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Topology optimization of shunted piezoelectric elements for 
structural vibration reduction

Luciano Pereira da Silva, Walid Larbi and Jean-François Deü

Passive structural vibration reduction by means of shunted piezoelectric patches is addressed in this article. The 
concept of topology optimization, based on the solid isotropic material with penalization method, is employed in 
this work to optimize, in terms of damping efficiency, the geometry of piezoelectric patches, as well as their 
placement on the host elastic structure. The proposed optimization procedure consists of distributing the piezoelectric 
material in such a way as to maximize the modal electromechanical coupling factor of the mechanical vibration 
mode to which the shunt is tuned. An original finite element formulation, suitable to any elastic structures with 
surface-mounted piezoelectric patches, is proposed to solve the electromechanical problem. Numerical examples 
validate and demonstrate the poten-tial of the proposed approach for the design of piezoelectric shunt devices.

Keywords
Vibration reduction, shunted piezoelectric system, finite element method, topology optimization, solid isotropic 
material with penalization method

Introduction
Due to their capability of coupling mechanical stress

and strain with an electric circuit, piezoelectric materi-

als offer significant promise in a wide range of applica-

tions, such as energy harvesting, passive or semi-passive

structural vibration damping, active vibration control,

structural health monitoring, and micro/nano-electro-

mechanical systems. In this article, the specific applica-

tion of passive structural vibration and noise reduction

by means of shunted piezoelectric patches is addressed.

In this technology, an elastic structure is equipped with

one or various piezoelectric patches that are connected

to a passive electrical circuit, called shunt. The piezo-

electric patches convert a fraction of the mechanical

energy of the vibrating structure into electrical energy,

which is then dissipated by Joule heating via the resis-

tors of the shunt circuits. As compared to the active

control techniques, those passive techniques have the

advantage of being simple to implement, always stable,

and do not require digital signal processors and bulky

power amplifiers. Several shunt circuits are considered

in the literature. The classical resistive (R) and resonant

(RL) shunts have been initially proposed by Hagood

and Von Flotow (1991). Then, improvements of those

techniques have been studied by various authors using

(1) several piezoelectric elements (Alessandroni et al.,

2002; Casadei et al., 2010; Collet et al., 2009; dell’Isola

et al., 2004; Hollkamp, 1994; Maurini et al., 2004;

Trindade and Maio, 2008), (2) active fiber composites

(Belloli et al., 2007; Seba et al., 2006), (3) adaptive

shunts (Hollkamp and Starchville, 1994; Niederberger

et al., 2004; Wu, 1998), and (4) semi-passive approach,

commonly known as switch techniques (Badel et al.,

2007; Cunefare et al., 2000; Ducarne et al., 2010;

Richard et al., 2000). Since those techniques are pas-

sive, or semi-passive if some electronic components

have to be powered, a critical issue is that their perfor-

mances, in terms of damping efficiency, directly depend

on the electromechanical coupling between the host

structure and the piezoelectric elements, which has to

be maximized. The optimization, in terms of damping

efficiency, of the full electromechanical system com-

posed by a host elastic structure with bonded piezoelec-

tric patches connected to a shunt circuit is under study
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in this article. A modal model, based on an original

finite element (FE) formulation (Thomas et al., 2009),

adapted to any elastic structures with surface-mounted

piezoelectric patches, is proposed to solve the electro-

mechanical problem. Then, the so-called modal electro-

mechanical coupling factors (MEMCFs) can be

defined, each one being associated with one piezoelec-

tric patch and one eigenmode of the structure. Those

MEMCFs are found very close to the classical effective

electromechanical coupling factor (EEMCF) defined in

IEEE (1988). Several authors have pointed out their

importance in the past (Caruso, 2001; Davis and

Lesieutre, 1995; Lesieutre and Davis, 1997; Trindade

and Benjeddou, 2009). The optimization relies on the fact

that the tuning as well as the performances of the shunt

connected to the piezoelectric patches depends only on

two parameters: the MEMCF and the structural damp-

ing. Since the latter is in most practical cases a problem

data, the only parameter that has to be considered is the

MEMCF. This has been demonstrated in Thomas et al.

(2009, 2012a, 2012b) for R and RL shunts, and in

Ducarne et al. (2010) for switch techniques. The

MEMCF being the main parameter, the optimization of

the damping brought by the shunt can be divided into

two successive steps. First, the MEMCFs must be maxi-

mized as a function of the patches’ geometries and loca-

tion on the elastic structure. Then, the second step

consists in determining the optimal electrical parameters

of the shunt and estimating the damping efficiency. The

optimal electric parameters are classically obtained as

closed-formed expressions (Caruso, 2001; Ducarne et al.,

2010; Thomas et al., 2012a) or can be numerically com-

puted (Seba et al., 2006).

Optimizing the geometry and placement of piezoelec-

tric patches on a host elastic structure has received large

attention in the last decades. Recent reviews of the liter-

ature (Belloli and Ermanni, 2007; Frecker, 2003) show

that active control applications are mainly considered.

Only few studies address the application of piezoelectric

shunts, and most of them keep fixed shape piezoelectric

patches (e.g. rectangular) and only their size and/or

positions are optimized (Belloli and Ermanni, 2007;

Rosi et al., 2013; Sénéchal et al., 2010; Thomas et al.,

2012b). This induces a constrained optimization prob-

lem that limits the optimality of the solution. The con-

cept of topology optimization seems to be a good way

to overcome this limitation and thus to find an optimal

geometry for piezoelectric patches.

