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Vibroacoustic analysis of double-wall sandwich panels with viscoelastic core

W. Larbi ⇑, J.F. Deü, R. Ohayon
Structural Mechanics and Coupled Systems Laboratory, Conservatoire National des Arts et Métiers, 292 rue Saint-Martin, 75141 Paris Cedex 03, France

In this work, an original finite element modeling to investigate the effects of a viscoelastic layer on the

sound transmission through double-wall sandwich panels is presented. This formulation is obtained from

a coupled fluid–structure variational principle taking into account the frequency dependence of the

viscoelastic material. The resolution approach is based on a reduced order model generated by a modal

projection technique. The sound insulation of the panels is evaluated by computing its sound transmis-

sion factor using Rayleigh integral method. An efficient and inexpensive finite element for a sandwich

plate with viscoelastic core is developed. Various results are presented in order to validate and illustrate

the efficiency of the proposed finite element formulations.

1. Introduction

Double-wall structures are widely used in noise control due to

their superiority over single-leaf structures in providing better

acoustic insulation. Typical examples include double glazed win-

dows, fuselage of airplanes, vehicles, etc. Different theoretical,

experimental and numerical approaches have been investigated

to predict the sound transmission through double walls with an

acoustic enclosure. In [6,22,12], theoretical approaches are pro-

posed for the derivation of the sound transmission factor of double

panels of infinite size exposed to a random sound field as a func-

tion of frequency and angle of incidence. For a finite panels size,

a theoretical study, based on Fourier series expansions, on the

vibroacoustic performance of a rectangular double-panel partition

clamp mounted in an infinite acoustic rigid baffle is presented in

[35]. Experimental evaluation of sound transmission through sin-

gle, double and triple glazing can be found in [28,29,33,11].

Regarding the numerical prediction approaches, several methods

are available in the literature, such as the finite element method

(FEM), the boundary element method (BEM), and the Statistical

Energy Analysis (SEA). In [1], FEM is applied to study the viscother-

mal fluid effects on vibro-acoustic behavior of double elastic pan-

els. The FEM is applied in [32] by the authors for the different

layers of the sound barrier coupled to a variational BEM to account

for fluid loading. In [9], the SEA is used for predicting sound trans-

mission through double walls and for computing the non-resonant

loss factor. For all these approaches, the choice of the numerical

method is related to the computational cost and the frequency

band to be treated.

By introducing a thin viscoelastic interlayer within the panels, a

better acoustic insulation is obtained. In fact, sandwich structures

with viscoelastic layer are commonly used in many systems for

vibration damping and noise control. In such structures, the main

energy loss mechanism is due to the transverse shear of the vis-

coelastic core. However, accurate modeling of structures with vis-

coelastic materials is difficult because the measured dynamic

properties of viscoelastic material are frequency and temperature

dependent. This motivated several authors to develop accurate

numerical methods of modeling the effects of viscoelastic damping

mechanisms which introduce frequency dependence. A review of

these methods can be found in [34]. In the same context, many

studies are dedicated to the development of sandwich finite ele-

ment with viscoelastic core [14,7,3,31,4].

Concerning the application of these structures in noise attenu-

ation, we can cite [15] where numerical and experimental results

concerning the sound transmission through a single and a double

laminated glass with Polyvinyl Butyral (PVB) viscoelastic interlayer

are presented and compared. In [11], the measured sound trans-

mission loss of multilayered structures is compared with transfer

matrix method results (assuming infinite layers) and a wave based

model (taking into account finite dimensions) to show the impor-

tance of the finite dimensions in a broad frequency range. The

effects of viscothermal fluid in a laminated double glazing are

investigated in [2] using a finite element approach.
⇑ Corresponding author.
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This work is based upon Larbi et al. [21] for vibroacoustic anal-

ysis of double-wall sandwich panels with viscoelastic core, but

includes the development of an original finite element sandwich

plate. In the first part of this paper, a non-symmetric finite element

formulation of double-wall sandwich panels with viscoelastic core

is derived from a variational principle involving structural dis-

placement and acoustic pressure in the fluid cavity. Since the elas-

ticity modulus of the viscoelastic core is complex and frequency

dependent, this formulation is complex and nonlinear. Therefore,

the direct solution of this problem can be considered only for small

model sizes. This has severe limitations in attaining adequate accu-

racy and wider frequency ranges of interest. An original reduced

order-model is then proposed to solve the problem at a lower cost.

The proposed methodology, based on a normal mode expansion,

requires the computation of the uncoupled structural and acoustic

modes. The uncoupled structural modes are the real and

undamped modes of the sandwich panels without fluid pressure

loading at fluid–structure interface, whereas the uncoupled acous-

tic modes are the cavity modes with rigid wall boundary condi-

tions at the fluid–structure interface. Moreover, the effects of the

higher modes of each subsystem are taken into account through

an appropriate so-called a priori static correction based on adding

the static modes, defined as the deformation shape at every load, to

the truncated bases. It is shown that the projection of the full-order

coupled finite element model on the uncoupled bases, leads to a

reduced order model in which the main parameters are the classi-

cal fluid–structure and residual stiffness complex coupling factors.

Thanks to its reduced size, this model is proved to be very efficient

for simulations of steady-state and frequency analyses of the cou-

pled structural–acoustic system with viscoelastic damping and the

computational effort is significantly reduced. As a next step, the

sound transmission through double walls is investigated. When

the normal velocity distribution of the panel is known, the acoustic

pressure field generated in the outward direction of the two plates

can be calculated with the so-called Rayleigh integral for two-

dimensional sound radiation. For this purpose, it is assumed that

the double wall panel is placed in an infinite baffle. The normal

incidence sound transmission is chosen in order to evaluate the

acoustic performances and the sound insulation of the double wall.

The second part of this work is devoted to the development of

an efficient finite element sandwich plate. The model is based on

the layerwise theory with a first order shear deformation in each

layer. The skins are described according to the Kirchhoff–Love the-

ory with a correction which takes into account the rotational influ-

ence of the transversal shearing in the core. A Mindlin model is

used to describe the displacement field of the core. A four nodes

finite element layered plate, with seven degrees-of-freedom (dof)

per node, is then developed. The in-plane displacements and the

rotations of the core are discretized by conforming bi-linear

Lagrange shape functions, while the transverse displacement and

rotations of the skins are discretized by non-conforming cubic Her-

mite shape functions. This choice is proved to be efficient com-

pared to other FE models and well adapted to structural–acoustic

applications.

In the last part, numerical examples are presented in order to

validate and analyze results computed from the proposed

formulations.

