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A finite element approach combining a reduced-order system,
Padé approximants, and an adaptive frequency windowing for fast
multi-frequency solution of poro-acoustic problems

R. Rumplerl’z’*"r, P. Goransson! and J.-F. Deii?

"The Marcus Wallenberg Laboratory for Sound and Vibration Research (MWL), Department of Aeronautical and
Vehicle Engineering, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
2Structural Mechanics and Coupled Systems Laboratory (LMSSC), Conservatoire National des Arts et Métiers

(CNAM), Paris 75003, France

In this work, a solution strategy is investigated for the resolution of multi-frequency structural-acoustic
problems including 3D modeling of poroelastic materials. The finite element method is used, together
with a combination of a modal-based reduction of the poroelastic domain and a Padé-based reconstruction
approach. It thus takes advantage of the reduced-size of the problem while further improving the compu-
tational efficiency by limiting the number of frequency resolutions of the full-sized problem. An adaptive
procedure is proposed for the discretization of the frequency range into frequency intervals of reconstructed
solution. The validation is presented on a 3D poro-acoustic example.

KEY WORDS: structural-acoustics; dissipative interface; noise reduction; reduced-order model; Padé
approximants; poroelastic materials

1. INTRODUCTION

During the past two decades, computational methods have been increasing in importance as engi-
neering tools in the effort of reducing noise for interior domains in vehicles. In the design process,
several detailed structural-acoustic analyses need to be performed, and increasingly, the effects of
interior trim components are included. However, modeling vibroacoustic problems with such dis-
sipative interfaces as, for example, porous materials described with the Biot—Allard theory [1], can
lead to prohibitive sizes of finite element (FE) models. It is therefore a question of considerable
interest to propose efficient solution strategies.

Among the enhancements proposed in the past, use of equivalent acoustic impedances [2, 3] has
proved to be very efficient but unfortunately limited by strong assumptions. In the scope of 3D
FE modeling, the introduction of a mixed displacement-pressure porous formulation for the solid
and fluid phases [4], respectively, downsized the number of DOFs per node from six, when using
a standard solid and fluid phases displacement formulation [5, 6], to four DOFs. Hierarchical ele-
ments also proved to reduce the number of DOFs needed to model the porous media [7]. Recently,
modal reduction techniques have been proposed and applied to standard linear poroelastic FEs, in

*Correspondence to: R. Rumpler, Department of Aeronautical and Vehicle Engineering, KTH Royal Institute of
Technology, SE-100 44 Stockholm, Sweden.

TE-mail: rumpler @kth.se



an attempt to keep a fine and complex 3D modeling of the problem in the scope of low frequency
applications [8—11].

Alternatively, in a more general approach, recent research has been carried out in order to propose
reduced-order models targeting fast frequency sweeps for increasingly complex models. As such,
Lanczos-based interpolatory methods, such as the Padé-via-Lanczos algorithm [12] or its subse-
quent development for more general partial fields and unsymmetric systems with the matrix-valued
Padé-via-Lanczos approach [13-15], have been extended to second-order problems, being how-
ever limited to constant non-proportional damping models. Additionally, this extension is made by
a linearization of the second-order problem, which involves doubling the dimension of the state-
space vector, thus substantially increasing the memory requirements. To alleviate this drawback,
second-order Arnoldi-based methods have been proposed [16], allowing for a structure-preserved
reduced model, but still limited to constant non-proportional damping. It is only recently that a few
methods have been developed for reduced-order models able to effectively account for general non-
linear frequency-dependence of the linear system of equations [17-23], as is the case for refined
modeling of sound absorbing porous materials. They are based on the explicit calculation of the
solution vector and its derivatives at a restricted number of main frequencies in the spectrum of
interest. In [20], these explicit derivatives are used to span a subspace, suitable for a reduced fre-
quency interval in the spectrum, on which the global matrices are projected. The frequency sweep
is then performed for a small system of linear equations. A drawback of this approach is that the
possibly frequency-dependent global matrices may need to be projected on the reduced basis at
each frequency.

In the present work, this is overcome by a decomposition of the system matrix into a frequency-
dependent linear combination of frequency-independent global matrices. Although shown to be
a computationally viable approach for the isotropic materials studied here, this may become an
issue of concern in cases where, for example, the modeling of anisotropic porous materials [24] is
required. Alternatively, as done in the present work, these successive frequency-derivative vectors
may be used for a component-wise solution expansion via Padé approximants [17-19,21,22]. This
alternative, within the scope of an FE approach, additionally offers the possibility to directly target
the solution reconstruction for a specific DOF subset of interest. While the literature demonstrates
the efficiency of this method when applied to single-field problems, it may very well turn out to
be advantageous for coupled problems, in particular, when only parts of the solution need to be
reconstructed, for example, evaluating the solution only at a restricted number of acoustic DOFs in
a complex damped structural-acoustic problem.

In the present approach, such a reconstruction based on Padé approximants is combined with a
modal-based reduction of the costly poroelastic domain [10], thus taking advantage of the com-
plementary characteristics of each method: the Padé approximation approach involves an efficient
computation of the solution and its derivatives at a very restricted number of frequencies in order to
recover the entire frequency response, while a reduced model allows to enhance the computational
time both for the solution at these master frequencies and for the reconstruction of the solution
in-between [25]. The computational cost of this latter step is in fact linearly related to the num-
ber of DOFs involved. Consequently, substantial efficiency improvements could be expected with
such a combination, as demonstrated in the present work. In addition, the trade-off between the
computational time enhancement and precision loss is discussed in poro-acoustic validation cases.

In the first three sections, the FE formulation, the modal-based reduction of the poroelastic
domain, and the Padé approximation method are briefly recalled. More details on the FE formu-
lation and the modal approach can be found in previous works by the authors [10,25]. An adaptive
procedure is then proposed for the decomposition of the frequency range into contiguous frequency
intervals of reconstructed response. The last section is dedicated to illustration, validation, and
discussion of the approach on poro-acoustic examples.

2. FINITE ELEMENT FORMULATION FOR THE PORO-ACOUSTIC PROBLEM

A poro-acoustic problem is considered, whose description and notations are presented in Figure 1
and Table I. The acoustic fluid and the porous medium occupy the domains Qp and 2p respectively.
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Figure 1. Description and notations of the poro-acoustic interaction problem.

Table I. List of material parameters.

Notation Description
s Density of the material constituting the frame
(57 Lamé parameters for the solid frame
Pf Ambient fluid density
n Ambient fluid viscosity
Py Ambient fluid standard pressure
y Heat capacity ratio for the ambient fluid
Pr Prandtl number for the ambient fluid
¢ Porosity
oo Tortuosity
o Static flow resistivity
A Viscous characteristic length
A Thermal characteristic length

The compressible fluid is described using pressure fluctuation (p) as primary variable
(Subsection 2.1.1), while the fluid and solid phases homogenized displacements (us,uy) are retained
for the porous medium (Section 2.1.2). The domains boundaries are separated into contours of (1)
imposed Dirichlet boundary conditions d; Qg and d;Q2p; (2) prescribed Neumann boundary condi-
tions d, QF and 3, Qp; and (3) coupling interface between the acoustic fluid and the porous medium
(I'gp). The FE formulation is presented for a stationary harmonic response at angular frequency .

