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Abstract

This work concerns the control of sound transmission through double
laminated panels with viscoelastic core using semi-passive piezoelectric shunt
technique. More specifically, the system consists of two laminated walls, each
one composed of three layers and called sandwich panel with an air cavity in
between. The external sandwich panel has a surface-mounted piezoelectric
patches. The piezoelectric elements, connected with resonant shunt circuits,
are used for the vibration damping of some specific resonance frequencies of
the coupled system. Firstly, a finite element formulation of the fully cou-
pled visco-electro-mechanical-acoustic system is presented. This formulation
takes into account the frequency dependence of the viscoelastic material. A
modal reduction approach is then proposed to solve the problem at a lower
cost. In the proposed technique, the coupled system is solved by project-
ing the mechanical displacement unknown on a truncated basis composed
by the first real short-circuit structural normal modes and the pressure un-
known on a truncated basis composed by the first acoustic modes with rigid
boundaries conditions. The few initial electrical unknowns are kept in the
reduced system. A static correction is also introduced in order to take into
account the effect of higher modes. Various results are presented in order to
validate and illustrate the efficiency of the proposed finite element reduced
order formulation.
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1. Introduction

Double-wall structures are widely used in noise control due to their su-
periority over single-leaf structures in providing better acoustic insulation.
Typical examples include double glazed windows, fuselage of airplanes, panels
of vehicles, etc. Various theoretical, experimental and numerical approaches
have been investigated in the literature to predict the sound transmission
through double walls with an acoustic enclosure. In [1, 2, 3], theoretical ap-
proaches are proposed for the derivation of the sound transmission factor of
double panels of infinite size exposed to a random sound field as a function
of frequency and angle of incidence. For a finite size flat panels, a theoreti-
cal study, based on Fourier series expansions, is presented in [4] concerning
the vibroacoustic performance of a rectangular double-panel mounted in an
infinite acoustic rigid baffle. Experimental evaluation of sound transmission
through single, double and triple glazing can be found in [5, 6, 7, 8]. Re-
garding the numerical prediction approaches, several methods are available
in the literature, such as the Finite Element Method (FEM), the Boundary
Element Method (BEM), the Statistical Energy Analysis (SEA), etc. For
all these approaches, the choice of the numerical method is related to the
frequency band of interest (low, medium and high frequencies [9]). The SEA
is generally used for high frequencies while in this work we are interested in
the low and mid frequencies. In [10], the SEA is used for predicting sound
transmission through double walls and for computing the non-resonant loss
factor. In [11], FEM is applied to study the viscothermal fluid effects on
vibro-acoustic behaviour of double elastic panels. The FEM is applied in
[12] by the authors for the different layers of the sound barrier coupled to a
variational BEM to account for fluid loading.

By introducing a thin viscoelastic interlayer within the panels, a better
acoustic insulation is obtained. In fact, sandwich structures with viscoelastic
layer are commonly used in many applications for vibration damping and
noise control. In such structures, the main energy loss mechanism is due
to the transverse shear of the viscoelastic core. However, accurate modeling
of structures with viscoelastic materials is difficult because the measured
dynamic properties of viscoelastic material are frequency and temperature
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dependent. This motivated several authors to develop accurate numerical
methods of modeling the effects of viscoelastic damping mechanisms which
introduce frequency dependence. A review of these methods can be found in
[13]. Concerning the application of these structures in noise attenuation, we
can cite for example [8, 14].

In [8], the measured sound transmission loss of multilayered structures
is compared with transfer matrix method results (assuming infinite layers)
and a wave based model (taking into account finite dimensions) to show the
importance of the finite dimensions in a broad frequency range. The effects
of viscothermal fluid in a laminated double glazing are investigated in [14]
using a finite element approach.

However, at low frequency, in particular around the mass-air-mass res-
onance of the double wall, the acoustic performance of this type of system
is greatly deteriorated and the viscoelastic layer is not effective for treating
the fall of the sound transmission loss. The aim of this work is to reduce the
sound transmission at these resonance frequencies by a passive piezoelectric
shunt technique through a full finite element modeling of the problem. In this
technology, the elastic structure is equipped with piezoelectric patches that
are connected to a passive electrical circuit, called a shunt. The piezoelectric
patches transform mechanical energy of the vibrating structure into electrical
energy, which is then dissipated by Joule heat in the shunt circuits. Several
shunt circuits can be considered: the classical R- and RL-shunts, proposed
by Hagood and Von Flotow [15] and improvements of those techniques, by
the use of several piezoelectric elements [16, 17, 18], active fiber composites
[19] or adaptive shunts [20], and recently semi-passive techniques, commonly
known as switch techniques [21, 22, 23]. As those techniques are passive
(or semi-passive if some electronic components have to be powered), a criti-
cal issue is that their performances, in terms of damping efficiency, directly
depend on the electromechanical coupling between the host structure and
the piezoelectric elements, which has to be maximized and necessitates the
development of predictive models.

