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Proximal operator for the sorted l1 norm with application to
testing procedures based on SLOPE

Xavier Dupuis and Patrick J.C. Tardivel

Institut de Mathématiques de Bourgogne, Université Bourgogne, Dijon, France.

Abstract

A decade ago OSCAR was introduced as a penalized estimator where the penalty term, the
sorted l1 norm, allows to perform clustering selection. More recently, SLOPE was introduced as
a penalized estimator controlling the False Discovery Rate (FDR) as soon as the hyper-parameter
of the sorted l1 norm is properly selected. For both, OSCAR and SLOPE, numerical schemes to
compute these estimators are based on the proximal operator of the sorted l1 norm. The main
goal of this note is to provide a short and simple formula for this operator. Based on this formula
one may observe that the output of the proximal operator has some components equal and thus
this formula corroborate that SLOPE as well as OSCAR perform clustering selection. Moreover,
our geometric approach to prove the formula for the proximal operator provides insight to show
that testing procedures based on SLOPE are more powerful than step-down testing procedures
but less powerful than step-up testing procedures.

1 Introduction
Octagonal Shrinkage and Clustering Algorithm for Regression (OSCAR) (Bondell and Reich, 2008)
and Sorted L-One Penalized Estimation (SLOPE) (Bogdan et al., 2015; Zeng and Figueiredo, 2014)
are both penalized estimators based on the sorted l1 norm. First introduced in the particular case
where the loss function is the residual sum of squares, these estimators are defined as follows

β̂ ∈ argmin
b∈Rp

1

2
‖Y −Xb‖22 +

p∑
i=1

λi|bi|↓i where |bi|↓1 ≥ · · · ≥ |bi|↓p. (1)

For OSCAR the hyper-parameter λ = (λ1, . . . , λp) has arithmetically decreasing components. SLOPE
is both an extension of OSCAR where the hyper-parameter satisfies λ1 > 0 and λ1 ≥ · · · ≥ λp ≥ 0 and
an extension of the Least Absolute Shrinkage and Selection Operator (LASSO) (Chen and Donoho,
1994; Tibshirani, 1996). Indeed, when λ1 = · · · = λp > 0 then the penalty

∑p
i=1 λi|bi|↓i coincides

with the l1 norm ; the well known penalty term for the LASSO. With respect to other penalized
estimators, when λ1 > · · · > λp > 0, SLOPE (and a fortiori OSCAR) has the particularity to perform
clustering selection, namely some components of the SLOPE estimator are equal in absolute value
(Bondell and Reich, 2008; Schneider and Tardivel, 2020). Moreover, in the linear Gaussian model, by
taking λ1 = σΦ−1(1 − α/2p), . . . , λp = σΦ−1(1 − α/2) (where Φ is the standard normal cumulative
distribution function) SLOPE estimator allows to controls the False Discovery Rate at level α in the
particular case where X is an orthogonal matrix (Bogdan et al., 2015). Note that the above hyper-
parameter also called BH sequence coincides with thresholds given in the seminal article introducing
the Benjamini-Hocheberg’s procedure and controlling the FDR (Benjamini and Hochberg, 1995).

Numerically, like many penalized estimators where the loss function is smooth and the penalty
term is non-smooth, one may solve SLOPE or OSCAR with a backward forward proximal gradient
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algorithm (see e.g. Parikh and Boyd (2014)). This method relies on the computation of the proximal
operator for the sorted l1 norm. This operator is also a very important tool for the development of
the approximate message passing theory (Bu et al., 2020; Zhang and Bu, 2021).

There is a particular case under which the proximal operator of the sorted l1 norm is explicit;
when y1 ≥ · · · ≥ yp ≥ 0 and y1 − λ1 ≥ . . . ,≥ yp − λp then the proximal operator is simply given by
((y1 − λ1)+, . . . , (yp − λp)+). Except for this particular case, the proximal operator of the sorted l1
norm was believed as tedious to compute explicitly. When components of y are non-increasing and non-
negative, an algorithm computing the proximal operator for the sorted l1 norm is given in Bogdan et al.
(2015) (see algorithm 3). This algorithm suggests to first identify a sub-sequence yi − λi, . . . , yj − λj
non-decreasing and non-constant (where i < j) and then to substitute 1) (yi, . . . , yj) by ((

∑j
l=i yl)/(j+

1− i), . . . , (
∑j
l=i yl)/(j+1− i)) and 2) (λi, . . . , λj) by ((

∑j
l=i λl)/(j+1− i), . . . , (

∑j
l=i λl)/(j+1− i)).