2.1. Dynamic equations and constitutive laws

2.1.1. Compressible fluid (p). The internal fluid within acoustic cavities is assumed to be com-
pressible and inviscid, thus satisfying the Helmholtz equation derived from the motion, continuity,
and constitutive equations,

w2
Ap+22p=0 inQ (1
o
where ¢ is the constant speed of sound in the fluid, and p the pressure fluctuation field.
2.1.2. Porous media, Biot theory (ug,ug). At angular frequency w, the poroelastic medium satisfies

the following elastodynamic linearized equations, derived in the Biot—Allard theory [1], taking into
account inertia and viscous coupling effects between the solid and fluid phases,

divo,—iw 5(0))(].15 —up) + w? [((1 =) ps + pa) ug — paug] =0 in Qp, (2a)
diver—iwb(@)(ur—uy) + w? [—paus + (¢pr + pa)ud =0 in Qp, (2b)

where ug and uy are the solid phase and fluid phase averaged displacements, respectively, in the sense
of the Biot theory. b(w) (henceforth denoted as b, where (-) refers to a complex-valued quantity) and
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pa are the complex frequency-dependent viscous drag and the inertia coupling parameter, respec-
tively, based on the standard notations of these material parameters (see Table I for details of the
notations used [1]) and given by

~ 4iwa np 5
b=0¢2 |:1+02A2¢2fi| s (3)
Pa = Pps Qoo — 1). “)

o and o ¢ are the averaged stress tensors for the solid and fluid phases, respectively. In [10], it was
shown that they satisfy the Lagrangian stress-strain relations developed by Biot, rewritten in the
following form using Voigt notation,

o, =DV e(u) + (Ki = Po) D? e(u) + D e(uy) + (Ki— Po) DY e(u),  (52)
_pd c 2 (1) o (2)
or =Dy’ e(u) + (Kr— Po) Dy’ e(us) + D;” e(us) + (K¢ — Po) Dy~ e(uy), (5b)

where & (us) and & (uy) are the strain tensors associated with the averaged displacement fields us and
u; respectively. Kf(Cl)) is the effective bulk modulus of the fluid phase (henceforth denoted by Ky),

N P
K= reo - ©6)

pp—
iwPrA2o\ 2
y—(y—1) |:1+zwmA/2p (1_|_zw A Pt) :|

D)@, Dgl)’(z) , and fol > are constant real-valued constitutive matrices given in [10].

2.2. Fluid-structure interaction problem

2.2.1. Poro-acoustic coupling and boundary conditions. At the external boundary of the acoustic
domain, rigid walls are considered, imposing a free pressure field (9, Qg = 0).
The time-harmonic source term is given by

grad p-n= (,()2[)]: U, on02Q2F, @)

where ug, is non-zero at the acoustic source location only (see 0, Qg in Figure 1).
The coupling, at interface I'rp, is given by the normal stress and normal displacement continuity
conditions between the acoustic fluid and both the fluid and solid phases of the porous medium,

osn+(1—¢) pn=0 on g, (8a)
orn+¢ pn=0 onIgp, (8b)
up-n— (1 —¢)u;-n—gus-n=0 onIpp, )

where ¢ is the porosity of the porous material, that is, the volume fraction of fluid.

No external force is applied to the outer boundaries of the porous medium except for the coupling
at interface I'gp. Therefore, d,Q2p = @ in the considered problems. Finally, at the external boundary
d12p, two types of boundary conditions can be prescribed, the porous material being considered
either as sliding or bonded to a rigid wall (Table II).

2.2.2. Finite element discretized problem. A Galerkin method is used to derive the weak formu-
lation for the coupled problem and the associated discretized set of algebraic equations. Details
can be found in [10, 26]. Thus, using the Helmholtz Equation (1), the elastodynamic Equa-
tions (2a) and (2b), and the constitutive expressions (5a) and (5b), as well as the acoustic velocity
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Table II. Boundary conditions for porous
layer on 91 Q2p.

Bonded layer Sliding layer
u =0 ug-np =0
us-np =0 ur-np =0

source excitation and coupling conditions, the following discretized system of equations may be
formulated,

Kr 0 0 7 0 0 0
—(=9AL KO KP4 (K- Po) |0 KO K
1 1 > 5
AL KPT K 0 K?T KO o
- 0 0 0 _MF (1 — ¢)AFS ¢AFf P a)ZUFb
+iwb |0 Cx Ci|—-w®| 0 M, M, U, | = 0
0 CIL Cy 0 M7 M;; U; 0

Under the assumption that @ # 0, this non-symmetric formulation may be symmetrized in the
frequency domain by dividing the acoustic equation by w?.

3. MODAL-BASED REDUCTION OF POROELASTIC DOMAIN

As an alternative to the full FE problem (10), the modal-based reduction of the poroelastic domain,
as proposed in [10], is used in the present work. The extension of the reduction to the acoustic
domain is straightforward and detailed in [26] but not used in this contribution, which is focusing
on the Poroelastic domain. Thus, non-reduced acoustic DOFs are separated into internal ones (sub-
script /) and those at interface with the porous medium (subscript 7). Notations used are presented
in Figure 2. The solid and fluid phase DOFs (subscripts s and f respectively) are further denoted
by a common set of porous DOFs (subscript P), so that the matrix system of Equation (10) may be
rewritten as

K —o’™;; | Kpy —o’Mp, 0 P 2y
KII__szII_ K[]-C()ZMII —a)ZAIP 1 ® Ib
0 AT KI(DI) + (I%f - Po) K1(>2)+ Pr|= g > (D
e iwhCp—*Mp P

which can be symmetrized by dividing the acoustic equations by w? (w # 0), where Ajp is the cou-
pling matrix between the interface acoustic DOFs (subscript /) and the porous DOFs (subscript P),

givenby Arp = [(1 —¢)Ars  @Ar].
The reduced model is then obtained from a transformation basis including a set of m porous

real-valued coupled modes, ®p,,, solutions of the eigenvalue problem (Kg) — a)sz) ¢ =0and

attachment functions, ¥p; = Kl(,1)71 A ]pT, linking the interface acoustic DOFs to the porous DOFs
(see [10] for further details). It is given by

O Acoustic internal dofs T
© Acoustic interface dofs I

Figure 2. Problem description for modal reduction of porous media.
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P; I; 0 0 |[P;
Pl=|0 L o0 ||P]. (12)
ﬁp 0 Wp; Ppy &m

R " A AT
where (-) denotes an approximation of the original solution, for example, [P i P; Up] is an

L T . O
approximation of [P i Pr Up] after modal-based reduction, and &, is the vector of modal
coordinates selected after truncation. When applied to a symmetrized form of Equation (11), the
transformation leads to the following reduced set of equations,

oK —Myp 5K My, o Y _ o0 9
ﬁKII__MII_ G%KII _MII _KP][ 0 + (Kf_ PO) 0 KFZI)I I{P[m
0 0 2, 0 K Ky
" (13)
o o 0 0 0 0 P; Urp
+iwb |0 Cp,, Cp,, |—®*|[0 Mp,, Mp, P, =] 0 |,
0 GCp,, Em 0 Mp,, L U

where for porous matrices indexed by subscript P, that is, Bp € {Kl(,l), Kl(,z), Cp, Mp},

Bp,, = V], BpWyy,
BP[m = mgIBP¢Pm = lglzwml :

The modes included in ®p,, are normalized with respect to the porous mass matrix Mp; hence,
I, is a unit matrix of dimension m, and 2, is a diagonal matrix with, on its diagonal, the m
lowest eigenfrequencies resulting from the porous eigenvalue problem, while «,, and §,, are,

as detailed in [10], sparsely populated square matrices, defined as «, = <I>me K§2)<I>pm, and
_ T
Em = Pem’ CpPpm.

