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Proximal operator for the sorted `1 norm: Application to
testing procedures based on SLOPE

Xavier Dupuis∗ Patrick J.C. Tardivel∗

Abstract

A decade ago OSCAR was introduced as a penalized estimator where the penalty term, the
sorted `1 norm, allows to perform clustering selection. More recently, SLOPE was introduced as
a penalized estimator controlling the False Discovery Rate (FDR) as soon as the hyper-parameter
of the sorted `1 norm is properly selected. For both, OSCAR and SLOPE, numerical schemes to
compute these estimators are based on the proximal operator of the sorted `1 norm. The main
goal of this note is to provide a short and simple formula for this operator. Based on this formula
one may observe that the output of the proximal operator has some components equal and thus
this formula corroborates that SLOPE, as well as OSCAR, perform clustering selection. Moreover,
our geometric approach to prove the formula for the proximal operator provides insights to show
that testing procedures based on SLOPE are more powerful than step-down testing procedures
but less powerful than step-up testing procedures.

Keywords: SLOPE, Proximal operator, Sorted `1 norm, False discovery rate.

1 Introduction
Octagonal Shrinkage and Clustering Algorithm for Regression (OSCAR) (Bondell and Reich, 2008)
and Sorted L-One Penalized Estimation (SLOPE) (Bogdan et al., 2015; Zeng and Figueiredo, 2014)
are both penalized estimators based on the sorted `1 norm. First introduced in the particular case
where the loss function is the residual sum of squares, these estimators are defined as follows:

β̂ ∈ Argmin
b∈Rp

1

2
‖Y −Xb‖22 +

p∑
i=1

λi|b|↓i where |b|↓1 ≥ · · · ≥ |b|↓p.

For OSCAR the hyper-parameter λ = (λ1, . . . , λp) has arithmetically decreasing components. SLOPE
is both an extension of OSCAR where the hyper-parameter satisfies λ1 > 0 and λ1 ≥ · · · ≥ λp ≥ 0 and
an extension of the Least Absolute Shrinkage and Selection Operator (LASSO) (Chen and Donoho,
1994; Tibshirani, 1996). Indeed, when λ1 = · · · = λp > 0 then the penalty

∑p
i=1 λi|b|↓i coincides

with the `1 norm; the well known penalty term for the LASSO. With respect to other penalized
estimators, when λ1 > · · · > λp > 0, SLOPE (and a fortiori OSCAR) has the particularity to perform
clustering selection, namely some components of the SLOPE estimator are equal in absolute value
(Bondell and Reich, 2008; Schneider and Tardivel, 2020). Moreover, in the linear Gaussian model, by
taking λ1 = σΦ−1(1 − α/2p), . . . , λp = σΦ−1(1 − α/2) (where Φ is the standard normal cumulative
distribution function) SLOPE estimator allows to controls the False Discovery Rate at level α in the
particular case where X is an orthogonal matrix (Bogdan et al., 2015). Note that the above hyper-
parameter also called BH sequence coincides with thresholds given in the seminal article introducing
the Benjamini-Hocheberg’s procedure and controlling the FDR (Benjamini and Hochberg, 1995).
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Numerically, like many penalized estimators where the loss function is smooth and the penalty
term is non-smooth, one may solve SLOPE or OSCAR with a Forward-Backbard proximal gradient
algorithm (see e.g. Combettes and Wajs (2005); Parikh and Boyd (2014)). This method relies on the
computation of the proximal operator for the sorted `1 norm. This operator is also a very important
tool for the development of the approximate message passing theory (Bu et al., 2020; Zhang and Bu,
2021). A statistical motivation for this operator relies on the fact that, when X is an orthogonal matrix
(i.e. X ′X = I), the SLOPE estimator is the image of the ordinary least squares estimator β̂ols = X ′Y

by the proximal operator of the sorted `1 norm. Indeed, since Y −Xβ̂ols is orthogonal to the vector
space col(X) := {Xu : u ∈ Rp}, one may deduce the following identity:

