ is the Young measure corresponding to (α∗, β, γ∗, δ). The same result holds for
(α, β∗, γ, δ∗) such that β ≥ β∗ and δ ≤ δ∗ on [0, t].

Lemma 9.2. Suppose that α ≤ α∗, γ ≥ γ∗ on [0, t]. By J∗(s) we denote the current
associated to the boundary rates (α∗, β, γ∗, δ), then

∫ t

0

J (s)ds ≤
∫ t

0

J∗(s)ds. (9.4)

On the other hand, if β ≥ β∗, δ ≤ δ∗ on [0, t], then
∫ t

0

J (s)ds ≥
∫ t

0

J∗(s)ds, (9.5)

where J∗(s) is the current associated to (α, β∗, γ, δ∗).

The proofs of Lemma 9.1 and 9.2 are postponed to the end of this section. We here first
show Lemma 4.2 and Proposition 4.3 based on them.

Proof of Lemma 4.2. In Liggett case, let ρ′(t) = max{ρ̄−(t), ρ̄+(t)} for t ∈ [0, T ]. Define
(α∗, β∗, γ∗, δ∗) through (9.1) with ρ̄− = ρ̄+ = ρ′, then α ≤ α∗, γ ≥ γ∗, β ≥ β∗, δ ≤ δ∗.
Denote by Q∗ the limit point associated to (α∗, β∗, γ∗, δ∗). Lemma 4.1 yields that Q∗

concentrates on the Young measure νx,t = δρ∗(t). Applying Lemma 9.1,

EQ
[
νx,t([y, 1])

]
≤ EQ∗

[
νx,t([y, 1])

]
= 1{y ≤ ρ′(t)}. (9.6)

With similar argument, EQ[νx,t([y, 1])] ≥ 1{y ≤ min(ρ̄−, ρ̄+)}. Hence, the proof of Lemma
4.2 is completed for Liggett boundaries. The reversible case can be proved in exactly the
same way. �
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Proof of Proposition 4.3. As before we prove only the Liggett case. Suppose that ρ̄−(t) ≤
ρ̄+(t) for t ∈ [0, T ] and let ρ∗(t) ∈ [ρ̄−(t), ρ̄+(t)] such that

J(ρ∗(t)) = inf
{
J(t); ρ ∈ [ρ̄−(t), ρ̄+(t)]

}
. (9.7)

Observe that ρ∗ is not unique when ρ̄− + ρ̄+ = 1. In view of (4.6) and Lemma 4.2,
J (t) ≥ J(ρ∗(t)). Meanwhile, define (α∗, β∗, γ∗, δ∗) through (9.1) with ρ̄− = ρ̄+ = ρ∗. Since
α ≤ α∗, γ ≥ γ∗, β ≤ β∗, δ ≥ δ∗, thanks to Lemma 9.2 and 4.1,

∫ T

0

J (t)dt ≤
∫ T

0

J∗(t)dt =

∫ T

0

J(ρ∗(t))dt. (9.8)

Therefore,
∫
J (t)dt =

∫
J(ρ∗(t))dt and (4.9) then follows. The other criteria (4.8) is proved

similarly. �

Both Lemma 9.1 and Lemma 9.2 are consequences of the so-called standard coupling
for simple exclusion process. To construct the coupling, define Ω̄N := {ξ = η ⊕ η′; ηi ≤
η′i, ∀ i = 1, . . . , N}. For ξ ∈ Ω̄N , let

ξ1,+ := η1,+ ⊕ (η′)1,+, ξ1,− := η1,− ⊕ (η′)1,−,

ξN,+ := ηN,+ ⊕ (η′)N,+, ξN,− := ηN,− ⊕ (η′)N,−,

ξN,∗ := ηN,− ⊕ (η′)N,+, ξx,x+1 := ηi,i+1 ⊕ (η′)i,i+1,

where for η ∈ ΩN , η
1,± are ηN,± are obtained through

η1,+ := (1, η2, . . . , ηN ), η1,− := (0, η2, . . . , ηN),

ηN,+ := (η1, . . . , ηN−1, 1), ηN,− := (η1, . . . , ηN−1, 0).

