
HAL Id: hal-03177176
https://hal.science/hal-03177176v1

Submitted on 26 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

IOPE: Interactive Ontology Population and Enrichment
guided by ontological constraint (Technical Report)

Shadi Baghernezhad-Tabasi, Marie-Christine Rousset, Loïc Druette, Fabrice
Jouanot, Celine Meurger

To cite this version:
Shadi Baghernezhad-Tabasi, Marie-Christine Rousset, Loïc Druette, Fabrice Jouanot, Celine Meurger.
IOPE: Interactive Ontology Population and Enrichment guided by ontological constraint (Technical
Report). [Research Report] LIG (Laboratoire informatique de Grenoble). 2021. �hal-03177176�

https://hal.science/hal-03177176v1
https://hal.archives-ouvertes.fr

IOPE: Interactive Ontology Population and
Enrichment guided by ontological constraint

(Technical Report)

Shadi Baghernezhad-Tabasi1, Marie-Christine Rousset1,3, Löıc Druette2,
Fabrice Jouanot1, and Celine Meurger2

1 Université Grenoble Alpes, CNRS, LIG, Grenoble, France
firstname.lastname@univ-grenoble-alpes.fr

2 Université Claude Bernard Lyon 1, SAMSEI, Lyon, France
firstname.lastname@@univ-lyon1.fr

3 Institut Universitaire de France, Paris, France

Abstract. In this paper, we focus on the construction of specialized on-
tologies that capture skills of experienced experts in a particular domain
with the goal to share them with a larger community of trainee or less
experienced experts in the domain. Our main contribution is the auto-
matic construction of a Graphical User Interface (GUI), built from the
ontological constraints of a given ontology, as the support of the con-
trolled update process of the considered ontology. In an extensive set of
experiments we discussed the effectiveness and efficiency of our proposed
approach in a specialized medical domain.

Keywords: Ontology update · Graphical User Interface

1 Introduction

Ontologies on the Web are the backbone of many information systems that re-
quire access to structured knowledge. Recently, with the arrival of Linked Open
Data sources like DBpedia [5], and by Google’s announcement of the Google
Knowledge Graph in 2012, graph-based representations of general world knowl-
edge have drawn a lot of attention again. There are various ways of build-
ing such knowledge graphs. They can be curated like Cyc [13], edited by the
crowd like Freebase [20] and Wikidata [24], or extracted from large-scale, semi-
structured open data or web knowledge bases such as Wikipedia, DBpedia [5]
and YAGO [19]. By their very nature, real world ontologies are dynamic ar-
tifacts that evolve both in their structure (the data model) and their content
(instances). Ontology enrichment is the task of extending an existing data model
of an ontology with additional concepts and semantic relations, while ontology
population is the task of adding new instances of concepts to the ontology.

In this paper, we focus on the construction of specialized ontologies that
capture skills of experienced experts in a particular domain with the goal to
share them with a larger community of trainee or less experienced experts in the

2 Baghernezhad-Tabasi et al.

domain. This is the case in particular for domains related to pedagogy because
teaching objectives are hard to formalize and teaching methods are difficult to
share within a common and standardized referential. For instance, OntoSAM-
SEI [6] captures how to design teaching units for learning skills by simulation in
Medicine. OntoSAMSEI has been bootstrapped based on the reported expertise
of a group of pioneer trainers who have documented simulation learning units
of various types that they have introduced in their teaching. As a result, 30
different types of simulation sessions have been formalized in OntoSAMSEI by
making explicit for each of them the target audience, the aimed objectives, the
prerequisites, the resources required (human, consumable, simulator, material),
as well as the evaluation mode of prerequisites and objectives. The resulting
ontology is a hierarchy of classes and of properties enriched by ontological con-
straints on the properties and on the classes that convey the constraints that
will have to be fulfilled by their future subclasses, subproperties or instances.

In this paper, we show how to exploit such ontological constraints as a source
of guidance for (possibly less experienced) teachers willing to design their own
simulation sessions. Our main contribution is the automatic construction of a
Graphical User Interface (GUI), built from a given ontology, as the support of
the controlled update process of the considered ontology.

The paper is organized as follows. Section 2 describes the formal background
of the ontologies that we consider. Section 3 describes our methodology for the
automatic construction of a GUI guided by an input ontology, and its usage
for guiding its update (population and enrichment). Section 4 summarizes the
evaluation conducted to assess the added value of the GUI for ontology updating.
Section 5 is dedicated to related works while Section 6 concludes the paper.

2 Formal background

An ontology is a shared formalization of a a domain of interest based on a
structured vocabulary made of classes, properties and instances. Ontological
constraints are first declared on classes and properties to constrain their formal
semantics to fit with their actual meaning in the domain of application. Then,
factual statements can be added to describe specific entities as instances of classes
with specific values for some properties. The ontological constraints are defined
in RDFS4 and OWL5. Following the Semantic Web [4] and Linked Data [10]
standards, both the ontological constraints and the factual statements can be
uniformly described in the RDF format6.

2.1 RDF format

Let I, L and B be countably infinite pairwise disjoint sets representing respec-
tively IRIs, literals and blank nodes. IRIs (Internationalized Resource Identifiers)

4 Resource Description Framework Schema (RDFS): https://www.w3.org/TR/

rdf-schema
5 Web Ontology Language (OWL): https://www.w3.org/TR/owl-features
6 Resource Description Framework (RDF): https://www.w3.org/TR/rdf11-concepts

IOPE: Interactive ontology population and enrichment ... 3

are standard identifiers used for denoting any Web resource involved in RDF
statements. A literal is a string that represents a specific value for some proper-
ties. A blank node represents an anonymous resource (either a literal or an IRI)
that can have a local identifier such as :b1.

An ontology in RDF is a set of (factual or ontological) statements expressed
as triples that form a graph whose nodes are IRIS, blank nodes or literals.

Definition 1. RDF graph An RDF graph is a finite set of RDF triples (s, p, o),
where (s, p, o) ∈ (I ∪B)× I × (I ∪ L ∪B).

To simplify IRIs, RDF allows defining namespaces within an RDF graph.
A namespace is an abbreviation of the prefix of a IRI. In particular, prede-
fined relations are declared in RDF, RDFS or OWL namespaces like rdf:type,
rdfs:subClassOf, rdfs:domain, rdfs:range,owl:hasValue or owl:minCardinality for
specifying ontological constraints in a standard way.

2.2 Ontological constraints

The ontological constraints that we consider are RDFS constraints and some
OWL constraints.

There are 4 types of RDFS constraints:

– Class specialization constraints denoted by triples of the form (C rdfs:subClassOf

D) specify that a class C is a subclass of a class D, i.e., that every instance i

of C is an instance of D: ∀ i ((i rdf:type C) ⇒ (i rdf:type D))
– Property specialization constraints denoted by triples of the form (p

rdfs:subPropertyOf q) specify that a property p is more specific than a
property q, i.e.:
∀ i ∀ j ((i p j) ⇒ (i q j))

– Domain constraints for a property denoted by triples of the form (p

rdfs:domain C) specify that every subject of a property p is an instance of
the class C, i.e.:
∀ i ∀ j ((i p j) ⇒ (i rdf:type C))

– Range constraints for a property denoted by triples of the form (p

rdfs:range D) specify that every object of a property p is an instance of
the class D, i.e.:
∀ i ∀ j ((i p j) ⇒ (j rdf:type D))

Figure 1 displays part of the specialization hierarchies of properties and
classes resulting from RDFS ontological constraints declared in OntoSamsei.

We consider 3 additional types of constraints that are expressed as OWL
restrictions on properties for classes:

– Value restrictions, that we will denote by (p value v) ∈ Constraints(C),
specify that every instance i instance of the class C must be related by the
property p to the value v:

∀i((i rdf:type C)⇒ (i p v))

4 Baghernezhad-Tabasi et al.

samsei:simula6onSessionAudience
samsei:correspondToTraining
samsei:evalua6on

samsei:objec6veEvalua6on
samsei:prerequisiteEvalua6on
samsei:trainingSessionEvalua6on
samsei:cer6fica6onEvalua6on

samsei:hasTutor

samsei:objec6ves
samsei:prerequisites

samsei:knowHowToAchieve
samsei:toLearn
samsei:toObserve
samsei:toValidate

samsei:resources
samsei:equipmentSupplies
samsei:humanResources
samsei:simulatorRessources

samsei:risks
samsei:displayable
samsei:dura6on

samsei:dura6onOfSimula6onSession
samsei:numberOfLearner

samsei:numberOfLearnerPerSimula6onSe
samsei:isValida6ng
samsei:quan6fiable
samsei:forAcademicYear

Proper6es Classes

owl:Thing
samsei:Acquaintance
samsei:Content
samsei:Gesture
samsei:Procedure
samsei:Resource

samsei:Risk
samsei:TeachingUnit

samsei:Simula6onLearningUnit
samsei:ArterialPuncture
samsei:Echocardiography

samsei:Hygiene
samsei:Intuba6on
samsei:lumbar puncture
samsei:PortACathPlacement
samsei:S6tch

samsei:InfusionSupplies
samsei:Suc6onEquipment
samsei:Protec6veSupplies
samsei:Syringe

samsei:Material

samsei:HumanResources
samsei:Simulator

samsei:Forma6on
samsei:NurseTraining
samsei:MedecinTraining
samsei:MidwifeTraining

samsei:equipmentSupplies min 1 samsei:Protec6veSupplies

samsei:equipmentSupplies value samsei:sterile_compress

samsei:simulatorRessources min 1 samsei:VenousChestSimulatorManikin

Classes

owl:Thing
samsei:Acquaintance
samsei:Gesture
samsei:Procedure
samsei:Resource

samsei:Risk
samsei:TeachingUnit

samsei:Simula6onLearningUnit
samsei:Echocardiography
samsei:Intuba6on

samsei:PortACathPlacement
samsei:S6tch

samsei:InfusionSupplies
samsei:Suc6onEquipment
samsei:Protec6veSupplies

samsei:Material

samsei:HumanResources
samsei:Simulator

samsei:Forma6on
samsei:NurseTraining
samsei:MedecinTraining
samsei:MidwifeTraining

samsei:ElectronicSimulator

samsei:OrganicSimulator
samsei:Synthe6cSimulator

samsei:Par6alManikin

samsei:En6reManikin

Venous-access chest simulator manikin

samsei:VenousChestSimulatorManikin
samsei:KneeManikin

samsei:simula6onSessionAudience
samsei:correspondToTraining
samsei:evalua6on

samsei:objec6veEvalua6on
samsei:prerequisiteEvalua6on
samsei:trainingSessionEvalua6on
samsei:cer6fica6onEvalua6on

samsei:hasTutor

samsei:objec6ves
samsei:prerequisites

samsei:knowHowToAchieve
samsei:toLearn
samsei:toObserve
samsei:toValidate

samsei:resources
samsei:equipmentSupplies
samsei:humanResources
samsei:simulatorRessources

samsei:risks

samsei:displayable
samsei:dura6on

samsei:dura6onOfSimula6onSession

samsei:numberOfLearner
samsei:numberOfLearnerPerSimula6onSe

samsei:isValida6ng
samsei:quan6fiable
samsei:forAcademicYear

Proper6es

samsei:simula6onEquipmentRisk
samsei:physicalRisks

Fig. 1. A part of hierarchy of properties and classes in OntoSamsei

– List of values restriction, that we will denote by (p rdf:Bag [v1, v2,

..., vn]) ∈ Constraints(C), ...
– Cardinality restrictions, that we will denote by (p min k D) ∈ Constraints(C)

, specify that every instance i instance of the class C must be related by the
property p to at least k distinct instances of the class D:

∀i((i rdf:type C)⇒ ∃o1, ... ok(
∧

i,j∈[1..k]

oi 6= oj

∧
∧

i∈[1..k]

(oi rdf:type D) ∧ (i p oi))

These two types of restrictions can be written in RDF using several RDF
triples. The RDF graph corresponding of the shortcut notation (C: p value

v) is made of the following RDF triples:

(C rdfs:subClassof _:b1) (_:b1 rdf:type owl:Restriction)

(_:b1 owl:onProperty p) (_:b1 owl:hasValue v)

Similarly, the RDF graph corresponding of the shortcut notation (C: p min

k D) is made of the following RDF triples:

(C rdfs:subClassof _:b2) (_:b2 rdf:type owl:Restriction)

(_:b2 owl:onProperty p) (_:b2 owl:onClass D)

(_:b2 owl:minCardinality k)

IOPE: Interactive ontology population and enrichment ... 5

2.3 Illustrative example

For illustration purposes, we visualize some of the ontological constraints defined
in OntoSamsei ontology.