β̂slope = argmin
b∈Rp

1

2
‖X(β̂ols − b)‖22 +

p∑
i=1

λi|b|↓i,

which gives the claimed formula when X is an isometry (i.e. X ′X = I).
There is a particular case under which the proximal operator of the sorted `1 norm is explicit;

when y1 ≥ · · · ≥ yp ≥ 0 and y1 − λ1 ≥ . . . ,≥ yp − λp then the proximal operator is simply given by
((y1 − λ1)+, . . . , (yp − λp)+). Otherwise, when components of y are non-increasing and non-negative,
an algorithm computing the proximal operator for the sorted `1 norm is given in Bogdan et al. (2015)
(see algorithm 3). This algorithm suggests to first identify a sub-sequence yi − λi, . . . , yj − λj non-
decreasing and non-constant (where i < j) and then to substitute 1) (yi, . . . , yj) by ((

∑j
l=i yl)/(j+1−

i), . . . , (
∑j
l=i yl)/(j + 1 − i)) and 2) (λi, . . . , λj) by ((

∑j
l=i λl)/(j + 1 − i), . . . , (

∑j
l=i λl)/(j + 1 − i)).

Whereas correct, we believe that this algorithm is difficult to implement because it is not easy to
identify iteratively non-decreasing and non-constant sub-sequence.

The main motivation for this note is to provide a short and simple formula for the proximal operator
of the sorted `1 norm. The proof for this formula is based on recent advances on sub-differential
calculus for the sorted `1 norm and on the description of the signed permutahedron polytope (the
signed permutahedron is the sub-differential of the sorted `1 norm at 0) (Schneider and Tardivel,
2020). We also illustrate that some sub-differential calculus rules give geometrical insights for testing
procedures based on SLOPE. In particular there is a geometrical way to understand why the testing
procedure based on SLOPE with the BH sequence is more conservative than the seminal Benjamini
Hochberg’s procedure.

1.1 Notation
Given a hyper-parameter λ = (λ1, . . . , λp) where λ1 > 0 and λ1 ≥ . . . , λp ≥ 0 the sorted `1 norm Jλ
is defined as follows:

∀x ∈ Rp, Jλ(x) = λ1|x|↓1 + · · ·+ λp|x|↓p
where |x|↓1 ≥ · · · ≥ |x|↓p are the sorted components of x with respect to the absolute value. A proof
that Jλ is a norm is given in Bogdan et al. (2015)1. The proximal operator of the sorted `1 norm is
defined as follows:

∀y ∈ Rp,proxJλ(y) = argmin
x∈Rp

1

2
‖y − x‖22 + Jλ(x).

We remind the reader of the definition on sub-gradient and sub-differential. The following can, for
instance, be found in Hiriart-Urruty and Lemaréchal (2004).

1An alternative proof relies on the following identity:

Jλ(x) = λp

p∑
i=1

|x|↓i + (λp−1 − λp)
p−1∑
i=1

|x|↓i + · · ·+ (λ1 − λ2)|x|↓1;

since the sum of the k largest components of x in absolute value: x ∈ Rp 7→
∑k
i=1 |x|↓i is a norm (named the k−norm)

and since λ1 ≥ · · · ≥ λp and λ1 > 0, Jλ is a non-negative combination of norms (with at least one positive coefficient).
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Definition 1. For a convex function f : Rp → R, a vector s ∈ Rp is a sub-gradient of f at x ∈ Rp if

f(z) ≥ f(x) + s′(z − x) ∀z ∈ Rp.

The set of all sub-gradients of f at x is called the sub-differential of f at x, denoted by ∂f (x).

Hereafter, we also use the following notation:

• Let x = (x1, . . . , xp) ∈ Rp and I ⊂ {1, . . . , p}, the writing xI represents the vectors (xi)i∈I .
Moreover, the notation x↓1 ≥ · · · ≥ x↓p represents sorted components of x.

• The notation Sp represents the group of permutations in {1, . . . , p}.

• Given a set A, the notation conv(A) represents the convex hull of A.

2 Proximal operator for the sorted `1 norm
Given an orthogonal transformation (for all u, v ∈ Rp, u′v = ψ(u)′ψ(v) or equivalently ψ′ψ = I) such
that whatever u ∈ Rp, Jλ(ψ(u)) = Jλ(u) then one may prove the following identity:

proxJλ(y) = ψ′(proxJλ(ψ(y))).

One may observe that the orthogonal transformation ψ(x) = (ε1xπ(1), . . . , εpxπ(p)) where π is a permu-
tation of {1, . . . , p} and ε1, . . . , εp ∈ {−1, 1} is also an isometry for the sorted `1 norm (independently
of λ). Specifically when |y|↓ = ψ(y) then one may obtain the following equality:

proxJλ(y) = ψ′(proxJλ(|y|↓)).