Whereas correct, we believe that this algorithm is difficult to implement because it is not easy to
identify iteratively non-decreasing and non-constant sub-sequence.

The main motivation for this note is to provide a short and simple formula for the proximal operator
of the sorted l1 norm. The proof for this formula is based on recent advances on sub-differential
calculus for the sorted l1 norm and on the description of the sign permutahedron polytope (the sign
permutahedron is the sub-differential of the sorted l1 norm at 0) (Schneider and Tardivel, 2020). We
also illustrate that some sub-differential calculus rules give geometrical insights for testing procedures
based on SLOPE. In particular there is a geometrical way to understand why the testing procedure
based on SLOPE with the BH sequence is more conservative than the seminal Benjamini Hochberg’s
procedure.

1.1 Notation
Given a hyper-parameter λ = (λ1, . . . , λp) where λ1 > 0 and λ1 ≥ . . . , λp ≥ 0 the sorted l1 norm Jλ is
defined as follows:

∀x ∈ Rp, Jλ(x) = λ1|x|↓1 + · · ·+ λp|x|↓p
where |x|↓1 ≥ · · · ≥ |x|↓p are sorted components of x with respect to the absolute value.

Given an sorted l1 norm, the proximal operator is defined as follows:

∀y ∈ Rp,proxJλ(y) = argmin
x∈Rp

1

2
‖y − x‖22 + Jλ(x).

Hereafter, we also use the following notation

• Let x = (x1, . . . , xp) ∈ Rp and I ⊂ {1, . . . , p}, the writing xI represents the vectors (xi)i∈I .
Moreover, the notatation x↓1 ≥ · · · ≥ x↓p represents sorted components of x.

• The notation Sp represents the group of permutations in {1, . . . , p}.

2 Proximal operator for the sorted l1 norm
Given an orthogonal transformation (for all u, v ∈ Rp, u′v = ψ(u)′ψ(v) or equivalently ψ′ψ = I) such
that whatever u ∈ Rp, Jλ(ψ(u)) = Jλ(u) then one may quite easily prove the following identity

proxJλ(y) = ψ′(proxJλ(ψ(y))).

One may observe that the orthogonal transformation ψ(x) = (ε1xπ(1), . . . , εpxπ(p)) where π is a permu-
tation of {1, . . . , p} and ε1, . . . , εp ∈ {−1, 1} is also an isometry for the sorted l1 norm (independently
of λ). Specifically when |y|↓ = ψ(y) then one may obtain the following equality

proxJλ(y) = ψ′(proxJλ(|y|↓)).

Consequently, in Proposition 1, one may restrict our statement to the particular case where y1 ≥ · · · ≥
yp ≥ 0 as already pointed out by Bogdan et al. (2015).
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Proposition 1. Let y ∈ Rp such that y1 ≥ · · · ≥ yp ≥ 0, λ ∈ Rp such that λ1 > 0 and λ1 ≥ · · · ≥
λp ≥ 0.

Using the Cesàro sequence (Cj)1≤j≤p where Cj = 1
j

∑j
i=1(yi − λi), one may compute explicitly the

first components of proxJλ(y). Specifically, let k ∈ {1, . . . , p} the largest integer for which the Cesàro
sequence reaches its maximum. Then, the proximal operator satisfies the following formula:

proxJλ(y) =

{
(0, . . . , 0) if Ck ≤ 0

(Ck, . . . , Ck, proxJλk+1,...,λp
(yk+1, . . . , yp)) otherwise

. (2)

2.1 Proof of Proposition 1
Let λ ∈ Rp such that λ1 > 0 and λ1 ≥ · · · ≥ λp ≥ 0. Sub-differential calculus of the sorted l1 norm
satisfies the following properties given in Propositions 5 and 8 in Schneider and Tardivel (2020) and
in Lemma A.2 in Tardivel et al. (2020).

Sub-differential at 0: sign permutahedron The following inclusion holds

∂Jλ(0) = conv((σ1λπ(1), . . . , σpλπ(p)), σ1, . . . , σp ∈ {−1, 1}, π ∈ Sp).