We show the RDF graphs corresponding to three OWL ontological con-
straints declared for the class samsei:PortACathPlacement which is a partic-
ular type of simulation learning unit that trains students to place a a port or
a catheter. These constraints are declared for two properties describing the re-
quired resources for conducting this type of simulation-based training session,
namely samsei:equipmentSupplies and samsei:simulatorResources which
are specializations of the property samsei:resources.

Figure 2 shows the RDF graphs associated to two constraints declared in the
ontology on the property samsei:equipmentSupplies for the class samsei:Port-
ACathPlacement, which is a particular type of simulation learning unit that
trains students to place a a port or a catheter.

The constraint graph in Figure 2(a) expresses that samsei:sterilecompress
(which is an instance of Bandage material) is declared in the ontology as a
mandatory value of the property samsei:equipmentSupplies.

The constraint graph depicted in Figure 2(b) expresses as an additional
constraint that at least one equipment of type samsei:protectiveSupplies

is mandatory for simulating a placement of a port or a catheter.

samsei:ressourcesowl:Restric4on samsei:sterile_compress

samsei:equipment
Supplies

owl:onPropertyRdfs:subClassOf

rdf:type owl:hasValue

Sterile compress

rdf:type rdfs:label

rdfs:label

samsei:PortA
CathPlacement

Bandage material samsei:BandageMaterial

rdfs:subPropertyOf

Equipment and
supplies

Resources

rdfs:label

rdfs:label

samsei:ressources

owl:Restric4on

samsei:equipment
Supplies

owl:onPropertyRdfs:subClassOf

rdf:type

owl:onClass

Protec:ve supplies

rdfs:label

samsei:PortA
CathPlacement

rdfs:subPropertyOf

Equipment and
supplies

Resources

rdfs:label

rdfs:labelsamsei:Protec4veSupplies

1

owl:minCardinality

Simula4on
training session
of Port-a-cath

placement

rdfs:label

rdfs:label

Simula4on
training session
of Port-a-cath

placement

(a) hasValue constraint: samsei:equipmentSupplies value samsei:sterile_compress

(b) Cardinality constraint: samsei:equipmentSupplies min 1 samsei:Protec4veSupplies samsei:ressources

owl:Restric4on

owl:onPropertyRdfs:subClassOf

rdf:type

rdfs:label

samsei:PortA
CathPlacement

rdfs:subPropertyOf

Simulator-type
resources

Resources

rdfs:label

rdfs:label

1

owl:minCardinality

samsei:VenousChest
SimulatorManikin

Venous-access chest simulator manikin

samsei:simulator
Ressources

rdfs:label
owl:onClass

Simula4on
training session
of Port-a-cath

placement

Cardinality constraint: samsei:simulatorRessources min 1 samsei:VenousChestSimulatorManikin

example constraints

Fig. 2. Two constraint graphs (a) and (b) on the property equipmentSupplies for the
class PortACathPlacement

Figure 3 shows the constraint graph associated to a cardinality constraint de-
clared in the ontology for the property samsei:simulatorResources. The con-
straint expresses that at least one simulator of type samsei:VenousChestSimulator-
Manikin is mandatory to train students to place a port or a catheter on the right
spot of the patient body.

6 Baghernezhad-Tabasi et al.

samsei:ressourcesowl:Restric4on samsei:sterile_compress

samsei:equipment
Supplies

owl:onPropertyRdfs:subClassOf

rdf:type owl:hasValue

Sterile compress

rdf:type rdfs:label

rdfs:label

samsei:PortA
CathPlacement

Bandage material samsei:BandageMaterial

rdfs:subPropertyOf

Equipment and
supplies

Resources

rdfs:label

rdfs:label

samsei:ressources

owl:Restric4on

samsei:equipment
Supplies

owl:onPropertyRdfs:subClassOf

rdf:type

owl:onClass

Protec:ve supplies

rdfs:label

samsei:PortA
CathPlacement

rdfs:subPropertyOf

Equipment and
supplies

Resources

rdfs:label

rdfs:labelsamsei:Protec4veSupplies

1

owl:minCardinality

Simula4on
training session
of Port-a-cath

placement

rdfs:label

rdfs:label

Simula4on
training session
of Port-a-cath

placement

(a) hasValue constraint: samsei:equipmentSupplies value samsei:sterile_compress

(b) Cardinality constraint: samsei:equipmentSupplies min 1 samsei:Protec4veSupplies samsei:ressources

owl:Restric4on

owl:onPropertyRdfs:subClassOf

rdf:type

rdfs:label

samsei:PortA
CathPlacement

rdfs:subPropertyOf

Simulator-type
resources

Resources

rdfs:label

rdfs:label

1

owl:minCardinality

samsei:VenousChest
SimulatorManikin

Venous-access chest simulator manikin

samsei:simulator
Ressources

rdfs:label
owl:onClass

Simula4on
training session
of Port-a-cath

placement

Cardinality constraint: samsei:simulatorRessources min 1 samsei:VenousChestSimulatorManikin

example constraints

Fig. 3. A constraint graph on the property simulatorResources for the class
PortACathPlacement

3 Interactive Ontology Update

In this section, we describe the interactive approach that we propose for enriching
and populating ontologies by involving users in the process. The users that we
target are domain experts that are not familiar with ontology formalization
and engineering. In particular, they may not know the RDF format and the
machinery underlying the different components of an ontology.

3.1 Methodology Overview

Our approach consists in transposing the RDF data and the ontological con-
straints of a given domain ontology into a graphical user interface (GUI) named
IOPE GUI. It functions as a guidance for domain experts to easily explore the
ontology and update it through interactive graphical widgets. The input entered
by domain experts through the IOPE GUI are transformed into RDF triples
that must be verified by an expert in ontology engineering before being added
effectively in the domain ontology. Figure 4 is an overview of our interactive
IOPE system.

INPUT

RDF Data Ontological Constraints Updated RDF
Data

Updated Ontological
 Constraints

(1) Decode

User Interface Interac.ons

(4) Encode

D
om

ai
n

ex
pe

rt

(2) Guide (3) Fill

IOPE GUI

Updates

O
nt

ol
og

y
ex

pe
rt

(5) Validate

OUTPUT

(6) Enrich
 and

populate

Fig. 4. Overview of IOPE workflow

The IOPE GUI is made of pre-filled Web pages that are automatically gener-
ated to reflect the domain ontological constraints. For doing so, we have followed
a declarative approach based on a set of mapping rules from constraint graphs

IOPE: Interactive ontology population and enrichment ... 7

to Web form templates described using a Web form ontology called IOPE Web
that we have developed by adapting RAUL [9]. The IOPE Web ontology is de-
scribed in Section 3.2, while the mapping rules are described in Section 3.3. The
data binding mechanism needed to bind the user input in the pre-filled Web
pages to RDF data is performed by a set of binding rules that are described in
Section 3.5.

3.2 The IOPE Web ontology

The IOPE Web ontology is shown in Figure 5. It is organized around 4 main
classes IOPE:Page, IOPE:PageLayout, IOPE:Container and IOPE:Widget re-
lated by properties for modeling that Web pages are structured in containers
with widgets and are associated with page layouts. The interaction with users

IOPE:Page

IOPE:Container

IOPE:Widget

IOPE:contain IOPE:partOf

IOPE:hasWidget

IOPE:LABEL IOPE:TREE VIEW IOPE:CHECKBOXIOPE:LISTBOX IOPE:TEXTBOX

rdfs:subClassOf

xsd:boolean
IOPE:hidden

IOPE:mul.ple

xsd:string

IOPE:name

xsd:boolean

IOPE:required

IOPE:onClick

xsd:string

IOPE:placeholder

xsd:boolean

IOPE:readonly

xsd:string IOPE:list
 owl:Thing

∪
∪

xsd:string xsd:int ∪

IOPE:value

IOPE:label
IOPE:dataSource

xsd:string

IOPE:PageLayout IOPE:has

xsd:boolean

xsd:boolean

IOPE:HasValue
InstanceContainer

IOPE:HasValue
ClassContainer

IOPE:Cardinality
ClassContainer

IOPE:Cardinality
InstanceContainer

IOPE:Range
ClassContainer

IOPE:Range
InstanceContainer

IOPE:FreeEntry
Container

IOPE:Alterna:ve
ValuesContainer

rd
fs
:su

bC
la
ss
O
f

Fig. 5. The IOPE Web form ontology

can be done using several types of widgets such as label , tree-view, list
box, text box and check box, which leads to as many corresponding sub-
classes of the main class IOPE:Widget. They inherit of the standard properties
for widgets that are described in IOPE Web as datatype properties such as
IOPE:name, :placeholder, IOPE:dataSource, and others. In our setting, the
IOPE:dataSource property is used to assign an input data from a domain ontol-
ogy that can be of type xsd:string, simple or nested list IOPE:list, or owl:Thing.
The IOPE:value property is filled by the output value of the widget provided by
a user. The boolean properties IOPE:hidden, IOPE:multiple, IOPE:readonly
and IOPE:onclick are similar to HTML form attributes. A widget with the
IOPE:required property as ‘True’ will be rendered by a red asterisk to specify
that the widget must be filled by the user.

Widgets can be grouped in a Web page within containers that can be nested
using the IOPE:partOf property. In our setting, different types of specific con-
tainers are declared as subclasses of IOPE:Container to express that the differ-

8 Baghernezhad-Tabasi et al.

ent types of ontological constraints in our setting will be rendered in a specific
manner in the IOPE GUI.

The ordering of the widget elements in the containers and in the pages are
defined within a page layout. Figure 6 shows the page layout that is built at the
initialization process of building the IOPE GUI for a given focus class F chosen
by the user as her class of interest.

3.3 Ontology-based GUI Construction

Input: The input of GUI construction is a domain ontology in which the onto-
logical constraints has been automatically saturated by a reasoning algorithm.
Given the ontological constraints that we consider (see Section 2), the saturation
of the constraints can be done iteratively as follows by a breadth-first traversal
of the class hierarchy:

– For each class D, compute the set Constraints(D) of all constraints holding
for D by adding to the set of ontological constraints declared for D the
ontological constraints declared for its super-classes.

– Simplify the resulting set of ontological constraints by deleting redundant
ones. A constraint (p min k c) is redundant in Constraint(D) if there
exists in Constraint(D) a constraint (sp min k’ sc) such that (sp = p or
sp is a sub-property of p) and (k′ ≥ k) and (sc = c or sc is a sub-class
of c). For example, the (inherited) constraint (samsei:equipmentSupplies
min 1 samsei:Material) is redundant with the (declared) constraint (sam-
sei:equipmentSupplies min 2 samsei:Syringe) within a given set of constraints.