Note ξ1,±, ξN,±, ξN,∗ and ξi,i+1 all belong to Ω̄N .
Fix some N ≥ 2 and without loss of generality take λ0 = 1. Let (α, β, γ, δ) and

(α, β, γ, δ∗) be two groups of boundary rates, such that δ(s) ≤ δ∗(s) for 0 ≤ s ≤ t.
Define the Markov generator L̄N,s on Ω̄N as

L̄N,s := L̄
(1)
N,s + L̄

(2)
N,s + L̄

(3)
N,s + L̄

(4)
N,s, (9.9)

where for any f defined on Ω̄N ,

L̄
(1)
N,sf =

N−1∑

i=1

(
pη′i(1− ηi+1) + (1− p)η′i+1(1− ηi)

)(
f(ξi,i+1)− f(ξ)

)

L̄
(2)
N,sf = α(s)(1− η1)

(
f(ξ1,+)− f(ξ)

)
+ γ(s)η′1

(
f(ξ1,−)− f(ξ)

)

L̄
(3)
N,sf = δ(s)(1− ηN)

(
f(ξN,+)− f(ξ)

)
+ β(s)η′N

(
f(ξN,−)− f(ξ)

)

L̄
(4)
N,sf =

(
δ∗(s)− δ(s)

)
(1 + ηN − η′N )

(
f(ξN,∗)− f(ξ)

)
.

Denote by ξ = ξ(s) the Markov process generated by L̄N,s. Observe that ξ couples the
processes associated respectively to (α, β, γ, δ) and (α, β, γ, δ∗). Indeed, if f is a function
on Ω̄N such that f(η ⊕ η′) = g(η), it is not hard to verify that L̄N,tf(η ⊕ η′) = LN,tg(η).
Similarly, L̄N,tf(η ⊕ η′) = L′

N,tg(η
′) if f(η ⊕ η′) = g(η′).
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Proof of Lemma 9.1. We prove here for β = β∗, δ ≤ δ∗. The other cases are similar. In
the coupled process ξ = η ⊕ η′, ηi(t) ≤ η′i(t), so that pointwisely,

∫∫

ΣT

f(x, t)g(ζN(x, t))dx dt ≤
∫∫

ΣT

f(x, t)g(ζ ′N(x, t))dx dt (9.10)

for positive function f ∈ C(ΣT ) and increasing function g ∈ C([0, 1]). By subtracting
subsequence and taking the limit N → ∞,

EQ

[∫∫

ΣT

f(x, t)dx dt

∫ 1

0

gdνx,t

]
≤ EQ∗

[∫∫

ΣT

f(x, t)dx dt

∫ 1

0

gdνx,t

]
.

As f is an arbitrary continuous positive function,

EQ

[∫ 1

0

gdνx,t

]
≤ EQ∗

[∫ 1

0

gdνx,t

]
, (x, t) -a.s. (9.11)

The conclusion follows since we can approximate the indicator function 1[y,1] by a sequence
of continuous increasing functions. �

Proof of Lemma 9.2. We prove here (4.9) with β = β∗, δ ≤ δ∗. For the coupled process
ξ = η⊕η′, let η∆i = η′i−ηi be the second class particle process. Recall the counting process
h = h+ − h− defined for η(·) in (5.3)–(5.4). We define similar counting process h′, h′± and
h∆, h∆± for η′(·) and η∆(·), respectively. Observe that h∆+(0, s) ≡ 0 for 0 ≤ s ≤ t and

h′(i, t)− h(i, t) = h∆(i, t), 0 ≤ i ≤ N. (9.12)

For any η ∈ ΩN , let ξ(0) = η ⊕ η, which means that θi(0) = 0 for all i. By summing up
(9.12) and noting that in θ particles can enter only from the right,

N∑

i=0

h′(i, s)−
N∑

i=0

h(i, s) =

N∑

i=0

h∆(i, s) ≤ 0, ∀s ∈ [0, t]. (9.13)

From the definition of J (s) in (4.5),

∫ t

0

J (s)ds = lim
N→∞

∫ t

0

1

N

N∑

i=0

E
η(0)
N [ji,i+1(s)]ds

= lim
N→∞

1

N2+a

N∑

i=0

E
η(0)
N [h(i, t)]

≥ lim
N→∞

1

N2+a

N∑

i=0

E
η(0)
N [h′(i, t)] =

∫ t

0

J∗(s)ds.