The V-polytope P±(λ1, . . . , λp) := conv((σ1λπ(1), . . . , σpλπ(p)), σ1, . . . , σp ∈ {−1, 1}, π ∈ Sp), so
called sign-permutahedron can be described as a H-polytope as follows:

P±(λ1, . . . , λp) =

{
x ∈ Rp : ∀j ∈ {1, . . . , p},

j∑
i=1

|x|↓j ≤
j∑
i=1

λi

}
.

For the H-description of the sign permutahedron one may see Godland and Kabluchko (2020)
and references therein. Finally, whatever x ∈ Rp, ∂Jλ(x) ⊂ P±(λ1, . . . , λp) (this fact is also
reminded and proved in Lemma 2).

Sub-differential at a constant vector: permutahedron Let c > 0 then the following inclusion
holds

∂Jλ(c, . . . , c) = conv((λπ(1), . . . , λπ(p)), π ∈ Sp)

The V-polytope P (λ1, . . . , λp) := conv((λπ(1), . . . , λπ(p)), π ∈ Sp), so called permutahedron can
be described as an H-polytope as follows:

P (λ1, . . . , λp) =

{
x ∈ Rp :

p∑
i=1

xi =

p∑
i=1

λi and ∀j ∈ {1, . . . , p− 1},
j∑
i=1

x↓i ≤
j∑
i=1

λi

}
.

For the H-description of the permutahedron, one may see Godland and Kabluchko (2020) and
references therein.

Computation rule for sub-differential calculus Let x ∈ Rp such that x1 ≥ · · · ≥ xk > xk+1 ≥
· · · ≥ xp ≥ 0, I = {1, . . . , k} and I = {k + 1, . . . , p} then

∂Jλ(x) = ∂JλI (xI)× ∂Jλ
I
(xI). (3)

Proposition 1 is a consequence of Lemma 1 below, which mainly reminds some results hidden in
Tardivel et al. (2020). Proofs are shortened and, contrarily to the seminal article of Tardivel et al.
(2020), the closed-form formula for the proximal operator of SLOPE is derived from H-descriptions of
permutahedron and sign-permutahedron.
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Lemma 1. Let y ∈ Rp such that y1 ≥ · · · ≥ yp ≥ 0 and let f be the following function

f : x ∈ Rp 7→ 1

2
‖y − x‖22 + Jλ(x).

Let (Cj)1≤j≤p be the Cesàro sequence defined by Cj := 1
j

∑j
i=1(yi − λi) then the following properties

hold:

i) The unique minimizer of f , denoted x∗, satisfies x∗1 ≥ · · · ≥ x∗p ≥ 0.

ii) The unique minimizer of f is x∗ = (0, . . . , 0) if and only if the Cesàro sequence is non-positive.

ii) If the unique minimizer x∗ of f satisfies x∗1 = · · · = x∗p = c > 0 then Cp = c and the Cesàro
sequence reaches its maximum at p. Conversely if the Cesàro sequence reaches its maximum at
p and Cp > 0 then x∗ = (Cp, . . . , Cp).

iv) If the unique minimizer x∗ of f satisfies x∗1 = · · · = x∗k = c > x∗k+1 ≥ · · · ≥ x∗p ≥ 0 then
c = Ck and the largest integer for which the Cesàro reaches its maximum is k. Conversely,
if the largest integer for which the Cesàro reaches its maximum is k < p and Ck > 0 then
x∗1 = · · · = x∗k = Ck > x∗k+1 ≥ · · · ≥ x∗p ≥ 0.

v) If the unique minimizer x∗ of f satisfies x∗1 = · · · = x∗k > x∗k+1 ≥ · · · ≥ x∗p ≥ 0 then x∗
I
, where

I = {k + 1, . . . , p}, is the minimizer of the function

fI : x ∈ Rp−k 7→ 1

2
‖yI − x‖

2
2 + JλI (x).

Proof. i) We remind the proof already given Bogdan et al. (2015). Let x ∈ Rp. Let us prove the
following inequality

1

2
‖y − x‖22 − Jλ(x) ≥ 1

2
‖y − |x|↓‖22 − Jλ(|x|↓).

Since Jλ(x) = Jλ(|x|↓) and ‖x‖22 = ‖|x|↓‖2 we have

1

2
‖y − x‖22 + Jλ(x) ≥ 1

2
‖y − |x|↓‖22 + Jλ(|x|↓),

⇔ ‖y − x‖22 ≥ ‖y − |x|↓‖22,
⇔ x′y ≤ |x|′↓y.