The present work concerns the numerical modeling of noise and vibra-
tion reduction of double laminated walls with viscoelastic interlayers by us-
ing shunted piezoelectric elements. The frequency domain of interest is the
low and medium bands. The aim is to propose efficient reduced order fi-
nite element model able to predict the shunt damping around the mass-air-
mass resonance of the system. In the first part of this paper, a finite ele-
ment formulation of double-wall sandwich panels with viscoelastic core and
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equipped with shunted piezoelectric patches is presented. This formulation
involves structural displacement in the structure (sandwich structure with
piezoelectric elements), acoustic pressure in the fluid cavity and the elec-
tric charge and voltage between the electrodes in the piezoelectric patches.
The charge/voltage variables are intrinsically adapted to include any exter-
nal electrical circuit into the electromechanical problem and to simulate the
effect of shunt damping techniques. Moreover, since the elasticity modulus
of the viscoelastic core is complex and frequency dependent, this formula-
tion is complex and nonlinear in terms of frequency. The direct solution
of this problem can be considered only to a model which does not imply a
prohibitive number of degrees of freedom. This has severe limitations in at-
taining adequate accuracy and wider frequency ranges of interest. A reduced
order-model is then proposed to solve the problem at a lower cost in the sec-
ond part of this work. The proposed methodology, based on a normal mode
expansion, requires the computation of the uncoupled structural and acoustic
modes. The uncoupled structural modes are the real and undamped modes of
the sandwich panels without fluid pressure loading at fluid-structure interface
and with short-circuited patches, whereas the uncoupled acoustic modes are
the cavity modes with rigid wall boundary conditions at the fluid-structure
interface. Moreover, the effects of the higher modes of each subsystem are
taken into account through an appropriate so-called a priori static correction
based on adding the static modes, defined as the deformation shape at every
load, to the truncated bases. It is shown that the projection of the full-order
coupled finite element model on the uncoupled bases, leads to a reduced
order model in which the main parameters are the classical fluid-structure
coefficient, the residual stiffness complex coupling factors and the electrome-
chanical coupling factors. Thanks to its reduced size, this model is proved
to be very efficient for simulations of steady-state and frequency analyses of
the fully coupled visco-electro-mechanical-acoustic system and the computa-
tional effort is significantly reduced. Note that the computing of eigenmodes
in the medium frequency range presents no difficulty in this work. Indeed,
the new numerical computing tools allow easy access to these modes which
was not the case before. As a next step, the sound transmission through
double walls is investigated. When the normal velocity distribution of the
panel is known, the acoustic pressure field generated in the outward direction
of the two plates can be calculated with the so-called Rayleigh integral for
two-dimensional sound radiation. For this purpose, it is assumed that the
double wall panel is placed in an infinite baffle. The normal incidence sound

4



transmission is chosen in order to evaluate the acoustic performances and
the sound insulation of the double wall. In the last part, numerical examples
are presented in order to validate and analyse results computed from the
proposed formulations.

2. Finite element formulation of the fully coupled electromechanical-
acoustic system

Consider a double-wall structure shown in Fig. 1. Each wall occupies
a domain ΩEi, i ∈ {1, 2} such that ΩE = (ΩE1,ΩE2), considered to be in
equilibrium, is a partition of the whole structure domain. A prescribed force
density f is applied to the external boundary Γt of ΩE. The acoustic en-
closure is filled with a compressible and inviscid fluid occupying the domain
ΩF . The cavity walls are rigid except those in contact with the flexible wall
structures noted Σ. It should be mentioned that fluid loading on the source
and receiving side of the double panel is neglected in this work. In order to
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Figure 1: Double sandwich wall structure.

achieve maximum vibration dissipation and acoustic radiation attenuation
of selected modes, the passive piezoelectric shunt damping technique is used.
Thus, a set of P piezoelectric patches are bounded on the structure surface
and connected to resistive or resonant shunt circuits. In this technology,
the piezoelectric patches converts a fraction of mechanical energy associated
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with the structure vibration into electrical energy, which is dissipated by heat
through the resistor in the shunt circuits. Each piezoelectric patch has the
shape of a plate with its upper and lower surfaces covered with very thin
layer electrodes. The pth patch, p ∈ {1, · · · , P}, occupies a domain Ω(p)

such that (ΩE,Ω
(1), · · · ,Ω(P )) is a partition of the all structure domain ΩS.

Moreover, we denotes by R(p) and L(p) the resistance and the inductance of
the resonant shunt circuit connected to the pth patch.

For each piezoelectric patch, a set of hypotheses, which can be applied to
a wide spectrum of practical applications, are formulated:

• The piezoelectric patches are thin, with a constant thickness, denoted
h(p) for the pth patch;

• The thickness of the electrodes is much smaller than h(p) and is thus
neglected;

• The piezoelectric patches are polarized in their transverse direction (i.e.
the direction normal to the electrodes).