Initialization: The GUI construction is initiated with the choice of one class
of interest in the ontology by the user, which is called the focus class F in the
following.

The set Constraints(F) of the ontological constraints associated to the focus
class F is decomposed in groups Group(P, F), where P is a property involved
in atleast one constraint of Constraints(F), defined as follows:

– If there is no constraint in Constraints(F) involving sub-properties of P ,
then Group(P, F) is simply the subset of all the constraints involving P in
Constraints(F) , constraints involving the properties that are sub-properties
of P .

– Else Group(P, F) is the subset of all the constraints involving sub-properties
of P .

In the remaining of the paper, for avoiding the description of too many
particular cases, we focus on the latter more general case.

For the focus class F , and for each group of properties Group(P, F), an
instance of a Web page is created with the page layout depicted in Figure 6, which
sets up the organization within the page of the specific containers dedicated to
the different types of constraints on sub-properties p of P for which there exists
constraints in Group(P, F).

IOPE: Interactive ontology population and enrichment ... 9

28

HasValueInstanceContainer HasValueClassContainer

HasValueContainer p

LABEL LABEL

CardinalityInstanceContainerCardinalityClass
Container

CardinalityContainer p,C

TEXT BOX

LIST BOX
TREE VIEW

LABEL

FreeEntryContainer p

TEXT BOX

ConstraintsContainer p

Group(P,F) Container

Focus class F Container
LABEL

LABEL

LABEL

Other :

Or

HasValueInstanceContainer HasValueClassContainer

HasValueContainer p

LABEL LABEL

CardinalityInstanceContainerCardinalityClass
Container

CardinalityContainer p,C

TEXT BOX

LIST BOX
TREE VIEW

LABEL

ConstraintsContainer p

Group(P,F) Container

Focus class F Container
LABEL

LABEL

LABEL

Or

AlternaDveValuesContainer p
CHECKBOX

FreeEntryContainer p
TEXT BOXOther :

ConstraintsContainer p

Group(P,F) Container

Focus class F Container
LABEL

LABEL

LABEL

FreeEntryContainer p
TEXT BOXOther :

RangeClassContainer

RangeContainer p,C

TREE VIEW Or LABEL

RangeInstanceContainer

LIST BOX TEXT BOX

RangeClassContainer
RangeContainer p,C

TREE VIEW

Or

LABEL

RangeInstanceContainer

LIST BOX

TEXT BOX

CardinalityInstanceContainerCardinalityClass
Container

CardinalityContainer p,C

TEXT BOX

LIST BOX

HasValueInstanceContainer HasValueClassContainer

HasValueContainer p

LABEL LABEL

AlternaDveValuesContainer p
CHECKBOX

TREE VIEW

Or

LABEL

Fig. 6. Empty web page prepared for the rendering of constraints of the focus class F
for each property p which is a specialization of a same property P .

The following instances of the IOPE:Container class are created with their
position in the empty Web page shown in Figure 6:

– IOPE:FocusClass F Container denotes the main container of the created
Web page

– IOPE:Group(P, F)Container denotes the container that will group all the
containers corresponding to the constraints holding for F on sub-properties
of P

– IOPE:ConstraintContainer p denotes the container that will display the re-
strictions of F on property p

– IOPE:HasValueContainer p denotes the container that will display the has-
Value restrictions of F on property p

– IOPE:AlternativeValuesContainer p denotes the container that will display
the list of values restrictions of F on property p

– IOPE:CardinalityContainter p, C denotes the container that will display the
cardinality restrictions of F on property p and class C.

– IOPE:FreeEntryContainer p denotes the container for the user to add new
classes involved in cardinality restrictions for the property p.

Then we employ a set of mapping rules which map components of each
ontological constraints to the visual widgets in the prepared containers in order
to fill each Web page guided by the ontology.

Mapping rules: Each mapping rule has a constraint graph pattern in its left-
hand side and a IOPE Web graph pattern in its right-hand side. The constraint
graph pattern expresses a particular ontological constraint on the focus class.
If it can be instantiated in the input data, the corresponding instantiation of
IOPE Web graph pattern in the right-hand side is a specification using the

10 Baghernezhad-Tabasi et al.

vocabulary of the IOPE Web ontology of how to fill the corresponding widgets
and containers in the corresponding Web page.

The mapping rules can be triggered in a forward-chaining manner and in any
order. The resulting IOPE Web graph provides the full RDF specification of the
pre-filled Web pages that have to be created for the focus class chosen by the
user. The effective implementation of the mapping rules is implemented using
RDFLib and JSON libraries in Python 2.7.16 language. Our code is publicly
available in [1].

For clarity purpose, we will describe the mapping rules in their instantiated
form where the left-hand side is a constraint graph in which F , p and P denote
respectively a given focus class F , a particular property p sub-property of a given
property P for which a certain number of ontological constraints are grouped in
Group(P, F).

The set of mapping rules are given in Annex. We just provide here one
mapping rule of each type.

1. Mapping rule for a group of constraints of a focus class F on sub-
properties of a property P. This mapping rule is presented in Figure 7.
It applies for each group Group(P, F) of properties, and each property p in

FocusClass & P

owl:Restric:on

rdf:type

rdfs:subClassOf

F_label

p

P

rdfs:label

rdfs:label

owl:on
Property

rdfs:subPropertyOf

rdfs:label

p_label

P_label

P_label

IOPE:Group(P,F)Container

IOPE:has
widget

IOPE:LABELrdf:type

IOPE:data
Source

F_label

IOPE:FocusClass F Container

IOPE:has
widget

IOPE:LABEL

IOPE:data
Source

rdf:type

p_label

IOPE:ConstraintContainer p

IOPE:has
widget

IOPE:LABELrdf:type

IOPE:data
Source

IOPE:Container

rdf:type

rdf:type

rdf:type

IOPE:CardinalityContainer p,C

rdf:type

rdf:type

rdf:type

IOPE:FreeEntryContainer p

IOPE:HasValueContainer p

IOPE:TEXTBOXrdf:type

F

Provide the label(s)
(separated by a comma)

IOPE:has
widget

Other
IOPE:label

IOPE:placeholder

rdf:type IOPE:Alterna:veValues
Container p

P_label

IOPE:Group(P,F)Container

IOPE:has
widget

IOPE:LABELrdf:type

IOPE:data
Source

F_label

IOPE:FocusClass F Container

IOPE:has
widget

IOPE:LABEL

IOPE:data
Source

rdf:type

p_label

IOPE:ConstraintContainer p

IOPE:has
widget

IOPE:LABELrdf:type

IOPE:data
Source

IOPE:Container

IOPE:CardinalityContainer p,C

IOPE:FreeEntryContainer p

IOPE:TEXTBOXrdf:type

Provide the label(s)
(separated by a comma)

IOPE:has
widget

Other
IOPE:label

IOPE:placeholder

rdf:type

rdf:type

rdf:type

rdf:type rdf:type

rdf:type

rdf:type

owl:Restric:on

rdf:type

rdfs:subClassOf

F_label

p

P

rdfs:label

rdfs:label

owl:on
Property

rdfs:subPropertyOf

rdfs:label

p_label

P_label

F

IOPE:RangeContainer p,C

IOPE:Alterna:veValues
Container p

rdf:type

IOPE:HasValueContainer p

Fig. 7. Mapping rule for a group of constraints of a focus class F on sub-properties p
of a property P

Group(P, F) as follows:

– the specific containers denoted respectively

• IOPE:FocusClass F Container
• IOPE:Group(P, F)Container
• IOPE:ConstraintContainer p

are declared as instances of the IOPE:Container class, and widgets of of
type IOPE:LABEL are created as blank nodes with the property IOPE:
dataSource filled by the corresponding label of F , P and p in the domain
ontology.

IOPE: Interactive ontology population and enrichment ... 11

– The specific container denoted IOPE:FreeEntryContainer p is declared
as an instance of the IOPE:Container class, and an associated widget of
type IOPE:TEXTBOX is created as a blank node, to collect user future
inputs concerning the property p.

– The three specific containers denoted respectively:

• IOPE:HasValueContainer p
• IOPE:AlternativeValuesContainer p
• IOPE:CardinalityContainter p, C

are just declared as instances of the IOPE:Container class. The widgets
associated to them will be created by other mapping rules described in
the following.

2. Mapping rule for a value restriction (p value v) such that v rdf:type

C . This mapping rule is described in Figure 8. The specific container IOPE:Has-
ValueContainer p is decomposed in two sub-containers defined as blank
nodes whose types are IOPE:HasValueInstanceContainer and IOPE:HasValue-
ClassContainer respectively. For these two sub-containers, widgets of type
IOPE:LABEL are created as blank nodes with the property IOPE:dataSource
filled by the corresponding labels of v and its class C in the domain ontology.
The property IOPE:required is set to ‘True’ for the first widget to refer that
the value v is mandatory for the property p.

owl:Restric:on v

p
owl:onProperty

Rdfs:subClassOf |
owl:equivalentClass

rdf:type
owl:hasValue

v_label

rdf:type rdfs:label

Has value

C_label rdfs:label

Focus class

C

IOPE:HasValueContainer p

IOPE:HasValueInstance
Container

IOPE:HasValueClass
Container

IOPE:partOf
v_label@xsd:String

C_label@xsd:String

True

IOPE:partOf

IOPE:has
widget

IOPE:has
widget

IOPE:required

IOPE:LABELrdf:type

IOPE:LABELrdf:type

IOPE:data
source

IOPE:data
source

rdf:type IOPE:Container

owl:Restric:on v

p
owl:onPropertyrdfs:subClassOf

rdf:type
owl:hasValue

v_label

rdf:type rdfs:label

C_label rdfs:label

F

C

IOPE:HasValueContainer p

IOPE:partOf

v_label

C_label

True

IOPE:partOf

IOPE:has
widget

IOPE:has
widget

IOPE:LABELrdf:type

IOPE:LABELrdf:type

IOPE:HasValue
InstanceContainer

IOPE:HasValue
ClassContainer

rdf:type

rdf:type

IOPE:dataSourceIOPE:required

IOPE:dataSource

Fig. 8. Mapping rule for a value restriction (p value v) where v rdf:type C

3. Mapping rule for a cardinality restriction (p min n C) such that
n > 0, C has a hierarchy of sub-classes and a list of instances in the
domain ontology. This mapping rule is described in Figure 9.
The specific container IOPE:CardinalyContainer p, C is decomposed in two
sub-containers defined as blank nodes whose respective types are:

– IOPE:CardinalityClassContainer
– and IOPE:CardinalityInstanceContainer

For the former, a widget of type IOPE:TREEVIEW is created as a blank
node with the property IOPE:dataSource filled by the the tree view of
subClasses(C), which denotes the hierarchy of the sub-classes of C in the
domain ontology enriched with an additional item Other C. The property
IOPE:required and IOPE:onClick are set to ‘True’ for this widget to indicate
that entering at least one value is mandatory for the property p and that

12 Baghernezhad-Tabasi et al.
cardinality model 1 and 2- V 3

owl:Restric:on

p
owl:onPropertyrdfs:subClassOf

rdf:type

C

owl:onClass

n

owl:minCardinality |
owl:maxCardinality

IOPE:partOf
True

IOPE:partOf

IOPE:has
widget

IOPE:has
widget

IOPE:TREE VIEWrdf:type

IOPE:LISTBOXrdf:type

subClasses(C)

instances(C)True

IOPE:hidden

IOPE:TEXTBOXrdf:type

IOPE:has
widget

IOPE:CardinalityContainer p,C

True

IOPE:requiredIOPE:onClick

subClasses(C) = list of all subclasses of class C and its other C
instances(C) = list of all instances of class C

IOPE:Cardinality
ClassContainer

IOPE:Cardinality
InstanceContainer

rdf:type

rdf:type

IOPE:dataSource

IOPE:dataSource

owl:Restric:on

p
owl:onPropertyrdfs:subClassOf

rdf:type

C

owl:onClass

n

owl:minCardinality |
owl:maxCardinality

C_label

rdfs:label

 C, without subclasses and instances

IOPE:partOf

IOPE:partOf

IOPE:has
widget

IOPE:has
widget

IOPE:LABELrdf:type

IOPE:TEXTBOXrdf:type

IOPE:CardinalityContainer p,C

True

IOPE:required

IOPE:Cardinality
ClassContainer

IOPE:Cardinality
InstanceContainer

rdf:type

rdf:type

IOPE:dataSource

C_label

F

F

Enter the new item(s)
(separated by a comma).

