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In this paper, a reduced order coupled finite element/boundary element method (FEM/BEM) for control of noise radiation and sound transmission of vibrating structure by viscoelastic and passive piezoelectric treatments is presented. The system consists of a sandwich structure composed of elastic faces and a viscoelastic core (with surface mounted piezoelectric patches) and coupled to external/internal acoustic domains. The passive shunt damping strategy is employed for vibration attenuation in the low-frequency range while dissipative viscoelastic materials are used for the higher-frequency domain. The originality of the present paper lies (i) in evaluating the classically used FEM/BEM methods for structural-acoustics problems when taking account smart systems at the fluid-structure interfaces and viscoelastic interlayers and (ii) in development of a reduced-order model, based on a normal mode expansion, able to capture the main characteristics of the system dynamical behavior.

Introduction

Sandwich structures with a viscoelastic layers are commonly used in many applications for vibration damping and noise control. In such structures, the main energy loss mechanism is due to the transverse shear of the viscoelastic core. However, accurate modeling of structures with viscoelastic materials is difficult because the measured dynamic properties of viscoelastic material are frequency and temperature dependent. This motivated several authors to develop accurate numerical methods of modeling the effects of viscoelastic damping mechanisms which introduce frequency dependence [START_REF] Ferreira | A finite element model using a unified formulation for the analysis of viscoelastic sandwich laminates[END_REF][START_REF] Madeira | Multiobjective design of viscoelastic laminated composite sandwich panels[END_REF][START_REF] Araújo | Finite element model for hybrid active-passive damping analysis of anisotropic laminated sandwich structures[END_REF][START_REF] Araújo | Optimal design for active damping in sandwich structures using the Direct MultiSearch method[END_REF]. A review of these methods can be found in [START_REF] Vasques | Viscoelastic damping technologiesPart I: Modeling and finite element implementation[END_REF]. Concerning the application of these structures in noise and vibration attenuation, we can cite for example [START_REF] Dijckmans | Sound transmission through finite lightweight multilayered structures with thin air layers[END_REF][START_REF] Akrout | Vibro-acoustic behaviour of laminated double glazing enclosing a viscothermal fluid cavity[END_REF]. In [START_REF] Dijckmans | Sound transmission through finite lightweight multilayered structures with thin air layers[END_REF], the measured sound transmission loss of multilayered structures is compared with transfer matrix method results (assuming infinite layers) and a wave based model (taking into account finite dimensions) to show the importance of the finite dimensions in a broad frequency range. The effects of viscothermal fluid in laminated double glazing are investigated in [START_REF] Akrout | Vibro-acoustic behaviour of laminated double glazing enclosing a viscothermal fluid cavity[END_REF] using a finite element approach. However, at low frequency, the acoustic performance of this type of systems is greatly deteriorated and the viscoelastic layer is not effective in treating the fall of sound transmission loss and the vibration reduction. The aim of this reported research work is to reduce the vibration and the sound transmission at low resonance frequencies by a passive piezoelectric shunt technique through a fully coupled finite element/boundary element modeling of the problem. In this technology, the structure is equipped with piezoelectric patches that are connected to a passive electrical circuit, called a shunt. The piezoelectric patches transform mechanical energy of the vibrating structure into electrical energy, which is then dissipated by Joule heat in the shunt circuits. Several shunt circuits can be considered: the classical R-and RL-shunts, proposed by Hagood and Von Flotow [START_REF] Hagood | Damping of structural vibrations with piezoelectric materials and passive electrical network[END_REF] and improvements of those techniques, using several piezoelectric elements [START_REF] Dellisola | Passive damping of beam vibrations through distributed electric networks and piezoelectric transducers: prototype design and experimental validation[END_REF][START_REF] Collet | Wave motion optimization in periodically distributed shunted piezocomposite beam structures[END_REF][START_REF] Casadei | Broad band vibration control through periodic arrays of resonant shunts: experimental investigation on plates[END_REF], active fiber composites [START_REF] Belloli | Structural vibration control via RL-shunted active fiber composites[END_REF] or adaptive shunts [START_REF] Niederberger | Adaptive multi-mode resonant piezoelectric shunt damping[END_REF], and recently semi-passive techniques, commonly known as switch techniques [START_REF] Guyomar | Wave reflection and transmission reduction using piezoelectric semipassive nonlinear technique[END_REF][START_REF] Ducarne | Structural vibration reduction by switch shunting of piezoelectric elements: modeling and optimization[END_REF][START_REF] Larbi | Structural-acoustic vibration reduction using switched shunt piezoelectric patches: a finite element analysis[END_REF]. As those techniques are passive (or semi-passive if some electronic components have to be powered), a critical issue is that their performances, in terms of damping efficiency, directly depend on the electromechanical coupling between the host structure and the piezoelectric elements, which has to be maximized and necessitates the development of predictive models.