Under those assumptions, the electric field vector, of components E
(p)
k ,

can be considered normal to the electrodes and uniform in the piezoelectric
patch [24], so that for all p ∈ {1, · · · , P}:

E
(p)
k = −V

(p)

h(p)
nk in Ω(p) (1)

where Ei is the electric field, V (p) is the potential difference between the upper
and the lower electrode surfaces of the pth patch which is constant over Ω(p)

and nk is the kth component of the normal unit vector to the surface of the
electrodes.

The harmonic local equations of this coupled problem can be written in
terms of the structure displacement u, the fluid pressure field p, the electric
displacement D and the electric field E (the reader is referred to [25, 26] for
more details about these equations). After variational formulation and finite
element discretization, we obtain the following matrix system in frequency
domain:

 Ku CuV −Cup

−CuV KV 0
0 0 Kp

 U
Q
P

− ω2

 Mu 0 0
0 0 0

CT
up 0 Mp

 U
V
P

 =

 F
Q
0


(2)
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where U is the column vector of nodal values of mechanical displacement
of length Ms (Ms is the number of mechanical degrees of freedom); Mu

and Ku are the mass and stiffness matrices of the structure (elastic struc-
ture and piezoelectric patches) of size Ms ×Ms; F is the applied mechan-
ical force vector of length Ms, P is the column vector of nodal values of
acoustic pressure of length Mf (Mf is the number of acoustic degrees of
freedom); Mp and Kp are the mass and stiffness matrices of the fluid of size
Mf×Mf ; Cup is the fluid-structure coupled matrix of sizeMs×Mf . Moreover,
Q = (Q(1)Q(2) · · · Q(P ))T and V = (V (1) V (2) · · · V (P ))T are the column vec-
tors of electric charges and potential differences; CuV is the electric mechan-
ical coupled stiffness matrix of size Ms×P ; KV = diag

(
C(1) C(2) · · · C(P )

)
is

a diagonal matrix filled with the P capacitances of the piezoelectric patches
where C(p) = ε33S

(p)/h(p), ε33 being the piezoelectric permittivity in the di-
rection normal to the electrodes and S(p) the area of the patch electrodes
surfaces.

The above discretized formulation equation is adapted to any elastic
structure with surface-mounted piezoelectric patches. Its originality lies in
the fact that the system electrical state is fully described by very few global
discrete unknowns: only a couple of variables per piezoelectric patch, namely
(1) the electric charge contained in the electrodes and (2) the voltage between
the electrodes. Once the electrical part of the problem is fully discretized at
the weak formulation step, by introducing the above cited voltage/charge
variables, without any restriction on the mechanical part of the problem,
any standard FE formulation can be easily modified to include the piezo-
electric patches and thus the effect of an external electrical action. A second
advantage of this formulation is that since global electrical variables are used,
realistic electrical boundary conditions are naturally introduced. First, the
equipotentiality in any of the patches electrodes is exactly satisfied when
introducing the potential difference variable. Second, the use of the global
charge contained in the electrodes, as the second electrical variable, is realis-
tic since plugging an external electrical circuit to the electrodes of the patches
imposes only the global charge contained in the electrodes and not a local
charge surface density. Another advantage of using the global charge voltage
variables is that they are intrinsically adapted to include any external elec-
trical circuit into the electromechanical problem and to simulate the effect of
shunt damping techniques. In this case, neither V nor Q is prescribed by the
electrical network but the latter imposes only a relation between them [15].
For the case of a resonant shunt composed of a resistor R and an inductor L
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in series, connected to the pth patch, the relation writes

−ω2L(p)Q(p) + iωR(p)Q(p) + V (p) = 0 (3)

Combining equations (2) and (3), we finally obtain the general FE formu-
lation of the electromechanical problem when the piezoelectric patches are
shunted

− ω2

 Mu 0 0
0 L 0

CT
up 0 Mp

 U
Q
P

+ iω

 0 0 0
0 R 0
0 0 0

 U
Q
P

+

 Ku + CuV K−1
V CT

uV CuV K−1
V −Cup

K−1
V CT

uV K−1
V 0

0 0 Kp

 U
Q
P

 =

 F
0
0

 (4)

where R = diag
(
R(1)R(2) · · · R(P )

)
and L = diag

(
L(1) L(2) · · · L(P )

)
are the

diagonal matrices filled with the electrical resistances and the electrical induc-
tances of the shunt circuits. Note that since KV is diagonal, the evaluation
of K−1

V is straightforward.

3. Viscoelastic core

In order to provide better acoustic insulation, damped sandwich panels
with a thin layer of viscoelastic core are used in this study (Fig. 1). In fact,
when subjected to mechanical vibrations, the viscoelastic layer absorbs part
of the vibratory energy in the form of heat. Another part of this energy is
dissipated in the constrained core due to the shear motion.