Topology optimization by distributing of isotropic

materials has been proposed by Bendsøe and Kikuchi

(1988) for the design of linear elastic structures. This

method, which consists in finding the optimal distribu-

tion of material, has demonstrated its efficacy in a large

number of applications. The basic form of a topology

optimization problem can be defined as follows: distri-

bute a given amount of material in a design domain

such that an objective function is extremized (Sigmund

and Torquato, 1999). An alternative to the classical

homogenization approach is the solid isotropic material

with penalization (SIMP) method based on the intro-

duction of a penalization factor, which ensures that the

continuous design variables are forced toward a black-

and-white solution (i.e. with or without material). Even

though the SIMP formulation is mesh dependent (num-

ber of elements of the discretized design domain), it

became very popular because it is easy to implement in

FE codes. Moreover, the efficacy of the SIMP method

in a large number of structural problems is well recog-

nized nowadays. For an overview of the homogeniza-

tion approach and SIMP method to topology

optimization and its mathematical background, the

reader is referred to Bendsøe and Sigmund (2003) and

references therein.

In the last decade, the SIMP method has successfully

been employed for many applications with piezoelectric

materials, especially in the active vibration control and

energy harvesting domains (Carbonari et al., 2007;

Kögl and Silva, 2005; Nakasone et al., 2008; Nakasone

and Silva, 2011; Rupp et al., 2009; Silva, 2009; Silva

and Kikuchi, 1999; Wein et al., 2009; Zheng et al.,

2009). In the context of shunt damping applications,

the vibration suppression of a hard disk driver actuator

arm using piezoelectric shunt damping with a topologi-

cally optimized piezoelectric transducer was investi-

gated by Sun et al. (2009). In this work, the authors use

the topological optimization module in the ANSYS FE

commercial code to optimize the shape of the piezoelec-

tric material coupled in the arm. To the best knowledge

of the authors, this article is the only contribution that

applies a topology optimization method to piezoelectric

shunt problems. Therefore, from the above analysis of

the open literature, it is clear that insufficient attention

has been given to the topology optimization technique

in the context of piezoelectric shunt damping.

Exploiting this fact, the concept of topology optimiza-

tion, based on the SIMP method, is employed in this

work to find an optimal distribution of the piezoelectric

material over a host elastic structure to improve damp-

ing efficiency for a resonant shunted system. The cases

of resistive shunt and switch techniques are not covered

here, but the proposed method remains valid. An opti-

mization algorithm, based on the work of Silva and

Kikuchi (1999), is developed with the MEMCF as

objective function. Moreover, the occurrence of effect

of self-penalization of piezoelectric materials in topol-

ogy optimization (see, for example, Wein et al., 2011)

for shunted piezoelectric problems is analyzed, which is

original.

The outline of the article is now described. In section

‘‘Electromechanical model,’’ an electromechanical FE

model suitable for any elastic structures with surface-

mounted piezoelectric patches and the MEMCFs are

briefly recalled. In section ‘‘Topology optimization:

SIMP method,’’ the concept of topology optimization
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applied to piezoelectric materials and the formulation

of the optimization problem are presented. In section

‘‘Numerical implementation,’’ the numerical implemen-

tation is discussed with emphasis on the optimization

algorithm. Finally, section ‘‘Examples’’ proposes

numerical examples to validate and analyze the optimi-

zation strategy.

Electromechanical model

In this section, an original electromechanical FE for-

mulation (Thomas et al., 2009), adapted to any elastic

structures with surface-mounted piezoelectric patches,

is briefly recalled. Then, a reduced-order model of the

problem based on a normal mode expansion is

introduced.

FE formulation

We consider the vibration of an arbitrary elastic struc-

ture with P piezoelectric patches, sketched in Figure 1.

The elastic structure, occupying the domain Os, is sub-

jected to a prescribed displacement udi on a part Gu and

to a prescribed surface force density tdi on the comple-

mentary part Gt of its external boundary, denoted by

∂Os, such that ∂Os =Gu [ Gt. The piezoelectric patches

have its upper and lower surfaces covered with a very

thin electrode, and they are polarized in their transverse

direction (i.e. the direction normal to the electrodes).

The pth patch, p 2 f1; . . . ,Pg, occupies a domain OðpÞ

such that ðOs;O
ð1Þ; . . . ,OðPÞÞ is a partition of the whole

solid domain O.

Using a set of practical assumptions, detailed in

Thomas et al. (2009), we can obtain an original varia-

tional formulation and then an efficient FE

formulation of the above electromechanical spectral

problem, which is given by

� v2 Muu 0

0 0

� �

U

V

� �

+
Kuu Kuv

�KT
uv Kvv

� �

U

V

� �

=
F

Q

� �

ð1Þ

where fUg is the column vector of nodal values of

mechanical displacement of length N (N is the number

of mechanical degrees of freedom); ½Muu� and ½Kuu� are
the mass and stiffness matrices of the system (i.e. elastic

structure with piezoelectric patches) of size N 3N ;

and fFg is the column vector of mechanical force

of length N . Moreover, fQg= ½Qð1Þ; . . . ,QðPÞ�T and

fVg= ½V ð1Þ; . . . ,V ðPÞ�T are the column vectors of elec-

tric charges (contained in the upper electrode) and

potential differences in each patch; ½Kuv� is the electro-

mechanical coupling matrix of size N 3P; and

½Kvv�= diagð½Cð1Þ; . . . ,CðPÞ�Þ is a diagonal matrix filled

with the P capacitances of the piezoelectric patches

where CðpÞ =233 S
ðpÞ=hðpÞ, 233 being the piezoelectric

permittivity in the direction normal to the electrodes

and SðpÞ the area of the patch electrodes surfaces. For

more details about the derivation of this original for-

mulation, the reader is referred to Thomas et al. (2009).