2. Finite element formulation of the coupled problem

2.1. Local equations

Consider a double-wall structure shown in Fig. 1. Each wall

occupies a domain XSi, i 2 1;2f g such that XS ¼ ðXS1;XS2Þ is a par-

tition of the whole structure domain. A prescribed force density Fd

is applied to the external boundary Ct of XS and a prescribed dis-

placement ud is applied on a part Cu of XS. The acoustic enclosure

is filled with a compressible and inviscid fluid occupying the

domain XF . The cavity walls are rigid except those in contact with

the flexible wall structures noted R. It should be mentioned that

fluid loading on the source and receiving side of the double panel

is neglected in this work. The harmonic local equations of this

structural–acoustic coupled problem can be written in terms of

structure displacement u and fluid pressure field p [19]

divrðuÞ þ qSx
2u ¼ 0 in XS ð1Þ

rðuÞnS ¼ Fd on Ct ð2Þ
rðuÞnS ¼ pn on R ð3Þ
u ¼ ud on Cu ð4Þ

Dpþx2

c2F
p ¼ 0 in XF ð5Þ

rp � n ¼ qFx
2u � n on R ð6Þ

where x is the angular frequency, nS and n are the external unit

normal to XS and XF; qS and qF are the structure and fluid mass

densities; cF is the speed of sound in the fluid; and r is the structure

stress tensor.

2.2. Constitutive relation for viscoelastic core

In order to provide better acoustic insulation, damped sandwich

panels with a thin layer of viscoelastic core are used in this study

(Fig. 1). In fact, when subjected to mechanical vibrations, the vis-

coelastic layer absorbs part of the vibratory energy in the form of

heat. Another part of this energy is dissipated in the constrained

core due to the shear motion.

The constitutive relation for a viscoelastic material subjected to

a sinusoidal strain is written in the following form:

r ¼ C�ðxÞe ð7Þ

where e denote the strain tensor and C�ðxÞ termed the complex

moduli tensor, is generally complex and frequency dependent

(� denotes complex quantities). It can be written as:

C�ðxÞ ¼ C0ðxÞ þ iC00ðxÞ ð8Þ

where i ¼
ffiffiffiffiffiffiffi

�1
p

.

Furthermore, for simplicity, a linear, homogeneous and vis-

coelastic core will be used in this work. In the isotropic case, the

viscoelastic material is defined by a complex and frequency depen-

dent shear modulus in the form:

G�ðxÞ ¼ G0ðxÞ þ iG
00ðxÞ ð9Þ

where G0ðxÞ is know as shear storage modulus, as it is related to

storing energy in the volume and G00ðxÞ is the shear loss modulus,

which represents the energy dissipation effects. The loss factor of

the viscoelastic material is defined as

gðxÞ ¼ G00ðxÞ
G0ðxÞ ð10Þ

which alternatively allows writing Eq. (9) as

G�ðxÞ ¼ G0ðxÞð1þ igðxÞÞ ð11Þ

The Poissons ratio m is considered real and frequency independent.

The loss factor of Young’s modulus E� is the same as that of the

shear modulus, which leads to:

E�ðxÞ ¼ E0ðxÞð1þ igðxÞÞ ð12Þ

where E0ðxÞ ¼ 2G0ðxÞð1þ mÞ.
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With these assumptions, the stress tensor of the sandwich

structure is complex and frequency dependent. It will be noted

r�ðu;xÞ.

2.3. Variational formulation

The variational formulation of the problem is obtained using the

test-function method. For this purpose, we introduce the spaces Cu

and Cp of sufficiently smooth functions associated with the field

variables u and p respectively.

Let du be the test function associated to u, belonging to the

admissible space CH

u ¼ fdu 2 Cu jdu ¼ 0 on Cug. Multiplying

Eq. (1) by du 2 CH

u , applying Green’s formula, and finally taking

Eqs. (2) and (3) into account, we have:

Z

XS

r�ðu;xÞ : eðduÞdv �
Z

R

pn � duds�x2

Z

XS

qSu � dudv

¼
Z

Ct

Fd � duds 8du 2 CH

u ð13Þ

Similarly, let dp be the test function, associated to p, belonging

to the admissible space Cp. Multiplying Eq. (5) by dp 2 Cp, applying

Green’s formula, and finally taking Eq. (6) into account, we obtain:

1

qF

Z

XF

rp �rdpdv�x2

Z

R

u �ndpds� x2

qFc
2
F

Z

XF

pdpdv ¼0 8dp2Cp

ð14Þ

The Eqs. (13) and (14), in order to be regularized for zero

frequency situation, i.e. valid for a static problem, have to be

modified by adding the following constraint (see [24] for details)

qFc
2
F

Z

R

u � ndsþ
Z

XF

pdv ¼ 0 ð15Þ

When doing this, on one hand the static pressure is defined pre-

cisely by

ps ¼ �qFc
2
F

jXF j

Z

R

u � nds ð16Þ

and on the other hand, the reduced order formulation will be car-

ried out only by projection on the physical acoustic modes [25,26].

Thus, the variational unsymmetric formulation of the fluid/

elastic structure with viscoelastic damping coupled problem

consists in finding u 2 Cu such that u ¼ ud on Cu and p 2 Cp,

satisfying Eqs. (13)–(15) with appropriate initial conditions. The

symmetrization of this formulation can be obtained through the

introduction of an intermediate unknown field, namely the fluid

displacement potential field [24,10].

After discretizing by the finite element method the bilinear

forms in Eqs. (13) and (14), we obtain the following matrix system

of the coupled problem:

K�
uðxÞ �Cup

0 Kp

� �

�x2
Mu 0

CT
up Mp

!" #

U

P

� �

¼
F

0

� �

ð17Þ

where U and P are the vectors of nodal values of u and p respec-

tively. Since the complex and frequency dependent elasticity mod-

ulus of the viscoelastic core of the sandwich panels, the stiffness

matrix K�
uðxÞ, defined by

R

XS
r�ðu;xÞ : eðduÞdv ) dUTK�

uðxÞU, is

complex and also frequency dependent. The real and frequency-

independent submatrices of Eq. (17) are given by:
Z

XS

qSu � dudv ) dUTMuU;

Z

Ct

Fd � duds ) dUTF

Z

R

pn � duds ) dUTCupP;

Z

R

u � ndpds ) dPTCT
upU

1

qF

Z

XF

rp �rdpdv ) dPTKpP;
1

qFc
2
F

Z

XF

pdpdv ) dPTMpP

3. Reduced order model

In this section, we introduce a reduced-order formulation of the

variational Eqs. (13) and (14) by a Ritz–Galerkin projection on two

bases spanning the admissible spaces Cu and Cp. For Cu, we use the

in vacuo structural modes. Concerning Cp, the basis is formed by

the eigenmodes of the Helmholtz equation with rigid boundary

condition. In the sequel, instead of starting from the variational

formulation, we will carry the projection directly on the discretized

system (17).