The constitutive relation for a viscoelastic material subjected to a sinu-
soidal strain is written in the following form:

σ = C∗(ω)ε (5)

where ε denote the strain tensor and C∗(ω) termed the complex moduli
tensor, is generally complex and frequency dependent (∗ denotes complex
quantities). It can be written as [9]:

C∗(ω) = C
′
(ω) + iC

′′
(ω) (6)

where i =
√
−1.
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Furthermore, for simplicity, a linear, homogeneous and viscoelastic core
will be used in this work. In the isotropic case, the viscoelastic material is
defined by a complex and frequency dependent shear modulus in the form:

G∗(ω) = G
′
(ω) + iG

′′
(ω) (7)

where G
′
(ω) is know as shear storage modulus, as it is related to storing

energy in the volume and G
′′
(ω) is the shear loss modulus, which represents

the energy dissipation effects. The loss factor of the viscoelastic material is
defined as

η(ω) =
G

′′
(ω)

G′(ω)
(8)

which alternatively allows writing Eq. (7) as

G∗(ω) = G
′
(ω)(1 + iη(ω)) (9)

The Poissons ratio ν is considered real and frequency independent. The loss
factor of Young’s modulus E∗ is the same as that of the shear modulus, which
leads to:

E∗(ω) = E
′
(ω)(1 + iη(ω)) (10)

where E
′
(ω) = 2G

′
(ω)(1 + ν).

With these assumptions, the stress tensor is complex and frequency de-
pendent which makes the stiffness matrix of the sandwich structure complex
and also frequency dependent. It will be noted K∗u(ω).

4. Reduced order model

The finite element model of Eq. (4) is applicable only to a model which
does not imply a prohibitive number of degrees of freedom. To overcome
these limitations, we present in this section, a reduced-order formulation
for computing the frequency response functions of the fully coupled visco-
electro-mechanical-acoustic system. The proposed approach is based on a
normal mode expansion and truncation of high-frequency modes. The chosen
reduction concerns only the mechanical and acoustical variables U and P.
The electrical unknown field Q is not concerned by the reduction because
the dimension of this vector corresponds to the number of piezo-patches and
therefore is very small compared to the mechanical (i.e., displacement in the
host structure and the piezo-patches) and acoustical finite element degrees-of-
freedom. The mechanical displacement unknown is projected on a truncated
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basis composed by the first structural in vacuo modes with short-circuited
patches while the acoustic pressure unknown is projected on a truncated basis
composed by the first acoustic normal mode computed from the Helmholtz
equation with rigid boundary conditions.

4.1. Eigenmodes of the structure in vacuo

In a first phase, the first Ns eigenmodes of the structure in vacuo with
short-circuited patches are obtained from[

K∗u(ω)− ω2Mu

]
U = 0 (11)

Due to the frequency dependence of the stiffness matrix, this eigenvalue prob-
lem is complex and nonlinear. It is assumed that vibrations of the damped
structure can be represented in terms of the real modes of the associated
undamped system if appropriate damping terms are inserted into the uncou-
pled modal equations of motion [27, 28]. Thus, the complex stiffness matrix
is decomposed in the sum of two matrices:

K∗u(ω) = Ku0 + δK∗u(ω) (12)

where Ku0 is the real and frequency-independent stiffness matrix calculated
with a constant Young’s modulus of the viscoelastic core and δK∗u(ω) is the
residual stiffness matrix.

The ith real eigenmode is obtained from the following equation[
Ku0 − ω2

siMu

]
Φsi = 0 for i ∈ {1, · · · , Ns} (13)

where (ωsi,Φsi) are the natural frequency and eigenvector for the ith struc-
tural mode. These modes verify the following orthogonality properties

ΦT
siMuΦsj = δij and ΦT

siKu0Φsj = ω2
siδij (14)

where δij is the Kronecker symbol and Φsi have been normalized with respect
to the structure mass matrix.

4.2. Eigenmodes of the internal acoustic cavity with rigid walls

In this second phase, the first Nf eigenmodes of the acoustic cavity with
rigid boundary conditions are obtained from the following equation[

Kp − ω2
fiMp

]
Φfi = 0 for i ∈ {1, · · · , Nf} (15)
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where (ωfi,Φfi) are the natural frequency and eigenvector for the ith acoustic
mode. These modes verify the following orthogonality properties

ΦT
fiMpΦfj = δij and ΦT

fiKpΦfj = ω2
fiδij (16)

where Φfi have been normalized with respect to the fluid mass matrix.

4.3. Modal expansion of the general problem

By introducing the matrices Φs = [Φs1 · · · ΦsNs ] of size (Ms × Ns) and
Φf =

[
Φf1 · · · ΦfNf

]
of size (Mf×Nf ) corresponding to the uncoupled bases

(Ms and Mf are the total number of degrees of freedom in the finite elements
model associated to the structure and the acoustic domains respectively), the
displacement and pressure are sought as

U = Φsqs(t) and P = Φfqf (t) (17)

where the vectors qs = [qs1 · · · qsNs ]
T and qf =

[
qf1 · · · qfNf

]T
are the modal

amplitudes of the structure displacement and the fluid pressure respectively.