Consequently, in Proposition 1, one may restrict our statement to the particular case where y1 ≥ · · · ≥
yp ≥ 0 as already pointed out by Bogdan et al. (2015).

Proposition 1. Let y ∈ Rp such that y1 ≥ · · · ≥ yp ≥ 0, λ ∈ Rp such that λ1 > 0 and λ1 ≥ · · · ≥
λp ≥ 0. Using the Cesàro sequence (Cj)1≤j≤p where Cj = 1

j

∑j
i=1(yi−λi), one may compute explicitly

the first components of proxJλ(y). Specifically, let k ∈ {1, . . . , p} be the largest integer for which the
Cesàro sequence reaches its maximum. Then, the proximal operator satisfies the following formula:

proxJλ(y) =

{
(0, . . . , 0) if Ck ≤ 0

(Ck, . . . , Ck, proxJλk+1,...,λp
(yk+1, . . . , yp)) otherwise

. (1)

It follows that it can be implemented recursively in a very easy (and naive) way. For saving
computational time, one may use a screening rule for the proximal operator before computing formula
(1) (or before using any other algorithm computing the proximal operator of the sorted `1 norm). For
instance, one may use the "step-up rule" described in Proposition 2 to discard some null components
of x∗ = proxJλ(y). Specifically, when |y|↓p ≤ λp, . . . , |y|↓i ≤ λi then the last p + 1 − i components of
proxJλ(|y|↓) are null.

2.1 Proof of Proposition 1
Let λ ∈ Rp such that λ1 > 0 and λ1 ≥ · · · ≥ λp ≥ 0. Sub-differential calculus of the sorted `1 norm
satisfies the following properties given in Propositions 5 and 8 in Schneider and Tardivel (2020) and
in Lemma A.2 in Tardivel et al. (2020).
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Sub-differential at 0: signed permutahedron The following equality holds:

∂Jλ(0) = conv((σ1λπ(1), . . . , σpλπ(p)), σ1, . . . , σp ∈ {−1, 1}, π ∈ Sp).

The V-polytope P±(λ1, . . . , λp) := conv((σ1λπ(1), . . . , σpλπ(p)), σ1, . . . , σp ∈ {−1, 1}, π ∈ Sp), so
called signed permutahedron can be described as a H-polytope as follows:

P±(λ1, . . . , λp) =

{
x ∈ Rp : ∀j ∈ {1, . . . , p},

j∑
i=1

|x|↓i ≤
j∑
i=1

λi

}
.

This polytope is actually the unit ball of the dual sorted `1 norm (Brzyski, 2015; Negrinho and
Martins, 2014). The above H-description of the signed permutahedron is also given in Godland
and Kabluchko (2020). Finally, for any x ∈ Rp, ∂Jλ(x) ⊂ P±(λ1, . . . , λp) (this fact is also
reminded and proved in Lemma 2).

Sub-differential at a constant vector: permutahedron Let c > 0 then the following equality
holds:

∂Jλ(c, . . . , c) = conv((λπ(1), . . . , λπ(p)), π ∈ Sp)

The V-polytope P (λ1, . . . , λp) := conv((λπ(1), . . . , λπ(p)), π ∈ Sp), so called permutahedron can
be described as an H-polytope as follows:

P (λ1, . . . , λp) =

{
x ∈ Rp :

p∑
i=1

xi =

p∑
i=1

λi and ∀j ∈ {1, . . . , p− 1},
j∑
i=1

x↓i ≤
j∑
i=1

λi

}
.

For the H-description of the permutahedron, one may see Negrinho and Martins (2014) or God-
land and Kabluchko (2020) and references therein.

Computation rule for sub-differential calculus Let x ∈ Rp such that x1 ≥ · · · ≥ xk > xk+1 ≥
· · · ≥ xp ≥ 0, I = {1, . . . , k} and I = {k + 1, . . . , p} then

∂Jλ(x) = ∂JλI (xI)× ∂Jλ
I
(xI). (2)

Proposition 1 is a consequence of Lemma 1 below, which mainly reminds some results hidden in
Tardivel et al. (2020). Proofs are shortened and, contrarily to the seminal article of Tardivel et al.
(2020), the closed-form formula for the proximal operator of SLOPE is derived from H-descriptions of
permutahedron and signed permutahedron.