The above discretized formulation equation is

adapted to any elastic structures with surface-mounted

piezoelectric patches. Its originality lies in the fact that

the system electrical state is fully described by very few

global discrete unknowns: only a couple of variables

per piezoelectric patch, namely (1) the electric charge

contained in the electrodes and (2) the voltage between

the electrodes. Once the electrical part of the problem

is fully discretized at the weak formulation step, by

introducing the above cited voltage/charge variables,

without any restriction on the mechanical part of the

Figure 1. (a) An elastic structure with two piezoelectric patches and (b) the pth piezoelectric patch submitted to an uniform

electric field vector Ei and potential difference VðpÞ =c
ðpÞ
+ � cðpÞ

� .
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problem, any standard FE formulation can be easily

modified to include the piezoelectric patches and thus

the effect of an external electrical action. A second

advantage of this formulation is that since global elec-

trical variables are used, realistic electrical boundary

conditions are naturally introduced. First, the equipo-

tentiality in any of the patches’ electrodes is exactly sat-

isfied when introducing the potential difference

variable. Second, the use of the global charge contained

in the electrodes, as the second electrical variable, is

realistic since plugging an external electrical circuit to

the electrodes of the patches imposes only the global

charge contained in the electrodes and not a local

charge surface density. Another advantage of using the

global charge/voltage variables is that they are intrinsi-

cally adapted to include any external electrical circuit

into the electromechanical problem and to simulate the

effect of shunt damping techniques. In this case, neither

fVg nor fQg is prescribed by the electrical network but

the latter imposes only a relation between them

(Hagood and Von Flotow, 1991). For the case of a

resonant shunt composed of a resistor Re and an induc-

tor Le in series, connected to the pth patch, the relation

writes

V ðpÞ � v2LeQ
ðpÞ + jvReQ

ðpÞ = 0 ð2Þ

Combining equations (1) and (2) and considering a

mechanical viscous damping in the system, we finally

obtain the general FE formulation of the electromecha-

nical spectral problem when the piezoelectric patches

are shunted

� v2 Muu 0

0 Le

� �

U

Q

� �

+ jv
Cuu 0

0 Re

� �

U

Q

� �

+
Kuu+KuvK

�1
vv K

T
uv KuvK

�1
vv

K�1
vv K

T
uv K�1

vv

� �

U

Q

� �

=
F

0

� �

ð3Þ

where ½Cuu� is the mechanical damping matrix; ½Re� and
½Le� are the diagonal matrices filled with the electrical

resistances Re and the electrical inductances Le of the

shunt circuits and j=
ffiffiffiffiffiffiffi

�1
p

. Note that since ½Kvv� is

diagonal, the evaluation of ½K�1
vv � is straightforward.

Depending on whether the patches are short-

circuited (fVg= f0g) or open-circuited (fQg= f0g),
the homogeneous spectral problem associated with the

discretized formulation of equation (3) takes the fol-

lowing form

Kuu½ � � v2 Muu½ �
� �

fUg= f0g short-circuit ðSCÞ ð4Þ

Kuu+KuvK
�1
vv K

T
uv

	 


� v2 Muu½ �
� �

fUg= f0g

open-circuit ðOCÞ ð5Þ

where the added stiffness term ½KuvK
�1
vv K

T
uv� represents

the effect of open-circuit electromechanical coupling on

the elastic structure.

Reduced-order model and coupling factors

In this section, a reduced-order formulation of the dis-

cretized problem of equation (3) is introduced. The

mechanical displacement unknown vector is projected

onto a truncated modal basis containing the first short-

circuit eigenmodes. The main motivation of choosing

this particular basis is that it can be computed with a

classical elastic mechanical formulation, whereas open-

circuit modes depend also on the piezoelectric system

properties. This basis could be enriched by other func-

tions (e.g. static modes), which is out of the scope of

this article. Moreover, this section also introduces the

modal coupling factors and recalls the optimal values

for the electrical parameters of resonant shunts.

The shunted electromechanical problem given by

equation (3) can then be reduced by projecting the

mechanical displacement into the first �N short-circuit

eigenmodes fFig, such as

UðvÞf g=
X

�N

i= 1

Fif guiðvÞ; with �N � N ð6Þ

As a result, the reduced problem consists in solving

the following system

�v2+ 2jvjivi +v2
i

� �

ui +
P

P

p= 1

P

�N

n= 1

x
ðpÞ
i x

ðpÞ
n

C pð Þ un+

P

P

p= 1

x
ðpÞ
i

CðpÞ Q
ðpÞ =Fi 8i 2 f1; . . . , �Ng

�v2L
ðpÞ
e + jvR

ðpÞ
e +

1

CðpÞ

� �

QðpÞ +
P

�N

n= 1

x
ðpÞ
n

CðpÞ un = 0 8p 2 f1; . . . ,Pg

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

ð7Þ

where F i = fFigTfFg, vi, and ji are the modal force,

SC natural frequency, and modal damping coefficient

of the ith mode, and x
ðpÞ
i is the modal coupling coeffi-

cient associated with the ith mode and the pth patch,

which is defined by

x
ð1Þ
i x

ð2Þ
i . . . x

ðPÞ
i

 �

= Fif gT Kuv½ �; 8i 2 f1; . . . , �Ng ð8Þ

These modal coupling coefficients x
ðpÞ
i are related to

the MEMCFs, denoted k
ðpÞ
i , which characterize, for

each mode i, energy exchange between the mechanical

structure and the piezoelectric patch p (Thomas et al.,

2009)

k
ðpÞ
i =

x
ðpÞ
i
ffiffiffiffiffiffiffiffi

CðpÞ
p

vi

ð9Þ

Under the assumption that the modal truncation to

one mode is valid around the ith mode, it can be shown

that the MEMCF k
ðpÞ
i is close, in absolute value, to the

well-known EEMCF (IEEE, 1988), denoted k
ðpÞ
eff, i (see

Thomas et al., 2009)
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k
ðpÞ
i

�

�

�

�

�

�’k
ðpÞ
eff, i =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v̂
ðpÞ
i

 �2

� v2
i

v2
i

v

u

u

t

ð10Þ

where v̂
ðpÞ
i is the natural frequency of the ith mode

when only the pth patch is open-circuited.

Moreover, the optimal values for the electrical para-

meters of a resonant shunt, determined in Thomas et

al. (2012a), are recalled in equations (11) and (12).

