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POD approach for unsteady aerodynamic model updating

F. Vetrano, F. Mastroddi, R. Ohayon

Abstract A method for aerodynamic model updating is

proposed in this paper. The approach is based upon a

correction of the eigenvalues of the reduced-order unsteady

aerodynamic matrix through an optimization with objective

function defined through the difference in the generalized

aerodynamic forces or on the aeroelastic poles. The high-

fidelity model in reduced-order form is obtained by the

proper orthogonal decomposition (POD) technique applied

to the computational fluid dynamics Euler-based formula-

tion. Many of the methods that have been developed in the

past years for simpler aeroelastic models that use, for

example, doublet-lattice method aerodynamics, can be

adopted for this purpose as well. However, this model is

not able to capture shocks and flow separation in transonic

flow. The proposed approach performs the updating of the

aerodynamic model by imposing the minimization of a

global error between target aerodynamic performances,

namely experimental performances, and an aerodynamic

model in reduced-order form via POD approach. After a

general presentation of the application of the POD method

to the linearized Euler equations, the optimization strategy

is presented. First, a simple test on a 2D wing section with

theoretical biased data is performed, and then, the perfor-

mances of different optimization strategies are tested on a

3D model updated by wind tunnel data.

Keywords Aeroelasticity � POD � Reduced-order model �
Unsteady aerodynamic updating � WT test data

List of symbols

X Computational domain volume
�W Mean instantaneous field

F Flux

Ni Normal to the cell face

ai Velocity in the cell face

f, g, h Flux component vector

w Proper orthogonal mode

U Flow field

g Vector of the components of the disturbance field

in the POD base

u Structural modes

d Displacement field

q Generalized coordinates

f Generalized aerodynamic force

K̂ Stiffness matrix

M̂ Mass matrix

Ĉ Damping matrix

M The instantaneous position of the grid nodes

a0, a1 Fluid system matrix

b0, b1 Coupling vector

a Reduced-order aerodynamic matrix

V Right eigenvector

k Aeroelastic poles

l Complex aerodynamic poles

r Design variable for real part

s Design variable for complex part
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1 Introduction

During the last two decades, the evolution of computing

capabilities has made possible the use of computational

fluid dynamics for industrial processes. An accurate model

is essential to study and develop new civil transportation

aircraft. To build a high-fidelity aeroelastic model in the

transonic regime for load calculations and aeroelastic

application (flutter, gust response, etc.), the use of the CFD

has become a superior choice over the DLM or methods

derived from piston theory. However, many engineering

and industrial problems solved by the CFD involved fluid–

structure interaction and required a very large number of

degrees of freedom—typically in terms of millions—and

also a large number of simulation parameters are involved

in the computing process. Thus, due to the computational

cost, the potential of the CFD code is currently limited to

the analysis of a few configurations. For this reason, the

DLM approach and related correction techniques are today

widely used in industrial processes. Although the compu-

tational cost of this approach is minimal and its robustness

has been proved over the past years, the DLM method

cannot cover every physical phenomenon which can

instead be evaluated by a CFD calculation. For this pur-

pose, several reduced-order modelling techniques have

been developed in this domain. The objective of these

techniques is to build a simple fluid dynamics model with a

significant reduction of the degrees of freedom represen-

tative of the high-fidelity model. The Karhunen–Loève

decomposition, also known as proper orthogonal decom-

position, is a powerful method for determining an optimal

reduced-order aerodynamic model in terms of energy to

represent a sample set of data and build a reduced-order

model [10, 11, 15–17, 21, 22].

Since the first use of the DLM approach, many efforts

have been made to widen the applicability scope of the

theory and several extensions of the standard calculation

methods are proposed [12–14]. It was finally accepted in

aerospace industries that the only way to go beyond these

limits (transonic regime, prediction of aerodynamic forces

on control surfaces, effects of thickness and viscosity) was

the introduction of a posteriori corrections on results.

Corrections of linear results are typically performed by

means of pre-multiplying diagonal-correction matrices

applied either to the pressure vector at the DLM boxes or to

the downwash vector. Those corrections are carried out by

means of data obtained with more accurate methods.

Several correcting methods can be found in the literature.

The first correction technique was proposed by Yates and

Bergh [4] and after by Rodden and Giesing [3], Goodman

[5], Garner Luber and Schmid [2]. All these methods use

experimental data to correct the linear theory. Indeed, the

evolution of computing capabilities has made possible the

use of unsteady CFD results and several correcting meth-

ods have been developed to improve linear results using

these data [6, 7]. Recently, a direct correction of aerody-

namic influent coefficient matrix, obtained by DLM

approach, by scaling factor for precise flutter prediction has

been also proposed in [8]. Similar corrections, in the

neighbourhood of transonic regime, have also been pro-

vided by ZTRAN tool included in ZONA code [19]. Some

other different ways of improving the accuracy of the

aeroelastic model have been proposed recently, coupling

the advantages of the reduced-order model with the cor-

rection techniques: Hu et al. [9] proposed an aeroelastic

model updating based on Kriging multi-fidelity modelling

and physics-based modified computational model coupled

with a POD approach combined with an harmonic-balance

method, by incorporating wind tunnel and flight test data at

the same time. In the present paper, the parameters of the

eigenproblem associated with the POD approach has been

used as design variables to optimize the updating problem

of the ROM model with respect to the experimental test or

reference high-fidelity CFD models so assuring a good

capability in the updating process itself. More specifically,

a new alternative strategy to incorporate information

coming from experimental test or CFD calculations to

improve the aeroelastic POD/ROM model is demonstrated.