In [11], the authors proposed a way to further reduce the size of the modal basis, by sorting and
selecting the most contributing components. For the sake of conciseness, the method will not be
recalled in the present paper; it is however referred to as the ‘reduced optimized’ or the ‘enhanced
reduced’ solution in the result section, in contrast with the ‘reduced solution’, which refers to the
modal approach presented in this section.

4. SOLUTION RECONSTRUCTION USING PADE APPROXIMANTS

4.1. Presentation and notations

The previously established sets of equations, for the non-reduced problem (symmetrized version
of system (10)), for the reduced problem (Equation (13)), and for the further reduced poroelastic
problem established in [11], can be expressed in the following frequency-dependent form,

Z(w)x(0) = F(0), (14)
with w # 0,
20) = — K+ Spp + (Ki(w) — PO) Ky 410 b(0) Cp — "My, (15)

where Kg, Sgp, Kff), Cp, and Mp are symmetric, frequency-independent, and real-valued matrices.
The notation () naturally links the terms of Equation (15) to those in Equation (13) or symmetrized
Equation (10) given that Srp accounts for what would be denoted as My and KE,I) and for the
fluid-structure coupling terms. In the following, these global assembled matrices refer to either their

non-reduced, reduced, or ‘enhanced reduced’ form. One benefit of the choice made for the poroelas-
tic formulation is manifested in the Padé-based reconstruction scheme, described in the following
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section. In fact, having the system matrix frequency-dependence isolated to scalar multiplying func-
tions is a considerable advantage because this simplifies and enhances the application of the Padé
approximation compared with a formulation for which derivatives of matrices would have to be
considered. For instance, extension of the approach to a displacement-pressure poroelastic formu-
lation, known to be computationally efficient [4], is straightforward but would imply solid and fluid
phase-dependent derivatives, thus involving a more complex implementation of the reconstruction
scheme.

The proposed Padé procedure, detailed in the following sections, can be decomposed into two
main steps: (1) the decomposition of the frequency range of interest into frequency intervals, which
will be addressed in Section 5, and (2) for each interval, the resolution of the full problem at a master
frequency, followed by the reconstruction of the solution around this point. The latter is presented
in the next three sections.

4.2. Determination of the Padé approximants

Given a solution vector x(wyp), the solution around this point, at a given angular frequency w, can
be estimated, for each j-indexed DOF independently, by a rational function of Taylor series expan-
sions. Thus, for each DOF, the solution function (further denoted by x — x; — x in a simplified
notation) can be written as

PL(Aw)
Om(Aw)’

with Py (Aw) and Qp(Aw) being two truncated power series in the variable Aw = (w — wyp), to
the order L and M respectively, and defined as

x(wo + Aw) ~ (16)

L
Pr(Aw) =) pr(Aw)F, (17a)
k=0
M
Om(hw) =) gr(Aw)r. (17b)
k=0

The approximation of x (wp+ Aw) is then given by the unique determination of the coefficients py
and gy. These coefficients can be determined in several ways [27], but a straightforward approach
is to consider the Padé approximation as a rearrangement into a rational function of a Taylor series
expansion, A7 4+ (Aw), to the order L + M,

PL(Aw) L+M
L Aw) = 2 Aw)k 1
O (Ao) ArL+m(Aw) 2 ar(Aw)", (18)
where
x® (wp)
ag = T (19)
with

xO(wg) = x(wo) = ag.

Allowing for poles in the rational function (Q s (Aw) = 0), such an expansion is better suited to
account for resonances in the original frequency response than a Taylor series expansion [27-29],
which would be very limited in terms of convergence radius. It then follows that the p; and gy
coefficients are solutions of a system of linear equations established from the constraint

Pr(Aw) — AL+m(Aw)Om(Aw) =0, (20)
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where the coefficients of equal order in Aw are equated to form a set of (L + M + 1) equations.
However, this underdetermined system of Equation (20) only gives a solution of the (L + M + 2)
coefficients within a multiplicative constant. Therefore, these are usually normalized so that the
zero-order coefficient of the denominator, qg, is set to 1 [27], leading to the following set of
equations,

Po =4ao
P1—aoq1 = ai

pPL—ar—141 — - —daoqL =aL > (21)
—arqy —ar—142 — - —adr—-mM+19M = Aadr+1
—Arp+M—-191 —AdL+M-—242 — - —AadLqmM = AdL+M

where

ak:0ifk<0
g =0if k>M"

Subsequently, given the expression of the coefficients a; in Equation (19), the system of equations
arising from the constraint (21) can be written explicitly in a compact form, involving the (L + M)
first derivatives of x (w) at wy,

£ [k
k! pr — Z (l) l!x(k_l)(a)o)ql) = x(k)(a)o), fork =0,...,L+ M, (22)
=1

with

pk=0if k>L
g =0if[>M’

and where the binomial coefficients are given by

k k!
(l) k=D 23)

This set of equations can be solved numerically in a matrix form, for each DOF |, thus involving
the resolution of N small problems of dimension (L + M + 1),

7D

- o) [ x(wo)
(L)
) PL . X (600) .
[W] ” = | () ,forj=1,...,N. (24)
Lg M (L-Hl.l)
X (wo)_
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For illustration, an example of coefficient matrix [W] ) for the approximant (L =2, M = 3), for a
given DOF j, at angular frequency wy would then take the form

0! 0 0 0 0 o 19
0o 11 0 —x© 0 0
G [0 0 21 —2xM  —2x© 0
Wil o 0 0 —3x®@ _ex®  _6x® @3)
0 0 0 —4x® —12x@ _24xM®
[0 0 0 —5x® —20x® —60x? |

Note that the system of Equations (24) could be solved in two steps, first solving for the {g; ---gar}
via a system that is equivalent to a Toeplitz system and then retrieving the {p¢--- pr} by simple
algebraic operations. Because of this Toeplitz sub-system, the coefficient matrix of system (24)
may become rapidly ill-conditioned when increasing the order of the approximants, which in prac-
tice, limits the order of expansion that can be achieved in the reconstruction scheme. Furthermore,
because of the independent reconstruction of each component of the solution vector, the interval of
convergence from one component to the other may vary slightly. In fact, each Padé approximant, cor-
responding to a component of the reconstructed solution, will in general capture a slightly different
subset of the complete system poles. This has, as a consequence, a potential shifting of the bounds
for each interval of convergence, handled by an a posteriori error estimator in the present work.

Additionally, in analogy to an approximation of the solution using Taylor series expansion, the
solution of the system of Equations (24) requires the determination of the (L 4+ M) derivatives of
the solution vector x(w) at wg. This aspect is developed further in the following section.