The other cases follow from similar arguments. �
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Appendix A. Appendix: Logarithmic Sobolev inequalities

In this appendix we fix a box of length k. For ρ ∈ (0, 1), let νρ be the product Bernoulli
measure on Ωk = {0, 1}K with density ρ. For h = 0, 1, ..., k, let νρ(η|h) = ν̃(η|h) be the
uniform distribution on

Ωk,h :=

{
η ∈ Ωk

∣∣∣∣
k∑

i=1

= h

}
,

and ν̄ρ(h) be the Binomial distribution B(k, ρ).
The log-Sobolev inequality for the simple exclusion yields that ([15]) there exists a uni-

versal constant CLS such that

∑

η∈Ωk,h

f(η) log f(η)ν̃(η|h) ≤ CLSk
2

2

∑

η∈Ωk,h

k−1∑

i=1

(√
f(ηi,i+1)−

√
f(η)

)2

ν̃(η|h). (A.1)

for any f ≥ 0 on Ωk,h such that
∑

η∈Ωk,h
f ν̃(η|h) = 1..

In the following we expand (A.1) to a log-Sobolev inequality associated to the product
measure νρ with boundaries. The result is necessary for the boundary block estimates in
Section 8.2 and 8.3.

Proposition A.1. There exists constants CLS and Cρ such that

∑

η∈Ωk

f(η) log f(η)νρ(η) ≤
CLSk

2

2

∑

η∈Ωk

k−1∑

i=1

(√
f(ηi,i+1)−

√
f(η)

)2

νρ(η)

+
Cρk

2

∑

η∈Ωk

ρ1−η1(1− ρ)η1
(√

f(η1)−
√
f(η)

)2

νρ(η).

(A.2)

for any f ≥ 0 on Ωk such that
∑

η∈Ωk
fνρ = 1.

Proof. In the following proof we define

f̄(h) :=
∑

η∈Ωk,h

f ν̃(η|h), f(η|h) := f(η)

f̄(h)

for η ∈ Ωk,h and g =
√
f , ḡ =

√
f̄ , g(η|h) =

√
f(η|h). Observe that

∑

η

f log fνρ =
k∑

h=0

f̄(h)ν̄ρ(h)
∑

η∈Ωk,h

f(η|h) log f(η|h)ν̃(η|h)

+

k∑

h=0

f̄(h) log f̄(h)ν̄ρ(h).

(A.3)
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By (A.1) the first term on the RHS of (A.3) is bounded by

CLSk
2

2

k∑

h=0

f̄(h)ν̄ρ(h)
∑

η∈Ωk,h

k−1∑

i=1

(
g(ηi,i+1|h)− g(η|h)

)2
ν̃(η|h)

=
CLSk

2

2

∑

η∈Ωk

k−1∑

i=1

(
g(ηi,i+1)− g(η)

)2
νρ(η).

(A.4)

The second term on the RHS of (A.3) can be written and bounded by the log-Sobolev
inequality for the dynamics where in each site particles are created and destroyed with
intensities ρ and 1 − ρ. Since this is a product dynamics, the log-Sobolev constant is
uniform in k. This gives

∑

η∈Ωk

f̄(ξ(η)) log f(ξ(η))νρ(η)

≤ Cρ

∑

η∈Ωk

k−1∑

i=1

ρ1−ηi(1− ρ)ηi
[
ḡ(ξ(ηi))− ḡ(ξ(η))

]2
νρ(η),

(A.5)

where ξ(η) =
∑k

i=1 ηi. Notice that, denoting T1,if(η) = f(η1,i) and recalling that νρ(η) =∏
i νρ(ηi) =

∏
i(1− ρ)1−ηiρηi ,

T1,i

[
νρ((η

i)i)
[
ḡ(ξ(ηi)− ḡ(ξ(η))

]2]
= νρ((η

1)1)
[
ḡ(ξ(η1)− ḡ(ξ(η))

]2
. (A.6)

This implies, using Jensen inequality,

∑

η∈Ωk

k−1∑

i=1

ρ1−ηi(1− ρ)ηi
[
ḡ(ξ(ηi))− ḡ(ξ(η))

]2
νρ(η)

= k
∑

η∈Ωk

ρ1−η1(1− ρ)η1
[
ḡ(ξ(η1)− ḡ(ξ(η))

]2
νρ(η)

≤ k
∑

η∈Ωk

ρ1−η1(1− ρ)η1
(
g(η1)− g(η)

)2
νρ(η),

(A.7)

which completes the proof. �
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