The block diagram of the proposed updating process is

presented in Fig. 1. Specifically, the present research is

within the framework of the AMMAT project (aeroelastic

model matching and test), which is an Airbus research

programme. The first aim of AMMAT is to improve the

aeroelastic model quality for a fine flight control system

Fig. 1 Block diagram for unsteady aerodynamic tuning

2



design and, consequently, for loads and aeroelastic pur-

poses involving structural dynamics. We deal with struc-

tural dynamics model in-flight, and our first purpose is to

get a high quality transfer function between control surface

and control laws sensors, and this is compulsory for flight

control system (FCS) development and certification. The

correlation between experimental data and theoretical data

is of premium importance in aircraft development. It

allows us to check whether the theoretical model is close to

reality. The theoretical model is used to tune FCS, to

perform aircraft certification in the loads and aeroelasticity

domain. Many loads cases, like continuous turbulence,

cannot be easily tested in flight, and we rely on the theo-

retical model to evaluate them. The tuning process gives

information on errors present in the model, validates the

modelling used in the model and can give uncertainties

values to be used for future aircraft development.

Some improvements in the structural dynamics test

process may be the outcome of the AMMAT research. In

particular, a methodology based on flight test data to tune

the aeroelastic model in-flight has been proposed within the

project, and if successful, this could lead to a reduction or

elimination of the GVT test, while increasing model

quality.

In the present paper, the theoretical basis for building an

aeroelastic POD Galerkin ROM from linearized Euler

equation is presented in Sect. 2. In Sect. 3, some remarks

on the proposed unsteady aerodynamic updating strategies

are shown. In Sect. 4, the numerical results on NACA wing

section and on wind tunnel model are presented, and

finally, in Sect. 5, some conclusions are given.

2 Theoretical background

In this section, the physical model used, together with its

suitable reduction, has been shown. Specifically, in Sect.

2.1, the Euler model is presented. In Sect. 2.2, the ROM

approach on the aerodynamics based on POD analysis is

carried out. Finally, the overall reduced aeroelastic model

is presented in Sect. 2.3.

2.1 Linearized Euler CFD model

A viscous and heat-conducting flow is most accurately

modelled by the Navier–Stokes equations. However, if the

Reynolds number is sufficiently high, the Prandtl number is

of order unity, and separation does not occur. Thus, the

viscous and heat transfer effects are confined to narrow

regions near the airfoil surfaces and the wakes. Under these

circumstances, the Euler equations are a good approxima-

tion for modelling the behaviour of the flow. The unsteady

Euler equations are the starting point of the linearized

Euler analysis.

In this paper, the flow is assumed to be governed by the

linearized Euler equations (LEE) in a moving mesh grid

(arbitrary Lagrangian–Eulerian formulation) for steady and

unsteady small-disturbance inviscid flows. For the sake of

brevity, we will only report the principal step of the Euler

equation linearization process. For more details, see [18].

Let C tð Þ be an elementary hexahedral cell of the com-

putation domain with volume X tð Þ. The faces of the cell are
noted Ci tð Þ (with i = 1, 6). The mean instantaneous field in

the cell is defined by:

�W ¼
R

CðtÞ W dx

XðtÞ :

The discretized formulation of the Euler equations is

given by:

d

dt
X tð Þ �Wð Þ þ

X

i
Fið �WÞ ¼ 0: ð1Þ

The geometric conservation law is written:

d

dt
X tð Þð Þ þ

X

i
ai tð Þ � N i tð Þ
� �

¼ 0 ð2Þ

To linearize Eqs. 1 and 2, the mean instantaneous field
�W is divided into a steady mean field �Ws and a fluctuation

d �W:

�W ¼ �Ws þ d �W : ð3Þ

Similarly, the instantaneous position of the grid nodes is

divided into a steady part and a fluctuation around a steady

state:

MðiÞ ¼ Ms þ dM tð Þ: ð4Þ

If a periodic solution with period T is sought, fluctuation

dM tð Þ around steady state Ms is periodic and centred which

means dM t þ Tð Þ ¼ dM tð Þ. The assumption made is that

low amplitude fluctuations dM tð Þ (first order) of the grid

create fluctuations dW of the field which are of the same

order of magnitude.

A Taylor series expansion around the steady solution is

performed on Eq. 1, on the geometric terms (volume,

normal) and on the flow terms. Only the fist-order terms are

used to obtain the discretized formulation of the linearized

Euler equation on moving grid:
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where the sub-index s indicates the reference steady values.

The above equations system can be written as:

A0 Wsð Þ½ �dW þ A1 Wsð Þ½ � odW
ot

¼ B0 Msð Þ þ B1

odM

ot

� �

ð6Þ

where A0 Wsð Þ½ �; A1 Wsð Þ½ � are real matrices and

B0 Msð Þ; B1
odM
ot

� �

are real vectors.

Euler equations are solved on a multi-block structured

mesh using the Jameson-Lerat scheme introduced in the

computer code REELC developed at ONERA [20].