The present work concerns the numerical modeling of noise and vibration reduction of laminated structures with viscoelastic interlayers by using shunted piezoelectric elements. The frequency domains of interest are the low and medium frequency ranges. The aim is to propose an efficient reduced order coupled finite element/boundary element model able to predict the shunt damping around the resonance frequencies of the system. In the first part of this paper, a finite element formulation (FEM) of sandwich structures with viscoelastic core and equipped with shunted piezoelectric patches is presented. This formulation involves structural displacement in the structure (sandwich structure with piezoelectric elements), acoustic pressure in the fluid cavity and the electric charge and voltage between the electrodes in the piezoelectric patches. The charge/voltage variables are intrinsically adapted to include any external electrical circuit into the electromechanical problem and to simulate the effect of shunt damping techniques. Moreover, since the elasticity modulus of the viscoelastic core is complex and frequency dependent, this formulation is complex and nonlinear in terms of frequency. The direct solution of this problem can only be considered with models which do not imply a prohibitive number of degrees of freedom. This has severe limitations in attaining adequate accuracy and wider frequency ranges of interest. A reduced order-model is then proposed to solve the problem at a lower cost in the second part of this paper. The proposed methodology, based on a normal mode expansion, requires the computation of the uncoupled structural and acoustic modes. The uncoupled structural modes are the real and undamped modes of the sandwich structure without fluid pressure loading at fluid-structure interface and with short-circuited and open-circuited patches, whereas the uncoupled acoustic modes are the cavity modes with rigid wall boundary conditions at the fluid-structure interface. It is shown that the projection of the full-order coupled finite element model on the uncoupled bases, leads to a reduced order model in which the main parameters are the classical fluid-structure coefficient, the residual stiffness complex coupling factors and the electromechanical coupling factors. Because of its reduced size, this model is proved to be very efficient for simulations of steady-state and frequency analyses of the fully coupled visco-electro-mechanical-acoustic system and the computational effort is significantly reduced. Note that the computing of eigenmodes in the medium frequency range presents no difficulty in this work. Indeed, the new numerical computing tools allow easy access to these modes which has not been the case before. As a next step, the direct boundary element method (BEM) is used for modeling the scattering/radiation of sound by the structure coupled to an external acoustic domain. The BEM is derived from a boundary integral equation involving the surface pressure and normal acoustic velocity at the boundary of the acoustic domain. The coupled FEM-BEM model is obtained by using a compatible mesh at the fluid-structure interface. In the last part of the paper, a numerical example is presented in order to validate and analyze results computed from the proposed formulations.