IOPE:placeholder

Select exis:ng item(s)
or enter new item(s)

IOPE:label

Enter the new item(s) (separated by
a comma) or give a minimal number
of items

IOPE:placeholder

Fig. 9. Mapping rule for a Cardinality constraint where subClasses(C) and instance(C)
are not empty

this widget supports the interaction with users to display interactively the
sub-class hierarchy.
For the latter, a widget of type IOPE:LISTBOX is created as a blank node
with the property IOPE:dataSource filled by the list instances(C) of in-
stances of C , the IOPE:label property set to ‘select existing item(s) or enter
new item(s)’ and the IOPE:hidden property set to True to make the wid-
get invisible until the first interaction of the user through the widget of type
IOPE:TREEVIEW. A widget of type IOPE:TEXTBOX is also created with
the IOPE:placeholder property set to the value ‘Enter the new item(s) (sep-
arated by a comma)’ in order to give users possibility to enter new instances.

3.4 Illustrative example (continued)

Figure 10 shows the IOPE Web graph resulting from triggering the mapping
rules that are applicable to the three constraint graphs displayed in Figures 2
and 3 for the focus class PortACathPlacement.

The blue color denotes the IOPE Web sub-graph generated by triggering the
first mapping rule (Figure 7) instantiated appropriately. The violet IOPE Web
part of the graph is the result of triggering the mapping rule in Figure 8 for the
value restriction (samsei:equipmentSupplies value samsei:sterile compress),
while the red part corresponds to the application of the mapping rule in Figure
9 for the cardinality restriction:
(min 1 samsei:equipmentSupplies samsei:ProtectiveSupplies).
The green part corresponds to the application of a mapping rule given in Annex
that is a variant of the mapping rule in Figure 9 when the class involved in the
cardinality restriction has no sub-class and no instance in the domain ontology,
like it is the case in the OntoSamsei ontology for the samsei:VenousChest-

SimulatorManikin class in the cardinality restriction:
(min 1 samsei:simulatorResources samsei:VenousChestSimulatorManikin)

Figure 11 left shows the resulting pre-filled Web page generated by the HTML
implementation of the IOPE Web specification.

IOPE: Interactive ontology population and enrichment ... 13

Resources

IOPE:Group(samsei:resources, samsei:PortACathPlacement)Container

IOPE:has
widget

IOPE:LABELrdf:type

IOPE:data
Source

Simula:on training session of Port-a-cath placement

IOPE:FocusClass samsei:PortACathPlacement Container

IOPE:has
widget

IOPE:LABELrdf:type

IOPE:Container

rdf:type

rdf:type

IOPE:data
Source

Simulator-type resources

IOPE:ConstraintContainer samsei:simulatorRessources

IOPE:has
widget

IOPE:LABELrdf:type

IOPE:data
Source

rdf:type

rdf:type IOPE:FreeEntryContainer samsei:simulatorRessources

IOPE:has
widget

IOPE:TEXTBOXrdf:type

Provide the label(s)
(separated by a comma)IOPE:placeholder

IOPE:partOf

IOPE:partOf

IOPE:has
widget

IOPE:has
widget

IOPE:LABELrdf:type

IOPE:TEXTBOXrdf:type

True

IOPE:required

IOPE:Cardinality
ClassContainer

IOPE:Cardinality
InstanceContainer

rdf:type

rdf:type

IOPE:dataSource

Venous-access chest simulator manikin

Enter the new item(s) (separated by
a comma) or give a minimal number
of items

IOPE:placeholder

IOPE:CardinalityContainer samsei:simulatorRessources, samsei:VenousChestSimulatorManikinrdf:type

Equipment and supplies

IOPE:ConstraintContainer samsei:equipmentSupplies

IOPE:has
widget

IOPE:LABELrdf:type

IOPE:data
Source

rdf:type

rdf:type

rdf:type

IOPE:FreeEntryContainer samsei:equipmentSupplies

IOPE:HasValueContainer samsei:equipmentSupplies

IOPE:has
widget

IOPE:TEXTBOXrdf:type

Provide the label(s)
(separated by a comma)IOPE:placeholder

IOPE:partOf

Sterile compress

Bandage material

True

IOPE:partOf

IOPE:has
widget

IOPE:has
widget

IOPE:LABELrdf:type

IOPE:LABELrdf:type

IOPE:HasValue
InstanceContainer

IOPE:HasValue
ClassContainer

rdf:type

rdf:type

IOPE:dataSourceIOPE:required

IOPE:dataSource

IOPE:CardinalityContainer samsei:equipmentSupplies, samsei:Protec:veSuppliesrdf:type

IOPE:partOf
True

IOPE:partOf

IOPE:has
widget

IOPE:has
widget

IOPE:TREE VIEWrdf:type

IOPE:LISTBOXrdf:type

subClasses(samsei:
Protec:veSupplies)

instances(samsei:
Protec:veSupplies)

True

IOPE:hidden

IOPE:TEXTBOXrdf:type

IOPE:has
widget

True

IOPE:requiredIOPE:onClick

IOPE:Cardinality
ClassContainer

IOPE:Cardinality
InstanceContainer

rdf:type

rdf:type

IOPE:dataSource

IOPE:dataSource

Select exis:ng
item(s) or enter
new item(s)

IOPE:label

Enter the new item(s)
(separated by a comma).

IOPE:placeholder

example mapping

Fig. 10. Outcome of the application of mapping rules on three constraints examples
(samsei:simulatorResources min 1 samsei:VenousChestSimulatorManikin),
(samsei:equipmentSupplies min 1 samsei:ProtectiveSupplies) and
(samsei:equipmentSupplies value samsei:sterile compress).

Figure 11 right shows the effect of an user interaction through the widget of
type the IOPE:TREEVIEW to select the sub-class DisposableDrape from the
ProtectiveSupplies sub-class hierachy: the instance container corresponding to
the selected sub-class becomes visible in order to allow the user to select an
instance or to enter a new one.

The input entered by the user must be bound to RDF data corresponding
to new instances or new constraints submitted to populate or enrich the domain
ontology. This binding mechanism is based on a set of binding rules that are
triggered on IOPE Web graphs to generate RDF graphs built on the domain
ontology.

3.5 Binding rules

Each binding rule is defined as a diagram with a IOPE Web graph on the left
side and the corresponding generated triples in the form of RDF graph on the
right side.

The first binding rule shown in Figure 12 is triggered when a focus class F
is chosen. This rule creates an instance f of the focus class F .

14 Baghernezhad-Tabasi et al.

middle form

Simple disposal drape
Fenestrated disposal drape

Select exis@ng item(s) or enter
new item(s):

Enter the new item(s) (separeted by
a comma).

SimulaFon training session of Port-a-cath placement

Equipment and supplies: (*)

Other : Provide the label(s) (separated by a comma).

Simple disposal drape
Fenestrated disposal drape

Select exis@ng item(s) or enter
new item(s):

Enter the new item(s) (separeted by
a comma).

Resources

Sterile compress (Bandage material) (*)

Protec@ve supplies (*)

Disposable drape

Simulator-type resources: (*)

Venous-access chest simulator manikin (*) Provide item(s):

Enter the new item(s)
(separeted by a comma) or give
a minimal number of items.

Other : Provide the label(s) (separated by a comma).

Warning! To save the informa/on entered on this page, you must click on "Save".

Save Return to page list

Reusable drape

Other drape

Surgical clothing/shoes

Other protec@ve supplies

Surgical drape

Glove

Surgical mask

Safety glasse

Disposable drape

Reusable drape

Non-sterile glove

Other drape

Other protec@ve supplies

Disposable drape

Safety glasse

Reusable drape

Non-sterile glove

Other drape

Other protec@ve supplies

SimulaFon training session of Port-a-cath placement

Equipment and supplies: (*)

Other : Provide the label(s) (separated by a comma).

Simple disposal drape
Fenestrated disposal drape

Select exis@ng item(s) or enter
new item(s):

Enter the new item(s) (separeted by
a comma).

Resources

Sterile compress (Bandage material) (*)

Protec@ve supplies (*)

Disposable drape

Simulator-type resources: (*)

Venous-access chest simulator manikin (*)

Other : Provide the label(s) (separated by a comma).

Warning! To save the informa/on entered on this page, you must click on "Save".

Save Return to page list

Reusable drape

Other drape

Surgical clothing/shoes

Other protec@ve supplies

Surgical drape

Glove

Surgical mask

Safety glasse

Provide item(s):

Enter the new item(s)
(separeted by a comma) or give
a minimal number of items.

Interac.ons =

Fig. 11. Left: HTML Web page generated from the outcome of the application of
mapping rules on three constraints of section 2.2. Right: HTML Web Page changes
after user interaction by the widgets.

Binding rules-V3

IOPE:partOf

IOPE:partOf

IOPE:has
widget

IOPE:has
widget

IOPE:TREE VIEWrdf:type

IOPE:LISTBOXrdf:type

subClasses(C)

Instances(C)

IOPE:CardinalityContainer p,C

IOPE:Cardinality
ClassContainer

IOPE:Cardinality
InstanceContainer

rdf:type

rdf:type

IOPE:dataSource

D

IOPE:value

L

IOPE:value IOPE:dataSource

D is a chosen class from subClasses of C in treeview
L is a chosen instance from instances of C in listbox

p

D

rdf:type

L
F_label

IOPE:FocusClass F Container

IOPE:has
widget

IOPE:LABEL

IOPE:data
Source
rdf:type

IOPE:Container

rdf:type

rdf:typef F

f

Other

IOPE:FreeEntryContainer p

IOPE:has
widget

rdf:type

IOPE:Container

rdf:type

IOPE:label

IOPE:TEXTBOX

IOPE:value
IOPE:partOf

IOPE:partOf

IOPE:has
widget

IOPE:has
widget

IOPE:TREE VIEWrdf:type

IOPE:TEXTBOXrdf:type

subClasses(C)

IOPE:CardinalityContainer p,C

IOPE:Cardinality
ClassContainer

IOPE:Cardinality
InstanceContainer

rdf:type

rdf:type

IOPE:dataSource

D

IOPE:value

IOPE:value

D is a chosen class from subClasses of C in treeview

p

D

rdf:type

uf

u_label

owl:Restric4on

owl:onPropertyRdfs:subClassOf

rdf:type

rdfs:label

F

owl:minCardinality

u

u_label

p

owl:onClass
1

u_label

Fig. 12. Binding rule for a focus class F

The other binding rules are triggered when the IOPE:value property is filled
by an input provided by the user through an interactive widget. Their application
results in enriching the description of the instance f or in new constraints on
the focus class F as follows.

Figure 13 shows the binding rule for the textbox widget in the free entry
container of a property p for the focus class F . Its application generates a new
constraint graph expressing a new cardinality constraint for F on the property
p and a new class.