2.2 POD Galerkin reduced-order model

Reduced-order modelling with POD is essentially based on

a spectral method. By using spectral methods, field vari-

ables are approximated using expansions involving chosen

sets of basis functions. The resulting Galerkin-type equa-

tions obtained by projecting Eq. 6 on such basis functions

are manipulated to obtain sets of equations for the coeffi-

cients of the expansions that can be solved to predict the

behaviour of field variables in space and time. The POD

basis is derived from a set of system observations. In short,

samples, or snapshots, of system behaviour are used in a

computation of appropriate sets of basis functions to rep-

resent system variables. The POD is remarkable in that the

selection of basis functions is not just appropriate, but

optimal, in a sense to be described further. The need to

obtain samples of system behaviour to construct the POD-

based ROM is both a strength and a weakness of the

method. One strength is that models can be efficiently tuned

to capture physics in a high-fidelity model. Two noteworthy

weaknesses are the need to compute samples with a high-

order, high-fidelity method, and the possible lack of model

robustness to changes in parameters that govern system

behaviour. Generally, the pay-off in applying POD is quite

high when, following an initial computational investment, a

compact ROM can be constructed that can be used many

times in a multidisciplinary environment and which is valid

over a useful range of system states [23]. In the following,

we will show the different steps for building an aeroelastic

POD-based reduced-order model.

After having computed the POD basis (some details on

POD basis evaluation have been reported in ‘‘Appendix’’),

the next step consists of projecting the governing fluid

equation onto the reduced base. If we consider a distur-

bance field such as:

U ¼ w½ �g ð7Þ

g represents the vector of the components of the distur-

bance field in the POD base. Thus, the reduced system is

obtained by projecting the linearized Euler equation into

the POD basis:

w½ �H A0½ �U þ A1½ � oU
ot

� �

¼ w½ �H B0 dð Þ þ B1

od

ot

� �� �

ð8Þ

where H is the Hermitian operator.

The reduced-order model obtained is:

a0½ �gþ a1½ � og
ot

¼ b0 dð Þ þ b1
od

ot

� �

ð9Þ

with a0½ � ¼ w½ �H A0½ � w½ �; a1½ � ¼ w½ �H A1½ � w½ �; b0 ¼
w½ �H B0½ � w½ � and b1 ¼ w½ �H B1½ � w½ �. It has to be noticed that

the fluid system matrix a0½ �; a1½ � and the coupling vector

b0; b1 can be significantly smaller than their full-order

counterparts. For more theoretical details on the Galerkin

projection presented, see [1, 24].

Once the fluid ROM has been calculated, the corre-

sponding aerodynamic forces may be determined. The

displacement field d is linked to the structural modes u½ �
using the structural modal expansion

d ¼ u½ �q ð10Þ

where q represents the generalized coordinates. For each

structural mode um, vectors b0 umð Þ and b1 umð Þ can be

calculated. These vectors are stored in columns in matrix

b0½ � and b1½ �. The reduced-order model is:

a0½ �gþ a1½ � og
ot

¼ b0½ �qþ b1½ � oq
ot

ð11Þ

where all the matrices are now constant with respect to the

displacement. The variation of the pressure field caused by a

mode of the POD basis is independent of the boundary

conditions applied to the structure. This means that we can

d

dt
Xsd �W þ dX tð ÞWsð Þ þ

X

i

1

2
f �Wð Þ þ f �Wsið Þð ÞN i

x tð Þ þ g �Wð Þ þ g �Wsið Þð ÞN i
y tð Þþ

�

h �Wð Þ þ h �Wsið Þð ÞN i
z tð Þ

þ 1

2
A½ � Wsð ÞdW þ A½ � Wsið ÞdWið ÞN i

sx þ
1

2
B½ � Wsð ÞdW þ B½ � Wsið ÞdWið ÞN i

sy

þ1

2
C½ � Wsð ÞdW þ C½ � Wsið ÞdWið ÞN i

sza
i tð Þ � N i

s tð Þ
1

2
�W þ �Wið Þ

�

¼ 0

ð5Þ
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generate a vector of generalized aerodynamic forces

(GAFs) projecting the vector field generated by the motion

of any POD mode on any structural mode. These vectors are

collected by columns in a matrix F½ �. Thus, the generalized
aerodynamic forces are then related to the vector g by:

f ¼ F½ �g: ð12Þ

2.3 Coupled fluid/structural aeroelastic model

In summary, the POD method outlined above leads to a

reduced-order basis that can be used for building an aero-

dynamic ROM for a given free stream Mach number and

angle of attack. The corresponding aeroelastic system is

obtained by coupling the Eqs. 11 and 12 with the equation

for a coupled fluid–structure aeroelastic system. The

motion of an elastic body with respect to an equilibrium

un-deformed reference position, in time domain, is

described by the Lagrange equation

XM

m
M̂nm €qm þ

XM

m
Ĉnm _qm þ

XM

m
K̂nmqm þ 1

2
q1V2

1f ¼ 0

ð13Þ

with Ĉnm :¼ 2fm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K̂nmM̂nm

p

dnm and where dnm is the

Kroneker symbol, q are the generalized modal coordinates,

K̂nm is the stiffness matrix, M̂nm is the mass matrix asso-

ciated with the chosen Lagrangian model variable, Ĉnm is

the damping matrix, and f is the generalized aerodynamic

force vector. If we put the aeroelastic equation and the

POD equation in the same equation system, we obtain the

following linear system, thus any stability study is reduced

to solve a standard eigenproblem for k and u for the gen-

eralized linear system.