3.1. Eigenmodes of the structure in vacuo

In a first phase, the first Ns eigenmodes of the structure in vacuo

are obtained from

K�
uðxÞ �x2Mu

� �

U ¼ 0 ð18Þ

Due to the frequency dependence of the stiffness matrix, this eigen-

value problem is complex and nonlinear. It is assumed that vibra-

tions of the damped structure can be represented in terms of the

real modes of the associated undamped system if appropriate

damping terms are inserted into the uncoupled modal equations

Σ

Ωs1

Ωs2

ΩF

Fd

Γt

ud

ud
Γu

Sandwich panel with 

    viscoelastic core

Fig. 1. Double sandwich wall structure.
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of motion [13,8]. Thus, the complex stiffness matrix is decomposed

in the sum of two matrices:

K�
uðxÞ ¼ Ku0 þ dK�

uðxÞ ð19Þ

where Ku0 is the real and frequency-independent stiffness matrix

calculated with a constant Young’s modulus of the viscoelastic core

and dK�
uðxÞ is the residual stiffness matrix.

The ith real eigenmode is obtained from the following equation

Ku0 �x2
siMu

� �

Usi ¼ 0 for i 2 1; . . . ;Nsf g ð20Þ

where (xsi;Usi) are the natural frequency and eigenvector for the ith

structural mode. These modes verify the following orthogonality

properties

U
T
siMuUsj ¼ dij and U

T
siKu0Usj ¼ x2

sidij ð21Þ

where dij is the Kronecker symbol and Usi have been normalized

with respect to the structure mass matrix.

3.2. Eigenmodes of the internal acoustic cavity with rigid walls

In this second phase, the first Nf eigenmodes of the acoustic

cavity with rigid boundary conditions are obtained from the

following equation

Kp �x2
fiMp

h i

Ufi ¼ 0 for i 2 1; . . . ;Nf

� �

ð22Þ

where ðxfi;UfiÞ are the natural frequency and eigenvector for the ith

acoustic mode. These modes verify the following orthogonality

properties

U
T
fiMpUfj ¼ dij and U

T
fiKpUfj ¼ x2

fidij ð23Þ

where Ufi have been normalized with respect to the fluid mass

matrix.

3.3. Modal expansion of the general problem

By introducing the matrices Us ¼ Us1 � � � UsNs½ � of size (Ms � Ns)

and Uf ¼ Uf1 � � � UfNf

h i

of size (Mf � Nf ) corresponding to the

uncoupled bases (Ms and Mf are the total number of degrees of

freedom in the finite elements model associated to the structure

and the acoustic domains respectively), the displacement and pres-

sure are sought as

U ¼ UsqsðtÞ and P ¼ Ufqf ðtÞ ð24Þ

where the vectors qs ¼ qs1 � � � qsNs

� �T
and qf ¼ qf1 � � � qfNf

h iT

are

the modal amplitudes of the structure displacement and the fluid

pressure respectively.

Substituting these relations into Eq. (17) and pre-multiplying

the first row by UT
s and the second one by UT

f , we obtain the

equation

U
T
s Ku0 þ dK�

uðxÞ
	 


Us �UT
s CupUf

0 U
T
f KpUf

" #

qs

qf

" #

�x2
U

T
sMuUs 0

U
T
f C

T
upUs U

T
f MpUf

" #

qs

qf

" #

¼ U
T
s F

0

" # ð25Þ

This matrix equation represents the reduced order model of the

structural acoustic problem with viscoelastic damping treatments.

If only few modes are kept for the projection, the size of this

reduced order model (Ns � Nf ) is much more smaller than the

initial one (Ms �Mf ). Eq. (25) can be also written in the following

form of coupled differential equations:

� Ns mechanical equations

�x2qsi þ
X

Ns

k¼1

c�ikðxÞqsi þx2
siqsi �

X

Nf

j¼1

bijqfj ¼ F i ð26Þ

� Nf acoustic equations

�x2qfi þx2
fiqfi �x2

X

Ns

j¼1

bijqsj ¼ 0 ð27Þ

where F iðtÞ ¼ UT
siF is the mechanical excitation of the ith mode;

bij ¼ UT
siCupUfj is the fluid structure coupling coefficient and

c�ikðxÞ ¼ UT
sidK

�
uðxÞUsk the reduced residual stiffness complex

coefficient.

At each frequency step, the reduced system (Eqs. (26) and (27))

is solved by updating c�ikðxÞ. After determining the complex ampli-

tude vectors qsi and qfi, the displacement and pressure fields are

reconstructed using the modal expansion (Eq. (24)).

3.4. Modal truncation augmentation method with static corrections

The process of mode truncation introduces some errors in the

response that can be controlled or minimized by a modal trunca-

tion augmentation method. In this method, the effects of the

truncated modes are considered by their static effect only.

First the applied loading vector F is composed as:

F ¼
X

L

i¼1

aiðtÞF0i ð28Þ

where F0i is the invariant spatial portion and ajðtÞ is the time

varying portion. For each invariant spatial load, the static modal

eigenvector Wsi is given by:

Wsi ¼ K�1
u0 F0i ð29Þ

The truncated basis containing the real and undamped structure

modes is enriched by the static modal eigenvectors such that

�Us ¼ Us1 � � � UsNs ;Wsi; � � � Wsl½ � ¼ UsWs½ � ð30Þ

The truncated fluid basis is enriched with the static pressure Ps

computed from Eq. (16):

�Uf ¼ Uf Ps

� �

ð31Þ

Thus, the displacement and pressure are sought as

U ¼ UsqsðtÞ þWsq
0
s ðtÞ and P ¼ Ufqf ðtÞ þ Psq

0
f ðtÞ ð32Þ

where the vectors q0
s and q0

f are the quasi-static modal amplitudes

of the structure displacement and the fluid pressure respectively.

Substituting these relations (Eq. (32)) into Eq. (17) and pre-

multiplying the first row by UsWs½ �T and the second one by

Uf Ps

� �T
, we obtain coupled differential equations enriched with

fluid and structure static modes similar than Eqs. (26) and (27)

which are not shown here for the sake of brevity.

4. Acoustic indicators

In order to evaluate the acoustic performances and the sound

insulation property of the double-wall sandwich panels, the radi-

ated sound power (Pt) and the normal incidence sound transmis-

sion loss (nSTL) are used as acoustic indicators in this work.
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4.1. Radiated sound power

The radiated (or transmitted) sound power through the area S2
of the panel XS2 is given by:

Pt ¼
1

2
Re

Z

S2

pðGÞvH

n ðGÞdS
� �

ð33Þ

where G is a point on the plate surface XS2; p is the sound pressure

applied as an external loading, vn is the normal velocity (H denotes

the complex conjugate) and Re is the real part of the expression.