4.3. Successive derivatives of the solution vector

The successive (L + M) derivatives of x at angular frequency wy can be derived from differentiating
Equation (14) with respect to w. At the order k of differentiation, the following expression arises,

k
> (k) 25D (o) XD (wp) = 15 (), fork =1,...,(L + M), (26)
j=0 /

where the zero-order derivatives correspond to the non-differentiated functions. Extracting the
highest-order term from the summation in Equation (26) leads to the following recursive expression

of x©) (wo), that is, the k-order derivative of x at wy,

(k=1)
Z(wo) X (o) = 1®(wo) — H (k) 25D (o) x (wy), fork =1,...,(L + M). (27
=0 N
This implies that the successive derivatives of x with respect to w, required for the determination
of the Padé approximations, can be efficiently computed as the solution of a system of equations of
dimension N, with multiple right-hand sides. In fact, the solution can be performed by direct meth-
ods using a decomposition of the system matrix. The factorization, as the most time-consuming step
of the solution, needs to be carried out once initially, thus providing very efficient multiple solu-
tions of the system. Regarding the multiple right-hand side vectors, they are built from derivatives
of the system matrix and lower-order-derivatives of the solution vector. The choices made in this
work, particularly regarding the poroelastic formulation where the frequency-dependence is borne
by scalar functions, imply inexpensive operations to establish the right-hand side vectors.

4.4. Application to the poro-acoustic problem

4.4.1. Function derivatives. In order to apply the reconstruction procedure, the successive deriva-
tives of Z (as presented in Equation (15)), with respect to w, are needed to calculate the right-hand-
side vectors in Equation (27). They involve derivatives of four frequency-dependent scalar functions.
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Among those, Ki(w) and @ b(w), being the only non-trivial derivatives, are discussed. The former,
introduced in Equation (6), is not expressible in a compact analytic form for its k" derivative. It

thus has to be numerically calculated and tabulated and will be referred to as Igf(k) in the following.

Regarding w l;(a)), the viscous drag expression being given in Equation (3), it may be written in the
following form,

wb(w) = Aw (1 + iBw)? (28)
with
A=0¢>, (29a)
4o npt
= 02/°\°2¢2. (29b)

The derivatives of w 15(0)) may thus be written as

NG AB
(a) b(a))) —A(l +iBw)? +i 2‘” (1+iBw)"2, (30a)
~ k) s kK 2k =3)+ 1! _ ) 2(k=2)+1
(‘”b(‘”)) = ()" = | Ik —3)|! SABF (1 4 iBo)
ke I 2QKk-=-2)+1)! . _2(k=D+1
k-2 k
+(-)"""w T o) AB® (1+iBw) 2 for k=2 (30b)

~ (k) .
Given (a) b(w)) from Equations (30) and the tabulated expressions of Kf(k), the k™ derivative of
Z with respect to w, for the poro-acoustic problem, is given by

I~ = N S
(—F (k + D! Ke + KYKY +i (0h@) " Co—20Mp for k=1
w
1 — ~ (1) — ~ (k) _ _
Z(@)® = ¢ (~DF k + )5 K + KOKY +i (a)b(a))) Cp—2M,  for k=2
w
1 — (1) — ~ (k) _
(=¥ (k + D Ke + KOK +i (a)b(a))) Cp for k > 2
w
(3D

4.4.2. Reconstruction procedure within one frequency interval. Following the derivations presented
in the previous sections, the reconstruction of the solution within one frequency interval is done in
two main steps:

o Firstly, at a given angular frequency wyp, the solution and its successive derivatives to the
order (L + M) with respect to @ are computed according to Equation (27). This implies,
for each angular frequency wq around which the solution is to be approximated, the solution of
(L + M + 1) problems of dimension N in a multiple right-hand side scheme.

e Then, the solution around wy is reconstructed, for each component of interest, involving the
solution of P problems (P < N) of dimension (L+ M +1), that is, Equation (24), to determine
the Padé approximants corresponding to each DOF. It is then followed by the trivial evaluation
of P rational fractions (Equation (16)), for each Aw at which the approximated solution is to
be evaluated.

Given a discretization of the frequency space into intervals associated with their master angu-
lar frequency wy, the corresponding detailed procedure for one frequency interval is presented in
Algorithm 1.

Three points should be further discussed regarding the given description of the proposed pro-
cedure. The first one consists in choosing the master frequencies at which the solution will be
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Algorithm 1 Steps for solution reconstruction around angular frequency wq
1. Compute the system matrix decomposition of Equation (14) at wq
Solve Equation (14) for the solution x(wy)
for j=1to L + M do
Solve Equation (27) for the solution derivative x) (wg)
end for
for j =1to P do
Solve Equation (24) for the DOF-dependent Padé approximants
Evaluate the approximate multi-frequency solution around wg, Equation (16)
end for

R A A

evaluated, that is, setting an appropriate discretization in frequency space. Secondly, for each mas-
ter frequency, the order of polynomial expansions and the frequency range of evaluation around wg
have to be chosen accordingly, which raises the question of the values of L and M. Thirdly, one has
to estimate the conditions of efficiency of such an approximation scheme.

Although the second and third points are thoroughly discussed by Avery et al. in [18], for sin-
gle field structural or acoustic applications, the choice of coarse frequencies has, to the knowledge
of the authors, not been given much attention in the literature. A suggestion is made in this sense
in Section 5 of the present work. Regarding the order of series expansions to consider for both
the numerator (L) and the denominator (M ), in Equation (16), the following constraint, suggested
in [18], reduces the set of possible approximations,

M=L+1. (32)

Furthermore, there is an upper limit to the maximum order that can be set, because of the ill-
conditioned matrix that arises for the system of Equation (24). Practically, an upper truncation limit
is heuristically set for efficiency purposes. It is typically smaller than the numerical limit due to the
matrix conditioning issue discussed in the aforementioned text. The truncation is established as a
trade-off between the range of convergence achieved by the approximants and the cost associated
with the reconstruction steps. In the applications considered in this work, this upper limit is set to
Linax + Mpax + 1 = 12, thus imposing Ly.x = 5, Mmax = 6. This has proven to be extremely
efficient when applied to large single field structural or acoustic applications, with an a priori set
frequency discretization of the frequency space [17, 18].

In the following, two extensions to this approach are considered: application of the method
to (1) coupled poro-acoustic problems, in which an adaptive frequency discretization scheme is
tested, and (2) modal-based reduced versions of these systems of equations, thus estimating the
trade-off between the information lost in the reduction itself and the precision needed to estab-
lish successive derivatives of the solution. The latter situation would potentially arise in a case
where, for example, a reduced-model would be mostly advantageous for memory allocation pur-
poses, while the Padé-based reconstruction could potentially lead to some substantial computational
time enhancements.

5. ADAPTIVE DECOMPOSITION IN FREQUENCY INTERVALS

In order to avoid setting an arbitrary, a priori, choice of master frequencies at which the solution
is estimated by a direct computation, a straightforward adaptive approach is proposed. It enables
a discretization of the frequency space according to the estimated capability of the reconstruction
scheme adopted. This limits the lack of precision or the loss in computational efficiency that would
be induced by a too coarse or too refined choice for the master frequencies. The idea of an adaptive
frequency windowing was first introduced in [14], where it was included in an iterative conver-
gence scheme associated with the Padé-via-Lanczos algorithm. For each frequency step, within one
frequency interval of reconstruction, an incremental error comparison between two reduced-order
systems of increasing sizes was applied until a convergence criterion was met. Parallel with the
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present work, another adaptive scheme was proposed, extended to more general forms of frequency-
dependent problems and particularly targeting projection-based interpolatory approaches. In this
method as well, residuals were compared between two consecutive steps of increasing size of the
reduced system [30]. To implement such incremental approaches would be challenging within the
frame of the component-wise interpolatory approach used in the present work, particularly because
of computational efficiency considerations. As an alternative, a sequential approach is proposed,
combining an a priori estimation of a reasonable master frequency and an a posteriori cost-efficient
convergence check and convergence interval refinement. It is based on two aspects: (1) control-
ling the error of the reconstructed solution using an error estimation performed only at a very
restricted number of well-chosen frequencies in the spectrum and (2) using the frequency inter-
val of convergence for each master frequency to anticipate the contiguous frequency interval of
convergence.