0 Id½ � 0

�k½ � �c½ � 1

2
q1V2

1 F½ �
�b0½ � 0 �a0½ �

0

B

@

1

C

A
u

¼ k

Id½ � 0 0

0 m½ � 0

�b1½ � 0 a1½ �

2

4

3

5

0

@

1

Au ð14Þ

Note that the GAF matrix defined as the matrix relating in

the frequency domain the modal co-ordinates q’s with the

GAF force vector f is given by

GAFPOD ¼ F½ � a0½ � þ jx a1½ �ð Þ�1
b0½ � þ jx b1½ �ð Þ: ð15Þ

3 Unsteady aerodynamic updating strategies

Two techniques have been proposed and developed to

update unsteady aerodynamic models. The first one is

based on updating the GAF matrix obtained by POD

approach (see Eq. 15) with the generalized aerodynamic

force obtained by the high-fidelity model. The second one

is based on matching the measured and numerical

frequencies and damping for each aeroelastic mode of an

aircraft for different total pressure conditions. On defining

the optimization problems, the parameters of a suitable

eigenproblem associated with the unsteady aerodynamic

ROM model are considered as design parameters of the

updating process. Indeed, design variables in this reduced-

order unsteady aerodynamic model tuning are scaling

factors for all complex eigenvalues of the reduced-order

aerodynamic matrices. The reduced-order aerodynamic

matrix at a given frequency x can be written as:

a xð Þ ¼ a0½ � þ jx a1½ �: ð16Þ

The eigenvalues and eigenvectors associated with a xð Þ
are obtained by:

a xð ÞV ¼ Vl ð17Þ

where several eigenproblems can be associated for any

frequency xi. l are the complex eigenvalue diagonal

matrix and V are the complex right eigenvector matrix. The

eigenvalue matrix can be written as:

l ¼
lR11

� � � 0

..

. . .
. ..

.

0 � � � lRnn

2

6

4

3

7

5
þ j

lI11 � � � 0

..

. . .
. ..

.

0 � � � lI1n

2

6

4

3

7

5
ð18Þ

where n is the number of POMs chosen to build the

reduced-order model, and lRij
and lIij are, respectively, the

real part and imaginary part of the eigenvalues. Design

variables are defined as multipliers of the eigenvalues such

that the optimized new eigenvalues matrix ~l is given by

~l ¼
r11lR11

� � � 0

..

. . .
. ..

.

0 � � � rnnlRnn

2

6

4

3

7

5
þ j

s11lI11 � � � 0

..

. . .
. ..

.

0 � � � snnlInn

2

6

4

3

7

5

ð19Þ

where r is the design variable for the real part of the

eigenvalues and s is the design variable for the imaginary

part of the eigenvalues. Update eigenvalues can be written

as:

~l ¼ lþ dl ð20Þ

Thus, it is now possible to reconstruct the updated aero-

dynamic matrix ~a for any frequency x as shown:

~a ¼ V ~lV�1: ð21Þ

It is now possible to solve the linear system and calcu-

late the new generalized aerodynamic force.

3.1 generalized aerodynamic force tuning

Strategy 1: Try to find the solution, in the objective space,

that minimizes the distance between the GAF matrix as
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obtained by direct CFD analysis (GAFCFD) and by POD

modelling (GAFPOD, Eq. 15) with updating strategies. For

example, it is possible to solve the problem:

min d xð Þ ¼ GAFPOD � GAFCFD
�

�

�

�

p
ð22Þ

where p indicates the norm type of a vector to be mini-

mized varying the design vector x composed by r and

s multiplying coefficient defined in Sect. 2.1 standard

optimizer toolbox has been used [25]. Figure 2 shows some

descriptive details of the optimization algorithm.

3.2 Frequencies and damping tuning

Strategy 2: Try to find the solution, in the objective space,

that minimizes the distance between the poles of the

aeroelastic system as obtained, for example, by experi-

mental data (wind tunnel or flight test data) and by ROM–

POD modelling with updating strategies based on Eqs. 12,

13 and 14. A norm vector for the aeroelastic pole differ-

ences will be minimized (see later) varying the design

vector x composed by r and s multiplying coefficients

defined in Sect. 2 (Fig. 3).
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All the solution methods proposed are based on the idea

of transforming the original multi-objective problem into a

single objective problem (transform the vector problem of

minimizing the distance between each aeroelastic pole into

a scalar problem). The methods are classified into three

categories: method without preference, a posteriori method

and a priori method, as in the following.

Approach 1: distance method or goal method (without

preference): Try to find the solution, in the objective space,

that minimizes the distance between the admissible region

(Z) and any reference point zref 62 Z ¼ f Fð Þ. For example,

if zref ¼ zid, it is possible to solve the problem:

mind xð Þ ¼ f xð Þ � zid
�

�

�

�

p
F ¼ x 2 Rn; g xð Þ� 0f g ð23Þ

where

xk kp¼
Xk

i¼1
xij jp

� 	1=p
ð24Þ

where p is the standard norm of a vector.

Approach 2, e constraints method or trade-off method

(a posteiori): Choose an objective function fl xð Þ and

transform the other objective functions fi xð Þwith
i ¼ 1; 2; . . .; k; i 6¼ lð Þ to constraints and impose the upper

bound ei. Thus, the scalar problem to solve is:

min fl xð Þ l 2 1; 2; . . .; kf g
fi xð Þ� ei 8i ¼ 1; 2; . . .; k; i 6¼ l

g xð Þ� 0:

ð25Þ

Approach 3, hierarchical method (a priori): Order the

objective functions on the strength of relevance (for

instance, in the present case, the description of a specific

aeroelastic pole-mode could be more relevant with respect

to the others). After classifying the objective functions, the

solution process starts with the minimization of the first

(more relevant) objective function f1 xð Þ in the original

admissible region F. Thus, the scalar problem to solve is:

minf1 xð Þ
g xð Þ� 0:

ð26Þ

If the problem above has a unique solution, this is also the

solution of the optimization problem and the algorithm stops.