Now, clearly x′y ≤ |x|′y where |x| = (|x1|, . . . , |xp|). Finally, due to the rearrangement inequality
(Hardy, 1952) one may deduce that |x|′y ≤ |x|′↓y. Therefore the minimizer x∗ of f satisfies f(x∗) ≥
f(|x∗|↓). Since this minimizer is unique, one may deduce that x∗ = |x∗|↓ and thus x∗1 ≥ · · · ≥ x∗p ≥ 0.

ii) The minimizer of f is 0 if and only if y − 0 ∈ ∂Jλ(0) = P±(λ1, . . . , λp). Due to H-description
of the sign permutahedron, one may deduce the following equivalences:

y ∈ P±(λ1, . . . , λp)⇔ ∀j ∈ {1, . . . , p},
j∑
i=1

yi ≤
j∑
i=1

λi ⇔ ∀j ∈ {1, . . . , p}, Cj ≤ 0.

iii) If x∗ satisfies x∗1 = · · · = x∗p = c > 0 then y − x∗ ∈ ∂Jλ(x∗) = P (λ1, . . . , λp). Consequently, due to
the H-description of the permutahedron, one may deduce the following inequalities:

y − x∗ ∈ P (λ1, . . . , λp) ⇒

{∑p
i=1(yi − x∗i ) =

∑p
i=1(yi − c) =

∑p
i=1 λi and

∀j < p,
∑j
i=1(y − x∗)↓i =

∑j
i=1(yi − c) ≤

∑j
i=1 λi

,

⇒ c =

∑p
i=1(yi − λi)

p
= Cp and ∀j < p,

∑j
i=1(yi − λi)

j
= Cj ≤ c.
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Consequently, Cp = c and the Cesàro sequence reaches its maximum at p.

Conversely, when the Cesàro sequence reaches its maximum at p and Cp > 0, let us show that x∗ =
(Cp, . . . , Cp). In other words, we have to prove that y − x∗ ∈ P (λ1, . . . , λp) where x∗ = (Cp, . . . , Cp).
One checks hereafter that y − x∗ satisfies inequalities of the permutahedron:

p∑
i=1

(yi − Cp) =

p∑
i=1

yi −
p∑
i=1

(yi − λi) =

p∑
i=1

λi

∀j ∈ [p− 1],

j∑
i=1

(y − x∗)↓i =

j∑
i=1

(yi − Cp) ≤
j∑
i=1

(yi − Cj) =

j∑
i=1

yi −
j∑
i=1

(yi − λi) =

j∑
i=1

λi.

iv) If the minimizer x∗ of f satisfies x∗1 = · · · = x∗k = c > x∗k+1 ≥ · · · ≥ x∗p ≥ 0 then

y − x∗ ∈ ∂Jλ(x∗) = P (λ1, . . . , λk)× ∂JI (xI).

Let I = {1, . . . , k}. Since yI −x∗I ∈ P (λ1, . . . , λk), due to the H-description of the permutahedron, one
may deduce the following inequalities:

yI − x∗I ∈ P (λ1, . . . , λk) ⇒

{∑k
i=1(yi − x∗i ) =

∑k
i=1(yi − c) =

∑k
i=1 λi and

∀j < k,
∑j
i=1(y − x∗)↓i =

∑j
i=1(zi − c) ≤

∑j
i=1 λi

,

⇒ c =

∑k
i=1(yi − λi)

k
= Ck and ∀j < k,

∑j
i=1(yi − λi)

j
= Cj ≤ c.

Consequently, Ck = c. Now, let us achieve to prove that the Cesàro sequence reaches its maximum at
k. Because y−x∗ is an element of the sign permutahedron, one may deduce the following inequalities:

∀j > k,

j∑
i=1

yi − x∗i ≤
j∑
i=1

λi ⇒ ∀j > k,

∑j
i=1 yi − λi

j
= Cj ≤

∑j
i=1 x

∗
i

j
< c.