These results depend only on (1) the natural frequency

in short circuit of the considered vibration mode as well

as its modal coupling factor and (2) the equivalent elec-

trical blocked capacity of the patches

RðpÞ
e =

ffiffi

3
2

q

k
ðpÞ
i

CðpÞvi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1+ k
ðpÞ
i

 �2
r ð11Þ

LðpÞe =
1

CðpÞv2
i 1+ k

ðpÞ
i

 �2
� � ð12Þ

For simplicity, the formulation presented in this sec-

tion considers one shunt circuit for each piezoelectric

patch. For the case of several piezoelectric patches con-

nected, in series or parallel, to one shunt circuit, addi-

tional considerations need to be included in the model.

For details, we refer the reader to Thomas et al. (2009).

Topology optimization: SIMP method

Piezoelectric material model

Topology optimization based on the SIMP method is a

powerful structural optimization technique that has

proved to be very efficient for many applications. It

combines the FE method with an optimization algo-

rithm to find the optimal material distribution inside a

given domain. The book by Bendsøe and Sigmund

(2003) brings a comprehensive and unified description

of this topology optimization method.

The application of the SIMP method to piezoelectric

materials has been done first by Silva and Kikuchi

(1999) to design piezoelectric transducers. Then, many

studies involving the use of piezoelectric materials have

applied the topology optimization based on the SIMP

method with success, especially in the active vibration

control and energy harvesting domains (Kögl and

Silva, 2005; Nakasone and Silva, 2011; Rupp et al.,

2009; Zheng et al., 2009).

The idea is to introduce the so-called pseudo-density

x, such that 0\xmin � x� 1 for each of the ~N FEs of

the optimization domain, yielding to the optimization

design vector fxg= ½x1; x2; . . . , x~N �
T
. For x= 1, the

material is present, while for x= xmin the material is

absent (the value x= 0 is usually excluded in order to

avoid the stiffness and mass matrices become singular).

Although x has a physical interpretation only for these

two extreme values, its continuous change between xmin

and unity during the optimization avoids numerical

instabilities caused by multiple local minima of the dis-

crete design space (see Bendsøe and Sigmund, 2003;

Kögl and Silva, 2005).

Using the standard SIMP interpolation form xp,

where p refers to a penalization exponent, the local ten-

sor properties, and mass density of the piezoelectric

material in each element n of the optimization domain

(n 2 ½1; 2; . . . , ~N �) can be expressed as

c
ðnÞ
ijkl = xpcn c

0
ijkl

e
ðnÞ
ijk = xpen e

0
ijk

2ðnÞ
ijk = xpen e

0
ijk

rðnÞ = x
pr
n r

0

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð13Þ

where c0ijkl, e0ijk, 20
ijk , and r0 are the stiffness tensor,

piezoelectric tensor, dielectric tensor, and mass density

of the piezoelectric material, respectively. To prevent

intermediate values for x, the penalization factors pc,

pe, p2, and pr are employed in equations (13), which

penalize intermediate densities and pushes x to the lim-

iting values 0 and unity. Note that one also can restrict

the total amount of design material
Ð

fxgdO and, a

complexity constraint, such as a filter, should be con-

sidered to avoid potential mesh dependency and check-

erboard problems (see Bendsøe and Sigmund, 2003;

Sigmund, 2007).

For the choice of penalty exponents, it is common

practice to use for the density pr = 1. For elastic mate-

rials and minimum compliance problems, the optimum

value for the stiffness was found to be pc = 3 (Bendsøe

and Sigmund, 2003). In Kögl and Silva (2005), the

influence of changing the values of pc, pe, and p2
(between 3 and 1) has been analyzed for design piezo-

electric plate and shell actuators. Recently, Wein et

al. (2011) have investigated the occurrence of self-

penalization in topology optimization problems for

piezoceramic composites. The self-penalization occurs

when the resulting optimal solutions show only a

small among of grayness in the absence of penaliza-

tion (pc = pe = p2 = pr = 1). Suitable values for pc,

pe, p2, and pr, together with the self-penalization

effect, are analyzed in the last section of this article.

Beforehand, several configurations for the penaliza-

tion exponents pc, pe, p2, and pr are applied to opti-

mize the distribution of the piezoelectric material for

the case of a cantilever beam equipped with one

piezoelectric patch. The results are compared to the

exact analytical solution proposed in Thomas et al.

(2012b).

Considering the new material properties of equa-

tions (13), the local FE stiffness and mass matrices of

the piezoelectric patches become

5



~K
e

uu

h i

= xpcn Ke
uu

	 


n

~K
e

uv

h i

n
= xpen Ke

uv

	 


n

~K
e

vv

h i

n
= xpen Ke

vv

	 


n

~M
e

uu

h i

n
= x

pr
n Me

uu

	 


n

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

ð14Þ

The FE formulation of equation (1) is now written

as

� v2 Ms
uu+

~Muu 0

0 0

� �

U

V

� �

+
Ks

uu+
~Kuu

~Kuv

�~K
T

uv
~Kvv

" #

U

V

� �

=
F

Q

� �

ð15Þ

where ½Ks
uu� and ½Ms

uu� are the global stiffness and mass

matrices of the host elastic structure, and ½~Kuu� and

½ ~Muu� are the modified global stiffness and mass

matrices of the piezoelectric patches. For the remainder

of this article, we use the notations ½Kuu�= ½Ks
uu +

~Kuu�
and ½Muu�= ½Ms

uu +
~Muu�.

Note that other penalization approaches can be

found in the literature:

� In Kögl and Silva (2005), the authors have pro-

posed a new piezoelectric material model called

piezoelectric material with penalization and

polarization (PEMAP-P) that considers, in addi-

tion to the pseudo-density xn, a new design vari-

able for the polarization of the piezoelectric

material.
� The standard SIMP interpolation form xp is suit-

able for static or quasi-static cases and also for

dynamic applications in the low-frequency

range. For higher frequencies, the interpolation

scheme x=ð1+ pð1� xÞÞ is more appropriated

(Sigmund, 2007).