Otherwise, we try to minimize the second objective function

f2 xð Þ following the order choice during the classification but
adding to the original constraints other constraints that assure

that the new solution does not worsened the value of the first

objective function. Thus, the scalar problem to solve is:

minf2 xð Þ
f1 xð Þ� f1 x�1

� �

g xð Þ� 0

ð27Þ

where x�1 is the solution of the first problem. If the problem

above has a unique solution, the algorithm stops.

Otherwise, we can restart the procedure by selecting the

next objective function in the ranking. At the generic step

h� k, we can write:

min fh xð Þ
fi xð Þ� fi x

�
i

� �

i ¼ 1; 2; . . .; h� 1

g xð Þ� 0

ð28Þ

where x�i is the solution of the i th problem. The added

upper bound can be a fraction of the optimal solution fi x
�
i

� �

found during the optimization process:

fi xð Þ� 1� ei

100

� 	

fi x
�
i

� �

0� ei � 100: ð29Þ

4 Numerical results and discussion

A critical review of the optimization strategy is now

applied to two different aeroelastic systems, a NACA

64A010 wing section and a transonic wind tunnel model

representative of an Airbus commercial aircraft.

4.1 NACA 64A010 wing section

The aeroelastic full-order computational model consists of

a CFD structured Euler C-mesh with 6,888 cells, which

corresponds to 27,552 flow perturbation unknowns (see

Fig. 1a), and two structural modes, obtained by a vertical

rigid translation (Fig. 1b) and a pitch rotation around the

quarter chord (Fig. 1c) of the aerodynamic mesh. For all

simulations, total pressure and total temperature are fixed,

respectively, at 203,321 Pa and 310 Kelvin degrees, the

Mach number is fixed at 0.7. POD basis vectors were

calculated using a frequency domain method of the snap-

shot approach. The reduced frequency k is defined as:

k ¼ xc=U ð30Þ

where x is the frequency of the airfoil motion, c is the wing

section chord and U is the freestream velocity. In order to

compute the POD basis vectors, flow snapshots are eval-

uated at 11 evenly spaced reduced frequency between 0

and 0.3 for each structural mode for a total of 44 real POD

vectors (2 modes 9 11 frequencies 9 real and imaginary

part of the snapshots) (Fig. 4).

Since the snapshots are computed,we then use the technique

described in Sect. 2.2 to find the POD vectors. Figure 5 shows

the proper orthogonal values (POV) distribution or r eigen-

values of the correlationmatrix. One sees that the vast majority

of the energy (99 %) is contained in the first 10 POD vectors.

Once the POD basis has been built, the method shown in

Sect. 2.2, to calculate the generalized aerodynamic forces

is applied.

The first model updating is performed using the first

strategy proposed for matching of the generalized

7



Fig. 4 Computational grid for NACA 64A010 airfoil. a Mesh near the airfoil, b vertical rigid translation, c 1/4 chord pitch rotation

Fig. 5 Eigenvalues k/% energy distribution of the POM vectors computed for the NACA 64A010

Fig. 6 GAF NACA64A010 comparison using Strategy 1 updating approach
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aerodynamic force obtained by POD approach and the

generalized aerodynamic force obtained by the high-fidel-

ity model via a direct CFD simulation. The reduced aero-

dynamic matrix is parameterized, as shown in Sect. 3,

using 84 design variables for each reduced frequency. The

variation of the design variables (r and s coefficient vectors

in Eq. 19) is limited to 10 %, and the variation of the

modified GAF is limited to 10 %. After the updating pro-

cess, a check of the new unsteady pressure distribution

computed is carried out to verify the correct reconstruction

of the unsteady pressure field. In Fig. 6, the evaluated

GAFs are compared with the reference solution: the figure

shows a difference between the GAF obtained by the POD

method and the GAF obtained by the high-fidelity model.

After the updating process, the updated GAF is superim-

posed to the high-fidelity GAF. To obtain the convergence

of the objective function, we need 2100 iteration for a

computational cost of about 5 min in a conventional

desktop computer. The maximal variation of the design

variable is of ?1.84 % with respect to the original

value and the minimal variation of the design variable is

-1.75 % with respect to the original value.

In the second model, updating is performed using the

second strategy proposed for matching of the frequencies

and damping of the aeroelastic system obtained by POD

approach with the frequencies and damping obtained by the

high-fidelity model. No experimental data on frequency

and damping was available for NACA64A010 test case,

and thus, to obtain a dummy frequency and damping for

the updating process, the original generalized aerodynamic

force was ad hoc modified. In particular, four terms of the

high-fidelity GAF matrix are randomly altered by multi-

plying the original terms for a correction coefficient of ?15

or -15 %. After having calculated the objective values for

the optimization, the three strategies proposed in Sect. 3.2

are applied and critically evaluated.

In Table 1, we can see the comparison between the

results obtained after the updating process using the three

strategies proposed, before the updating process and the

reference, in terms of the percentage error frequency and

damping, with respect to the reference values, for two

different total pressure conditions. From the analysis of the

results, it is possible to see that even before updating the

POD model gives very good results in terms of frequency

and damping. To obtain the right convergence level of the

updating process (e\ 1.E-04 see Fig. 3), we need between

4,000 and 4,500 iterations, for the three strategies, for a

computational cost of about 3/4 min in a standard com-

puter desktop. The maximal variation of the design vari-

able found during the updating process, for the three

strategies, is of ?2.15 % with respect to the original

value and the minimal variation of the design variable is

-2.25 % with respect to the original value.