Lemma 1. Let y ∈ Rp such that y1 ≥ · · · ≥ yp ≥ 0 and let f be the following function

f : x ∈ Rp 7→ 1

2
‖y − x‖22 + Jλ(x).

Let (Cj)1≤j≤p be the Cesàro sequence defined by Cj := 1
j

∑j
i=1(yi − λi) then the following properties

hold:

i) The unique minimizer of f , denoted x∗, satisfies x∗1 ≥ · · · ≥ x∗p ≥ 0.

ii) The unique minimizer of f is x∗ = (0, . . . , 0) if and only if the Cesàro sequence is non-positive.

iii) If the unique minimizer x∗ of f satisfies x∗1 = · · · = x∗p = c > 0 then Cp = c and the Cesàro
sequence reaches its maximum at p. Conversely if the Cesàro sequence reaches its maximum at
p and Cp > 0 then x∗ = (Cp, . . . , Cp).
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iv) If the unique minimizer x∗ of f satisfies x∗1 = · · · = x∗k = c > x∗k+1 ≥ · · · ≥ x∗p ≥ 0 then
c = Ck and the largest integer for which the Cesàro reaches its maximum is k. Conversely,
if the largest integer for which the Cesàro reaches its maximum is k < p and Ck > 0 then
x∗1 = · · · = x∗k = Ck > x∗k+1 ≥ · · · ≥ x∗p ≥ 0.

v) If the unique minimizer x∗ of f satisfies x∗1 = · · · = x∗k > x∗k+1 ≥ · · · ≥ x∗p ≥ 0 then x∗
I
, where

I = {k + 1, . . . , p}, is the minimizer of the function

fI : x ∈ Rp−k 7→ 1

2
‖yI − x‖

2
2 + JλI (x).

Proof. i) We remind the proof already given Bogdan et al. (2015). Let x ∈ Rp. Let us prove the
following inequality

1

2
‖y − x‖22 − Jλ(x) ≥ 1

2
‖y − |x|↓‖22 − Jλ(|x|↓).

Since Jλ(x) = Jλ(|x|↓) and ‖x‖22 = ‖|x|↓‖2 we have

1

2
‖y − x‖22 + Jλ(x) ≥ 1

2
‖y − |x|↓‖22 + Jλ(|x|↓),

⇔ ‖y − x‖22 ≥ ‖y − |x|↓‖22,
⇔ x′y ≤ |x|′↓y.

Now, clearly x′y ≤ |x|′y where |x| = (|x1|, . . . , |xp|). Finally, due to the Hardy-Littlewood-Pólya
rearrangement inequality one may deduce that |x|′y ≤ |x|′↓y. Therefore the minimizer x∗ of f sat-
isfies f(x∗) ≥ f(|x∗|↓). Since this minimizer is unique, one may deduce that x∗ = |x∗|↓ and thus
x∗1 ≥ · · · ≥ x∗p ≥ 0.

ii) The minimizer of f is 0 if and only if y − 0 ∈ ∂Jλ(0) = P±(λ1, . . . , λp). Due to H-description
of the signed permutahedron, one may deduce the following equivalences:

y ∈ P±(λ1, . . . , λp)⇔ ∀j ∈ {1, . . . , p},
j∑
i=1

yi ≤
j∑
i=1

λi ⇔ ∀j ∈ {1, . . . , p}, Cj ≤ 0.

iii) If x∗ satisfies x∗1 = · · · = x∗p = c > 0 then y − x∗ ∈ ∂Jλ(x∗) = P (λ1, . . . , λp). Consequently, due to
the H-description of the permutahedron, one may deduce the following inequalities:

y − x∗ ∈ P (λ1, . . . , λp) ⇒

{∑p
i=1(yi − x∗i ) =

∑p
i=1(yi − c) =

∑p
i=1 λi and

∀j < p,
∑j
i=1(y − x∗)↓i =

∑j
i=1(yi − c) ≤

∑j
i=1 λi

,

⇒ c =

∑p
i=1(yi − λi)

p
= Cp and ∀j < p,

∑j
i=1(yi − λi)

j
= Cj ≤ c.

Consequently, Cp = c and the Cesàro sequence reaches its maximum at p.