Optimization problem

To improve the damping level for passive or semi-

passive shunted piezoelectric devices, a key issue is the

optimization of the whole system, in terms of location

and geometry of the piezoelectric patches and electric

circuit components’ choice. It was shown in Thomas et

al. (2009) that these two optimizations, mechanical and

electrical, can be realized separately. Moreover, it is

proved in Hagood and Von Flotow (1991), Davis and

Lesieutre (1995), Becker et al. (2006), and Thomas et

al. (2012a, 2012b) that the only parameters to maximize

are the modal coupling factors (MEMCF), which char-

acterize the energy exchanges between the mechanical

structure and the piezoelectric patches for a given

mode. Since the optimal values of the electric circuit

parameters are known as functions of the MEMCF

and the system structural characteristics, they can be

evaluated in a second step. Thus, the mechanical

optimization consists in maximizing the MEMCF by

optimizing the patches’ positions and geometries, that

is, finding the best design.

Considering all these features, the optimization

problem can be described as

Maximize: HðxÞ= k
ðpÞ
i

 �2

where x= x1; x2; . . . ; xn and ki is given by equation (9)

fxg subjected to:

Kuu½ � � v2
i Muu½ �

� �

Fif g= f0gðSCmodal problemÞ
0\xmin� xn � 1

~O xð Þ=
Ð

fxgdO� ~Omax

8

>

<

>

:

where ~O is the volume of the design domain and ~Omax is

the upper bound restricting the material to be used in

the piezoelectric layer. Moreover, the limit xmin is used

in order to prevent any possible singularity of the equili-

brium problem. It is commonly chosen as xmin = 0:001
(see Bendsøe and Sigmund, 2003).

It is important to note that the objective function is

defined here only as a function of one eigenvalue con-

trary to the work of Silva and Kikuchi (1999). In that

work, the authors propose multiobjective functions

written in terms of many eigenvalues to overcome the

problem of switching the vibration modes during the

optimization. In this work, in order to surmount this

eventual problem, the modal assurance criterion

(MAC) is used in order to identify a particular mode.

Therefore, even though the modes switch during the

optimization procedure, the MEMCF relative to the

selected mode to be attenuated is maximized.

Moreover, in the cases that natural frequencies are

widely spaced and/or piezoelectric patches do not sig-

nificantly change the dynamics behavior of the host

structure, this switching problem can be neglected.

Sensitivity analysis

As shown in Kögl and Silva (2005), this work uses

sequential linear programming (SLP) to solve the opti-

mization problem. This requires knowledge of the sen-

sitivities (gradients) of the objective function H in

relation to the design variables xn, given by

∂H
∂xn

=
∂ k

ðpÞ
i

 �2

∂xn
=

1

CðpÞv2
ið Þ2

3

∂ x
ðpÞ
i

 �2

∂xn
CðpÞv2

i � x
ðpÞ
i

 �2 ∂CðpÞ

∂xn
v2
i � x

ðpÞ
i

 �2

CðpÞ ∂v
2
i

∂xn

0

B

@

1

C

A

ð16Þ

where
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∂ x
ðpÞ
i

 �2

∂xn
= 2x

ðpÞ
i

∂ Fif gT
∂xn

~KðpÞ
uv

h i

+ Fif gT ∂ ~KðpÞ
uv

	 


∂xn

 !

ð17Þ

∂CðpÞ

∂xn
=

∂ ~KðpÞ
vv

	 


∂xn
ð18Þ

∂v2
i

∂xn
=

Fif gT ∂ ~Kuu½ �
∂xn

� v2
i

∂ ~Muu½ �
∂xn

� �

Fif g

Fif gT Ms
uu+

~Muu

	 


Fif g
ð19Þ

Equations (17) to (19) correspond to the sensitivities of

the coupling coefficient x
ðpÞ
i , the patch capacity CðpÞ,

and the short-circuit eigenvalue v2
i , respectively. The

sensitivity of the short-circuit eigenvector ∂fFig=ð∂xnÞ
of equation (17) is calculated by solving the following

system

Kuu � v2
iMuu

� �

�MuuFi

�F
T
i Muu 0

� � ∂Fi

∂xn
∂v2

i

∂xn

( )

=
� ∂~Kuu

∂xn
� v2

i
∂ ~Muu

∂xn

 �

Fi

1
2
F

T
i

∂ ~Muu

∂xn
Fi

2

4

3

5 ð20Þ

Due to the piezoelectric material model proposed in

equation (13), the matrices ∂½~Kuu�=ð∂xnÞ, ∂½ ~Muu�=ð∂xnÞ,
∂½~KðpÞ

uv �=ð∂xnÞ, and ∂½~KðpÞ
vv �=ð∂xnÞ are proportional to the

individual element matrices ½~Ke

uu�n, ½ ~M
e

uu�n, ½~K
e

uv�n, and
½~Ke

vv�n and are given by

∂ ~Kuu½ �
∂xn

= pc
~K
e

uu½ �
n

xn

∂ ~Muu½ �
∂xn

= pr
~M

e

uu½ �
n

xn

∂ ~K
pð Þ
uv

	 


∂xn
= pe

~K
e

uv½ �
n

xn

∂ ~K
pð Þ
vv

	 


∂xn
= p2

~K
e

vv½ �
n

xn

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

ð21Þ

The sensitivities of the objective function HðxÞ in

relation to the design variables xn are then obtained

introducing equation (21) into equations (17) to (20).

Numerical implementation

The numerical implementation proposed in this study

is shown in Figure 2. Figure 2(a) presents the main

algorithm for solving the piezoelectric shunted problem

and Figure 2(b) details the optimization algorithm to

optimize the placement and geometry of piezoelectric

patches. In order to construct the electromechanical

FE models and solve the problems, the FE code

Nastran� is used in association with MATLAB soft-

ware (Pereira da Silva et al., 2012). Nastran is exploited

here to create the elastic part of the model and to solve

the eigenvalue problem. MATLAB is used to manage

Nastran, to construct the electric part of the models

(piezoelectric and dielectric matrices), to solve the opti-

mization procedure, and to compute the frequency

responses. Throughout the procedure, much informa-

tion is exchanged between MATLAB and Nastran. For

this reason, the Awk programming language is used to

allow a very fast reading and writing for data extrac-

tion and reporting.