Regarding the error before updating, we can see a 0.4 %

error for frequency and damping for the first structural

mode, a 0.02 % error for the frequency of the plunging

mode, an error of 0.64 % for the damping at the first total

pressure condition and an error of 1.17 % for the damping

at the second total pressure condition. After the updating

process for the approach 1, we can see a general

improvement of the accuracy in terms of frequency, faced

with a slight deterioration in terms of damping. At this

time, it is pertinent to point out that only the frequencies

are included in the cost function to be optimized.

Regarding the approach 2, after the updating process, we

can see a general improvement of the accuracy of the

results. In particular, a very strong improvement in terms of

frequency is obtained, the percentage error is reduced to

0.01–0.02 % for all pressure conditions and also a signif-

icant reduction of the error for damping is obtained. The

percentage error for the first mode is reduced to 0.01 %,

and for the second mode, it is reduced to 0.36 % for the

first pressure condition and 0.2 % for the second pressure

condition. After the updating process for approach 3, we

can see a very strong improvement in terms of frequency is

obtained. The percentage error is reduced to 0.01–0.04 %

for all pressure conditions and also a significant reduction

of the error for damping is obtained, and the percentage

error for the first mode is reduced to 0.01 % and for the

second mode is reduced to 0.55 % for the first pressure

condition and 0.24 % for the second pressure condition.

In Fig. 7, a comparison between the generalized aero-

dynamic force obtained after the updating process by the

three approaches (see legend for details) and the

Table 1 Error for poles using Strategy 2

Pressure Error before (%) Error approach 1 (%) Error approach 2 (%) Error approach 3 (%)

Frequency Damping Frequency Damping Frequency Damping Frequency Damping

10,000 0.43 0.41 0.09 0.45 0.01 0.01 0.01 0.01

15,000 0.49 0.41 0.05 0.49 0.02 0.00 0.04 0.02

10,000 0.03 0.64 0.01 0.69 0.01 0.36 0.01 0.55

15,000 0.03 1.17 0.01 1.10 0.00 0.20 0.00 0.24

9



generalized aerodynamic force of reference is proposed.

We can see a very good tracking for the GAF 1:1 (upper

left curves) and 2:1 (lower left curves) obtained by the

updated model and not very good accuracy for the second

frequency of the GAF 1:2 (upper right curves) and for the

first frequency of the GAF 2:2 (lower right curves), only

the approach 3 seems to give a good tracking, with a little

left shift of the GAF 2:2.

As concluding remarks for this Section, it can be pointed

out that the first strategy is able to globally give a very

good accuracy for fitting the target results (GAF matrix)

employing a slight computational cost. Regarding the

second strategy proposed, we can say that the approach 1 is

the less efficient, due to the fact that in the objective

function, only the frequencies are take into account, and the

approaches 2 and 3 are able to globally give the same

accuracy for fitting the target results (aerodynamic poles),

employing essentially the same computational efforts.

4.2 AMP model

The next example refers to a representative Airbus com-

mercial model that was tested in a transonic wind tunnel. It

is also known as AMP model [26] (see Fig. 8a). The AMP

wing-fuselage configuration has been used to validate the

updating approach. The AMP wing test programme was

worked out in 1990, jointly by AIRBUS, DASA, DLR and

ONERA. The objective of this programme was to study the

flutter behaviour of a model aircraft in the transonic

domain. Two models (half wing-fuselage configuration),

with identical geometric shapes, were tested in the S2 wind

tunnel of Modane. The first model, also known as pressure

model, was used to study the steady and unsteady pressure

fields and the static and dynamic wing deformations. The

second model, also known as flutter model, was employed

for flutter investigation. The wing is equipped with 288

Kulite pressure sensors, distributed on the upper and lower

surfaces in 10 sections. Ten optical fibres, located along the

leading edge and trailing edge of the wing, are used for

measurement of the static deformations. Extensive aero-

dynamic and structural experimental data are available for

this wing for a wide range of test conditions, ranging from

subsonic to transonic attached or separated flows. This

allows us to calibrate advanced fluid–structure solvers in

the case of aeroelastic problems involving aerodynamics

nonlinearities such as shocks and separated flows. A

Fig. 7 GAF results comparison using Strategy 2
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structural finite element model (stick model) was devel-

oped by AIRBUS and updated with ground vibration test

results (Fig. 8b).

The flutter model was designed to exhibit bending-tor-

sion flutter in the wind tunnel behaviour, and for this rea-

son, only the first bending mode and the first torsional

mode are taken into account in the simulations. The aero-

elastic full-order computational model consists of a CFD

structured Euler C-mesh with 576,000 cell, which corre-

sponds to 2,880,000 flow perturbation unknowns, and a

condensed Finite Element structural model built by beam

and concentrated mass. For more details, see Fig. 8b. For

all simulations, the input data set, scheduled as run 208, is

chosen as a reference: specifically, total pressure and total

temperature are fixed, respectively, at 90,210 Pa and 298

K, the Mach number is fixed at 0.78, the angle of attack at

1.78. This data numerically give a lift coefficient equal to

0.3. The lift coefficient obtained by the wind tunnel test is

0.3. POD basis vectors are calculated using a frequency

domain method of the snapshot approach. In order to

compute the POD basis vectors, flow snapshots are eval-

uated at 13 not equally spaced reduced frequencies

between 0 and 0.225 for each structural mode for a total of

52 real POD vectors (2 modes 9 13 frequencies 9 real

and imaginary part of the snapshots). A static coupling has

been carried out to define the flight shape of the model.