Figure 14 shows the binding rule for the chosen instance(s) from a listbox
widget related to a selected class in treeview widget.

The other binding rules are listed in the Appendix.

IOPE: Interactive ontology population and enrichment ... 15

Binding rules-V3

IOPE:partOf

IOPE:partOf

IOPE:has
widget

IOPE:has
widget

IOPE:TREE VIEWrdf:type

IOPE:LISTBOXrdf:type

subClasses(C)

Instances(C)

IOPE:CardinalityContainer p,C

IOPE:Cardinality
ClassContainer

IOPE:Cardinality
InstanceContainer

rdf:type

rdf:type

IOPE:dataSource

D

IOPE:value

L

IOPE:value IOPE:dataSource

D is a chosen class from subClasses of C in treeview
L is a chosen instance from instances of C in listbox

p

D

rdf:type

L
F_label

IOPE:FocusClass F Container

IOPE:has
widget

IOPE:LABEL

IOPE:data
Source
rdf:type

IOPE:Container

rdf:type

rdf:typef F

f

Other

IOPE:FreeEntryContainer p

IOPE:has
widget

rdf:type

IOPE:Container

rdf:type

IOPE:label

IOPE:TEXTBOX

IOPE:value
IOPE:partOf

IOPE:partOf

IOPE:has
widget

IOPE:has
widget

IOPE:TREE VIEWrdf:type

IOPE:TEXTBOXrdf:type

subClasses(C)

IOPE:CardinalityContainer p,C

IOPE:Cardinality
ClassContainer

IOPE:Cardinality
InstanceContainer

rdf:type

rdf:type

IOPE:dataSource

D

IOPE:value

IOPE:value

D is a chosen class from subClasses of C in treeview

p

D

rdf:type

uf

u_label

owl:Restric4on

owl:onPropertyRdfs:subClassOf

rdf:type

rdfs:label

F

owl:minCardinality

u

u_label

p

owl:onClass
1

u_label

Fig. 13. Binding rule for free entry container on property p and a focus class FBinding rules-V3

IOPE:partOf

IOPE:partOf

IOPE:has
widget

IOPE:has
widget

IOPE:TREE VIEWrdf:type

IOPE:LISTBOXrdf:type

subClasses(C)

Instances(C)

IOPE:CardinalityContainer p,C

IOPE:Cardinality
ClassContainer

IOPE:Cardinality
InstanceContainer

rdf:type

rdf:type

IOPE:dataSource

D

IOPE:value

L

IOPE:value IOPE:dataSource

D is a chosen class from subClasses of C in treeview
L is a chosen instance from instances of C in listbox

p

D

rdf:type

L
F_label

IOPE:FocusClass F Container

IOPE:has
widget

IOPE:LABEL

IOPE:data
Source
rdf:type

IOPE:Container

rdf:type

rdf:typef F

f

Other

IOPE:FreeEntryContainer p

IOPE:has
widget

rdf:type

IOPE:Container

rdf:type

IOPE:label

IOPE:TEXTBOX

u

IOPE:value

up

Other

rdf:type

f

IOPE:partOf

IOPE:partOf

IOPE:has
widget

IOPE:has
widget

IOPE:TREE VIEWrdf:type

IOPE:TEXTBOXrdf:type

subClasses(C)

IOPE:CardinalityContainer p,C

IOPE:Cardinality
ClassContainer

IOPE:Cardinality
InstanceContainer

rdf:type

rdf:type

IOPE:dataSource

D

IOPE:value

u

IOPE:value

D is a chosen class from subClasses of C in treeview

p

D

rdf:type

uf

Fig. 14. Binding rule for a selected class D in a iope:treeview and selected instance(s)
L from a iope:listbox widget

4 Evaluation

The objective of our study is to evaluate the efficiency, the users’ satisfaction
and the effectiveness of the IOPE interface with the purpose of populating and
enriching the OntoSAMSEI ontology.

The users involved in our user study are a subgroup of 22 experts in simulation-
based training in Medicine among those who were solicited one year ago through
an online questionnaire for bootstrapping the OntoSAMSEI ontology. They are
domain experts but they are not familiar with RDF and OWL. The user study
was organized in two steps for each expert. In the first step, the expert logs
in the system with her credentials, picks one simulation training session, and
begins to observe and update the information in the pre-filled Web pages. Once
the expert is done with filling of the Web pages for one training session, she can
choose another training session and follow the same process. In the second step,
she will be transferred to a survey form to evaluate some qualitative aspects
of IOPE and OntoSAMSEI ontology and reflect her viewpoint based on her
interactions with the IOPE interface.

4.1 Evaluation of the IOPE GUI efficiency

We first provide quantitative results on the time spent by users and their number
of interactions with IOPE . Then, we compare these results with the time insight

16 Baghernezhad-Tabasi et al.

perceived by users and with the number of interactions required for the same
tasks when interacting with a standard ontology editor.

Time spent by users and number of interactions. Each expert spent
163 seconds (2.72 minutes) on average, maximum 320 seconds (5.33 minutes),
minimum 67 seconds (1.12 minutes). On average, their number of interactions
with IOPE is 5.78, with a maximum of 14 and a minimum 3. The majority of
interactions are with check box widget (56.15%) followed by text box widget
(32.30%) and list box widget (11.53%).

Table 1 shows the distribution of experts in two categories of groups. In
terms of number of interactions, we have built the groups of “prolific” experts
(having more than 6 interactions with IOPE), “active” experts (having between
3 and 6 interactions), and “moderate” experts (with less than 3 interactions).
In terms of interaction duration, we have built the groups of experts spending
“short-time” (less than 2 minutes), “medium-time” (between 2 and 4 minutes),
and “long-time” (more than 4 minutes).

Table 1. Distribution of expert groups

moderate active prolific

Expert
population

22.73% 50% 27.27%

short-time medium-time long-time

Expert
population

50% 31.82% 18.18%

The proportion of active experts, and also of short-time experts, is 50 %.
Table 2 reports the distribution of time groups for each interaction activity

groups. We notice that more interactions do not necessary yield to more time
spent to interact. Moreover, most prolific experts are short-time or medium-time,
and most active and moderate experts are short-time. This shows that IOPE
helps experts to fulfill their task in a reasonable amount of time, even for prolific
experts.

Table 2. Distribution of interaction time groups for interaction volume groups.

Interaction volume groups
moderate active prolific

Interaction
time

groups

short-time 0.80 0.46 0.33
medium-time 0.00 0.27 0.67

long-time 0.20 0.27 0.00

IOPE: Interactive ontology population and enrichment ... 17

Time-to-insight users’s evaluation. After they are done with using the
IOPE interface for fulfilling their task, we ask the experts the following question
to estimate the time-to-insight for a future interaction with IOPE : “how much
time do you expect to take for setting up a new simulation training session with
IOPE?”. The response is in the form of a Likert scale from 1 to 5 where “1”
means “very short time” and “5” means “very long time”.

Figure 15 shows the results.We observe that the majority of experts chose
“short time” and “average time”, i.e., options 2 and 3 in the Likert scale. More-
over, prolific experts and long-time perceive shorter expected time compared to
the active and moderate experts. A possible interpretation is that more interac-
tions and more time sent interacting with the system boosts the perception of
faster delivery of required information, as the expert becomes more familiar with
the different facets of information and their presentation through the interface.
On the contrary, less interaction activity leads to a more scattered perception of
expected time for future interaction, as shown with the moderare and short-time
experts.

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

Usability

0

20

40

60

80

1 2 3 4 5

Adop-on

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

Accuracy

0

20

40

60

80

1 2 3 4 5

Completeness

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

U-lity

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

Pr
ol

ifi
c

ex
pe

rt
s

Ac
-v

e
ex

pe
rt

s
A

ll
ex

pe
rt

s
M

od
er

at
e

ex
pe

rt
s

0

20

40

60

80

1 2 3 4 5

Lo
ng

--
m

e
ex

pe
rt

s

0

20

40

60

80

1 2 3 4 5M
ed

iu
m

--
m

e
ex

pe
rt

s

0

20

40

60

80

1 2 3 4 5Sh
or

t-
-m

e
ex

pe
rt

s
0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

All experts

0

20

40

60

80

1 2 3 4 5

Prolific experts

0

20

40

60

80

1 2 3 4 5

Ac-ve experts

0

20

40

60

80

1 2 3 4 5

Moderate experts

0

20

40

60

80

1 2 3 4 5

Long--me experts

0

20

40

60

80

1 2 3 4 5

Medium--me experts

0

20

40

60

80

1 2 3 4 5

Short--me experts

0

20

40

60

80

1 2 3 4 5

1

Fig. 15. Time-to-insight results.

Comparative efficiency of IOPE with a standard ontology editor. The
goal of this experiment was to measure the added-value of IOPE compared
to a standard ontology editor such as TopBraid [2], in terms of number of
interactions required to fulfill edition tasks mentioned in Table 3. The tasks
are categorized into three levels of difficulty based on the task-based taxonomy
guidelines discussed in [8].

Table 3. Tasks descriptions.

Task Description (Given the simulation training session X ...)

Easy Fill the number of trainees for X

Medium Fill the target audience of X

Difficult Fill the required resources for X

18 Baghernezhad-Tabasi et al.

For the fairness of this experiment, since none of the domain experts have
ever used TopBraid, the different tasks were fulfilled by the five authors of the
paper who have a sufficient knowledge about the domain, as well as a sufficient
experience using both IOPE and TopBraid.

Figure 16 shows the average number of interaction steps to fulfil those tasks
in IOPE and TopBraid.

Table 1

Description (Given the workshop X …) Average # pages
in IOPE

Average # queries
in TopBraid

Easy task How many participants are needed to setup X? 1.31 10.24

Medium task What are the disciplines targeted for X? 1.62 164.17

Difficult task What are the necessary resources to setup X? 2.41 978.48

1

10

100

1000

Easy task Medium task Difficult task

978.48

164.17

10.24

2.41
1.621.31

Average # interac:on steps in IOPE
Average # interac:on step in TopBraid

Table 1-1

Description (Given the workshop X …) Average # pages
in IOPE

Average # queries
in TopBraid

Easy task How many participants are needed to setup X? 3.00 5.00

Medium task What are the disciplines targeted for X? 3.60 7.50

Difficult task What are the necessary resources to setup X? 5.72 21.37

0

5.75

11.5

17.25

23

Easy task Medium task Difficult task

21.37

7.50

5.00 5.72

3.603.00

Average # interac:on steps in IOPE
Average # interac:on steps in TopBraid

1
Fig. 16. Comparative number of interactions between IOPE and TopBraid.

We observe that for both tools, the number of interaction steps increases
with the difficulty of the tasks. However, the IOPE’s trend grows from average
3.00 steps for an easy task to average 5.72 steps for a difficult task, while using
TopBraid grows from average 5.00 steps for an easy task to average 21.00 steps
for a difficult task. This shows that IOPE , by weaving relevant information
together using constraints, enables the experts to fulfill their tasks more rapidly
than by using a standard editor. This is also in conformance with the time-
to-insight experiment, as it depicts that IOPE is able to help experts achieve
difficult tasks in a reasonable number of interaction steps.