Conversely, when the Cesàro sequence reaches its maximum at p and Cp > 0, let us show that x∗ =
(Cp, . . . , Cp). In other words, we have to prove that y − x∗ ∈ P (λ1, . . . , λp) where x∗ = (Cp, . . . , Cp).
One checks hereafter that y − x∗ satisfies inequalities of the permutahedron:

p∑
i=1

(yi − Cp) =

p∑
i=1

yi −
p∑
i=1

(yi − λi) =

p∑
i=1

λi and,

∀j ∈ {1, . . . , p− 1},
j∑
i=1

(y − x∗)↓i =

j∑
i=1

(yi − Cp) ≤
j∑
i=1

(yi − Cj) =

j∑
i=1

yi −
j∑
i=1

(yi − λi) =

j∑
i=1

λi.
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iv) If the minimizer x∗ of f satisfies x∗1 = · · · = x∗k = c > x∗k+1 ≥ · · · ≥ x∗p ≥ 0 then

y − x∗ ∈ ∂Jλ(x∗) = P (λ1, . . . , λk)× ∂Jλ
I
(x∗
I
).

Let I = {1, . . . , k}. Since yI −x∗I ∈ P (λ1, . . . , λk), due to the H-description of the permutahedron, one
may deduce the following inequalities:

yI − x∗I ∈ P (λ1, . . . , λk) ⇒

{∑k
i=1(yi − x∗i ) =

∑k
i=1(yi − c) =

∑k
i=1 λi and

∀j < k,
∑j
i=1(y − x∗)↓i =

∑j
i=1(yi − c) ≤

∑j
i=1 λi

,

⇒ c =

∑k
i=1(yi − λi)

k
= Ck and ∀j < k,

∑j
i=1(yi − λi)

j
= Cj ≤ c.

Consequently, Ck = c. Now, let us achieve to prove that the Cesàro sequence reaches its maximum at k.
Because y− x∗ is an element of the signed permutahedron, one may deduce the following inequalities:

∀j > k,

j∑
i=1

yi − x∗i ≤
j∑
i=1

|y − x∗|↓i ≤
j∑
i=1

λi ⇒ ∀j > k,

∑j
i=1 yi − λi

j
= Cj ≤

∑j
i=1 x

∗
i

j
< c.

Conversely, when the largest integer for which the Cesàro sequence reaches its maximum is k where
k < p and Ck > 0 then let us prove that x∗1 = · · · = x∗k = Ck > x∗k+1 ≥ · · · ≥ x∗p. Because Ck > 0 and
k < p, according to ii) and iii), one may deduce that x∗ 6= 0 and x∗ is not constant. In addition, be-
cause components of x∗ are decreasing and non-negative, one may deduce that, there exists an integer
l ∈ {1, . . . , p} such that x∗1 = · · · = x∗l > xl+1 ≥ · · · ≥ x∗p ≥ 0. The first part of the proof shows that
the largest integer for which the Cesàro sequence reaches its maximum is l and x∗1 = · · · = x∗l = Cl.
Consequently k = l and x∗1 = · · · = x∗k = Ck > x∗k+1 ≥ · · · ≥ x∗p ≥ 0.

v) Let I = {1, . . . , k} and let us remind that I = {k + 1, . . . , p}. Because the minimizer of f sat-
isfies x∗1 = · · · = x∗k > x∗k+1 ≥ · · · ≥ x∗p ≥ 0, according to (2), one may deduce that

y − x∗ ∈ ∂Jλ(x∗) = ∂JλI (x∗I)× ∂Jλ
I
(x∗
I
)⇒ yI − x

∗
I
∈ ∂Jλ

I
(x∗
I
).

The last belonging implies that x∗
I
is a minimizer of fI .

3 Comparison between procedures based on the ordinary least
squares estimators and procedures based on SLOPE

In this section we consider a linear regression model Y = Xβ + ε where X ∈ Rn×p is an orthogonal
matrix, β ∈ Rp is an unknown parameter and ε ∈ Rp is a random noise (for instance, one may assume
that ε has iid N (0, σ2) components).