After computation of the snapshot, the POMs vectors are

calculated, and according to the energy criteria, 36 POD

vectors are retained for the simulations.

The first model updating is performed using the first

strategy proposed for matching of the generalized aerody-

namic force obtained by POD approach and the generalized

aerodynamic force obtained by the high-fidelity model. The

reduced aerodynamic matrix is parameterized, as shown in

Section 3, using 72 design variables r and s for each

reduced frequency. The variation of the design variables is

limited to 20 %, and the variation of the modified GAF is

limited to 20 %. After the updating process, a check on the

new unsteady pressure distribution computed is carried out

to verify the correct reconstruction of the unsteady pressure

field. In Fig. 6, the evaluated GAFs are compared with the

reference solution: the figure shows a difference between

the GAF obtained by the POD method and the GAF

obtained by the high-fidelity model. After the updating

process, the updated GAF is superimposed to the high-

fidelity GAF. To obtain the convergence of the cost func-

tion, we need 650 iteration for a computational cost of

about few seconds on a conventional desktop computer.

The maximal variation of the design variable is of

?0.66 % with respect to the original value and the minimal

variation of the design variable is -0.89 % with respect to

the original value (Fig. 9).

The second model updating is performed using the

second strategy for all the three approaches proposed to

matching the frequencies and damping of the aeroelastic

system obtained by POD approach and the frequencies and

damping obtained by the wind tunnel test. In particular for

the experimental run 208, we have data about frequency

and damping for the first structural mode for two pressure

conditions and for the second structural mode for five

pressure conditions, as shown in Table 2.

In order to analyse the results of the updating process

more effectively, in Table 3, we propose a comparison in

terms of the percentage error of the frequency and damp-

ing, after the flutter solution for six fixed pressure condi-

tions, before the updating process and after the updating

process, with respect to the experimental values.

To obtain the right convergence level (e\ 1.E-04 see

Fig. 3) of the objective function, we need around 2,000

iterations for a computational cost of about 13 min on a

standard computer desktop. Only for the approach 1, the

fixed convergence level is not reach and the updating

process is stop at e = 0.9. The maximal variation of the

design variable found during the updating process, for the

three strategies, is of ?19.25 % with respect to the original

value and the minimal variation of the design variable is

-18.01 % with respect to the original value.

If we turn our attention to the frequency column, we can

see that even the POD model before updating gives a very

low percentage error, less than 1 %, with respect to the

experimental data for the two structural modes taken into

account in the simulations. Regarding the columns of the

Fig. 8 AMP model. a AMP

model in the transonic ONERA

wind tunnel, b FE structural

model

11



frequency after updating, we can see an improvement in

terms of percentage error for the first structural mode and

an augmentation of the percentage error for the second

structural mode, except for the approach 3 that present a

reduction of the percentage of error for the two structural

modes considered. On the other hand, if we take a look at

the damping column, we can see that the POD model

before updating gives an important percentage error from a

minimum of 10.6 % to a maximum of 79.7 % for the two

structural modes. Regarding the columns of damping after

updating, we can see a significant reduction of the per-

centage error, less than 10 % for the two structural modes

(except for one pressure condition where the error is 20 %)

with respect to the model before updating.

The results obtained are reported in a classical flutter

plot. In Figs. 10, 11 and 12 we can see the comparison of

the flutter behaviour obtained for the two structural modes

taken into account in the simulations: before updating and

after updating and the experimental wind tunnel test data.

For the approach 1, we can see the improvement in

terms of frequency tracking for the two structural modes.

Regarding the damping, as shown in Table 3, we can see

the better tracking in comparison with the results obtained

by the high-fidelity model before tuning.

For the approach 2, we can see the improvement in

terms of frequency tracking for the first structural mode

and the deterioration of the tracking for the second

Table 2 Wind tunnel experimental data (aeroelastic poles) for run

208

Pressure Frequency exp Damping exp

60,000 26.25 0.039

80,000 27.38 0.047

60,000 30.96 0.017

80,000 30.40 0.022

90,000 29.96 0.018

95,000 29.63 0.013

100,000 29.71 0.005

Fig. 9 GAF AMP wing comparison using Strategy 1 updating approach
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structural mode. Regarding the damping, we can see the

better tracking in comparison with the results obtained by

the high-fidelity model.

Finally, for the approach 3, we can see the improvement

in terms of frequency tracking for the first structural mode

and a slight deterioration of the tracking for the second

Fig. 11 GAF flutter plot using Strategy 2 and approach 2

Table 3 Error for poles using Strategy 2

Pressure Error Before (%) Error approach 1 (%) Error approach 2 (%) Error approach 3 (%)

Frequency Damping Frequency Damping Frequency Damping Frequency Damping

60,000 0.42 10.60 0.18 1.19 0.19 3.78 0.30 1.59

80,000 0.75 19.99 0.07 7.69 0.39 6.43 0.36 4.54

90,000 na na na na na na na na

95,000 na na na na na na na na

100,000 na na na na na na na na

60,000 0.59 14.84 0.68 4.12 0.56 5.55 0.06 21.01

80,000 0.95 21.98 1.09 9.34 0.94 2.31 0.01 17.18

90,000 0.92 37.29 1.62 20.30 1.16 10.16 0.03 1.97

95,000 0.27 58.64 1.44 10.06 0.98 7.45 0.24 16.37

100,000 0.83 79.74 2.05 6.50 1.69 8.53 0.70 39.54

Fig. 10 GAF flutter plot using Strategy 2 and approach 1
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structural mode. Regarding the damping, we can see a

general improvement of the results obtained by the high-

fidelity model before tuning for the two structural modes.