Conversely, when the largest integer for which the Cesàro sequence reaches its maximum is k where
k < p and Ck > 0 then let us prove that x∗1 = · · · = x∗k = Ck > x∗k+1 ≥ · · · ≥ x∗p. Because Ck > 0 and
k < p, according to ii) and iii), one may deduce that x∗ 6= 0 and x∗ is not constant. In addition, be-
cause components of x∗ are decreasing and non-negative, one may deduce that, there exists an integer
l ∈ {1, . . . , p} such that x∗1 = · · · = x∗l > xl+1 ≥ · · · ≥ x∗p ≥ 0. The first part of the proof shows that
the largest integer for which the Cesàro sequence reaches its maximum is l and x∗1 = · · · = x∗l = Cl.
Consequently k = l and x∗1 = · · · = x∗k = Ck > x∗k+1 ≥ · · · ≥ x∗p ≥ 0.

v) Let I = {1, . . . , k} and let us remind that I = {k + 1, . . . , p}. Because the minimizer of f sat-
isfies x∗1 = · · · = x∗k > x∗k+1 ≥ · · · ≥ x∗p ≥ 0, according to (3), one may deduce that

y − x∗ ∈ ∂Jλ(x∗) = ∂JλI (x∗I)× ∂Jλ
I
(x∗
I
)⇒ yI − x

∗
I
∈ ∂Jλ

I
(x∗
I
).

The last belonging implies that x∗
I
is a minimizer of fI .

3 Comparison between procedures based on the ordinary least
squares estimators and procedures based on SLOPE

In this section we consider a linear regression model Y = Xβ + ε where X ∈ Rn×p is an orthogonal
matrix, β ∈ Rp is an unknown parameter and ε ∈ Rp is a random noise (for instance, one may assume
that ε has iid N (0, σ2) components).
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SinceX is an orthogonal matrix, SLOPE estimator solution of (2) satisfies β̂slope = proxJλ(β̂ols) and
moreover |β̂slope|↓ = proxJλ(|β̂ols|↓) where β̂ols = X ′Y . Some components of SLOPE are exactly equal
to 0 and thus one may provide a testing procedure based on SLOPE by rejecting the null hypothesis
H0
i : βi = 0 (for some i ∈ {1, . . . , p}) when β̂slope

i 6= 0 (Bogdan et al., 2015; Kos and Bogdan, 2020).
Actually, the multiple testing procedure based on SLOPE rejects at least k null hypotheses (associated
to the k−largest components of β̂ols in absolute value) when |β̂slope|↓k > 0 and this procedure rejects
exactly k null hypotheses when |β̂slope|↓k > 0 and |β̂slope|↓k+1 = 0.

Proposition 2 is useful to compare multiple testing procedures based on β̂ols with procedures based
on SLOPE.

Proposition 2. Let λ = (λ1, . . . , λp) where λ1 > 0 and λ1 ≥ λ2 · · · ≥ λp and let us remind that, in
the orthogonal setting, |β̂slope|↓ = proxJλ(|β̂ols|↓). The following implication occurs

|β̂ols|↓1 > λ1, . . . , |β̂ols|↓k > λk ⇒ |β̂slope|↓k > 0.

According to the above implication, a step-down procedure based on the ordinary least squares estimator
and thresholds λ1, . . . , λp is less powerful than a procedure based on SLOPE.

The following implication occurs

|β̂slope|↓k > 0 ⇒ ∃i ≥ k, |β̂ols|↓i > λi.

According to the above implication, a step-up procedure based on the ordinary least squares estimator
and thresholds λ1, . . . , λp is more powerful than a procedure based on SLOPE.

For instance, let us chose the hyper-parameter λ as in the Holm’s procedure (Holm, 1979) and
Hochberg’s procedure (Hochberg, 1988):

λ1 = σΦ−1
(

1− α

2p

)
, λ2 = σΦ−1

(
1− α

2(p− 1)

)
, . . . , λp = σΦ−1

(
1− α

2

)
.

Then, according to Proposition 2, the procedure based on SLOPE is more powerful than the Holm
step-down procedure but less powerful than the Hochberg step-up procedure. Otherwise, according to
the second implication, when the hyper-parameter for SLOPE is given by the BH sequence (namely
λ1 = σΦ−1(1− α/2p), . . . , λp = σΦ−1(1− α/2)) then, the procedure based on SLOPE is less powerful
than the (step-up) Benjamini-Hochberg’s multiple testing procedure.

3.1 Proof of Proposition 2
The proof of Proposition 2 is based on two inclusions given in Lemma 2.

Lemma 2. Let λ ∈ Rp such that λ1 > 0 and λ1 ≥ · · · ≥ λp.

i) Let x ∈ Rp then ∂Jλ(x) ⊂ ∂Jλ(0) = P±(λ1, . . . , λp).

ii) Let x ∈ Rp such that x1 > 0, . . . , xp > 0 then, ∂Jλ(x) ⊂ P (λ1, . . . , λp).