For a flat plate embedded in an infinite rigid plane baffle and

radiating in a semi infinite fluid, p can be obtained using the

Rayleigh Integral [12]:

pðx;MÞ ¼ q0

ix
2p

Z

S2

vnðx;GÞ e
�ikr

r
dS ð34Þ

where q0 is the mass density of the external acoustic domain, k is

the wave number expressed as x=c0, c0 is the acoustic speed of

sound, M is a point inside the external acoustic domain and

vnðx;GÞ is the normal velocity at point G expressed as

vnðx;GÞ ¼ vðG;xÞ � nS. Note that the normal velocity distribution

on the structure can be easily obtained from the previous finite

element formulation.

The baffled panel is divided into a grid of R rectangular elements

with equal size whose transverse vibrations are specified in terms

of the normal velocities at their center positions. Assuming that the

dimensions of the element are small compared with both the struc-

tural wavelength and the acoustic wavelength, the total radiated

sound power (Eq. (33)) can then be expressed as the summation

of the powers radiated by each element, so that

Pt ¼
Se
2
Re v

H
np

	 


ð35Þ

where the superscript H denotes the hermitian transpose, vn and p

are the vectors of complex amplitudes of the normal volume

velocity and acoustic pressure in all elements and Se is the area of

each element. The pressure on each element is generated by the

vibrations of all elements of the panel. The vector of sound pressure

can therefore be expressed by the impedance matrix relation

p ¼ Zvn ð36Þ

where Z is the matrix incorporating the point and transfer acoustic

impedance terms over the grid of elements into which the panel has

been subdivided: Zij ¼ ðixq0Se=2prijÞe�ikrij (rij is the distance

between the centers of the i-th and j-th elements). Note that,

because of reciprocity, the impedance matrix Z is symmetric.

Substituting Eq. (36) into the expression for the total radiated sound

power given in Eq. (35), we obtain

Pt ¼
Se
2
Re v

H
nZvn

	 


¼ Se
4
Re v

H
n Zþ ZH
h i

vn

� �

¼ v
H
nRvn ð37Þ

The matrix R is defined as the ‘‘radiation resistance matrix” for the

elementary radiators which, for the baffled panel, is given by

R ¼ x2q0S
2
e

4pc0

1 sinðkr12Þ
kr12

� � � sinðkr1RÞ
kr1R

sinðkr21Þ
kr21

1 � � � sinðkr2RÞ
kr2R

.

.

.
.
.
.

.
.

.
.
.
.

sinðkrR1Þ
krR1

sinðkrR2Þ
krR2

� � � 1

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

ð38Þ

This method can be applied to any plane surface in an infinite

baffle, independently of the boundary conditions. It only requires

the knowledge of the surface geometry, the characteristics of the

fluid and the velocity field distribution. In this work, a finite

element approach is used to evaluate this velocity field by using

a sufficient number of discrete radiating elements according to

the smallest wavelength to be observed.

4.2. Normal incidence sound transmission loss

The normal incidence sound transmission of the double-wall

sandwich panels is investigated in this section using Rayleigh Inte-

gral method described above. It is evaluated using the following

formula:

nSTL ¼ 10Log
Pi

Pt

ð39Þ

where Pi and Pt are the incident and transmitted acoustic power

respectively. For normal plane wave applied to plate XS1, the

incident sound power is given by:

Pi ¼
jPincj2S1
2q0c0

ð40Þ

where Pinc represents the normal incident sound pressure

amplitude and S1 is the area of the whole panel XS1.

5. Finite element development of sandwich plate with

viscoelastic core

This section is devoted to the development of an efficient finite

element for a sandwich plate with viscoelastic core. The considered

three layers plate is shown in Fig. 2. The faces layers (1) and (3) are

homogeneous, orthotropic and linearly elastic, with thickness h1

and h3. The core (2) is linearly viscoelastic with thickness, noted

h2, non negligible relative to that of the face layers.

5.1. Kinematic assumptions

The layerwise theory proposed in this paper is based on the

assumption of a first order shear deformation theory in the core

and the usual Kirchhoff–Love assumptions are made for the face

layers. The other assumptions used in this study are the following:

� the cross section of each layer remains plane after deformation

and the stress in the normal direction is negligeable (rzz ¼ 0);

� the core contributes by transversal shear stresses;

� the transversal shear stresses are neglected in the faces; and

h1

h2

h3

z

x

y

v0

θy2

θy1

θy3

w

v

u

z=- h1- h2

2

z=h3+ h2

2

z 3

z 2
=z

z 1

z=
h 2

h 3

+

+
z 3

2

2

z=
-
h 2

h 1

-

+
z 1

2

2

v03

z=- h2

2

z= h2

2
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2

3

Fig. 2. Kinematic of the three layers sandwich plate.
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� the transverse displacement, w, of all points on any

cross-section of the sandwich plate is considered to be equal.

Following the above assumptions, the displacement field of the

faces is built using the Love-Kirchhoff’s assumptions but is cor-

rected to account for the rotational influence of the transversal

shearing in the core. The Mindlin assumption is used to describe

the kinematic of the core.

Thus, the local displacement fields (ui; v i; wi) in the directions

of the x; y and z axes within the ith layer can be described by the

displacements u0i; v0i and w of the local layer middle surface

(zi ¼ 0) and a rotations hxi and hyi about the y and x axes,

respectively:

ui ¼ u0iðx; yÞ þ zihxiðx; yÞ ð41aÞ
v i ¼ v0iðx; yÞ þ zihyiðx; yÞ ð41bÞ
wi ¼ wðx; yÞ ð41cÞ

where zi is the local ith layer z coordinate as � hi
2
6 zi 6

hi
2
.

The continuity of the inplane displacements (u; v) at the inter-

faces of the layers leads to the following relationships:

u01 ¼ u02 �
h2

2
hx2 �

h1

2
hx1; v01 ¼ v02 �

h2

2
hy2 �

h1

2
hy1 ð42aÞ

u03 ¼ u02 þ
h2

2
hx2 þ

h3

2
hx3; v03 ¼ v02 þ

h2

2
hy2 þ

h3

2
hy3 ð42bÞ

By introducing the global coordinate z showing in Fig. 2,

neglecting the transversal shear stresses in the faces which allows

hx1 ¼ hx3 ¼ � @w
@x

and hy1 ¼ hy3 ¼ � @w
@y
, and using the above continuity

relations, the local displacement fields can be written as:

ui ¼ u0 � z @w
@x

þ tiux

v i ¼ v0 � z @w
@y

þ tiuy

wi ¼ wðx; yÞ

8

>

<

>

:

for i ¼ 1;3 and

u2 ¼ u0 � z @w
@x

þ zux

v2 ¼ v0 � z @w
@y

þ zuy

w2 ¼ wðx; yÞ

8

>

<

>

:

ð43Þ

where u0 ¼ u02, v0 ¼ v02, t1 ¼ � h2
2

and t3 ¼ h2
2

and the following

rotations are introduced: ux ¼ @w
@x

þ hx2 and uy ¼ @w
@y

þ hy2.