Substituting these relations into Eq. (4) and pre-multiplying the first row
by ΦT

s and the third one by ΦT
f , we obtain the equation

 ΦT
s

(
Ku0 + δK∗u(ω) + CuV K−1

V CT
uV

)
Φs ΦT

s CuV K−1
V −ΦT

s CupΦf

K−1
V CT

uV Φs K−1
V 0

0 0 ΦT
f KpΦf

 qs
Q
qf


+ iω

 0 0 0
0 R 0
0 0 0

 U
Q
qf

− ω2

 ΦT
s MuΦs 0 0

0 L 0
ΦT
f CT

upΦs 0 ΦT
f MpΦf

 qs
Q
qf


=

 ΦT
s F
0
0

 (18)

This matrix equation represents the reduced order model of the fully
coupled visco-electro-mechanical-acoustic system. If only few modes are kept
for the projection, the size of this reduced order model (Ns×P×Nf ) is much
more smaller than the initial one (Ms×P×Mf ). Eq. (18) can be also written
in the following form of coupled differential equations:
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• Ns mechanical equations

−ω2qsi+
Ns∑
k=1

α∗ik(ω)qsi+ω
2
siqsi+

P∑
p=1

Ns∑
k=1

γ
(p)
i γ

(p)
k

C(p)
qsi+

P∑
p=1

γ
(p)
i

C(p)
Q(p)−

Nf∑
j=1

βijqfj = Fi

(19)

• P electric equations

−ω2L(p)Q(p) + iωR(p)Q(p) +
Q(p)

C(p)
+

Ns∑
i=1

γi
C(p)

qsi = 0 (20)

• Nf acoustic equations

−ω2qfi + ω2
fiqfi +

Ns∑
j=1

βijqsj = 0 (21)

where Fi(t) = ΦT
siF is the mechanical excitation of the ith mode; βij =

ΦT
siCupΦfj is the fluid structure coupling coefficient, α∗ik(ω) = ΦT

si∆K∗u(ω)Φsk

the reduced residual stiffness complex coefficient and γi = ΦT
siCuV the elec-

tromechanical coupling factors.
At each frequency step, the reduced system (Eqs. (19), (20) and (21)) is

solved by updating γ∗ik(ω). After determining the complex amplitude vectors
qsi and qfi, the displacement and pressure fields are reconstructed using the
modal expansion (Eqs. (17)).

4.4. Modal truncation augmentation method with static corrections

The process of mode truncation introduces some errors in the response
that can be controlled or minimized by a modal truncation augmentation
method. In this method, the effects of the truncated modes are considered
by their static effect only.

First the applied loading vector F is composed as:

F =
L∑
i=1

αi(t)F0i (22)
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where F0i is the invariant spatial portion and αj(t) is the time varying por-
tion. For each invariant spatial load, the static modal eigenvector Ψsi is
given by:

Ψsi = K−1
u0 F0i (23)

The truncated basis containing the real and undamped structure modes is
enriched by the static modal eigenvectors such that

Φ̄s = [Φs1 · · · ΦsNs ,Ψsi, · · · Ψsl] = [Φs Ψs] (24)

The truncated fluid basis is enriched with the static pressure Ps computed
from the following equation (see [29, 30] for more details)

ps = −ρF c
2
F

|ΩF |

∫
Σ

u.n ds (25)

Thus, the enriched fluid basis is

Φ̄f = [Φf Ps] (26)

The displacement and pressure are sought as

U = Φsqs(t) + Ψsq
0
s(t) and P = Φfqf (t) + Psq

0
f (t) (27)

where the vectors q0
s and q0

f are the quasi-static modal amplitudes of the
structure displacement and the fluid pressure respectively.

Substituting these relations (Eq. (27)) into Eq. (4) and pre-multiplying
the first row by Φ̄T

s and the second one by Φ̄T
f , we obtain coupled differ-

ential equations enriched with fluid and structure static modes similar than
Eqs. (19) to (21) which are not shown here for the sake of brevity.

5. Acoustic indicators

In order to evaluate the acoustic performances and the sound insulation
property of the double-wall sandwich panels, the radiated sound power (Πt)
and the normal incidence sound transmission loss (nSTL) are used as acoustic
indicators in this work.
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5.1. Radiated sound power

The radiated (or transmitted) sound power through the area S2 of the
panel ΩS2 is given by:

Πt =
1

2
Re

(∫
S2

p(G)v?n(G)dS

)
(28)

where G is a point on the plate surface ΩS2, p is the sound pressure applied
as an external loading, vn is the normal velocity (? denotes the complex
conjugate) and Re is the real part of the expression.

For a flat plate embedded in an infinite rigid plane baffle and radiating
in a semi infinite fluid, p can be obtained using the Rayleigh Integral [3]:

p(ω,M) = ρ0
iω

2π

∫
S2

vn(ω,G)
e−ikr

r
dS (29)

where ρ0 is the mass density of the external acoustic domain, k is the wave
number expressed as ω/c0, c0 is the acoustic speed of sound, M is a point
inside the external acoustic domain and vn(ω,G) is the normal velocity at
point G. Note that the normal velocity distribution on the structure can be
easily obtained from the previous finite element formulation.