SinceX is an orthogonal matrix, SLOPE estimator solution of (1) satisfies β̂slope = proxJλ(β̂ols) and
moreover |β̂slope|↓ = proxJλ(|β̂ols|↓) where β̂ols = X ′Y . Some components of SLOPE are exactly equal
to 0 and thus one may provide a testing procedure based on SLOPE by rejecting the null hypothesis
H0
i : βi = 0 (for some i ∈ {1, . . . , p}) when β̂slope

i 6= 0 (Bogdan et al., 2015; Kos and Bogdan, 2020).
Actually, the multiple testing procedure based on SLOPE rejects at least k null hypotheses (associated
to the k−largest components of β̂ols in absolute value) when |β̂slope|↓k > 0 and this procedure rejects
exactly k null hypotheses when |β̂slope|↓k > 0 and |β̂slope|↓k+1 = 0.

Proposition 2 is useful to compare multiple testing procedures based on β̂ols with procedures based
on SLOPE.
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Proposition 2. Let λ = (λ1, . . . , λp) where λ1 > 0 and λ1 ≥ · · · ≥ λp and let us remind that, in the
orthogonal setting, |β̂slope|↓ = proxJλ(|β̂ols|↓). The following implication occurs:

|β̂ols|↓1 > λ1, . . . , |β̂ols|↓k > λk ⇒ |β̂slope|↓k > 0.

According to the above implication, a step-down procedure based on the ordinary least squares estimator
and thresholds λ1, . . . , λp is less powerful than a procedure based on SLOPE.

The following implication occurs:

|β̂slope|↓k > 0 ⇒ ∃i ≥ k, |β̂ols|↓i > λi.

According to the above implication, a step-up procedure based on the ordinary least squares estimator
and thresholds λ1, . . . , λp is at least as powerful than a procedure based on SLOPE.

For instance, let us chose the hyper-parameter λ as in the Holm’s procedure (Holm, 1979) and
Hochberg’s procedure (Hochberg, 1988):

λ1 = σΦ−1
(

1− α

2p

)
, λ2 = σΦ−1

(
1− α

2(p− 1)

)
, . . . , λp = σΦ−1

(
1− α

2

)
.

Then, according to Proposition 2, the procedure based on SLOPE is at least as powerful than the Holm
step-down procedure but less powerful than the Hochberg step-up procedure. Otherwise, according to
the second implication, when the hyper-parameter for SLOPE is given by the BH sequence (namely
λ1 = σΦ−1(1− α/2p), . . . , λp = σΦ−1(1− α/2)) then, the procedure based on SLOPE is less powerful
than the (step-up) Benjamini-Hochberg’s multiple testing procedure. In the seminal article on SLOPE
(Bogdan et al., 2015) one may find the following comment: "The procedure based on SLOPE is
sandwiched between the step-down and step-up procedures in the sense that it rejects at most as many
hypotheses as the step-up (Benjamini-Hochberg) procedure and at least as many as the step-down
cousin, also known to control the FDR (Sarkar, 2002)". Thus Proposition 2 gives a proof for this
(unproven) comment.

Whereas |β̂slope|↓ = proxJλ(|β̂ols|↓), one does not need to compute explicitly proxJλ(|β̂ols|↓) to
determine null hypotheses rejected by the SLOPE procedure. Actually, the number of null hypothe-
ses rejected by this procedure coincides with the number of non-null components of proxJλ(|β̂ols|↓).
Proposition 3 gives a simple analytical shortcut to compute exactly the number of null components
for the proximal operator of the sorted `1 norm.

Proposition 3. Let y ∈ Rp such that y1 ≥ · · · ≥ yp ≥ 0, λ ∈ Rp such that λ1 > 0 and λ1 ≥ · · · ≥ λp ≥
0. Using the remainder sequence (Rj)1≤j≤p where Rj =

∑p
i=j(yi − λi), one may compute explicitly

the number of null components of x∗ = proxJλ(y).

i) The vector x∗ is positive (component-wise) if and only if (Rj)1≤j≤p is a positive sequence.

ii) If x∗ is not positive then k0 := min{i ∈ {1, . . . , p} : x∗i = 0} is the smallest integer for which
(Rj)1≤j≤p reaches its minimum and Rk0 ≤ 0. Conversely, if the smallest integer for which
(Rj)1≤j≤p reaches its minimum is k0 and Rk0 ≤ 0 then k0 := min{i ∈ {1, . . . , p} : x∗i = 0}.

Note that Lemma 3.1 in Bogdan et al. (2013) also gives a technical result on the value k0 described
in Proposition 3. However, contrarily to Proposition 3, Lemma 3.1 does not provide a shortcut to
compute explicitly the number of non-null components of the proximal operator.