Numercial modeling of the structure

Consider a thin sandwich structure, denoted Ω E , made of elastic faces and viscoelastic core (Figure 1). A prescribed force density F d is applied to the external boundary Γ σ of Ω E and a prescribed displacement u d is applied on a part Γ u of Ω E . The structure is coupled to internal and external fluids denoted Ω F i and Ω F e , respectively. These fluids are considered homogeneous, inviscid and compressible and the gravity effects are neglected. We denote by Σ i and Σ e the internal and external fluid-structure interfaces, respectively, such that Σ i ∪ Σ e is a partition of the all fluid-structure interface Σ. Moreover, n S and n F are the normal units external to the solid and fluid domains, respectively. In order to achieve maximum vibration dissipation and acoustic radiation attenuation of selected modes, the passive piezoelectric shunt damping technique is used. Thus, a set of P piezoelectric patches are bonded to the structure surface and connected to resistive or resonant shunt circuits. In this technology, the piezoelectric patches convert a fraction of mechanical energy associated with the structure vibration into electrical energy, which is dissipated by heat through the resistor in the shunt circuits. Each piezoelectric patch has the shape of a plate with its upper and lower surfaces covered with very thin layer electrodes. The pth patch, p ∈ {1, • • • , P }, occupies a domain Ω (p) such that (Ω E , Ω (1) , • • • , Ω (P ) ) is a partition of the all structure domain Ω S . Moreover, we denote by R (p) and L (p) the resistance and the inductance of the resonant shunt circuit connected to the pth patch.
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Modeling of the viscoelastic core

According to the theory of linear viscoelasticity [START_REF] Christensen | Theory of Viscoelasticity: An Introduction[END_REF] applied to anisotropic viscoelastic material, the one-dimensional stress σ is related to the strain history ε by a characteristic relaxation function G(t):

σ(t) = t -∞ G(t -τ ) ∂ε ∂τ dτ (1) 
Under steady-state harmonic oscillation conditions and using the Fourier transform, the constitutive equation becomes

σ * (ω) = G * (ω)ε * (ω) ( 2 
)
where ω is the angular frequency, G * (ω) is the so-called complex modulus characterizing the viscoelastic material, which can be expressed as

G * (ω) = G (ω)(1 + iη(ω)) (3) 
with G (ω) = Re(G * (ω)) the storage modulus, η(ω) = Im(G * (ω))/Re(G * (ω)) the loss factor and i 2 = -1.

Many viscoelastic models aim at representing the frequency-dependence of viscoelastic materials' properties by a complex shear modulus G * , which depends on frequency and a series of parameters to be identified on master curves. The Poisson coefficient is commonly supposed constant in the studied frequency range, so that the Young modulus and the shear modulus are proportional. Some of the most well-known models are the Golla-Hughes-McTavish (GHM) [START_REF] Golla | Dynamics of viscoelastic structures-a time domain finite element formulation[END_REF], the anelastic displacement field (ADF) [START_REF] Lesieutre | Time domain model ingof linear viscoelastic ityusinganelastic displacement fields[END_REF] models, and the fractional derivative model [START_REF] Bagley | Fractional calculus -a different approach to analysis of viscoelastically damped structures[END_REF][START_REF] Galucio | Finite element formulation of viscoelastic sandwich beams using fractional derivative operators[END_REF]. Their corresponding expressions of the complex shear modulus are presented in Table 1 in terms of various parameters.

The frequency dependent material properties of the polyvinyl butyral (PVB) were determined by doing a Havriliak-Negami fit of data found using a Dynamic Mechanical Thermal Analyzer. The fractional derivative model enables a good representation of the viscoelastic properties of the PVB (Figure 2) with a minimum number of parameters (G0 = 0.479 MPa

Viscoelastic model

Complex shear modulus

GHM G * (ω) = G 0 1 + J j=1 α j -ω 2 +2iξ j ω j ω -ω 2 +2iξ j ω j ω+ω 2 j ADF G * (ω) = G 0 1 + J j=1 ∆ j ω 2 +iωΩ j ω 2 +Ω 2 j Fractional derivative G * (ω) = G ∞ + (G 0 -G ∞ ) [1 + (iωτ ) 1-α ] -β
Table 1: Complex shear modulus expressions of GHM, ADF and fractional models. and G ∞ = 0.235 GPa are the asymptotic values of the shear modulus when ω -→ 0 and ω -→ ∞, respectively, τ = 0.3979 is the relaxation time and α = 0.46 and β = 0.1946 are the parameters of the fractional derivative). The choice of the fractional derivative model minimizes the number of variables which is of practical importance for future optimization of the viscoelastic properties. Note that this material will be used for the numerical example of this paper.