The baffled panel is divided into a grid of R rectangular elements with
equal size whose transverse vibrations are specified in terms of the normal
velocities at their centre positions. Assuming that the dimensions of the
element are small compared with both the structural wavelength and the
acoustic wavelength, the total radiated sound power (Eq. (28)) can then be
expressed as the summation of the powers radiated by each element, so that

Πt =
Se
2

Re
(
vHn p

)
(30)

where the superscript H denotes the hermitian transpose, vn and p are the
vectors of complex amplitudes of the normal volume velocity and acoustic
pressure in all elements and Se is the area of each element. The pressure on
each element is generated by the vibrations of all elements of the panel. The
vector of sound pressure can therefore be expressed by the impedance matrix
relation

p = Zvn (31)

where Z is the matrix incorporating the point and transfer acoustic impedance
terms over the grid of elements into which the panel has been subdivided:
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Zij = (iωρ0Se/2πrij)e
−ikrij (rij is the distance between the centres of the

i-th and j-th elements). Note that, because of reciprocity, the impedance
matrix Z is symmetric. Substituting Eq. (31) into the expression for the
total radiated sound power given in Eq. (30), we obtain

Πt =
Se
2

Re
(
vHn Zvn

)
=
Se
4

Re
(
vHn
[
Z + ZH

]
vn
)

= vHn Rvn (32)

The matrix R is defined as the ”radiation resistance matrix” for the elemen-
tary radiators which, for the baffled panel, is given by

R =
ω2ρ0S

2
e

4πc0


1 sin(kr12)

kr12
· · · sin(kr1R)

kr1R
sin(kr21)
kr21

1 · · · sin(kr2R)
kr2R

...
...

. . .
...

sin(krR1)
krR1

sin(krR2)
krR2

· · · 1

 (33)

This method can be applied to any plane surface in an infinite baffle, in-
dependently of the boundary conditions. It only requires the knowledge of
the surface geometry, the characteristics of the fluid and the velocity field
distribution. In this work, a finite element approach is used to evaluate
this velocity field by using a sufficient number of discrete radiating elements
according to the smallest wavelength to be observed.

5.2. Normal incidence sound transmission loss

The normal incidence sound transmission of the double-wall sandwich
panels is investigated in this section using Rayleigh Integral method described
above. It is evaluated using the following formula:

nSTL = 10Log
Πi

Πt

(34)

where Πi and Πt are the incident and transmitted acoustic power respectively.
For normal plane wave applied to plate ΩS1, the incident sound power is given
by:

Πi =
|Pinc|2S1

2ρ0c0

(35)

where Pinc represents the normal incident sound pressure amplitude and S1

is the area of the whole panel ΩS1.
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6. Numerical examples

In this last section, numerical results, obtained with a Matlab program
developed by the authors, are proposed in order to validate and analyse re-
sults computed from the proposed formulation. The first example concerns
sound transmission through a double-plate system filled with air. In this
example, we analyse the air gap effect on the natural vibration of the cou-
pled system and the sound attenuation. The accuracy of model predictions
is checked against existing test data. In the second example, the transmis-
sion loss factor of a double laminated glazing panel with a thin interlayer of
PVB is presented. The mass-air-mass resonance is controlled with shunted
piezoelectric patches. This last example shows also the performance of the
proposed modal reduction method compared to direct approach and ana-
lyzes the effect of the damped piezo system and PVB (Polyvinyl Butyral)
viscoelastic layer on noise attenuation.

6.1. Sound transmission through an elastic double-panel system

The problem under consideration is shown in Fig. 2. A normal incidence
plane wave excites a double-plate system filled with air (density ρF = 1.21
kg/m3 and speed of sound cF = 340 m/s). The plane wave has a pressure
amplitude of 1 N/m2 and is applied to plate 1 as the only external force to
the system. The plates are identical and simply supported with thicknesses
of 1 mm. The density of the plates is 2814 kg/m3, the Youngs modulus is 71
GPa, the Loss factor is 0.01 and Poisson ratio 0.33. The surrounding fluid is
the air. This example was originally proposed by Panneton in [31].

Concerning the finite element discretization, we have used, for the struc-
tural part, 10×10 rectangular elements for each plate. The acoustic cavity is
discretized using 10×10×5 hexahedric elements. The structural and acous-
tic meshes are compatible at the interface. For more details about the used
fluid and structure finite elements and the associated fluid-structure coupling
element, we refer the reader to [32].

When the excitation is applied to the first plate, the second one vibrates
and radiates sound caused by the coupling of air and plate 1. The normal
incidence sound transmission loss is then computed using the Rayleigh’s in-
tegral method which needs the finite element solution of surface velocities of
plate 2. For this purpose, the resolution of the coupled system is done with
a modal reduction approach using the first 10 in vacuo structural modes and
the first 10 acoustic modes of the fluid in rigid cavity.
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Figure 2: Double-plate system filled with air: geometric data.