3.1 Proof of Proposition 2
The proof of Proposition 2 is based on two inclusions given in Lemma 2.

Lemma 2. Let λ ∈ Rp such that λ1 > 0 and λ1 ≥ · · · ≥ λp.
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i) Let x ∈ Rp then ∂Jλ(x) ⊂ ∂Jλ(0) = P±(λ1, . . . , λp).

ii) Let x ∈ Rp such that x1 > 0, . . . , xp > 0 then ∂Jλ(x) ⊂ P (λ1, . . . , λp).

Proof. The proof of i) is already given in Proposition 5 of Schneider and Tardivel (2020). However, we
provide hereafter a proof based on the H-description of the signed permutahedron. Let s ∈ ∂Jλ(x) and
let π a permutation such that |sπ(1)| ≥ · · · ≥ |sπ(p)|. Let h =

∑k
i=1 sign(sπ(i))eπ(i) where e1, . . . , ep

is the canonical basis of Rp and k ≤ p. Because Jλ is a norm and s is a sub-gradient, the following
inequality occurs:

Jλ(x) +

k∑
i=1

λi = Jλ(x) + Jλ(h) ≥ Jλ(x+ h) ≥ Jλ(x) +

k∑
i=1

sπ(i)sign(sπ(i)) = Jλ(x) +

k∑
i=1

|s|↓i.

Consequently, whatever k ∈ {1, . . . , p},
∑k
i=1 |s|↓i ≤

∑k
i=1 λi. Thus, s ∈ P±(λ1, . . . , λp).

ii) Let s ∈ ∂Jλ(x), 1 = (1, . . . , 1) and η ∈ R. Let us illustrate that s satisfies the H-description
of the permutahedron. Since s is a sub-gradient of Jλ at x then by definition we have Jλ(x + η1) ≥
Jλ(x) + ηs′1 = Jλ(x) + η

∑p
i=1 si. Now, when η is small enough the vector x+ η1 is component-wise

positive and clearly (x + η1)↓ = ((x + η1)↓1, . . . , (x + η1)↓p) = (x↓1 + η, . . . , x↓p + η). Consequently,
the following inequality occurs:

Jλ(x+ η1) =

p∑
i=1

λi(x↓i + η) = Jλ(x) + η

p∑
i=1

λi ≥ Jλ(x) + η

p∑
i=1

si.

Taking η > 0 (resp. η < 0) small enough in equation (3.1), one may derive that
∑p
i=1 λi ≥

∑p
i=1 si

(resp.
∑p
i=1 λi ≤

∑p
i=1 si) implying thus

∑p
i=1 λi =

∑p
i=1 si. Let π be a permutation in {1, . . . , p}

such that sπ(1) ≥ · · · ≥ sπ(p) and let h =
∑k
i=1 eπ(i) where k < p. Because Jλ is a norm and s is a

sub-gradient, the following inequality occurs:

Jλ(x) +

k∑
i=1

λi = Jλ(x) + Jλ(h) ≥ Jλ(x+ h) ≥ Jλ(x) +

k∑
i=1

sπ(i)

Consequently, whatever k ∈ {1, . . . , p − 1},
∑k
i=1 s↓i ≤

∑k
i=1 λi, which achieves to prove that s ∈

P (λ1, . . . , λp).

Hereafter, we provide the proof of Proposition 2.

Proof. Let us prove the first implication by contradiction. If |β̂slope|↓k = 0 then k0 := min{i ∈
{1, . . . , p} : |β̂slope|↓i = 0} clearly satisfies k0 ≤ k. Because |β̂slope|↓ = proxJλ(|β̂ols|↓) then, using
sub-differential rule described in (2) and Lemma 2, one may deduce the following inclusion:

|β̂ols|↓ − |β̂slope|↓ ∈ ∂Jλ(|β̂slope|↓) ⊂

{
P±(λ1, . . . , λp) if k0 = 1

P (λ1, . . . , λk0−1)× P±(λk0 , . . . , λp) if k0 > 1

Since a vector in P±(λk0 , . . . , λp) has its first component smaller in absolute value than λk0 one may
deduce that |β̂ols|↓k0 ≤ λk0 which contradicts that |β̂ols|↓1 > λ1, . . . , |β̂ols|↓k > λk.