4.2 Evaluation of IOPE users’s satisfaction

We have measured on a Likert scale in the range 1 to 5 the assessment by users
of three aspects of satisfaction, namely utility, usability, and adoption, through
the questions of the three first rows of the Table 4. The aggregated results are
shown in the three first column of Figure 17.
Utility. As depicted in the first column of Figure 17, 82.35% of the participants
have a positive view on the utility of IOPE. However, the prolific experts appre-
ciate the utility more than active experts, which concludes that more interactions
blossom more utility. This shows that more interactions increases the perception
of utility, which is also confirmed by long-time experts who are entirely on the
positive spectrum.
Usability. As demonstrated in the second column of Figure 17, overall the
experts perceived usability positively. However, there is a vivid contrast between
moderate experts versus active and prolific experts, where the former group

IOPE: Interactive ontology population and enrichment ... 19

Table 4. Measure definitions and corresponding questions asked in the survey.

Measures Definition Question asked in the survey

utility [21]
The usefulness of the method
to fulfil a given task.

How do you evaluate the utility of IOPE for setting up
simulation training sessions?

usability [17, 3]
The easiness of interactions
with the method

To which degree do you find IOPE easy-to-use?

adoption [17]
The usefulness of the method
for future similar tasks

How often will you employ IOPE for setting up and describing
a new simulation training session in the future?

accuracy [16, 18]
The precision of information
based on expert’s prior knowledge.

How do you evaluate the accuracy of IOPE’s pre-filled information
for describing simulation training sessions?

completeness [17]
The retrieval exhaustiveness of the
necessary and required information.

How do you evaluate the sufficiency of IOPE’s pre-filled information
for describing simulation training sessions?

seems to not enjoy the usability of IOPE. We conjecture that moderate experts
got lost early in the process, and abandoned their task, hence their myopia on
the overall usability. There is also a subset of long-time experts who assessed
low usability. Given their session time of more than 4 minutes, our conjecture is
that they spent time to fulfil their tasks more than needed, and got lost in the
process also. .

Adoption. The choice over adoption is from 1 to 5, where 1 means “never” and
5 means “always”. In general, the experts voted to adopt IOPE in the future
most of the time.

4.3 Effectiveness of IOPE for enriching the OntoSAMSEI ontology

In this part of the experiment, we measure the experts assessment of accuracy
and completeness of the OntoSAMSEI ontology through its presentation to
the experts by IOPE GUI. We do it by asking to the experts the questions in
the two last rows of the Table 4. The aggregated results (on the Likert scale
from 1 to 5) are shown in the two last columns of Figure 17.

Accuracy. As depicted in the fourth column of Figure 17, the majority of the
participants are positive on accuracy, while 11.76% are negative. Short-time and
moderate experts express more negative votes on accuracy compared to long-
time and prolific experts, respectively. This is presumably because less investi-
gations in the former groups did not enable them a precise view of the ontology.

Completeness. As depicted in the last column of Figure 17, 76.46% of the
participants find OntoSAMSEI complete enough. However, prolific experts ap-
preciate completeness less than the overall population. By investigating the in-
teractions of this group with the widgets, we found out that they prominently
interact with text-boxes for enrichment. Hence this group has presumably more
concerns of enriching and populating the ontology to make it more complete.
The entire long-time expert group votes positively, which means that they put
more time and effort to go into the details of the simulation training sessions and
observe their completeness. The votes for medium-time and short-time experts
are more scattered.

20 Baghernezhad-Tabasi et al.

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

Usability

0

20

40

60

80

1 2 3 4 5

Adop-on

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

Accuracy

0

20

40

60

80

1 2 3 4 5

Completeness

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

U-lity

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

Pr
ol

ifi
c

ex
pe

rt
s

Ac
-v

e
ex

pe
rt

s
A

ll
ex

pe
rt

s
M

od
er

at
e

ex
pe

rt
s

0

20

40

60

80

1 2 3 4 5

Lo
ng

--
m

e
ex

pe
rt

s

0

20

40

60

80

1 2 3 4 5M
ed

iu
m

--
m

e
ex

pe
rt

s

0

20

40

60

80

1 2 3 4 5Sh
or

t-
-m

e
ex

pe
rt

s

0

20

40

60

80

1 2 3 4 5

0

20

40

60

80

1 2 3 4 5

1

Fig. 17. Satisfaction and effectiveness metrics results.

5 Related work

A number of ontology editing tools have been proposed in the literature. The
most widely used systems are Protégé [15] (and its Web version, WebProtégé [22]),
TopBraid [2], and Ontodia [14], which offer means to create individuals based
on ontologies. These systems require however a basic understanding of the RDF
notation and of the OWL semantics to edit the ontology consistently. In contrast,
with IOPE, all relevant information is presented and structured in an intuitive
manner through Web forms. All RDF/OWL technicalities are hidden while the
seamless enforcement of the ontological constraints is a strong guidance for users
to update consistently the ontology.

WebVOWL [25] is a web application for the interactive graph-based visu-
alization of ontologies which employs the Visual Notation for OWL Ontologies
(VOWL) [11] as its infrastructure. WebVOWL defines graphical depictions for
most elements of the Web Ontology Language (OWL). However, WebVOWL
does not visualize the instances but only the OWL part of a (possibly popu-
lated) ontology. Also, the graphs displayed by the tool tend to become quickly
illegible for domain expert when their size increases. In IOPE, we employ Web
forms as a more widespread medium for visualizing information, and we support
the update of instances and of ontological constraints.

Formulis [12] is a form-based user interface for updating RDF data. The
method generates nested forms for relational aspects of knowledge graphs. The

IOPE: Interactive ontology population and enrichment ... 21

experts are also guided with dynamic suggestions based on existing data. How-
ever, the nested structure makes the interface less intuitive than standard Web
forms for increasing nesting depth. In addition, the approach is focused on the
data part and does not consider OWL constraints. Sch́ımatos [26] is another
approach for creating and editing data in the form of shapes graph built using
the SHACL standard7. Voceditor [23] is an extension to reduce the introduc-
tion of erroneous data in the updates. While shapes graph seem well adapted for
editing complex data, it requires the definition of such graphs for each ontology.

The closest approach to IOPE is ActiveRaUL [7, 9], which automatically
renders web forms from arbitrary ontologies. The resulting forms are instances of
a User Interface (UI) ontology, called RaUL, and are generated by interpreting
ontology assertions as rules. The UI ontology consists of elements describing the
various form controls (textboxes, radio buttons, etc.) associated with the ele-
ments of the edited ontology. Inspired from ActiveRaUL’s UI ontology, IOPE
stresses on ontological constraints as first-class citizens and renders pre-filled
forms which provide a more aggregated view for the experts.

6 Conclusion

In this paper, we have presented the interactive IOPE framework for enrich-
ment and population of specialized ontologies.Given any input ontology, IOPE
exploits the ontological constraints and a set of mapping rules to generate a set
of user-friendly Web pages which assist the experts in editing the ontology. Bind-
ing rules are then used to derive the RDF graphs corresponding to the updates
entered by the experts. We have conducted an extensive set of experiments on
the domain of simulation-based medical education, for measuring IOPE’s effi-
ciency, effectiveness, as well as the experts’ satisfaction in fulfilling their tasks
using IOPE . In the future, we plan to improve the explainability of IOPE
to reduce the number of abandoned editing tasks and increase its usability by
domain experts not familiar with ontology engineering.

References

1. IOPE implementation. https://github.com/shadi-tabasi/IOPE.git
2. Topquadrant topbraid composer. https://www.topquadrant.com/products/

topbraid-composer/, accessed: 2021-01-15
3. Albert, W., Tullis, T.: Measuring the user experience: collecting, analyzing, and

presenting usability metrics. Newnes (2013)
4. Allemang, D., Hendler, J.A.: Semantic Web for the Working Ontologist - Effective

Modeling in RDFS and OWL, Second Edition. Morgan Kaufmann (2011)
5. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: Dbpedia:

A nucleus for a web of open data. In: ISWC. vol. 4825. Springer (2007)
6. Baghernezhad-Tabasi, S., Rousset, M.C., Druette, L., Jouanot, F., Meurger,

C.: OntoSAMSEI: Interactive ontology modeling for supporting simulation-based
training in Medicine. IC3K (2019), kEOD Doctoral Consortium

7 Shapes Constraint Language (SHACL): https://www.w3.org/TR/shacl/

22 Baghernezhad-Tabasi et al.

7. Butt, A., Haller, A., Liu, S., Xie, L.: Activeraul: Automatically generated web
interfaces for creating rdf data. Semantic Web 2013 (2013)

8. Dimara, E., Franconeri, S., Plaisant, C., Bezerianos, A., Dragicevic, P.: A task-
based taxonomy of cognitive biases for information visualization. IEEE Trans. Vis.
Comput. Graph. 26, 1413–1432 (2020)

9. Haller, A., Umbrich, J., Hausenblas, M.: Raul: Rdfa user interface language - A
data processing model for web applications. In: WISE. vol. 6488, pp. 400–410.
Springer (2010)

10. Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space.
Synthesis Lectures on the Semantic Web, Morgan & Claypool Publishers (2011)

11. Lohmann, S., Negru, S., Haag, F., Ertl, T.: Visualizing ontologies with VOWL.
Semantic Web 7(4), 399–419 (2016)

12. Maillot, P., Ferré, S., Cellier, P., Ducassé, M., Partouche, F.: Nested forms with
dynamic suggestions for quality RDF authoring. In: DEXA. vol. 10438, pp. 35–45.
Springer (2017)

13. Matuszek, C., Cabral, J., Witbrock, M.J., DeOliveira, J.: An introduction to the
syntax and content of cyc. In: AAAI Spring Symposium. pp. 44–49 (2006)

14. Mouromtsev, D., Pavlov, D., Emelyanov, Y., Morozov, A., Razdyakonov, D.,
Galkin, M.: The simple web-based tool for visualization and sharing of seman-
tic data and ontologies. In: International Semantic Web Conference (2015)

15. Noy, N.F., Sintek, M., Decker, S., Crubézy, M., Fergerson, R.W., Musen, M.A.:
Creating semantic web contents with protégé-2000. IEEE Intell. Syst. 16(2), 60–
71 (2001)

16. Omidvar-Tehrani, B., Amer-Yahia, S.: Data pipelines for user group analytics. In:
SIGMOD Conference. pp. 2048–2053. ACM (2019)

17. Rahman, P., Jiang, L., Nandi, A.: Evaluating interactive data systems. VLDB J.
29(1), 119–146 (2020)

18. Rahman, P., Jiang, L., Nandi, A.: Evaluating interactive data systems. The VLDB
Journal 29(1), 119–146 (2020)

19. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In:
16th international conference on World Wide Web. pp. 697–706. ACM (2007)

20. Tanon, T.P., Vrandecic, D., Schaffert, S., Steiner, T., Pintscher, L.: From freebase
to wikidata: The great migration. In: WWW. pp. 1419–1428. ACM (2016)

21. Thomas, J.J.: Illuminating the Path: The Research and Development Agenda for
Visual Analytics (2005)

22. Tudorache, T., Nyulas, C., Noy, N.F., Musen, M.A.: Webprotégé: A collaborative
ontology editor and knowledge acquisition tool for the web. Semantic Web 4(1),
89–99 (2013)

23. Valdestilhas, A., Publio, G., Cimmino Arriaga, A., Riechert, T.: Voceditor -an
integrated environment to visually edit, validate and versioning rdf vocabularies
(12 2020). https://doi.org/10.13140/RG.2.2.12192.81921

24. Vrandecic, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Com-
mun. ACM 57(10), 78–85 (2014)

25. Wiens, V., Lohmann, S., Auer, S.: Webvowl editor: Device-independent visual on-
tology modeling. In: ISWC 2018 Posters & Demonstrations. CEUR Workshop Pro-
ceedings, vol. 2180

26. Wright, J., Méndez, S.J.R., Haller, A., Taylor, K., Omran, P.G.: Sch́ımatos: A
shacl-based web-form generator for knowledge graph editing. In: ISWC. vol. 12507,
pp. 65–80. Springer (2020)

IOPE: Interactive ontology population and enrichment ... 23

A Appendix

A.1 Mapping rules

Mapping rule of domain, range constraints for a property (p) such
that, (p rdfs:domain F) (p rdfs:range C). The mapping rule is described
in Figure 18 when the class range of the property p has subClasses and instances.
If the class range of the property p has subClasses and instances, the mapping
rule is described in Figure 18. If the class range of the property p is without
subClasses and instances, the mapping rule is described in Figure 19Range and domain constraint

rdfs:domain
C IOPE:partOf

True

IOPE:partOf

IOPE:has
widget

IOPE:has
widget

IOPE:TREE VIEWrdf:type

IOPE:LISTBOXrdf:type

subClasses(C)

instances(C)True

IOPE:hidden

IOPE:TEXTBOXrdf:type

IOPE:has
widget

IOPE:RangeContainer p,C

IOPE:onClick

subClasses(C) = list of all subclasses of class C and its other C
instances(C) = list of all instances of class C

IOPE:Range
ClassContainer

IOPE:Range
InstanceContainer

rdf:type

rdf:type

IOPE:dataSource

IOPE:dataSource

 C, without subclasses and instances

IOPE:partOf

IOPE:partOf

IOPE:has
widget IOPE:LABELrdf:type

IOPE:RangeContainer p,C

IOPE:Range
ClassContainer

rdf:type
IOPE:dataSource

C_label

F

Enter the new item(s)
(separated by a comma).