5.1. Error estimation in the poroelastic domain

For a given approximation of the solution, the error made with respect to the reference FE solution
can be estimated from the residue associated with the time-harmonic response. Thus, at a given
angular frequency o, the approximate solution, for example, calculated using a Padé reconstruction
A A AT
procedure, is denoted by [fh 7 P; ﬁp] , using the same notations as in Equation (11).
From this approximate solution and using the last set of the equations in Equation (11), a residual
force vector for the porous domain is computed as

Ry, (0) = ATP; — (Kf}) + (Ki(@) — Po) K& +iwb(w) Cp— szp) Up. (33)
From this, a Kl(,l)— residual displacement vector can be established,

_ (1
Ry, (0) =K’ Rg(w). (34)

This is one of the key aspects, related to efficiency in terms of computational cost, that is at the

core of the present method. As Kl(,l) represents the low frequency limit contribution of the coupled
stiffness matrix and is independent of frequency, it only needs to be decomposed once, in order to
calculate the residual displacement vectors at several selected frequencies through a simple matrix
product operation. This residue may then be used to build an error estimator in analogy with the
strain energy error estimator used in structural dynamics [31], which may be computed, at selected
frequencies, as

) = RO @K R @) RE, (@R, @) )

2 T 2 2 T 2
Up KU Up KU
5.2. Adaptive discretization in frequency intervals

It is assumed that the size of the frequency interval of convergence, for a given master frequency,
gives a good a priori estimation of the size of its contiguous intervals. This is of course a strong
assumption, which might be very case-dependent. However, it is reinforced by the fact that an
approximation by a rational function of power series exhibits a rather smooth divergence, partic-
ularly when applied to the reconstruction of a smooth function (e.g., a damped response). Con-
sequently, an overestimated interval of convergence implies non-contiguous converged intervals,
which may still provide a sensible approximate solution in the gaps. On the contrary, an under-
estimated interval of convergence implies an overlap of converged intervals, which hinders the
computational efficiency by potentially increasing the number of master frequencies needed. Fur-
thermore, it is also assumed that, given an increasing modal density for increasing frequencies,
the interval of convergence is expected to decrease with increasing master frequencies. For these
reasons, the adaptive reconstruction scheme is started from the higher end of the frequency range
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Figure 3. Adaptive frequency interval decomposition: blue, master frequency; magenta, upper limit; and

green, lower limit.

and propagated to the lower frequencies with a slight a priori over-estimation of the intervals of
convergence. The successive steps are illustrated in Figure 3.

(a)

(b)

From the first master frequency, corresponding to @y, in the higher end of the frequency
range, the reconstruction procedure is applied and combined with an error estimation of the
approximate solution, that is, e(w) < emax, Where e(w) is given by Equation (35) and ey, is a

heuristic tolerance, both towards the lower and the higher frequencies. When the convergence

check is no longer satisfied, the corresponding upper and lower limits w({ 4 and a)({_ define

the interval of convergence Aa)({ , corresponding to the angular frequency wg (the expo-
nent f indicates the final version of these parameters, in contrast to the initial estimations,
denoted by exponent i, introduced a priori for upcoming intervals). In the present approach,
it is assumed that the upper limit a)({ . defines the upper bound of the frequency domain
of interest.

(resp. (e)) From the previously determined interval of convergence Aa)of (resp. Aa)lf ), the
master angular frequency w; (resp. w,) associated with the lower-frequency contiguous
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interval is estimated. It is posmoned ‘half-a-convergence- interval® 220

than the lower limit a)of (resp. a)r). In doing so, it is anticipated that generally increas-
ing intervals of convergence may result in an overlap of two contiguous converged intervals.
However, this choice is made in order to lower the risk of non-converged gaps between inter-
vals (Figure 3(g) and (h)), appearing because of a locally reduced or asymmetric convergence
interval.

(c) (resp. (f)) Once the master frequency is established, the upper and lower bounds for the
interval, o' 1+ (resp. w +) and w]- (resp. a)2 ) respectively, are estimated a priori. They

are determined assumlng an interval centered on w; (resp. w;) and of width (1 + a)Aa)({

(resp. (1 —f—a)Aa)l ). The parameter o, which accounts for the anticipation of globally increas-
ing intervals of convergence, is empirically chosen in this work as typically being smaller than
0.2. However, one could argue that @ may be a frequency-dependent function in relation with
the frequency-dependence of, for example, the modal density, as it is linked to the number of
discontinuities per convergence interval. This could be a next step in refining the proposed
method.

(d) (resp. (g)) Once a priori estimates of the upper and lower bounds are set, the reconstruction
procedure is applied. The error estimation check is simultaneously performed starting from
the lower and higher bounds rather than the master frequency. In the numerical tests con-
ducted in the present work, this has been found to reduce the number of points at which the

error has to be estimated, thus leading to an improvement of the efficiency of the reconstruc-

tion. The actual upper and lower limits of convergence, that is, w{ 4 (resp. a)zf +) and a)lf,

(resp. a)zf_) respectively, are determined when the convergence check, based on the error
estimation, is satisfied.

While overlapping contiguous convergence intervals have been observed as the fore-
most outcome (Figure 3(d)), a gap of non-converged reconstructed solution may still arise
(Figure 3(g) and (h)) as mentioned in (b).

In case of such gaps in the reconstructed solution, as illustrated in Figure 3(h), two situations
may be considered. Firstly, from the error estimations made for frequencies in the gap and from the
observed continuity of the solution at the upper bound of the gap, the approximate solution may be
deemed acceptable. Otherwise, if a non-acceptable discontinuity in the solution is detected, at the
connection between the gap and the upper-frequency converged interval, an increase in the order of
truncation of the series or an additional interval may be required. The latter situation, even though
probable in case of gross overestimations of convergence intervals, is not considered in the present
work where small values of « (typically « = 0.1) have been taken into account. Furthermore, fol-
lowing the appearance of such a gap, the converged interval width is presumably reduced compared
with the previous established interval. This implies a reset of the overestimation to be made for
upcoming intervals and thus introduces another form of adaptivity, inherent to the procedure. Thus,
successive gaps in the procedure consequently indicate that « is overestimated.

6. RESULTS AND DISCUSSION

The methods presented are tested on poro-acoustic academic applications. Firstly, the impact of
increasing the order of truncation is illustrated on a 1D application, together with a comparison of
the precision achieved using Taylor expansions at equivalent orders of truncation. Furthermore, the
influence of using Padé approximations on the modal-reduced set of equations is evaluated on the
same example. Then, the proposed adaptive reconstruction approach is tested successively on the
2D and 3D versions of the poro-acoustic validation case, both for the complete and reduced set of
equations, for which the efficacy of the method is discussed. In order to evaluate the potential of
the present approach in a worst case scenario, in terms of efficiency, all components of the solution
vectors are reconstructed in the examples presented. Additional gains related to the use of a partial
acoustic solution approach for the cavities are thus not accounted for.
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Figure 4. Acoustic cavity mesh and dimensions for 1D problem.