Modeling of the piezoelectric patches

For each piezoelectric patch, a set of hypotheses, which can be applied to a wide spectrum of practical applications, are formulated:

• The piezoelectric patches are thin, with a constant thickness, denoted h (p) for the pth patch;

• The thickness of the electrodes is much smaller than h (p) and is thus neglected;

• The piezoelectric patches are polarized in their transverse direction (i.e. the normal direction to the electrodes).

Under those assumptions, the electric field vector, E, can be considered normal to the electrodes and uniform in the piezoelectric patch [START_REF] Thomas | Vibrations of an elastic structure with shunted piezoelectric patches: efficient finite elements formulation and electromechanical couplings coefficients[END_REF], so that for all p ∈ {1, • • • , P }:

E = - V (p) h (p) n in Ω (p) (4) 
where V (p) is the potential difference between the upper and the lower electrode surfaces of the pth patch which is constant over Ω (p) and n is the normal unit vector to the surface of the electrodes. Moreover, the linear piezoelectric constitutive equations are:

σ = c ε -e T E (5) D = e ε + E (6) 
where ε = 1 2 ∇u + ∇ T u is the linearized deformation tensor, u is the mechanic displacement field, σ is the stress tensor, D denotes the electric displacement, c denotes the elastic moduli at a constant electric field, e denotes the piezoelectric constants, and denotes the dielectric permittivities at constant strain [START_REF] Gaudenzi | Smart structures: physical behaviour, mathematical modelling and applications[END_REF].

Finite element formulation of sandwich structure with piezoelectric shunt systems 2.3.1. System equations in the frequency domain

The local equations of sandwich structure with piezoelectric patches and submitted to an acoustic pressure p are

div σ + ω 2 ρ S u = 0 in Ω S (7a) σ n S = F d on Γ σ (7b) u = 0 on Γ u (7c) σ n S = p n F on Σ i (7d) div D = 0 in Ω (p) (8a) D • n S = Q d on Γ (p) D (8b) 
where ρ S is the structure mass density. Equation (7a) corresponds to the elastodynamic equation in the absence of body force; Equations (7b) and (7c) are the classical mechanical boundary conditions; Equation (7d) results from the action of pressure forces exerted by the internal fluid on the structure; Equation (8a) corresponds to the electric charge equation for a dielectric medium; Equation (8b) corresponds to the electric boundary condition for the pth patch defined by a prescribed surface density of the electric charge

Q d on Γ (p) D .
Note that due to the properties of the viscoelastic core, the stress tensor of the structure is complex and frequency dependent. It will be noted σ * (u, ω).

Variational formulation

By considering successively each of the P +1 subdomains (Ω E , Ω (1) , • • • , Ω (P ) ), the variational formulation of the sandwich structure/piezoelectric-patches coupled system can be written in terms of the structural mechanical displacement u, the electric potential difference V (p) constant in each piezoelectric patch, and the internal fluid pressure p at the fluid-structure interface Σ i [START_REF] Larbi | Vibration of axisymmetric composite piezoelectric shells coupled with internal fluid[END_REF][START_REF] Larbi | Finite element formulation of smart piezoelectric composite plates coupled with acoustic fluid[END_REF][START_REF] Deü | Piezoelectric structural acoustic problems: Symmetric variational formulations and finite element results[END_REF]]

Ω S σ * : ε(δu) dv + P p=1 V (p) h (p) Ω (p) e (p)T n (p) : ε(δu) dv -ω 2 Ω S ρ S u • δu dv - Σ i p n F • δu ds = Γσ F d • δu ds ∀δu ∈ C * u (9)
where the admissible space C * u is defined by (p) defines the capacitance of the pth piezoelectric patch (S (p) being the area of the patch and (p) [START_REF] Trindade | On the finite element characterization of d31 macro-fibre composites effective properties[END_REF] the piezoelectric material permittivity in the normal direction to the electrodes) and Q (p) is the global charge in one of the electrodes (see [START_REF] Thomas | Vibrations of an elastic structure with shunted piezoelectric patches: efficient finite elements formulation and electromechanical couplings coefficients[END_REF]).