Main algorithm

In a first step, the problem is defined and the FE model

is created. In this step, the vibration modes to be con-

trolled and the potential positioning areas of the piezo-

electric patches are specified. We consider here for sake

of simplicity, only one piezoelectric device for each

mode to be controlled. In a second step, an optimiza-

tion algorithm, detailed in the next section, is applied

in order to find the best design of piezoelectric patches

(position and geometry). Then, the optimal electric

parameters (resistance and inductance values) of shunt

circuits are determined using equations (11) and (12).

Finally, the reduced-order model (equations (7)) is used

to solve the frequency response of the system and to

determine the shunt damping attenuation.

Optimization algorithm

The material assumptions and FE model of section

‘‘Piezoelectric material model’’ are employed to solve

the SC modal analysis and calculate the objective func-

tion. The design variables are the values of the pseudo-

densities xn, which can be different in each FE.

This work uses SLP to solve the optimization prob-

lem. This method has been successfully applied to

topology optimization in Sigmund and Torquato

(1999), Silva and Kikuchi (1999), Kögl and Silva

(2005), and Nakasone and Silva (2011). It consists of

sequential solution of approximate linear subpro-

blems that can be defined by writing a Taylor series

expansion for the objective function around the cur-

rent design point xn in each iteration step (Hanson

and Hiebert, 1981). Suitable move limits are defined

for the design variables between consecutive interac-

tions. Thus, after each interaction, a new set of design

variables xn is obtained and updated in the design

domain. The procedure stops when the objective func-

tion converges.

As a result, an optimum distribution of xn is

obtained. This distribution may contain intermediate

values (gray zone) that represent no real material.

These intermediate values need to be interpreted as

0 (void) or 1 (real material) before continuing the

procedure.

To assess the quality of the final design, the amount

of intermediate material (‘‘grayness’’) can be quantified

by introducing the so-called measure of non-

discreteness (Sigmund, 2007)

7



Mnd=

P

~N

n= 1

4xn 1� xnð Þ

~N
3 100% ð22Þ

A fully discrete design (no elements with intermedi-

ate density values) is represented by Mnd = 0%, while a

design totally gray (all elements densities xn are equal to

0:5) yields Mnd= 100%.

Examples

In the following, the proposed topology optimization

approach is applied to find the better placement and

geometry of piezoelectric patches for various vibration

problems.

Cantilever beam with one piezoelectric patch

In this first example, we propose to validate our optimi-

zation procedure by comparison to an analytical solu-

tion given in Thomas et al. (2012b). The objective is to

find the optimal position and geometry of a piezoelectric

patch mounted on a cantilever beam in order to maxi-

mize the MEMCF for a given bending vibration mode.

The system under study consists of a cantilever beam

with one piezoelectric device, as sketched in Figure 3.

The beam is made of aluminum (E = 74 GPa,

v = 0.33, and r = 2700 kg/m3) with Lb = 175mm

(length), wp = 10mm (width), and hp = 2mm (thick-

ness). The piezoelectric element is assumed to be per-

fectly bounded to the beam and has the same width.

Table 1 gives its material properties.

Figure 2. Implementation of the proposed topology optimization approach: (a) main algorithm and (b) optimization algorithm.
FE: finite element.

Table 1. Piezoelectric material properties.

Parameters Values

Material PIC 151
Density 7780 kg m23

Elasticity coefficient ðSE11; SE33; SE12SE13; SE44; SE66Þ 1.683, 1.900, 20.5656, 20.7107, 5.096, 4.497 (310211) m2 N21

Piezoelectric coefficient ðe31; e33; e15Þ 29.60, 15.10, 12.00 N V21 m21

Dielectric coefficient ðee11, ee33Þ 9.82, 7.54 (31029) F m21
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For this system, Thomas et al. (2012b) proposed an

analytical solution for the optimization of the position

ðxpÞ, thickness ðhpÞ, and length ðLpÞ of a rectangular

piezoelectric patch. Table 2 recalls the best design para-

meters that have been found for the maximization of

the MEMCF for the first two beam bending modes

(Figure 4).

Our optimization approach is based on the FE mod-

eling of the system. Thus, the beam and piezoelectric

layer are modeled with 70 linear quadrilateral shell ele-

ments (QUAD 4), according to the first-order shear

deformation laminate theory (Reddy, 2004). In order

to ensure the comparison with the analytical solutions,

the system is discretized with only one element through

the width, as shown in Figure 4. With this modeling

and for a fixed thickness of the piezoelectric layer, the

optimization problem consists in finding the optimal

length of a rectangular patch ðLpÞ and its optimal posi-

tion defined by its x-coordinate ðxpÞ.
As previously explained, the performance of our

optimization approach depends on the choice of the

penalty exponents pc, pe, p2, and pr (Bendsøe and

Sigmund, 2003; Kögl and Silva, 2005). The common

practice in the literature consists in choosing each of

these factors value to 1 or 3, which lead to 16 combina-

tions to be tested. For all the test cases, an initial value

xn = 0:5 is chosen for all elements and no volume

restriction is considered.

Figure 5 shows the results of the proposed optimiza-

tion methodology in terms of the penalty exponents

and the measure of non-discreteness of the first two

bending modes. Figure 6 gives the evolution of the

MEMCF through the optimization procedure (first 40

interactions). It is important to note that Figures 5 and

6 present only the results for six combinations of pen-

alty exponents. The case of pr = 3 is not shown here

since no significant differences to the results obtained

with pr = 1 were observed. The cases with the combi-

nation pe = 1 and p2 = 3 are not represented either

because the optimization procedure fails (diverges).

Mathematically, there are two main ways to maximize

the objective function: (1) maximize the coupling coeffi-

cients x
ðpÞ
i (good way) and (2) minimize the values of

the capacities of the patches CðpÞ, which is done by the

minimization of the pseudo-densities xn in all domains.