Table III. Air and porous material parameters.

Frame Fluid Porous
co=2343ms™! ¢ =0.96

A = 905357 Pa y=14 0 =32kNsm™*

)= 264062 Pa Pr=0.71 too = 1.7

ps =30 kg m™3 pr=121kgm™3 A =90 um

n=184x10>Nsm2 A’'=165um

6.1. Impact of truncation order, 1D poro-acoustic application

The unidimensional poro-acoustic application is presented in Figure 4, consisting of an acoustic
cavity excited with a time-harmonic plane wave, at normal incidence on a poroelastic layer of infi-
nite lateral extent. The rigid cavity is 25 cm long and covered with a 5-cm-thick poroelastic layer at
its end. Appropriate Dirichlet boundary conditions are applied to the poroelastic domain to impose
unidimensional behavior, thus allowing for solid and fluid displacement in the direction normal to
the layer only. In addition, it is considered bonded to a rigid wall at the other surface. Material
parameters of the foam are given in Table III. The mesh consists of 20 linear elements for the acous-
tic domain and 10 linear poroelastic elements in the thickness of the layer, making it a satisfying
mesh for the frequency range considered. The 1D FE model thus results in 21 acoustic DOFs and 20
poroelastic DOFs. In order to illustrate the impact of increasing the order of truncation for the power
series expansions, the entire frequency range is considered as one interval, whose master frequency
is chosen as the middle frequency. The constraint M = L + 1 is applied, L varying from 1 to 5.
Furthermore, the procedure described in Algorithm 1 is used both for the complete FE model and a
model for which the poroelastic domain has been reduced according to the discussion in Section 3.
The porous modal basis includes four modes, which proved to be satisfying for the mean quadratic
pressure frequency response considered [10]. The results are presented in Figure 5.

Observing the convergence by increasing the order of truncation on the non-reduced set of equa-
tions (Figure 5(a)—(e), left figures) illustrates the potential of using Padé approximants for the
reconstruction of the solution. In fact, at the 11th order of truncation (L = 5, M = 6), an interval
of almost 1250 Hz of width can be reconstructed from the solution and its derivatives at 1500 Hz.
However, besides the fact that the Padé coefficient system to be solved (Equation (24)) becomes
rapidly ill-conditioned for orders of truncation above 8-10, the convergence improvements prove to
be very significant up to expansions (L = 3, M = 4), and slower for higher orders. This can be
mostly observed at the upper-bound of the convergence interval for which the frequency response
is a rather smooth function of the frequency (range from 2000 to 2250 Hz). To improve the conver-
gence, it is shown in [18] that an approach based on multi-point Padé approximants may become
more efficient than an increase in the order of truncation. It is an important aspect of the method
to notice that, as already mentioned, the divergence of the approximation immediately out of the
convergence interval is relatively slow, particularly for heavily damped systems exhibiting a smooth
response.

Considering the reconstruction procedure applied to the reduced set of equations (Figure 5(a)-
(e), right figures), it may be noticed that the approximation made in the modal-reduction step does
not strongly affect the Padé-based reconstruction. In fact, from the approximant (L = 4, M = 5)
and onwards, the convergence interval tends to be slightly larger than its non-reduced equivalent
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Figure 6. Approximation using Taylor expansions—1D poro-acoustic problem.

problem, for example, around the resonance observed at 1000 Hz. This trend has however not been
reproduced for more complex problems, such as the 2D or 3D problems considered in the present
work. The preserved convergence observed on this application is very promising for efficiency con-
siderations of the method applied to the modeling of porous materials. Thus, for a reduced set of
equations, less demanding in terms of memory allocation, the reduction in the number of equa-
tion systems (24) to be solved may partly compensate for the extra computational cost involved in
establishing the reduced system as such.

Furthermore, the precision achieved using a Padé approach rather than a Taylor series is illustrated
in Figure 6 for this 1D application, without modal reduction. Orders of truncation corresponding
to those applied with the Padé approach in Figure 5 are used. The comparison demonstrates the
expected limitations in terms of interval of convergence using Taylor series, as well as the rapid
divergence of the approximation out of this interval.

6.2. Interval decomposition and solution reconstruction on a 2D example

The adaptive procedure presented in Figure 3, to automatically define the master frequencies and the
associated interval bounds, is applied to a 2D poro-acoustic problem, whose dimensions and mesh
are presented in Figure 7. It consists of an acoustic domain bounded by rigid walls and treated with
a porous layer on one wall (material parameters to be found in Table III), having sliding boundary
conditions on the side walls and sticking to the back wall. The mesh, including 40x 13 linear acoustic
elements and 40 x 12 linear poroelastic elements, is well suited for an analysis up to 2000 Hz [10].
It involves a problem with 574 acoustic DOFs and 1959 poroelastic DOFs. The acoustic domain
is excited via a time-harmonic excitation at a corner of the acoustic cavity, opposite to the porous
layer.

The initial master frequency is chosen as 1900 Hz. The error estimation limit, imposed in the
reconstruction procedure, is empirically set to e, = 0.1. In order to assess the influence of lower
limits, these have also been tested, with consequences in terms of the response reconstruction as
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Figure 7. Mesh and dimensions of larger 2D application.
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Figure 8. Adaptive reconstruction procedure applied to 2D problem: (a) from non-reduced problem and (b)
from optimized reduced problem.

discussed in the following. On the basis of the observations made in the previous section, the order
of truncation is chosen to be an approximant (L = 3, M = 4). The results, featuring the refer-
ence solution, the reconstructed solution, and the successive intervals represented by their master
frequency and their upper and lower bounds, are presented in Figure 8. The solution at the master
frequencies, on which the reconstruction procedure is based, is either the one from the complete
set of equations (Figure 8(a)) or from the reduced and optimized set of equations (Figure 8(b), see
Section 3), established using 88 porous modes in the basis [10, 25]. The reference solution plotted
is, in both cases, the one obtained using the complete set of equations. The reconstruction based
on the non-reduced reference solution is achieved over 11 frequency intervals (13 and 17 inter-
vals for tolerances of ep,x = 0.05 and ey0x = 0.01 respectively). Even though the approximate
solution exhibits an excellent global match with the reference frequency response, except for a non-
significant level mismatch at the peak of resonance around 600 Hz, the error estimation underlines
three gaps between contiguous intervals (identical for ,,x = 0.05 and ep,x = 0.01). The first one,
around 1000 Hz, is hardly noticeable on the error estimation plot itself, while the other two, around
1150 and 1800 Hz, are sufficiently small gaps in smooth ranges of the response to be of minor
importance on the reconstructed solution. Applying the Padé-based approximation to the reduced
set of poro-acoustic equations (Figure 8(b)) however amplifies those errors. This is rendered by the
error estimation plot, where the three previous gaps are found with higher estimated error levels, and
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Figure 9. CPU time comparison for the reconstructed solution from the non-reduced, reduced, and
optimized reduced 2D problems, approximants (L = 3, M = 4): (a) plain and (b) details without reference
sweep.