C * u = {u ∈ C u | u = 0 on Γ u }. C u being the admissible space of regular functions u in Ω S . P p=1 δV (p) C (p) V (p) - P p=1 δV (p) h (p) Ω (p) e (p) : ε(u) •n (p) dv = P p=1 δV (p) Q (p) ∀δV (p) ∈ R (10) where C (p) = (p) 33 S (p) /h

Finite element discretization

After discretization of the previous variational formulation by the finite element method and using the following additional relation between electrical potential differences and electric charges due to the shunt circuits:

-ω 2 LQ -iωRQ + V = 0 (11) 
we find the following matrix equation:

K * u (ω) + C uV K -1 V C T uV C uV K -1 V -C up K -1 V C T uV K -1 V 0   U Q P   -iω 0 0 0 0 R 0   U Q P   -ω 2 M u 0 0 0 L 0   U Q P   = F 0 ( 12 
)
where

Q = (Q (1) Q (2) • • • Q (P ) ) T and V = (V (1) V (2) • • • V (P )
) T are the column vectors of electric charges and potential differences;

R = diag R (1) R (2) • • • R (P ) and L = diag L (1) L (2) • • • L (P )
are the diagonal matrices of the resistances and inductances of the patches; U and P are the vectors of nodal values of u and p; M u and K * u (ω) are the mass and stiffness matrices of the structure (sandwich structure and piezoelectric patches); C uV is the electric mechanical coupled stiffness matrix; ) is a diagonal matrix filled with the P capacitances of the piezoelectric patches; C up is the fluidstructure coupled matrix; F is the applied mechanical force vector. Note that the stiffness matrix K * u (ω) is complex and also frequency dependent.

K V = diag C (1) C (2) • • • C (P

Reduced order model

We present in this section a reduced-order formulation of the discretized problem obtained in the previous section. This formulation consists in expanding the structural displacement over the in vacuo real structure modes in short-circuited and open-circuited configurations.

In a first phase, the first N s eigenmodes of the structure in vacuo with all patches short circuited are obtained from [3]

K * u (ω) -ω 2 M u U = 0 (13) 
Due to the frequency dependence of the stiffness matrix, this eigenvalue problem is complex and nonlinear. It is assumed that vibrations of the damped structure can be represented in terms of the real modes of the associated undamped system if appropriate damping terms are inserted into the uncoupled modal equations of motion [START_REF] Fan | Transient vibration and sound radiation of a rectangular plate with viscoelastic boundary supports[END_REF][START_REF] Bouayeda | Finite element analysis of the dynamic behavior of a laminated windscreen with frequency dependent viscoelastic core[END_REF]. Thus, the complex stiffness matrix is decomposed in the sum of two matrices:

K * u (ω) = K u0 + δK * u (ω) (14) 
where K u0 is the real and frequency-independent stiffness matrix calculated with a constant Young's modulus of the viscoelastic core and δK * u (ω) is the residual stiffness matrix.

The ith real eigenmode is obtained from the following equation

K u0 -ω 2 si M u Φ si = 0 (15) 
where (ω si , Φ si ) are the natural frequency and eigenvector for the ith structural mode in short circuited configuration. These modes verify the following orthogonality properties

Φ T si M u Φ sj = δ ij and Φ T si K u0 Φ sj = ω 2 si δ ij ( 16 
)
where δ ij is the Kronecker symbol and Φ si have been normalized with respect to the structure mass matrix.

In a second phase, the first N s real eigenmodes of the structure with all patches open circuited are obtained from the following equation

(K u0 + C uV K -1 V C T uV ) -ω 2 i M u Φ i = 0 (17) 
where ( ω i , Φ si ) are the natural frequency and eigenvector for the ith structural mode in open circuited configuration. These modes verify the following orthogonality properties

Φ T i M u Φ j = δ ij and Φ T i (K u0 + C uV K -1 V C T uV ) Φ j = ω 2 i δ ij (18) 
By introducing the modal matrix Φ s formed by both the short-circuited and open-circuited modes:

Φ s = Φ Φ = Φ 1 • • • Φ Ns Φ 1 • • • Φ Ns (19) 
of size (M s × 2N s ), M s is the total number of degrees of freedom in the finite elements model associated to the structure, the displacement U is sought as

U = Φ s q s (ω) (20) 
where the vector q s is the unknown modal amplitudes.