Proof. The proof of i) is already given in Proposition 5 of Schneider and Tardivel (2020). However, we
provide hereafter a proof based on the H-description of the sign permutahedron. Let s ∈ ∂Jλ(x) and
let π a permutation such that |sπ(1)| ≥ · · · ≥ |sπ(p)|. Let h =

∑k
i=1 sign(sπ(i))eπ(i) where e1, . . . , ep

is the canonical basis of Rp and k ≤ p. Because Jλ is a norm and s is a sub-gradient, the following
inequality occurs:

Jλ(x) +

k∑
i=1

λi = Jλ(x) + Jλ(h) ≥ Jλ(x+ h) ≥ Jλ(x) +

k∑
i=1

sπ(i)sign(sπ(i)) = Jλ(x) +

k∑
i=1

|s|↓i.
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Consequently, whatever k ∈ {1, . . . , p},
∑k
i=1 |s|↓i ≤

∑k
i=1 λi. Thus, s ∈ P±(λ1, . . . , λp).

ii) Let s ∈ ∂Jλ(x) and let 1 = (1, . . . , 1). Let us illustrate that s satisfies the H-description of the
permutahedron. For η ∈ R small enough the vector x + η1 is component-wise positive and clearly
(x+ η1)↓ = (x↓1 + η, . . . , x↓p + η). Consequently, the following inequality occurs:

Jλ(x− η1) =

p∑
i=1

λi(x↓i + η) = Jλ(x) + η

p∑
i=1

λi ≥ Jλ(x) + η

p∑
i=1

si (4)

Taking η > 0 (resp. η < 0) small enough in equation (4), one may derive that
∑p
i=1 λi ≥

∑p
i=1 si

(resp.
∑p
i=1 λi ≤

∑p
i=1 si) implying thus

∑p
i=1 λi =

∑p
i=1 si. Let π be a permutation in {1, . . . , p}

such that sπ(1) ≥ · · · ≥ sπ(p) and let h =
∑k
i=1 eπ(i) where k < p. Because Jλ is a norm and s is a

sub-gradient, the following inequality occurs:

Jλ(x) +

k∑
i=1

λi = Jλ(x) + Jλ(h) ≥ Jλ(x+ h) ≥ Jλ(x) +

k∑
i=1

sπ(i)

Consequently, whatever k ∈ {1, . . . , p − 1},
∑k
i=1 s↓i ≤

∑k
i=1 λi, which achieves to prove that s ∈

P (λ1, . . . , λp).

Hereafter, we provide the proof of Proposition 2.

Proof. Let us prove the first implication by contradiction. If |β̂slope|↓k = 0 then k0 := min{i ∈
{1, . . . , p} : |β̂slope|↓i = 0} clearly satisfies k0 ≤ k. Because |β̂slope|↓ = proxJλ(|β̂ols|↓) then, using
sub-differential rule described in (3) and Lemma 2, one may deduce the following inclusion:

|β̂ols|↓ − |β̂slope|↓ ∈ ∂Jλ(|β̂slope|↓) ⊂

{
P±(λ1, . . . , λp) if k0 = 1

P (λ1, . . . , λk0−1)× P±(λk0 , . . . , λp) if k0 > 1

Since a vector in P±(λk0 , . . . , λp) has its first component smaller in absolute value than λk0 one may
deduce that |β̂ols|↓k0 ≤ λk0 which contradicts that |β̂ols|↓1 > λ1, . . . , |β̂ols|↓k > λk.

Let us prove the second implication. If |β̂slope|↓k > 0 then k0 := max{i ∈ {1, . . . , p} : |β̂slope|↓i > 0}
clearly satisfies k0 ≥ k. Using the same argument as above one may deduce the following inclusion:

|β̂ols|↓ − |β̂slope|↓ ∈ ∂Jλ(|β̂slope|↓) ⊂

{
P (λ1, . . . , λp) if k0 = p

P (λ1, . . . , λk0)× P±(λk0+1, . . . , λp) if k0 < p

Since a vector in P (λ1, . . . , λk0) has its last component larger than λk0 one may deduce that |β̂ols| −
|β̂slope|↓k0 ≥ λk0 and thus |β̂ols|↓k0 > λk0 .
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