four additional gaps are detected. Among the new gaps, two are minor (around 600 and 800 Hz), one
is of little width in a smooth area of the response (around 1700 Hz), and the last one corresponds
to the upper range of the frequency range of interest, not matching the upper bound of the ini-
tial interval. However, these gaps imply very little mismatch between the reference solution and the
reconstructed one, only slightly amplifying the error made by the modal reduction (see, for example,
around 1800 Hz). As a consequence to this increase in the estimated error, the adaptive decomposi-
tion into frequency intervals exhibits smaller intervals of convergence, thus increasing their number
from 11 to 16. Additionally, as being primarily controlled by the overestimation factor «, the gaps
observed when lowering the tolerance to e, = 0.05 and e,,x = 0.01 appeared to be marginally
affected. The same number of gaps were found in the frequency range of interest for this example,
some slightly reduced in width. It is further mentioned at this point that the results corresponding
to a reduced set of equations, without further downsizing the modal basis, are not presented for the
sake of conciseness. They however give the same results as for the reduced and optimized basis, as
further detailed in [25]. Thus, the interest in combining the Padé-based reconstruction to a reduced
model stands only if the reduced number of times the Padé coefficients equation system (24) has to
be solved, restore compensates for the extra operations implied by the increased number of intervals
and the construction of the reduced model itself.

A comparison of the CPU times needed for the computation of the direct reference solution, with
the Padé-reconstructed solutions based on the following: (1) the complete set of equations; (2) the
reduced set of equations; and (3) the optimized-reduced set of equations, is presented in Figures 9
and 10. While Figure 9(a) simply presents the results, Figure 9(b) details the CPU times for the
reconstruction of the three reduced problems. The detailed CPU times in Figure 10 are normalized
with respect to the reference solution time per increment in order to provide indicative quantifica-
tions of the efficiency improvements. Note that, in Figures 9(a) and 10, the CPU time associated
with Padé-reconstructed solutions is a frequency-step averaged CPU time, that is, assuming an even
distribution of the computational cost over the entire frequency spectrum. In reality, there is a suc-
cession of costly steps—full solution and multiple derivatives at a main frequency—and inexpensive
steps—expansion of the solution—that are however evenly distributed in the frequency spectrum, as
shown in Figure 9(b), thus justifying the approximation of a quasi-step function by a linear interpo-
lation. For the combination of the reduced models with the Padé approach, the comparison is done
both with and without accounting for the time to establish the reduced model, the latter being the
horizontal asymptote of the former.

Their interpretation provides an answer to the computational efficiency issue raised for the present
application. Firstly, for a frequency-sweep with increments of 4 Hz, corresponding to 500 points of
computation, the Padé-reconstructed solution based on the complete set of equations is more than 9.5
times as fast as the direct solution, thus confirming the potential of the approach. Arguably, such
an efficiency estimation is dependent, among others, on the level of refinement for the frequency
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sweep (4 Hz increments for this example), which is computationally inexpensive to increase in the
case of the Padé-reconstructed solution. Note that, secondly, for the considered application, apply-
ing the procedure to the problem with modal-based reduction (optimized or not) of the poroelastic
domain is computationally efficient to the extent that it compensates both for the cost of estab-
lishing the reduced model—initial step of approximately 20 s for this example—and for the extra
intervals needed to accurately rebuild the entire solution. Furthermore, in the best configuration,
combining the reduced-optimized model with a Padé reconstruction and disregarding the time allo-
cated to the construction of the reduced model—for example, corresponding to a multiple load case
analysis where the reduced model needs to be built for the first case only—the calculation is more
than 45 times as fast as for the reference solution. Thus, in addition to saving memory resources,
the combination of the Padé-based reconstruction with the modal reduction in the end also has the
potential to substantially improve the computational efficiency.
The efficacy analysis, conducted for this 2D poro-acoustic example, points to the following:

e The proposed adaptive decomposition in frequency intervals, for the Padé approximants
frequency sweep reconstruction, enables an accurate global solution estimation over the
entire frequency range of interest, while limiting the number of complete calculations to be
performed.

e The combination of a porous-reduced model with the Padé reconstruction approach allows to
maintain a high degree of accuracy, at the cost of a finer discretization of the frequency space.

e The additional computational cost involved by the extra frequency intervals required and the
construction of the reduced model is, for the considered 2D example, well compensated by the
efficiency improvement of the Padé reconstruction.

These points are further explored and discussed on a 3D application in the next section.

6.3. Adaptive Padé approximation on a 3D poro-acoustic example

In the scope of this work, the combination of a reduced model with the Padé reconstruction strat-
egy is illustrated on a small 3D problem presented in Figure 11. It consists of an acoustic domain
filled with air (1872 acoustic DOFs), bounded by rigid walls, and treated with a porous layer on
one wall (3070 acoustic DOFs), whose material parameters are given in Table III. Sliding coupling
conditions are set for the porous layer along the side walls, and it is assumed to be fixed to the back
wall. This example is chosen in order to examine in detail the potential of the algorithm for two
different approximants. It is based on a 3D case that is rather conservative in terms of computational
performance. The mesh chosen is extremely optimized for the frequency range of interest and does
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Figure 12. Adaptive reconstruction procedure applied to 3D problem with L = 3, M = 4: (a) from
non-reduced problem and (b) from reduced problem.

not add artificial initial costs to the problem, which would typically be the case for a larger engi-
neering application. Additionally, the same set up was also treated in References [10, 11], where the
steps for the modal-based reductions used were discussed, and it allows for a reproduction of the
complete numerical procedure leading to the results presented in the following. The example chosen
is admittedly academic, but the key findings presented are not biased by the size of the problem as
such. The interested reader is referred to Reference [25] for additional examples, particularly if the
results on a larger application are sought.

The proposed adaptive reconstruction procedure is presented for the approximants (L = 3, M = 4)
and (L = 5, M = 6). In both cases, the initial master frequency is chosen at 1975 Hz. The results are
presented for an error estimation limit, enax, kept at 0.1. Lower limits of 0.05 and 0.01 have also been
checked and commented in the following. These results include the reference solution together with
the reconstructed solution and its associated intervals, plotted in Figure 12 for the (L = 3, M = 4)
approximant and in Figure 13 for the (L = 5, M = 6) approximant. The Padé-based reconstruc-
tion is combined with both the non-reduced FE problem and the porous-reduced models (800 and
83 porous modal coordinates for the reduced and ‘enhanced-reduced’ models, respectively). The ref-
erence solution corresponds to the solution without reduction of the poroelastic domain. The results,
without plotting the reconstruction intervals, are given in Figure 14, for the Padé-based reconstruc-
tion combined with the enhanced-reduced set of equations. The Padé reconstruction applied to the
non-reduced set of equations is achieved over 21 frequency intervals for the (L = 3,M = 4)
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non-reduced problem and (b) from reduced problem.