5.2. Strain–displacements relations

For each layer i, the state of the in-plane strain

eðiÞ ¼ eðiÞxx eðiÞyy 2eðiÞxy
h iT

is equal to the sum of the middle surface

strain � ¼ �xx �yy �xy½ �T (membrane), the strain due to the

change of curvature j ¼ jxx jyy jxy½ �T and the strain due to

the rotational effect u ¼ uxx uyy uxy

� �T
:

eðiÞ ¼ �� zjþ tiu for i ¼ 1;3 and eð2Þ ¼ �� zjþ zu ð44Þ

where the middle surface strain, curvatures and rotations are

defined by:

�xx ¼
@u0

@x
; jxx ¼

@2w

@x2
; uxx ¼

@ux

@x

�yy ¼
@v0

@y
; jyy ¼

@2w

@y2
; uyy ¼

@uy

@y

�xy ¼
@u0

@y
þ @v0

@x
; jxy ¼ 2

@2w

@x@y
; uxy ¼

@ux

@y
þ
@uy

@x

ð45Þ

For the core (2), additional strain related to the shear effect

cð2Þ ¼ cð2Þxz cð2Þyz

h iT

is added with cð2Þxz ¼ ux and cð2Þyz ¼ uy.

The strain components can be rewritten in the following matrix

form

e ¼ De

u0

v0

w
@w
@x
@w
@y

ux

uy

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

and cð2Þ ¼ Dc

u0

v0

w
@w
@x
@w
@y

ux

uy

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

ð46Þ

with e ¼ �xx �yy �xy jxx jyy jxy uxx uyy uxy

� �T
and the

gradient operators De and Dc are defined by

De ¼

@
@x

0 0 0 0 0 0

0 @
@x

0 0 0 0 0
@
@y

@
@x

0 0 0 0 0

0 0 0 @
@x

0 0 0

0 0 0 0 @
@y

0 0

0 0 0 @
@y

@
@x

0 0

0 0 0 0 0 @
@x

0

0 0 0 0 0 0 @
@y

0 0 0 0 0 @
@y

@
@x

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

and Dc ¼
0 0 0 0 0 1 0

0 0 0 0 0 0 1

 �

5.3. Degrees-of-freedom and shape functions

Consider a rectangular element of a plate coinciding with the xy

plane as shown in Fig. 3. Each node n (n ¼ 1;2;3;4), have seven

degrees-of-freedom to describe the middle surface displacements

u0n;v0n and wn along the x; y and z directions, the rotation of the

faces about the y axis, @wn

@x
, and the rotation about the x axis, @wn

@y
,

and the shearing rotations of the core about the y axis, uxn, and

about the x axis, uyn.

The nodal displacement vector are defined below as Un. The ele-

ment displacement will, as usual, be given by a listing of the nodal

displacements, now totaling twenty-eight

Ue ¼

U1

U2

U3

U4

2

6

6

6

4

3

7

7

7

5

; Un ¼

u0n

v0n

wn

@wn

@x

@wn

@y

uxn

uyn

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

; n ¼ 1;2;3;4 ð47Þ

The present element is non-conforming (i.e. it does not satisfy

normal slope compatibility) but it exhibits good convergence for

the linear case [36]. The displacements u0 and v0 and the rotations

of the core ux and uy are assumed to vary linearly along the axial

co-ordinate x and y and they are discretized by Lagrange bi-linear

x

y
z

2a

2b

(-a, -b) (a, -b)

(-a, b) (a, b)

ξ

η

1 2

34

0

Fig. 3. Geometrical data of the quadrilateral plate element.
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shape functions, while the transverse displacementw and the rota-

tions @w
@x

and @w
@y

are described by nonconforming Hermite cubic

polynomial derived by Melosh [23]. Thus, the elementary middle

surface displacements and rotations of the plate are given in terms

of the nodal degrees-of-freedom by

ue
0

v
e
0

we

@we

@x

@we

@y

ue
x

ue
y

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

¼ Nðx; yÞUe ð48Þ

where the interpolation matrix is defined by

N ¼ N1 N2 N3 N4½ � ð49Þ

and

Nn ¼

N‘
n 0 0 0 0 0 0

0 N‘
n 0 0 0 0 0

0 0 Nc1
n Nc2

n Nc3
n 0 0

0 0 @Nc1
n

@x

@Nc2
n

@x

@Nc3
n

@x
0 0

0 0 @Nc1
n

@y
@Nc2

n

@y
@Nc3

n

@y
0 0

0 0 0 0 0 N‘
n 0

0 0 0 0 0 0 N‘
n

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

; n ¼ 1;2;3;4 ð50Þ

with the following linear N‘
n and cubic Nc1

n , Nc2
n and Nc3

n

(n ¼ 1;2;3;4) shape functions given in the reference element [36]

N‘
n ¼ 1

4
nngnðnþ nnÞðgþ gnÞ ð51aÞ

Nc1
n ¼ 1

8
ð1þ nnnÞð1þ ggnÞð2þ nnn þ ggn � n2 � g2Þ ð51bÞ

Nc2
n ¼ 1

8
nnðnnn � 1Þð1þ ggnÞð1þ nnnÞ2 ð51cÞ

Nc3
n ¼ 1

8
gnðggn � 1Þð1þ nnnÞð1þ ggnÞ

2 ð51dÞ

in which n ¼ x
a
and g ¼ y

b
are the elementary co-ordinates that varie

from �1 (when x ¼ �a for n and y ¼ �b for g) to 1 (when x ¼ a for n

and y ¼ b for g), nn ¼ xn
a
and gn ¼ yn

b
, where xn and yn correspond to

the node n co-ordinates along the directions x and y, respectively,

as shown in Fig. 3.

Moreover, elementary strain vectors ee and ce can be expressed

by

ee ¼ BeU
e and ce ¼ BcU

e ð52Þ

with the following discretized gradient operator

Be ¼ DeN and Bc ¼ DcN ð53Þ

5.3.1. Elementary mass and stiffness matrices

The interpolations of displacements and strains presented in

the previous section are used to express the elementary mass

and stiffness matrices of the composite laminate plate.