Mode Nastran Matlab Type of mode
(1, 1) 68.69 69.14 structure
(1, 1)* 153.58 148.79 coupled
(3, 1) 220.75 224.39 structure
(1, 3) 462.50 464.72 structure

Table 1: List of the coupled mode eigenfrequencies.

Fig. 3 shows the normal incidence transmission loss through a simply
supported plate (dashed line). Due to the modal behavior of the plate,
dips in the transmission loss curve are observed at its resonance frequencies
(modes (1, 1), (3, 1) and (1, 3)). When a second plate is used to form
an airtight cavity (continuous line), an increase in the transmission loss is
achieved except in the region of the so-called plate-cavity-plate resonance
(mode (1, 1)*). At this frequency, the two plates move out of phase with each
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Figure 3: Comparison of the normal incidence sound transmission (nSTL) through an
air-filled double panel and a simple panel.

other and the effect of the cavity on the plates is mostly one of added stiffness.
This frequency is similar to the mass-air-mass resonance of unbounded double
panels analyzed in the next section. The frequencies of these coupled modes
are presented in Table 1. Table 1 shows also a comparison between results
computed with the developed finite elements in Matlab and those given by
the finite element code Nastran using the same mesh. These results show
the excellent performance of the developed finite element model compared to
Nastran and enable us to check the validity of the fluid-structure proposed
formulation. In addition, the variation of the nSTL of an air-filled panels and
a simple panel is in very good agreement with the published date from [31]
which validates the development of the proposed acoustic indicators. Note
that the influence of several key parameters on the sound isolation capability
of the double-panel configuration including panel dimensions, thickness of
air cavity, elevation angle, and azimuth angle of incidence sound is not the
purpose of this study and can be found in [4].

Fig. 4 presents a comparison of the normal incidence sound transmission
through an air-filled finite double panel and an air-filled infinite double panel
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Figure 4: Comparison of the normal incidence sound transmission (nSTL) through an
air-filled finite double panel (finite element result) and an air-filled infinite double panel
(analytical solution).

computed from an analytical solution given in [3, 33]. For unbounded panels,
the first dip occurs at the mass-air-mass frequency (fmam = 181.63 Hz) given
by the formula:

fmam =
1

2π

√
ρF c2

F

d

mS1 +mS2

mS1mS2

(36)

where d is the panel spacing and mS1 and mS2 are the surface mass densities
of the panels.

At this frequency, the two plates vibrate, as it were, on the stiffness of
the air layer. For low frequencies up to the mass-air-mass frequency, the
transmission loss follows the so-called mass law: the two plates are coupled
in such a way that the plates vibrate as if they were a single plate with
the total mass of the two plates and the transmission loss increasing with
frequency at 6 dB per octave and 6 dB when the mass is doubled. It’s clear
from this comparison that the unbounded model is attractive to use for the
prediction of global trends at higher frequencies, but is unsuitable to use for
predictions in the small frequency bands and around eigenfrequencies of the
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double wall panel [33].

6.2. Conrtol of sound transmission through a double laminated glazing panels

The proposed reduced order finite-elements formulation is applied now
to simulate the control of sound transmission through a double laminated
glazing panels using shunted piezoelectric patches. The system consists of
two identical clamped laminated panels of glass (in-plane dimensions are
Lx = 1.25 m and Ly = 1.5 m) separated by an air cavity of 12 mm thickness.
Each laminated glass is composed of two glass plates bonded together by a
PVB interlayer. The thickness of outer and inner glass ply is h1 = h3 = 3
mm and those of the PVB interlayer is h2 = 1.14 mm (figure 5).

12
 m

m
 A

ir

3 mm glass

1.14 mm PVB

3 mm glass

1.25 m0.5 mm piezo 

1.5 m

5
 c

m

0.25 m 0.75 m 0
.4

 m

Figure 5: Double laminated glazing panels: geometric data.

The glass ply is modeled as linear elastic material (density 2500 kg/m3,
Youngs modulus 72 GPa, and Poisson ratio 0.22). The material properties
of the PVB are both thermal and frequency dependent. From dynamic and
thermal tests, Havrillak and Negami have found an empirical law describing
this dependence. The resulting complex frequency dependent shear modulus
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of the PVB is given at 20◦C as [34, 35]:

G∗(ω) = G∞ + (G0 −G∞)
[
1 + (iωτ0)1−α0

]−β0 (37)

where G∞ = 0.235 GPa, G0 = 0.479 Mpa, α0 = 0.46, β0 = 0.1946, τ0 =
0.3979. The Poisson ratio of the PVB is 0.4 and density is 999 kg/m3.

Concerning the laminated wall composed of three layers, the skins are
supposed homogeneous, orthotropic and linearly elastic, with constant thick-
ness and Kirchhoff-Love assumptions are made. The core is supposed linearly
viscoelastic and subjected to the first order shear deformation theory. The
stiffness and mass matrices are calculated using the finite element method
(taking into account the rotational inertia effect in the mass matrix). Re-
garding the excitation and the mesh, we used the same ones as in the previous
example.
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Figure 6: Comparison of the normal incidence sound transmission (nSTL) through an
air-filled double laminated panel and a single laminated panel.