13. Adaptive reconstruction procedure applied to 3D problem with L = 5, M = 6: (a) from
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Figure 14. Adaptive reconstructed solution for 3D problem from reduced problem: (a) L = 3, M = 4 and
b)L=5M=6.

approximant (Figure 12(a)) and 24 and 26 intervals respectively for e,x = 0.05 and e,,x = 0.01. It
exhibits one gap between approximately 615 and 640 Hz and a solution not converged in upper part
of the frequency range of interest, because of the choice of initial master frequency. However, both
the choice of limit for the error estimation and the smooth divergence of the method outside of its
convergence interval allow for an accurate global reconstruction of the reference solution over the
entire frequency range. As shown in Figure 12(b), using a reduced set of equations for the solution at
master frequencies implies a loss in precision, resulting in an increase of the estimated error. Thus,
the solution is reconstructed over 24 intervals (28 and 30 intervals respectively for ep.x = 0.05
and epax = 0.01), to be compared with the 21 intervals previously required (24 and 26 intervals
respectively for ep,x = 0.05 and e = 0.01). In addition to the upper bound, eight gaps have
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appeared, of which four can be neglected because of both their very narrow frequency intervals
and confined estimated errors. Among the four remaining gaps, the one just below 600 Hz is of
some concern, considering its location around a resonance frequency, which could justify adding
an interval to bridge the gap. However, its width is of approximately 10 Hz, it renders a peak in
the frequency response, and its upper bound matches the lower bound of the contiguous interval.
These, as confirmed by the comparison with the reference solution, indicate an approximation of the
response deemed acceptable. Finally, the gap between 160 and 200 Hz is due to the special treat-
ment applied to the lowest-frequency interval in order to ensure the approximation over the entire
frequency range. In fact, in order to both reduce the number of intervals and to ensure the recon-
struction until the lowest frequency in the spectrum, the flat response in the very low frequency
region is taken to advantage for this example. Thus, when reaching the low frequencies, a larger
overestimation factor « is attempted (e.g., @ = 0.5) and applied only if it allows to reach the lower
bound of the frequency spectrum. This explains the larger interval observed at the lowest frequency
end, as well as the apparent gap between 160 and 200 Hz. Of little significance in the present anal-
ysis, it is not addressed in the presentation of the procedure (Section 5.2) and not further detailed in
this work. Again, the matching solution between the upper bound of the gap and the lower bound
of the contiguous interval indicates a satisfying approximation. An analogous behavior—and slight
decrease in amplitude—of the gaps was observed when lowering the tolerance &p,x to 0.05 and 0.01.

A similar discussion may be conducted when analyzing the results for the procedure with an
approximant (L = 5,M = 6), presented in Figure 13. Increasing the order of truncation leads
to reconstructed solutions over 15 and 18 intervals for the Padé-based procedure, when applied to
the non-reduced and reduced sets of equations, respectively (16 and 20 intervals respectively for
emax = 0.05 and 17 and 21 intervals respectively for e,,,x = 0.01). This is consistent with the
larger interval of convergence expected when increasing the order of truncation for the approx-
imants. Again, a very good agreement can be observed between the reference solution and the
reconstructed solutions. The only mismatch observed, similar to those of the lower truncation order
(Figures 12(b), 13(b), and 14), is the level of the 3 peaks of resonance above 900 Hz. Regard-
ing those, it can be argued that they do not have prime physical significance considering how
little damped these resonances are and thus how frequency-shift-dependent their level determina-
tion is. Theoretically, they may be explained by the Montessus de Ballore theorem, established in
1902, which stated the uniform convergence of Padé approximants on compact subsets excluding
the poles.

The computational efficiency of the approach for this 3D test case is presented in Figures 15
and 16, for the approximant (L = 5, M = 6). It includes, in Figure 15(a), a comparison of the
estimated computational time for the direct calculation of the reference solution, as well as the
Padé-reconstructed solutions based on the following: (1) the complete FE problem; (2) the reduced
set of equations (800 porous modal coordinates); and (3) the further reduced set of equations (83
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Figure 15. CPU time comparison for Padé-reconstructed solutions of non-reduced, reduced, and optimized
reduced 3D problems: (a) plain and (b) details without reference sweep.
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Figure 16. Reference-normalized CPU time comparison for the Padé-reconstructed solutions of the 3D
reduced problems.

porous modal coordinates). Figure 15(b) further details these Padé-reconstructed reduced solutions,
and Figure 16 presents their reference-normalized CPU times.

Thus, using a Padé-based reconstruction approach leads to a frequency sweep more than 6.5 times
as fast as for a direct approach, considering frequency increments of 2 Hz for this 3D application.
Combining it to a modal-based reduced set of equations does not substantially reduce the overall
computational time, if accounting for the time allocated to establish the reduced problem. However,
the averaged time per frequency increment is greatly improved, even compensating for the cost of
building the reduced model if the optimized modal basis is used. In a multiple response analysis, the
combination of the Padé reconstruction with the optimized reduced problem thus enables a speed-
up factor of almost 35. Though not presented in this paper (see [25] for further details), there is
very little computational time improvement between the use of approximant (L = 3, M = 4) and
approximant (L = 5, M = 6), thus confirming that there is a trade-off to be found. In fact, there is
a limit above which, increasing the order of truncation does not substantially increase the intervals
width of convergence. This implies little reduction in the number of master frequencies at which
the complete solution has to be calculated, thus not compensating for the increased size of the Padé
coefficient system to be solved (Equation (24)) for each DOF. For the applications considered in the
scope of this work, the order of truncation (L = 3, M = 4) has shown to be a good compromise for
computational efficiency, while ensuring a well-conditioned Padé coefficient system matrix. While
the academic examples considered offer the possibility to detail the efficacy analysis, additional val-
idation cases have been performed by the authors, available in [25], on larger problems, confirming
the demonstrated performance of the approach.

7. CONCLUSION

In this contribution, a Padé-based reconstruction method was extended to a modal reduction of
poroelastic domains in poro-acoustic problems. Such a combined approach takes advantage of the
complementary properties of these methods. Firstly, using a modal-based reduced problem saves
memory resources and offers substantial computational improvements, particularly if a multiple load
solution is sought. The reconstruction approach then substantially enhances the resolution efficiency
over the frequency range of interest, by reducing the set of frequencies at which the solution has to
be calculated. While being strongly application-dependent, improvements by an order of magni-
tude were observed on the conservative validation cases considered, in terms of computational cost.
The observed loss in precision, due to the reduction, implies the need for a finer decomposition in
frequency intervals for the reconstruction scheme. However, this increase in the number of master
frequencies is shown to be more than compensated by the improved efficiency of the reconstruction,
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due to the reduced number of DOFs. For the considered example, it even compensates for the initial
computational cost allocated to establish the reduced model. Particularly, in situations where multi-
ple frequency response estimations are required, for example, for topology optimization or multiple
load cases analysis, the reduced model needs to be established once for the first solution only, thus
allowing speed-up factors up to around 50 for the subsequent solutions, as shown for the presented
test cases.

Furthermore, an adaptive approach was proposed in order to automatically determine the master
frequencies at which the complete direct solutions have to be computed and around which the solu-
tion is approximated. It involves using an error estimation associated with the solution around each
master frequency, thus establishing frequency intervals of the converged solution. Each interval is
then used to estimate, a priori, the frequency interval of convergence for the neighboring master
frequency, before some a posteriori adjustments. This straightforward approach proved to produce
accurate frequency responses in a very computationally efficient way, for the configurations tested.
Thus, a priori knowledge of the dynamic behavior is not required for the choice of master frequen-
cies. In the end, this reduces the risk of setting a too coarse or too fine a priori discretization in
frequency intervals, which would either hamper the solution accuracy or efficiency.
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