IOPE:placeholder

Select exis:ng item(s)
or enter new item(s)

IOPE:label

rdfs:range
p

rdfs:domain
CF

rdfs:range
p

IOPE:has
widget IOPE:TEXTBOXrdf:type

IOPE:Range
InstanceContainer

rdf:type

Enter the new item(s) (separated by
a comma) or give a minimal number
of items

IOPE:placeholder

Fig. 18. Mapping rule for domain, range constraints where subClasses(C) and in-
stance(C) are not empty

Range and domain constraint

rdfs:domain
C IOPE:partOf

True

IOPE:partOf

IOPE:has
widget

IOPE:has
widget

IOPE:TREE VIEWrdf:type

IOPE:LISTBOXrdf:type

subClasses(C)

instances(C)True

IOPE:hidden

IOPE:TEXTBOXrdf:type

IOPE:has
widget

IOPE:RangeContainer p,C

IOPE:onClick

subClasses(C) = list of all subclasses of class C and its other C
instances(C) = list of all instances of class C

IOPE:Range
ClassContainer

IOPE:Range
InstanceContainer

rdf:type

rdf:type

IOPE:dataSource

IOPE:dataSource

 C, without subclasses and instances

IOPE:partOf

IOPE:partOf

IOPE:has
widget IOPE:LABELrdf:type

IOPE:RangeContainer p,C

IOPE:Range
ClassContainer

rdf:type
IOPE:dataSource

C_label

F

Enter the new item(s)
(separated by a comma).

IOPE:placeholder

Select exis:ng item(s)
or enter new item(s)

IOPE:label

rdfs:range
p

rdfs:domain
CF

rdfs:range
p

IOPE:has
widget IOPE:TEXTBOXrdf:type

IOPE:Range
InstanceContainer

rdf:type

Enter the new item(s) (separated by
a comma) or give a minimal number
of items

IOPE:placeholder

Fig. 19. Mapping rule for domain, range constraints where subClasses(C) and in-
stance(C) are empty

Mapping rule for a cardinality restriction (p min n C) such that
n > 0, C does not have hierarchy of sub-classes nor list of instances in
the domain ontology. This mapping rule is described in Figure 20. For the
IOPE:CardinalityClassContainer, a widget of type IOPE:LABEL is created as
a blank node with the property IOPE:dataSource filled by the the label of class
C, which is C label. The property IOPE:required is set to ‘True’ for this widget

24 Baghernezhad-Tabasi et al.

cardinality model 1 and 2- V 3

owl:Restric:on

p
owl:onPropertyrdfs:subClassOf

rdf:type

C

owl:onClass

n

owl:minCardinality |
owl:maxCardinality

IOPE:partOf
True

IOPE:partOf

IOPE:has
widget

IOPE:has
widget

IOPE:TREE VIEWrdf:type

IOPE:LISTBOXrdf:type

subClasses(C)

instances(C)True

IOPE:hidden

IOPE:TEXTBOXrdf:type

IOPE:has
widget

IOPE:CardinalityContainer p,C

True

IOPE:requiredIOPE:onClick

subClasses(C) = list of all subclasses of class C and its other C
instances(C) = list of all instances of class C

IOPE:Cardinality
ClassContainer

IOPE:Cardinality
InstanceContainer

rdf:type

rdf:type

IOPE:dataSource

IOPE:dataSource

owl:Restric:on

p
owl:onPropertyrdfs:subClassOf

rdf:type

C

owl:onClass

n

owl:minCardinality |
owl:maxCardinality

C_label

rdfs:label

 C, without subclasses and instances

IOPE:partOf

IOPE:partOf

IOPE:has
widget

IOPE:has
widget

IOPE:LABELrdf:type

IOPE:TEXTBOXrdf:type

IOPE:CardinalityContainer p,C

True

IOPE:required

IOPE:Cardinality
ClassContainer

IOPE:Cardinality
InstanceContainer

rdf:type

rdf:type

IOPE:dataSource

C_label

F

F

Enter the new item(s)
(separated by a comma).

IOPE:placeholder

Select exis:ng item(s)
or enter new item(s)

IOPE:label

Enter the new item(s) (separated by
a comma) or give a minimal number
of items

IOPE:placeholder

Fig. 20. Mapping rule for a Cardinality constraint where subClasses(C) and in-
stance(C) are empty

to indicate that this value is mandatory for the property p. As class C does
not have any instances for the IOPE:CardinalityInstanceContainer, a widget of
type IOPE:TEXTBOX is created with the IOPE:placeholder property set to
the value ‘Enter the new item(s) (separated by a comma) or give a minimal
number of items’ in order to give users possibility to enter new instances or give
a minimum number that (s)he needs.

Mapping rule for a cardinality restriction (p min n C) such that n > 0,
C does not have hierarchy of sub-classes but has a list of instances
in the domain ontology. This mapping rule is described in Figure 21. For
the IOPE:CardinalityClassContainer, a widget of type IOPE:LABEL is created
as a blank node with the property IOPE:dataSource filled by the the label
of class C, which is C label. The property IOPE:required is set to ‘True’ for
this widget to indicate that this value is mandatory for the property p. For
the IOPE:CardinalityInstanceContainer, a widget of type IOPE:LISTBOX is
created as a blank node with the property IOPE:dataSource filled by the list
instances(C) of instances of C , the IOPE:label property set to ‘select existing
item(s) or enter new item(s)’ and the IOPE:hidden property set to False to make
the widget visible and intractable to the user. A widget of type IOPE:TEXTBOX
is also created with the IOPE:placeholder property set to the value ‘Enter the
new item(s) (separated by a comma)’ in order to give users possibility to enter
new instances.

Mapping rule for a cardinality restriction (p min n C) such that n > 0,
C has a hierarchy of sub-classes but does not have list of instances
in the domain ontology. This mapping rule is described in Figure 22. For
the IOPE:CardinalityClassContainer, a widget of type IOPE:TREEVIEW is
created as a blank node with the property IOPE:dataSource filled by the the
tree view of subClasses(C), which denotes the hierarchy of the sub-classes of C
in the domain ontology enriched with an additional item Other C. The prop-
erty IOPE:required and IOPE:onClick are set to ‘True’ for this widget to in-
dicate that entering at least one value is mandatory for the property p and
that this widget supports the interaction with users to display interactively
the sub-class hierarchy. For the IOPE:CardinalityInstanceContainer, a widget
of type IOPE:TEXTBOX is created with the IOPE:placeholder property set to

IOPE: Interactive ontology population and enrichment ... 25cardinality without hierarchy but with instances

owl:Restric:on

p
owl:onPropertyrdfs:subClassOf

rdf:type

C

owl:onClass

n

owl:minCardinality |
owl:maxCardinality

IOPE:partOf

IOPE:partOf

IOPE:has
widget IOPE:LISTBOXrdf:type

instances(C)True

IOPE:hidden

IOPE:TEXTBOXrdf:type

IOPE:has
widget

IOPE:CardinalityContainer p,C

instances(C) = list of all instances of class C
IOPE:Cardinality

InstanceContainer

rdf:type
IOPE:dataSource

IOPE:has
widget IOPE:LABELrdf:type

True

IOPE:required

IOPE:Cardinality
ClassContainer

IOPE:dataSource

C_label
F

Enter the new item(s)
(separated by a comma).

IOPE:placeholder

Select exis:ng item(s)
or enter new item(s)

IOPE:label

rdf:type

p

C

rdf:type

Lf

IOPE:partOf
True

IOPE:has
widget IOPE:TREE VIEWrdf:type

subClasses(C)

IOPE:CardinalityContainer p,C

True

IOPE:requiredIOPE:onClick

IOPE:Cardinality
ClassContainer

rdf:type
IOPE:dataSource

IOPE:has
widget IOPE:TEXTBOXrdf:type

IOPE:Cardinality
InstanceContainer

rdf:type

Enter the new item(s) (separated by
a comma) or give a minimal number
of items

IOPE:placeholder

IOPE:partOf

subClasses(C) = list of all subclasses of class C and its other C

cardinality with hierarchy but without instances

owl:Restric:on

p
owl:onPropertyrdfs:subClassOf

rdf:type

C

owl:onClass

n

owl:minCardinality |
owl:maxCardinality

F

Fig. 21. Mapping rule for a Cardinality constraint where subClasses(C) and in-
stance(C) are empty

the value ‘Enter the new item(s) (separated by a comma) or give a minimal
number of items’ in order to give users possibility to enter new instances or give
a minimum number that (s)he needs.

cardinality without hierarchy but with instances

owl:Restric:on

p
owl:onPropertyrdfs:subClassOf

rdf:type

C

owl:onClass

n

owl:minCardinality |
owl:maxCardinality

IOPE:partOf

IOPE:partOf

IOPE:has
widget IOPE:LISTBOXrdf:type

instances(C)True

IOPE:hidden

IOPE:TEXTBOXrdf:type

IOPE:has
widget

IOPE:CardinalityContainer p,C

instances(C) = list of all instances of class C
IOPE:Cardinality

InstanceContainer

rdf:type
IOPE:dataSource

IOPE:has
widget IOPE:LABELrdf:type

True

IOPE:required

IOPE:Cardinality
ClassContainer

IOPE:dataSource

C_label
F

Enter the new item(s)
(separated by a comma).

IOPE:placeholder

Select exis:ng item(s)
or enter new item(s)

IOPE:label

rdf:type

p

C

rdf:type

Lf

IOPE:partOf
True

IOPE:has
widget IOPE:TREE VIEWrdf:type

subClasses(C)

IOPE:CardinalityContainer p,C

True

IOPE:requiredIOPE:onClick

IOPE:Cardinality
ClassContainer

rdf:type
IOPE:dataSource

IOPE:has
widget IOPE:TEXTBOXrdf:type

IOPE:Cardinality
InstanceContainer

rdf:type

Enter the new item(s) (separated by
a comma) or give a minimal number
of items

IOPE:placeholder

IOPE:partOf

subClasses(C) = list of all subclasses of class C and its other C

cardinality with hierarchy but without instances

owl:Restric:on

p
owl:onPropertyrdfs:subClassOf

rdf:type

C

owl:onClass

n

owl:minCardinality |
owl:maxCardinality

F

Fig. 22. Mapping rule for a Cardinality constraint where subClasses(C) and in-
stance(C) are empty

Mapping rule for a cardinality restriction (p min n) such that n > 0,
p is a datatype property. This mapping rule is described in Figure 23.