The mass matrix is evaluated without neglecting rotational

inertia. Using its definition given in the variational formulation

(
R

XS
qSu � dudv), and combining Eqs. (43) and (48), the elementary

mass matrix is defined by

Me
u ¼

X

3

i¼1

Me
ui

where

Me
ui ¼

Z 1

�1

Z 1

�1

NT IiNJðn;gÞdndg ð54Þ

and where J is the Jacobien determinant of the transformation and Ii
is the composite inertia matrix given by

Ii ¼

IðiÞ0 0 0 �IðiÞ1 0 tiI
ðiÞ
0 0

0 IðiÞ0 0 0 �IðiÞ1 0 tiI
ðiÞ
0

0 0 IðiÞ0 0 0 0 0

�IðiÞ1 0 0 IðiÞ2 0 �tiI
ðiÞ
1 0

0 �IðiÞ1 0 0 IðiÞ2 0 �tiI
ðiÞ
1

tiI
ðiÞ
0 0 0 �tiI

ðiÞ
1 0 t2i I

ðiÞ
0 0

0 tiI
ðiÞ
0 0 0 �tiI

ðiÞ
1 0 t2i I

ðiÞ
0

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

for i¼ 1;3

ð55Þ

and

I2 ¼

Ið2Þ0 0 0 �Ið2Þ1 0 Ið2Þ1 0

0 Ið2Þ0 0 0 �Ið2Þ1 0 Ið2Þ1

0 0 Ið2Þ0 0 0 0 0

�Ið2Þ1 0 0 Ið2Þ2 0 �Ið2Þ2 0

0 �Ið2Þ1 0 0 Ið2Þ2 0 �Ið2Þ2

Ið2Þ1 0 0 �Ið2Þ2 0 Ið2Þ2 0

0 Ið2Þ1 0 0 �Ið2Þ2 0 Ið2Þ2

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

ð56Þ

in which the zero IðiÞ0 , first IðiÞ1 and second IðiÞ2 mass moments of inertia

are given by

IðiÞ0 ¼ qðiÞ
S ðzi � zi�1Þ; IðiÞ1 ¼ qðiÞ

S

2
ðz2i � z2i�1Þ; IðiÞ2 ¼ qðiÞ

S

3
ðz3i � z3i�1Þ

In the same way, using its definition (
R

XS
r�ðu;xÞ : eðduÞdv) and

combining Eqs. (48) and (52), the elementary elastic stiffness

matrix is given by

Ke�
u ¼

X

3

i¼1

Ke
ui þ Ke

uc

where

Ke
ui ¼

Z 1

�1

Z 1

�1

BT
eCiBeJðn;gÞdndg and

Ke
uc ¼

Z 1

�1

Z 1

�1

BT
cR2BcJðn;gÞdndg

and where Ci is the elasticity matrix of the ith layer given by

Ci ¼
Ai �Bi tiAi

�Bi Di �tiBi

tiAi �tiBi t2i Ai

2

6

4

3

7

5
for i ¼ 1;3 and

C2 ¼
A2 �B2 B2

�B2 D2 �D2

B2 �D2 D2

2

6

4

3

7

5

ð57Þ

in which the extensional Ai, bending Di and extensional-bending Bi

coupling stiffness matrices of the ith layer of the sandwich plate

(see for example [30]) are given by

Ai ¼
AðiÞ
11 AðiÞ

12 AðiÞ
16

AðiÞ
12 AðiÞ

22 AðiÞ
26

AðiÞ
16 AðiÞ

26 AðiÞ
66

2

6

6

4

3

7

7

5

; Bi ¼
BðiÞ
11 BðiÞ

12 BðiÞ
16

BðiÞ
12 BðiÞ

22 BðiÞ
26

BðiÞ
16 BðiÞ

26 BðiÞ
66

2

6

6

4

3

7

7

5

; Di ¼
DðiÞ

11 DðiÞ
12 DðiÞ

16

DðiÞ
12 DðiÞ

22 DðiÞ
26

DðiÞ
16 DðiÞ

26 DðiÞ
16

2

6

6

4

3

7

7

5

ð58Þ
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with

AðiÞ
mn ¼Q ðiÞ

mnðzi�zi�1Þ; BðiÞ
mn ¼

1

2
Q ðiÞ

mnðz2i �z2i�1Þ; DðiÞ
mn ¼

1

3
Q ðiÞ

mnðz3i �z3i�1Þ

where m; n ¼ 1;2;6 and Q ðiÞ
mn represent the reduced material stiff-

ness constants for each layer i in the global coordinate system

deduced from the assumption of zero normal stress in the thickness

direction.

Finally, the elasticity matrix R2 related to the shear stresses in

the core is given by:

R2 ¼ h2

Q ð2Þ
44 Q ð2Þ

45

Q ð2Þ
45 Q ð2Þ

55

" #

ð59Þ

6. Numerical examples

In this last section, numerical results, obtained with a Matlab

program developed by the authors, are proposed in order to

validate and analyze results computed from the proposed formula-

tions. The first two examples concern the free vibration of an

undamped then a damped sandwich plate. The structure is

discretized using the proposed plate sandwich element. In the

damped case, the Modal Strain Energy (MSE) is used in order to

compute the eigenfrequencies and the associated modal loss

factors. The obtained results are compared to experiments and

other numerical solutions which validate and demonstrate the

effectiveness of the proposed sandwich plate element. The third

example concerns sound transmission through a double-plate sys-

tem filled with air. In this example, we analyze the air gap effect on

the natural vibration of the coupled system and the sound attenu-

ation. The accuracy of model predictions is checked against exist-

ing test data. Finally, the transmission loss factor of a double

laminated glazing panels with a thin interlayer of PVB is presented.

This last example shows the performance of the proposed modal

reduction method compared to direct approach and analyzes the

effect of the damped PVB viscoelastic layer on noise attenuation.

6.1. Natural frequencies of undamped sandwich plate

In order to validate the proposed finite element sandwich plate

formulation, this example gives a comparison of the natural

frequencies of a simply supported rectangular sandwich plate with

aluminum face layers and a soft orthotropic core. The plate

in-plane dimensions are (1.829 m � 1.219 m), the thickness for

the face layers is 0.406 mm, and for the core is 6.35 mm. The

aluminum face layers are isotropic with elastic properties

E ¼ 70:23 GPa, m ¼ 0:3 and material density q ¼ 2820 kg/m3. The

orthotropic soft core is characterized by the following

properties E1 ¼ E2 ¼ 137 MPa; G12 ¼ 45:7 MPa; G13 ¼ 137 MPa;

G23 ¼ 52:7 MPa; m12 ¼ 0:5 and q ¼ 124:1 kg/m3.

The first ten natural frequencies are calculated with the present

finite element model using 10 � 10 mesh and compared in Table 1

to: (i) experimental results from [31], (ii) 6-nodes FEM results

using laminated superelements formed by superposition of plate

elements for each layer [31], (iii) serendipity element using a

Mindlin theory for the faces and a higher-order approach for the

core [4], and (iv) nine nodes layerwise plate finite element devel-

oped via an unified formulation [14]. The results obtained with

the present element, with only 4 nodes and 7 dofs per node, are

in good agreement and convergence with the other solutions.

6.2. Natural frequencies of sandwich plate with a constant complex

core’s modulus

In this example, a rectangular MPM (metal–polymer–metal)

sandwich plate with a constant complex core’s modulus is consid-

ered. Many investigations have already dealt with the considered

plate. The associated geometrical and mechanical data are pre-

sented in Table 2.