As concluding remarks on this study, the first strategy

based on the error minimization for GAF matrix gave very

satisfactory updating results, but unfortunately, in the real

world, experimental reference results on GAF (modal)

matrix for an aircraft (or WT model) are not typically

available for performing an updating process. Therefore,

the second strategy directly based on a tuning minimizing

the variation of the aeroelastic poles (which can be

experimentally available) seems to be more effective for

applications: the first approach proposed confirm a lack of

accuracy due to the fact that in the objective function, only

one parameter (the damping in this case) is taken into

account. The approach 2 and 3 have shown a satisfactory

level of accuracy with not practical differences in the

resulting estimates of the aeroelastic poles in the flutter

plots obtained.

5 Concluding remarks

The robustness of the accuracy of the POD approach for

aeroelastic application has been demonstrated. Specifically,

it is shown that the POD approach represents a very good

starting point for aeroelastic application and for the

updating technique for aeroelastic models. A simple

method for unsteady aerodynamic model updating starting

from a reduced-order model has been proposed. Two

strategies on defining the model error with respect to a

reference target physical behaviour and three numerical

approaches have been analysed for the updating algorithm,

in order to provide the highest degree of accuracy of the

updated model. A critical review of the selected methods

was presented, critically describing the advantages and

drawbacks of the different approaches. Two aeroelastic

systems were investigated: a NACA 64A010 wing section

and a transonic wind tunnel model of a representative

Airbus commercial aircraft. The update capabilities of the

different strategies are compared in terms of GAF recon-

struction in the first application and aeroelastic poles in the

second example. Since the aeroelastic poles may be

available by experimental wind tunnel tests (as utilized in

the paper) or by flight tests, the second strategies seem to

be more effective for actual application. The effectiveness

of the updating strategy was validated firstly on theoretical

base, with a numerical biased model, and after on appli-

cation base, with wind tunnel experimental data.

Acknowledgments This paper has been supported by ‘‘Direction
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Appendix: some details on POD basis evaluation

The starting point of the POD-based ROM procedure is calcu-

lation of the small-disturbance solution response of the fluid

dynamic system at N different combinations of excitation and

frequency. These solutions, also known as snapshots, are

denotedbyU ¼ un; n ¼ 1; ::;Nf g. TheEuler equations, solved
for the special case of an harmonic excitation of type

Ms; tð Þ ¼ d Msð Þeixt, lead us to search for a solution of the form
U ¼ Ueixt, where d is a prescribed structural displacement

field,x is the frequency, and i ¼
ffiffiffiffiffiffiffi

�1
2
p

is the imaginarynumber.

Thus, the snapshots are the estimate of the complex unsteady

field at the centre of the j th cell of the computational grid for a

varying frequencyx. ThePOD technique is next used to find the

smallest and best subspace of finite dimension M � N which

contains the dominant unsteady characteristics of the flow. The

identified subspace wi; i ¼ 1; ::;M

 �

represent the dominate

‘‘directions’’ of the full original solution. Each snapshot can be

approximated by a POM (proper orthogonal mode, also known

as POD vectors) linear combination:

Fig. 12 GAF flutter plot using Strategy 2 and Approach 3
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un ¼ �uþ
XM

i¼1
giw

i ð31Þ

where wi are POMs and gi are the unknown coefficients of

POD expansions. The POD modes are obtained from the

maximization problem:

max
w

u tð Þ;w
w

� �

w

w

�

�

�

�

�

�

�

�

2
* +

: ð32Þ

We maximize the norm of the u projection on the right

vectorial direction of w on average on T, where T is a

discrete continuous set. Note that, in general, the following

equivalent formulation is preferred:

max
w

u tð Þ;wð Þ2
w;wð Þ

* +

: ð33Þ

The previous maximum problem for a definite-positive

function is equivalent to the resolution of the following

eigenvalues problem

SV ¼ Vr2 ð34Þ

where S is the real snapshot correlation matrix

S ¼ RRT ð35Þ

with,

R ¼ Re Uð ÞIm Uð Þð Þ ð36Þ

and each column of U contains a complex valued snapshot.

V is an eigenvector. Note that the corresponding eigen-

values are expected to be positive because of the posi-

tiveness of the matrix S, and therefore, the positive quantity

r2 is directly introduced in Eq. 34.

The choice of the eigenvector to build the POD basis is

made according to the following criteria:

1. Snapshots that are not decorrelated: the modes

obtained from decorrelated snapshots are the snapshots

themselves and they all have the same eigenvalues.

2. Elimination of the eigenvectors associated with eigen-

values that are zero or too small.

3. There is a little difference between the partial and total

energy.

As shown in Ref. [15], the POMs are simply a linear

rearrangement of the original snapshot:

wi ¼
Xn

n¼1
aimu

n ð37Þ

After the eigenvalues problem (Eq. 34) has been solved,

the POMs are computed by the Eq. (37) where

aim ¼ VMr
�1
M : ð38Þ
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