Datatype Property mapping and binding

owl:Restric:on

p
owl:onPropertyrdfs:subClassOf

rdf:type

n

owl:minCardinality |
owl:maxCardinality IOPE:partOf

IOPE:has
widget rdf:type

IOPE:CardinalityContainer p

True

IOPE:required
rdf:type

F

IOPE:TEXTBOX

IOPE:placeholder

Enter a numberIOPE:Cardinality
InstanceContainer

IOPE:partOf

IOPE:has
widget rdf:type

IOPE:CardinalityContainer p

True

IOPE:required
rdf:type

IOPE:TEXTBOX

IOPE:placeholder

Enter a numberIOPE:Cardinality
InstanceContainer

K

IOPE:value

kpf

Fig. 23. Mapping rule for a Cardinality constraint on a datatype property p.

For the IOPE:CardinalityInstanceContainer, a widget of type IOPE:TEXTBOX
is created with the IOPE:placeholder property set to the value ‘Enter a number’
in order to give users possibility to enter the numerical value (s)he needs for the

26 Baghernezhad-Tabasi et al.

property p. Figure 24 shows the binding rule for a textbox widget filled by a
numerical value related to the datatype property p.

Datatype Property mapping and binding

owl:Restric:on

p
owl:onPropertyRdfs:subClassOf

rdf:type

n

owl:minCardinality |
owl:maxCardinality IOPE:partOf

IOPE:has
widget rdf:type

IOPE:CardinalityContainer p

True

IOPE:required
rdf:type

F

IOPE:TEXTBOX

IOPE:placeholder

Enter a numberIOPE:Cardinality
InstanceContainer

IOPE:partOf

IOPE:has
widget rdf:type

IOPE:CardinalityContainer p

True

IOPE:required
rdf:type

IOPE:TEXTBOX

IOPE:placeholder

Enter a numberIOPE:Cardinality
InstanceContainer

K

IOPE:value

kpf

Fig. 24. Binding rule for a value of type integer in a iope:textbox widget related to
the datatype property p.

Mapping rule for a rdf container i.e., rdf:Bag, rdf:Seq, rdf:Alt. This
mapping rule is described in Figure 25.

Alternative

rdf:typep

rdf:_1

IOPE:partOf

IOPE:has
widget IOPE:CHECKBOXrdf:type

True

IOPE:Alterna:vesValuesContainer p

F rdf:Alt|rdf:Seq|
rdf:Bag

U1

rdf:_2 rdf:_n

U2 Un. . . .

AlternaDveValueContainer p,C
IOPE:dataSource

U1_label

IOPE:onClick

IOPE:CHECKBOXrdf:type

True

IOPE:dataSource

Un_label

IOPE:onClick

 .
. .

 .
. .

IOPE:Cardinality
InstanceContainer

IOPE:has
widgetrdf:type

rdf:typep

rdf:_1
IOPE:CHECKBOXrdf:type

True

IOPE:Alterna:veValuesContainer p

F rdf:Bag

U1

rdf:_2 rdf:_n

U2 Un. . . .

IOPE:dataSource

U1_label

IOPE:onClick

IOPE:CHECKBOXrdf:type

True

IOPE:dataSource

Un_label

IOPE:onClick

 .
. .

 .
. .

IOPE:has
widget

IOPE:has
widget

IOPE:CHECKBOXrdf:type

True

IOPE:Alterna:veValuesContainer p

IOPE:dataSource

U1_label

IOPE:onClick

IOPE:CHECKBOXrdf:type

True

IOPE:dataSource

Un_label

IOPE:onClick

 .
. .

 .
. .

IOPE:has
widget

IOPE:has
widget

U1pf

U1
IOPE:value

U1 is a chosen value from the values in container

Fig. 25. Mapping rule for a rdf container i.e., rdf:Bag, rdf:Seq, rdf:Alt.

Alternative

rdf:typep

rdf:_1

IOPE:partOf

IOPE:has
widget IOPE:CHECKBOXrdf:type

True

IOPE:Alterna:vesValuesContainer p

F rdf:Alt|rdf:Seq|
rdf:Bag

U1

rdf:_2 rdf:_n

U2 Un. . . .

AlternaDveValueContainer p,C
IOPE:dataSource

U1_label

IOPE:onClick

IOPE:CHECKBOXrdf:type

True

IOPE:dataSource

Un_label

IOPE:onClick

 .
. .

 .
. .

IOPE:Cardinality
InstanceContainer

IOPE:has
widgetrdf:type

rdf:typep

rdf:_1
IOPE:CHECKBOXrdf:type

True

IOPE:Alterna:veValuesContainer p

F rdf:Bag

U1

rdf:_2 rdf:_n

U2 Un. . . .

IOPE:dataSource

U1_label

IOPE:onClick

IOPE:CHECKBOXrdf:type

True

IOPE:dataSource

Un_label

IOPE:onClick

 .
. .

 .
. .

IOPE:has
widget

IOPE:has
widget

IOPE:CHECKBOXrdf:type

True

IOPE:Alterna:veValuesContainer p

IOPE:dataSource

U1_label

IOPE:onClick

IOPE:CHECKBOXrdf:type

True

IOPE:dataSource

Un_label

IOPE:onClick

 .
. .

 .
. .

IOPE:has
widget

IOPE:has
widget

U1pf

U1
IOPE:value

U1 is a chosen value from the values in container

Fig. 26. Binding rule for a selected value U1 via a iope:checkbox widget within the
values in rdf containe.

IOPE: Interactive ontology population and enrichment ... 27

A.2 Binding rules

Figure 27 shows the binding rule for a textbox widget filled by a value of type
string related to a selected class in a treeview widget.

Binding rules-V3

IOPE:partOf

IOPE:partOf

IOPE:has
widget

IOPE:has
widget

IOPE:TREE VIEWrdf:type

IOPE:LISTBOXrdf:type

subClasses(C)

Instances(C)

IOPE:CardinalityContainer p,C

IOPE:Cardinality
ClassContainer

IOPE:Cardinality
InstanceContainer

rdf:type

rdf:type

IOPE:dataSource

D

IOPE:value

L

IOPE:value IOPE:dataSource

D is a chosen class from subClasses of C in treeview
L is a chosen instance from instances of C in listbox

p

D

rdf:type

L
F_label

IOPE:FocusClass F Container

IOPE:has
widget

IOPE:LABEL

IOPE:data
Source
rdf:type

IOPE:Container

rdf:type

rdf:typef F

f

Other

IOPE:FreeEntryContainer p

IOPE:has
widget

rdf:type

IOPE:Container

rdf:type

IOPE:label

IOPE:TEXTBOX

IOPE:value
IOPE:partOf

IOPE:partOf

IOPE:has
widget

IOPE:has
widget

IOPE:TREE VIEWrdf:type

IOPE:TEXTBOXrdf:type

subClasses(C)

IOPE:CardinalityContainer p,C

IOPE:Cardinality
ClassContainer

IOPE:Cardinality
InstanceContainer

rdf:type

rdf:type

IOPE:dataSource

D

IOPE:value

IOPE:value

D is a chosen class from subClasses of C in treeview

p

D

rdf:type

uf

u_label

owl:Restric4on

owl:onPropertyRdfs:subClassOf

rdf:type

rdfs:label

F

owl:minCardinality

u

u_label

p

owl:onClass
1

f

rdf:type

u_label

Fig. 27. Binding rule for a selected class D in a iope:treeview and its entered item(s)
in a iope:textbox widget

Figure 28 shows the binding rule for a textbox widget filled by a value of
type string related to a label widget.

Binding rule for entered value intiger k , entered value string u -2

IOPE:partOf

IOPE:partOf

IOPE:has
widget

IOPE:has
widget

IOPE:LABELrdf:type

IOPE:TEXTBOXrdf:type

IOPE:CardinalityContainer p,C

IOPE:Cardinality
ClassContainer

IOPE:Cardinality
InstanceContainer

rdf:type

rdf:type

C_label

IOPE:value

K

K is an integer

IOPE:dataSource

IOPE:partOf

IOPE:partOf

IOPE:has
widget

IOPE:has
widget

IOPE:LABELrdf:type

IOPE:TEXTBOXrdf:type

IOPE:CardinalityContainer p,C

IOPE:Cardinality
ClassContainer

IOPE:Cardinality
InstanceContainer

rdf:type

rdf:type

C_label

IOPE:value

u_label

IOPE:dataSource

C

up

rdf:type

f

owl:Restric4on

owl:onPropertyRdfs:subClassOf

rdf:type

rdfs:label

F

owl:minCardinality

C

p

owl:onClass
K

f

rdf:type

C_label

Fig. 28. Binding rule for value of type string in a iope:textbox widget related to a
label widget

Figure 29 shows the binding rule for a text-box widget filled by a value of
type integer related to a label widget.

Figure 30 shows the binding rule for a textbox widget filled by a value of
type string related to a Other C in a treeview widget.

28 Baghernezhad-Tabasi et al.

Binding rule for entered value intiger k , entered value string u -2

IOPE:partOf

IOPE:partOf

IOPE:has
widget

IOPE:has
widget

IOPE:LABELrdf:type

IOPE:TEXTBOXrdf:type

IOPE:CardinalityContainer p,C

IOPE:Cardinality
ClassContainer

IOPE:Cardinality
InstanceContainer

rdf:type

rdf:type

C_label

IOPE:value

K

K is an integer

IOPE:dataSource

IOPE:partOf

IOPE:partOf

IOPE:has
widget

IOPE:has
widget

IOPE:LABELrdf:type

IOPE:TEXTBOXrdf:type

IOPE:CardinalityContainer p,C

IOPE:Cardinality
ClassContainer

IOPE:Cardinality
InstanceContainer

rdf:type

rdf:type

C_label

IOPE:value

u_label

IOPE:dataSource

C

up

rdf:type

f

owl:Restric4on

owl:onPropertyRdfs:subClassOf

rdf:type

rdfs:label

F

owl:minCardinality

C

p

owl:onClass
K

C_label

Fig. 29. Binding rule for a value of type integer in a iope:textbox widget related to
a label widget

Binding rules Otherclass in the tree view

IOPE:partOf

True

IOPE:partOf

IOPE:has
widget

IOPE:has
widget

IOPE:TREE VIEWrdf:type

subClasses(C)

IOPE:TEXTBOXrdf:type

IOPE:CardinalityContainer p,C

True

IOPE:required

IOPE:Cardinality
ClassContainer

IOPE:Cardinality
InstanceContainer

rdf:type

rdf:type

IOPE:dataSource

Other c

IOPE:value

u

IOPE:value

Other C is a chosen class from subClasses of C in treeview without any instances

IOPE:onClick

Enter the new item(s)
(separated by a comma).

IOPE:placeholder

f

u rdf:type

p

Other c

C

rdfs:subClassOf

IOPE:partOf

IOPE:partOf

IOPE:has
widget

IOPE:has
widget

IOPE:TREE VIEWrdf:type

IOPE:TEXTBOXrdf:type

subClasses(C)

IOPE:CardinalityContainer p,C

IOPE:Cardinality
ClassContainer

IOPE:Cardinality
InstanceContainer

rdf:type

rdf:type

IOPE:dataSourceIOPE:value

u_label

IOPE:value

Other c

Other c is a chosen class from subClasses of C in treeview without any instances

Fig. 30. Binding rule for a text-box widget filled by a value of type string related to a
class Other C