The Modal Strain Energy is used in this example in order to

compute the complex eigenfrequencies and modal loss factors. It

assumes that the damped system can be represented in terms of

the real normal modes (xsi;Usi) of the associated undamped

system given by Eq. (20). Thus, the complex eigenfrequency can

be obtained from the following relation

ðX�
siÞ

2 ¼ U
T
siK

�
uUsi

U
T
siMuUsi

¼ X2
sið1þ igsiÞ ð60Þ

where Xsi is the real part of the complex eigenfrequency and gsi is

the corresponding modal loss factor.

Table 3 compares the natural frequencies and modal loss factors

predicted by the developed element using 10 � 10 mesh to: (i) an

analytical solution [17], (ii) a finite element approach based on Von

Kármán plate theory in order to describe the nonlinear geometrical

effect and on Mindlin’s theory to reflect the shear deformation in

the viscoelastic layer [7], and (iii) the nine nodes layerwise plate

finite element developed by Ferreira et al. in [14]. The results

obtained by the present approach are in concordance with those

of [7] for simply-supported case (SSSS) and they are very close to

the analytical ones presented in [17] for clamped case (CCCC).

For this particular example and concerning the computation time,

we compared the results of our element to those obtained with

Nastran using 10 Quad4 elements for each face and 10 � 5 Hex8

elements for the core (in order to take into account the transverse

shear effect). Besides the good convergence in terms of frequencies,

this comparison showed that our formulation is much more faster

than Nastran (CPU time about 8).

These first two examples validate the development of the pro-

posed finite element sandwich plate with viscoelastic core and

show its efficiency compared to other richer elements.

Table 1

First ten natural frequencies (Hz) for the undamped rectangular sandwich plate.

Mode Experimental [31] Rikards

et al. [31]

Araújo

et al. [4]

Ferreira

et al. [14]

Present

1 – 23.4 23.5 23.26 23.25

2 45 45.4 44.8 44.60 44.52

3 69 72.2 71.7 70.27 71.43

4 78 81.6 79.5 79.90 80.02

5 92 95.9 92.5 91.08 91.82

6 129 133.7 126.5 125.51 126.02

7 133 134.2 126.8 128.85 129.80

8 152 152.2 150.7 145.16 151.79

9 169 156.8 170.7 165.16 170.73

10 177 190.9 173.0 173.29 174.17

Table 2

Geometrical and mechanical data of sandwich plate with a constant complex core’s

modulus.

Geometrical data

Lenght 348 mm

Width 304.8 mm

Face’s thickness 0.762 mm

Core’s thickness 0.254 mm

Elastic faces Polymer core

Mechanical data

Young’s modulus 6.89 � 1010 Pa 2670.08 � 103 Pa

Poisson ratio 0.3 0.49

Mass density 2740 kg/m3 999 kg/m3

Loss factor – 0.5
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6.3. Sound transmission through an elastic double-panel system

In this section, the validation of the proposed coupled finite ele-

ments formulation for sound radiation is presented. The problem

under consideration is shown in Fig. 4. A normal incidence plane

wave excites a double-plate system filled with air (density

qF = 1.21 kg/m3 and speed of sound cF = 340 m/s). The plane wave

has a pressure amplitude of 1 N/m2 and is applied to plate 1 as the

only external force to the system. The plates are identical and sim-

ply supported with thicknesses of 1 mm. The density of the plates

is 2814 kg/m3, the Youngs modulus is 71 GPa, the Loss factor is

0.01 and Poisson ratio 0.33. The surrounding fluid is the air. This

example was originally proposed by Panneton in [27].

Concerning the finite element discretization, we have used, for

the structural part, 10 � 10 rectangular elements for each plate.

The acoustic cavity is discretized using 10 � 10 � 5 hexahedric ele-

ments. The structural and acoustic meshes are compatible at the

interface. For more details about the hexahedric acoustic element

and the associated fluid–structure coupling element, we refer the

reader to [20].

When the excitation is applied to the first plate, the second one

vibrates and radiates sound caused by the coupling of air and plate

1. The normal incidence sound transmission loss is then computed

using the Rayleigh’s integral method which needs the finite

element solution of surface velocities of plate 2. For this purpose,

the resolution of the coupled system is done with a modal reduc-

tion approach using the first 10 in vacuo structural modes and

the first 10 acoustic modes of the fluid in rigid cavity.

Fig. 5 shows the normal incidence transmission loss through a

simply supported plate (dashed line). Due to the modal behavior

of the plate, dips in the transmission loss curve are observed at

its resonance frequencies (modes (1,1), (3,1) and (1,3)). When a

second plate is used to form an airtight cavity (continuous line),

an increase in the transmission loss is achieved except in the

region of the so-called plate–cavity–plate resonance (mode

(1,1)⁄). At this frequency, the two plates move out of phase with

each other and the effect of the cavity on the plates is mostly

one of added stiffness. This frequency is similar to the mass–air–

mass resonance of unbounded double panels analyzed in the next

section. The frequencies and the mode shapes of these coupled

modes are presented in Table 4 and Fig. 10. Table 4 shows also a

comparison between the present results and those given by the

finite element code Nastran using the same mesh. These results

show the excellent performance of the developed finite element

model compared to Nastran and enable us to check the validity

of the fluid–structure proposed formulation. In addition, the varia-

tion of the nSTL of an air-filled panels and a simple panel is in very

good agreement with the published date from [27] which validates

the development of the proposed acoustic indicators. Note that the

influence of several key parameters on the sound isolation capabil-

ity of the double-panel configuration including panel dimensions,

thickness of air cavity, elevation angle, and azimuth angle of

incidence sound is not the purpose of this study and can be found

in [35].

Fig. 6 presents a comparison of the normal incidence sound

transmission through an air-filled finite double panel and an air-

filled infinite double panel computed from an analytical solution

given in [12,5]. For unbounded panels, the first dip occurs at the

mass–air–mass frequency (fmam ¼ 181:63 Hz) given by the

formula:

fmam ¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qFc
2
F

d

mS1 þmS2

mS1mS2

s

ð61Þ

where d is the panel spacing and mS1 and mS2 are the surface mass

densities of the panels.

At this frequency, the two plates vibrate, as it were, on the stiff-

ness of the air layer. For low frequencies up to the mass–air–mass

Table 3

First five natural frequencies (Hz) and associated loss factors for the sandwich plate

with a constant complex core’s modulus.