Let us prove the second implication. If |β̂slope|↓k > 0 then k0 := max{i ∈ {1, . . . , p} : |β̂slope|↓i > 0}
clearly satisfies k0 ≥ k. Using the same argument as above one may deduce the following inclusion:

|β̂ols|↓ − |β̂slope|↓ ∈ ∂Jλ(|β̂slope|↓) ⊂

{
P (λ1, . . . , λp) if k0 = p

P (λ1, . . . , λk0)× P±(λk0+1, . . . , λp) if k0 < p
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Since a vector in P (λ1, . . . , λk0) has its last component greater than or equal to λk0 , one may deduce
that |β̂ols|↓k0 − |β̂slope|↓k0 ≥ λk0 and thus |β̂ols|↓k0 > λk0 .

3.2 Proof of Proposition 3
Proof. Before to give the proof of i), we provide another H-description of the permutahedron (Ziegler,
2012; Simion, 1997):

P (λ1, . . . , λp) =

x ∈ Rp :

p∑
i=1

xi =

p∑
i=1

λi and ∀j ∈ {2, . . . , p},
p∑
i=j

x↓i ≥
p∑
i=j

λi

 .

Actually, one may easily check that the above H-description of the permutahedron is equivalent to the
one given in section 2.1.

i) If x∗1 ≥ · · · ≥ x∗p > 0 then, according to Lemma 2, ∂Jλ(x∗) ⊂ P (λ1, . . . , λp) and thus y − x∗ ∈
∂Jλ(x∗) satisfies the following inequalities

∀j ∈ {1, . . . , p},
p∑
i=j

(yi − x∗i ) ≥
p∑
i=j

(y − x∗)↓i ≥
p∑
i=j

λi

⇒ ∀j ∈ {1, . . . , p}, Rj =

p∑
i=j

(yi − λi) ≥
p∑
i=j

x∗i > 0.

Conversely, if x∗ is not positive component-wise then k0 := min{k ∈ {1, . . . , p} : x∗k = 0} is well
defined. Since x∗k0−1 > x∗k0 = · · · = x∗p = 0 one may deduce that (yk0 , . . . , yp) ∈ P±(λk0 , . . . , λp) and
thus the following implication holds

p∑
i=k0

|y|↓i ≤
p∑

i=k0

λi ⇒ Rk0 =

p∑
i=k0

(yi − λi) ≤ 0.

ii) If x∗ is not positive then let us show that k0, defined above, is the smallest integer for which
(Rj)1≤j≤p reaches its minimum. As already claimed above, (yk0 , . . . , yp) ∈ P±(λk0 , . . . , λp) and thus
the following inequalities occur:

∀j ≥ k0, Rk0 −Rj =

{∑j−1
i=k0

(yi − λi) =
∑j−1
i=k0
|y|↓i −

∑j−1
i=k0

λi if j > k0

0 if j = k0
⇒ ∀j ≥ k0, Rk0 ≤ Rj .

Therefore, once k0 = 1 then k0 is clearly the smallest integer for which the remaining sequence
reaches its minimum. Otherwise, when k0 > 1 since x∗1 ≥ · · · ≥ x∗k0−1 > x∗k0 = 0 then, according to
the sub-differential rule (2) and Lemma 2, we have (y1 − x∗1, . . . , yk0−1 − x∗k0−1) ∈ P (λ1, . . . , λk0−1).
Consequently, the following implication occurs

∀j ∈ {1, . . . , k0 − 1},
k0−1∑
i=j

(yi − x∗i ) ≥
k0−1∑
i=j

(y − x∗)↓i ≥
k0−1∑
i=j

λi

⇒ ∀j ∈ {1, . . . , k0 − 1},
k0−1∑
i=j

(yi − λi) ≥
k0−1∑
i=j

x∗i > 0.

Thus, according to the right-hand side, Rj > Rk0 once j < k0. Therefore k0 is the smallest integer for
which the remaining sequence reaches its minimum.
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Conversely, if the remaining sequence reaches its minimum at k0 and Rk0 ≤ 0 thus according to
i) x∗ is not positive component-wise thus k1 := min{i ∈ {1, . . . , p} : x∗i = 0} is well defined. Finally,
the first part of the proof of ii) shows that k1 is the smallest integer for which the remaining sequence
reaches its minimum and thus k0 = k1.
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