The combinations with pe = 1 and p2 = 3 mainly pena-

lize the values of the capacities of the patches, and thus

drive the optimization algorithm to take the second

way.

As expected, the combination of penalty exponents

pr = p2 = pc = 1 and pe = 3 (case a) yields the better

results with a very low grayness. In fact, this configura-

tion penalizes only the electromechanical coupling

matrix ½Kuv�, which is directly associated with the cou-

pling coefficients x
ðpÞ
i and so maximizes the MEMCFs

(objective functions). The combination pr = p2 = 1

and pc = pe = 3 (case b) yields also good results with

no large grayness. The other combinations have a dele-

terious effect on the performance of the optimization

algorithm. Although the MEMCFs are higher for these

combinations (see Figure 6), the algorithm does not

yield a black-and-white design and the final topologies

are characterized by a large grayness (see Figure 5).

Even if the combinations (a) and (b) yield good results,

they do not ensure the complete convergence (size and

position of the piezoelectric patch). In order to improve

the convergence, other combinations from cases (a)

and (b) are tested. As results we have found that the

combination of penalty exponents pr = p2 = pc = 1

and pe = 2 seems to be the best choice. As shown in

Figure 7, this combination yields the best approxima-

tion compared to the analytical solution with a low

Figure 3. Cantilever beam with one piezoelectric patch.
PZT: lead zirconate titanate.

Table 2. Optimal configurations found in Thomas et al.

(2012b).

Bending mode Parameters values

First xp = 0:00mm
Lp = 99:75mm
hp = 0:91mm

Second xp = 30:10mm
Lp = 109:38mm
hp = 1:06mm

Figure 4. Deformed shapes of the first two beam bending

modes.
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Figure 5. Resulting topologies of density xn (black: solid material; white: void) for the first and second beam bending modes with

different combinations of exponents: finite element mesh and measure of non-discreteness Mnd.

Figure 6. Evolution of the MEMCF through the optimization procedure. Case a: pr = p2 = pc = 1 and pe = 3; Case b:

pr = p2 = 1 and pe = pc = 3; Case c: pr = p2 = pc = pe = 1; Case d: pr = p2 = pe = 1 and pc = 3; Case e: pr = pc = 1 and

p2 = pe = 3; Case f: pr = 1 and p2 = pe = pc = 3. (a) First bending mode and (b) second bending mode.
MEMCF: modal electromechanical coupling factor.
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grayness. Also, a good performance was found with

other example cases (see next examples).

This first example validates our optimization

approach and shows its efficiency compared to analyti-

cal solution. The combinations of penalty exponents

that penalize only the electromechanical coupling

matrix ½Kuv� present excellent results among a set of

experiments. In particular, the combination

pr = p2 = pc = 1 and pe = 2 yields the best approxima-

tion compared to the analytical solution with a very low

grayness. Even though further analysis must be consid-

ered to establish an optimal result, this configuration of

penalty exponents seems to be a good choice for the opti-

mization problem dealt with in this article. Moreover, we

have also observed that without penalization

(pr = p2 = pc = pe = 1) the algorithm yields a large

amount of grayness so that large post-processing is

needed to obtain topologies suitable for manufacturing.

Single-mode RL shunt control of a baffle-less

automotive muffler

In this example, the vibration reduction problem of a

muffler-like structure using a piezoelectric RL shunt

device is considered (Raju et al., 2005). The muffler is

made of aluminum (E= 74GPa, v= 0:33, and

r= 2700 kg=m3) with 3.048 mm of wall thickness and

the 152.4-mm-long inlet and exhaust pipes made of

steel (E= 210GPa, v= 0:3, and r= 7800 kg=m3) with

2.032 mm of wall thickness. Moreover, the muffler is

subjected to a transverse harmonic point force of con-

stant amplitude (1 N), as shown in Figure 8(a).

A piezoelectric device is perfectly bonded on the top

surface of the muffler and connected to a RL shunt cir-

cuit in order to reduce the vibration of the second mode

of the structure. The material properties of the piezo-

electric device are given in Table 1 and its thickness is

0.635 mm.

The proposed topology optimization procedure is

applied to distribute the piezoelectric material on the

top muffler surface in order to maximize the MEMCF

for the second vibration mode. A resonant RL shunt is

then tuned in order to achieve maximum energy

dissipation of this mode (Figure 9). The optimal values

of the resistor and inductor, calculated through the for-

mulas given by equations (11) and (12), are Re = 400O

and Le = 0:62H and the electromechanical coupling

factor is taken 15.91%. The frequency response func-

tions (FRFs) of the system are computed with a modal

reduction approach using the first 10 eigenmodes of the

structure with the piezoelectric patch in SC configura-

tion. In addition, a mechanical damping is introduced

through a modal damping coefficient j= 0:005 for all

eigenmodes in the selected reduced modal basis.

Concerning the optimization procedure, an upper

bound ~Omax=4600mm3 on the volume has been

employed to limit the material used in the piezoelectric

layer and, in order to satisfy all constraints, the optimiza-

tion started with an initial value of xn = 0:2 for all ele-

ments in the design domain. Moreover, 2389 linear

quadrilateral shell elements (QUAD 4), based on the

first-order shear deformation theory, have been used to

model the structure (muffler with end pipes). The portion

of the muffler top surface covered by the piezoelectric

patch and the patch itself has been modeled according to

the first-order shear deformation laminate theory.

Figure 8(b) shows the best design obtained with the

proposed optimization procedure. In Figure 10, the

FRFs in the excitation point are plotted and compared

for (1) muffler without patch, (2) short-circuited case,

and (3) shunted case. This figure shows that the resonant

magnitude of the second mode has been significantly

reduced. In fact, the strain energy contained in the piezo-

electric material is converted into electrical energy and

hence dissipated into heat using the RL shunt device. In

this example, the optimization method provides excellent

damping for the select mode. This can be verified by

comparing to other geometries and positions of the patch

presented in Pereira da Silva et al. (2013).