A comparison between a simple and a double laminated glass with PVB
interlayer is shown in Fig. 6. Calculation was limited to 4000 Hz maximum.
As mentioned in the first example, the second dip associated with the two
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partitions is a phenomenon owned by the double-panel system and it is caused
by the air cavity coupling effect that is absent in the single-panel system.
Note that, from a comparison between conventional glass and laminated glass
that is not shown here, the effect of the viscoelastic layer in noise reduction
is more important in high frequencies that low frequencies. In fact, at low
frequencies, the viscoelastic material is soft and the damping is small. At
higher frequencies, the stiffness decreases rapidly and the damping is highest.
Moreover, flexural vibrations causes shear strain in the viscoelastic core which
dissipates energy and reduces vibration and noise radiation.
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Figure 7: nSTL through an air-filled double panel: comparison between the modal reduc-
tion approach and the direct nodal method.

Fig. 7 shows a comparison between the nSTL of the coupled problem,
obtained with the proposed modal reduction approach with a truncation on
the first twenty structural modes (Ns = 20) and first twenty acoustic modes
(Nf = 20) and the direct nodal method where the displacement and pressure
vectors are calculated for each frequency step. The structural modes are
calculated from Eq. (13) using the constant shear storage modulus G∞. As
can be seen, a very good agreement between the two methods is proved.
Note that, in order to evaluate the number of modes to keep in the modal
projection, various simulations have been performed with the proposed static
correction and twenty were sufficient by comparison with direct finite element
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analysis in the frequency range of interest. In this respect, the resulting
reduction of the model size and the computational effort using the reduced
order method are very significant compared to those of the direct approach.
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Figure 8: Normal sound transmission loss of laminated double panels: control of panel-
air-panel resonance by shunted piezoelectric patches

In order to reduce the sound transmission around the mass-air-mass res-
onance of the double wall, four very thin identical piezoelectric patches
(length 75 cm, width 5 cm, thick 0.5 mm ) are mounted on the second
wall (free on any mechanical charge) and tuned to an RL shunt circuit (see
figure 5). The patch is composed from piezoelectric Macro Fiber Compos-
ite (MFC). The material properties of the MFC are: E1=30 GPa, E2=15.5
GPa, E3=15.5 GPa, G13=10.7 GPa, G23=10.7 GPa, G12=5.7 GPa, ν13=0.4,
ν12=0.35, d33 = 4.18× 10−10 m/V, d32 = d31 = −1.98× 10−10 m/V, ρ =4700
kg/m3.

The resistance R and the inductance L can be adjusted and properly
chosen to maximize the damping effect of this particular mode. The optimal
resistance and inductance of the ith mode for a series resonant shunt are
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given by [15]:

Ropt =

√
2k2

eff,i

Cωi(1 + k2
eff,i)

(38a)

Lopt =
1

Cω2
i (1 + k2

eff,i)
(38b)

where ωi is the short circuit natural frequency of the ith mode, C is the ca-
pacitance of the piezoelectric patch and keff,i is the effective electromechan-
ical modal coupling factor (EEMCF), characterizing the energy exchanges
between the mechanical structure and the piezoelectric patches and defined
by:

k2
eff,i =

ω̂2
i − ω2

i

ω2
i

(39)

and where ω̂i is the open-circuited natural frequency. For the chosen mode,
the optimal values of the shunt electrical parameters are then, R=743 Ω and
L=67 H.

Fig. 8 presents the nSTL of the laminated double wall with and without
piezoelectric shunt. The response is calculated with a modal reduction ap-
proach using the first 20 in vacuo structural modes and the first 20 acoustic
modes of the fluid in rigid cavity with static correction. It can be seen that
the resonant magnitude of the second mode (the mass-air-mass resonance)
has been significantly reduced. In fact, the strain energy contained in the
piezoelectric material is converted into electrical energy and hence dissipated
into heat using the RL shunt device.

7. Conclusions

In this paper, a finite element formulation for semi-passive sound trans-
mission reduction through double wall sandwich panels with viscoelastic core
is presented. A reduced-order model, based on a normal mode expansion, is
then developed. The proposed methodology requires the computation of the
uncoupled eigenmodes of the undamped structure with short-circuit condi-
tions, and the rigid acoustic cavity. Static corrections are introduced in the
modal bases in order to take into account the effect of the higher modes.
Despite its reduced size, this model is proved to be very efficient for simu-
lations of steady-state analyses of structural-acoustic coupled systems with
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viscoelastic interlayers and with shunt damping when appropriate damping
terms are inserted into the modal equations of motion. The Rayleigh inte-
gral method is used in order to estimate the normal sound transmission loss
factor of the system. Numerical examples are finally presented in order to
evaluate the effectiveness of the proposed finite element reduced order model
in terms of prediction of the vibration attenuation using piezoelectric shunt
systems.
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