Analytical [17] Bilasse [7] Ferreira [14] Present

f (Hz) g f (Hz) g f (Hz) g f (Hz) g

SSSS

60.3 0.190 58.0 0.170 58.61 0.185 57.82 0.170

115.4 0.203 113.8 0.193 112.253 0.205 113.53 0.191

130.6 0.199 129.5 0.192 127.00 0.202 129.14 0.190

178.7 0.181 177.2 0.172 173.42 0.186 175.84 0.169

195.7 0.174 194.6 0.169 189.83 0.179 195.53 0.165

CCCC

87.4 0.189 87.4 0.189 85.05 0.192 87.78 0.187

148.9 0.165 148.9 0.164 144.55 0.170 150.43 0.161

169.9 0.154 170.3 0.153 164.69 0.160 171.99 0.150

223.9 0.139 223.9 0.139 216.56 0.146 225.47 0.134

241.0 0.134 241.1 0.134 233.16 0.141 246.96 0.127

Air Cavity

Plate 1

Plate 2

Rigid baffle

Normal plane 

     wave

a=0.35 m

b
=

0
.2

2
 m

c=
0.

07
64

 m

Fig. 4. Double-plate system filled with air: geometric data.
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air-filled double panel and a simple panel.
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frequency, the transmission loss follows the so-called mass law:

the two plates are coupled in such a way that the plates vibrate

as if they were a single plate with the total mass of the two plates

and the transmission loss increasing with frequency at 6 dB per

octave and 6 dB when the mass is doubled. It’s clear from this

comparison that the unbounded model is attractive to use for the

prediction of global trends at higher frequencies, but is unsuitable

to use for predictions in the small frequency bands and around

eigenfrequencies of the double wall panel [5].

6.4. Sound transmission through a double laminated glazing panels

The proposed reduced order finite-elements formulation is

applied now to calculate the transmission loss factor of a double

laminated glazing panels. The system consists of two identical

clamped laminated panels of glass (in-plane dimensions are

Lx = 0.45 m and Ly = 1.2 m) separated by an air cavity of 12 mm

thickness. Each laminated glass is composed of two glass plates

bonded together by a PVB interlayer. The thickness of outer and

inner glass ply is h1 ¼ h3 ¼ 3 mm and those of the PVB interlayer

is h2 ¼ 1:14 mm. The glass ply is modeled as linear elastic material

(density 2500 kg/m3, Youngs modulus 72 GPa, and Poisson ratio

0.22). The material properties of the PVB are both thermal and fre-

quency dependent. From dynamic and thermal tests, Havrillak and

Negami have found an empirical law describing this dependence.

The resulting complex frequency dependent shear modulus of

the PVB is given at 20 �C as [16,18]:

G�ðxÞ ¼ G1 þ ðG0 � G1Þ 1þ ðixs0Þ1�a0
h i�b0 ð62Þ

where G1 ¼ 0:235 GPa, G0 ¼ 0:479 Mpa, a0 ¼ 0:46, b0 ¼ 0:1946,

s0 ¼ 0:3979. The Poisson ratio of the PVB is 0.4 and density is

999 kg/m3. Concerning the excitation and the finite element

discretization, we used the same ones as in the previous example.

Table 4

List of the coupled mode eigenfrequencies.

Mode Nastran Present Type of mode

(1,1) 68.69 69.14 Structure

(1,1)⁄ 153.58 148.79 Coupled

(3,1) 220.75 224.39 Structure

(1,3) 462.50 464.72 Structure
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Fig. 6. Comparison of the normal incidence sound transmission (nSTL) through an

air-filled finite double panel (finite element result) and an air-filled infinite double

panel (analytical solution).
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A comparison between a simple glass and a laminated glass

with PVB interlayer with an equivalent surface mass is shown in

Fig. 7. Calculation was limited to 2000 Hz maximum. This compar-

ison shows that laminated glass has a much lower acoustic radia-

tion compared to conventional glass at resonance frequencies du to

the effect of the viscoelastic layer. The reduction of sound radiation

power is around 10 dB in lower frequencies and around 20 dB in

higher frequencies. In fact, at low frequencies, the viscoelastic

material is soft and the damping is small. At higher frequencies,

the stiffness decreases rapidly and the damping is highest. More-

over, flexural vibrations causes shear strain in the viscoelastic core

which dissipates energy and reduces vibration and noise radiation.

Note that the thickness of the viscoelastic layer has a significant

influence in terms of attenuation.

Fig. 8 shows a comparison between the nSTL of the coupled

problem, obtained with the proposed modal reduction approach

with a truncation on the first twenty structural modes (Ns ¼ 20)

and first twenty acoustic modes (Nf ¼ 20) and the direct nodal

mode (1, 1)

mode (1, 1)*

mode (3, 1)

mode (1, 3)

Fig. 10. Fluid–structure coupled modes (fluid pressure and panels total displacement): in phase modes (1,1), (3,1) and (1,3) and out of phase mode (1,1)⁄.
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method (Eq. (17)) where the displacement and pressure vectors are

calculated for each frequency step. The structural modes are calcu-

lated from Eq. (20) using the constant shear storage modulus G1
but of course for the computation of the response, the complex

stiffness matrix is used with G�ðxÞ (the structural modes, which

are real, are only used as a projection bases). As can be seen, a very

good agreement between the two methods is proved. Note that, in

order to evaluate the number of modes to keep in the modal pro-

jection, various simulations have been performed with the pro-

posed static correction and twenty were sufficient by comparison

with direct finite element analysis in the frequency range of inter-

est. In this respect, the resulting reduction of the model size and

the computational effort using the reduced order method are very

significant compared to those of the direct approach. For this par-

ticular example, the comparisons of computational times (using an

implementation of the two methods in the Matlab software)

showed that reduced order model is much more faster than the

direct technique (the CPU time ratio is about 15, for an initial prob-

lem which has more than 2000 degrees of freedom to a reduced

order problem which has 40 degrees of freedom).

In Fig. 9, the nSTL versus frequency curves of the single and

double laminated panels are plotted together. A significant reduc-

tion of sound is achieved with the presence of the air cavity

between the panels compared to the single panel. By introducing

a thin PVB interlayer within the panels, we provide better insula-

tion due to a reduction in coincidence dips.

7. Conclusions

In this paper, a finite element formulation for sound transmis-

sion through double wall sandwich panels with viscoelastic core

is presented. A reduced-order model, based on a normal mode

expansion, is then developed. The proposed methodology requires

the computation of the eigenmodes of the undamped structure,

and the rigid acoustic cavity. A static corrections are introduced

in the modal bases in order to take into account the effect of the

higher modes. Despite its reduced size, this model is proved to

be very efficient for simulations of steady-state analyses of struc-

tural–acoustic coupled systems with viscoelastic interlayers when

appropriate damping terms are inserted into the modal equations

of motion. The Rayleigh integral method is then used in order to

estimate the normal sound transmission loss factor of the system.

Finally, an efficient finite element sandwich plate which takes into

account the influence of the transversal shearing in the core is

developed. Various results are presented in order to validate and

illustrate the efficiency of the proposed finite element formula-

tions. Further investigations will concern introduction of passive

dissipation in the fluid and active one in the structure using piezo-

electric materials.
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