Multi-mode RL shunts control of sound power

radiated from a thin plate

In the last example, a free-clamped rectangular plate

with two rectangular reinforcements perfectly bonded

on its underside surface is considered. The plate and

Figure 7. Resulting topologies for the first and second beam bending modes with pr = p2 = pc = 1 and pe = 2.
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Figure 8. Muffler-like structure with the inlet and exhaust pipes: (a) geometric configuration and boundary conditions (all

dimensions are in mm) and (b) finite element mesh and optimal configuration for the piezoelectric shunt system.

Figure 9. First three muffler vibration modes.

Figure 10. Frequency response functions of the muffler. Attenuation of vibration mode 2.
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the reinforcements are made of 2-mm-thick aluminum

plates (E= 70GPa, v= 0:33, and r= 2700kg=m3).

The structure is subjected to two transverse harmonic

point forces of constant amplitude (1 N). The geometric

configuration and boundary conditions are shown in

Figure 11(a).

In the low-frequency range (0–430 Hz), the most

radiating modes are modes 1, 6, and 14 (Figure 12).

The computation of these modes was done with the ele-

mental radiator method presented in Pereira da Silva et

al. (2012). In order to reduce the sound radiation of

these modes and get a multi-modal damping of the

structure, a shunt system with three piezoelectric

devices is used. They are considered made of PIC 151

(see Table 1 for the properties) with 0.5 mm of thick-

ness. Note that other techniques using piezoelectric sys-

tems can be applied for control of sound radiated and

transmitted by thin structures (see, for example, Rosi et

al., 2010).

As in the previous example, the proposed optimiza-

tion procedure described in Figure 2(a) and (b) is

applied in order to maximize the MEMCF, which pro-

vides the most damping for the select modes. Note that

three zones on the top surface of the plate were delim-

ited to attach and design each piezoelectric device (they

are assumed perfectly bounded), as shown in Figure

11(b). In addition, an upper bound ~Omax = 3 cm3 on

the volume is employed to limit the material used in

each device. Thus, the value of xn = 0:2 for all elements

in the three design domains is used as initial guess (all

constraints satisfied). Therefore, the optimal values of

the shunt electrical parameters for each mode are deter-

mined using equations (11) and (12).

Concerning the FE discretization, we have used for

the plate 1536 linear quadrilateral shell elements

(QUAD 4) based on the first-order shear deformation

theory. The portions of the plate covered with piezo-

electric material and the piezoelectric layers themselves

have been modeled according to the first-order shear

deformation laminate theory (Reddy, 2004).

The FRFs are computed with a modal reduction

approach using the first 40 eigenmodes of the structure

with the piezoelectric patches in SC configuration.

Mechanical damping was introduced through a modal

damping coefficient j= 0:005 for all eigenmodes in the

selected reduced modal basis.

Figure 11(c) shows the best design obtained with the

optimization procedure and Table 3 gives the resulting

MEMCFs together with the optimal values of the

shunts’ electrical parameters.

Figure 13 presents the FRFs of the system with and

without shunt control at the same point where the har-

monic force 1 is applied. This figure illustrates again

the performance of the shunt technique in vibration

and sound radiation reduction of the select modes.

These results also show that the optimization of the

patches geometry causes better performance in terms of

attenuation compared to arbitrary geometries and

demonstrates the effectiveness of the proposed

approach.

Figure 11. Free-clamped rectangular plate with reinforcements (all dimensions are in mm): (a) geometric configuration and

boundary conditions, (b) delimited zones for the piezoelectric devices, and (c) optimal configuration for the piezoelectric shunt

system.
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Figure 12. Deformed shapes of the modes to be controlled.

Table 3. MEMCF and optimal values for the electrical parameters of the shunt circuits.

Parameters Optimal values

Mode 1 Mode 2 Mode 3

MEMCF (%) 19.9 13.8 16.2
Resistance (O) 6467.5 1057.0 519.3
Inductance (H) 121.5 7.3 1.2

MEMCF: modal electromechanical coupling factor.

Figure 13. Frequency response functions of the plate: (a) frequency range (0–430) Hz, (b) attenuation of mode 1, (c) attenuation of

mode 6, and (d) attenuation of mode 14. 14



It is important to note that piezoelectric patches with

unconventional shapes have been obtained from the

optimization procedure in the above examples. From

the viewpoint of the manufacture, piezoceramics are

normally produced by sintering that allows large vari-

ety of shapes and sizes. However, a constant thickness

between the electrodes is preferable in order to maxi-

mize the electric field at any point during the polariza-

tion and thus obtain a high piezoelectric coupling. The

lead zirconate titanate (PZT) elements are therefore

usually straight plates.

Conclusion

The present contribution is dedicated to the study of

passive vibration damping using piezoelectric patches

and resonant shunt circuits. The concept of topology

optimization is successfully applied in order to optimize

the placement and geometry of piezoelectric patches.

An optimization algorithm is employed and validated.

A set of penalty exponents is proposed that yield excel-

lent results with a very small grayness and so little post-

processing. Numerical examples demonstrate the effec-

tiveness of the proposed approach for the design of

piezoelectric devices in shunt damping problems.

The evaluation of the sensitivity of the short-circuit

eigenvector ∂fFig=ð∂xnÞ in each interaction is the main

drawback of our optimization procedure. This opera-

tion can be numerical expensive since a matrix inversion

is needed (see equation (20)). This problem can be

avoided by using the EEMCF (equation (10)) as cost

function instead of the MEMCF. In this case, only

eigenvalue sensitivities need to be computed. Moreover,

no checkerboard patterns were observed in the exam-

ples treated in this work. A suitable filtering algorithm

can eliminate these problems and improve the topology

optimization procedure (see the work of Sigmund

(2007)). The topology optimization procedure is applied

here to resonant shunts but remains valid for resistive

shunts or switch techniques since the mechanical and

electrical optimizations are uncoupled.
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