By applying the Ritz-Galerkin projection method, which consists of substituting Equation [START_REF] Guyomar | Wave reflection and transmission reduction using piezoelectric semipassive nonlinear technique[END_REF] into Equation [START_REF] Deü | Piezoelectric structural acoustic problems: Symmetric variational formulations and finite element results[END_REF] and premultiplying the first row by Φ T s , we obtain the reduced matrix system,

-ω 2 Φ T s M u Φ s 0 0 0 L 0   q s Q P   + iω 0 0 0 0 R 0   q s Q P   + Φ T s K * u (ω) + C uV K -1 V C T uV Φ s Φ T s C uV K -1 V -Φ T s C up K -1 V C T uV Φ s K -1 V 0   q s Q P   = Φ T s F 0 (21) 
Remarks:

• The projection bases widely used in the literature are obtained using only the short-circuited or open-circuited eigenvalue problems. We have shown that the proposed new modal projection technique is more efficient than the classical bases in terms of prediction of vibration reduction with shunted piezoelectric patches [START_REF] Larbi | Vibration reduction of an elastic structure using shunted piezoelectric systems: New reduced order finite element models[END_REF]. This efficiency is related to the introduction of additional electromechanical coupling terms in the reduced system, which allows better modeling of the effects of the piezo-patches on the system response.

• The proposed combined basis requires two modal calculations to find short-circuit and open-circuit modes. The short-circuited and opencircuited eigenvectors are not mutually orthogonal with respect to the mass and stiffness matrices of the problem. Thus, the resulting basis is not orthogonal. The Gram-Schmidt algorithm is applied in this work to orthogonalize these eigenvectors and build well-conditioned matrices.

• The change of variables from physical coordinates U to modal coordinates q s and the modal truncation concern only the mechanical displacement and not the electrical unknown field Q. This is justified by the fact that it is unnecessary to reduce Q since its size is small and represents the number of piezoelectric patches.

Numerical modeling of fluid

This section deals with the numerical modeling of the fluid. The internal fluid is modeled using the finite element method. The external fluid is modeled using the boundary element method.

Equations in the frequency domain

The governing equations of the exterior/interior acoustic fluid are

∆p + ω 2 c 2 F p = 0 in Ω F (22a) ∂p ∂n = ρ F ω 2 u • n F on Σ (22b) lim r→∞ r( ∂p ∂r + ikp) = θ( 1 r ) on Γ ∞ (22c)
where ρ F is the mass density of the fluid, c F is the sound velocity, k = ω/c F is the wave number and the function θ( 1 r ) tends to zero when r tends to infinity.

Equation (22a) represents the Helmholtz equation; Equation (22b) is the kinematic interface fluid-structure condition on Σ; Equation (22c) represents the Sommerfeld condition at infinity (used for the external fluid).

Finite element formulation for internal fluid

Let δp be the test function, associated to p, belonging to the admissible space C p . Multiplying Equation (22a) by δp ∈ C p , applying Green's formula, and finally taking Equation (22b) into account, we obtain:

1 ρ F Ω F i ∇p • ∇δp dv -ω 2 Σ i u • nδp ds - ω 2 ρ F c 2 F Ω F i p δp dv = 0 ∀δp ∈ C p (23)
After discretizing by the finite element method the bilinear forms in Equation [START_REF] Larbi | Structural-acoustic vibration reduction using switched shunt piezoelectric patches: a finite element analysis[END_REF], we obtain the following matrix system:

K p P -ω 2 C T up U -ω 2 M p P = 0 (24) 
where M p and K p are the mass and stiffness matrices of the internal fluid.

This last equation is projected on a truncated basis constructed from the first N f acoustic modes. These modes are calculated with rigid boundary conditions from the following equation

K p -ω 2 f i M p Φ f i = 0 (25) 
where (ω f i , Φ f i ) are the natural frequency and eigenvector for the ith acoustic mode. These modes verify the following orthogonality properties

Φ T f i M p Φ f j = δ ij and Φ T f i K p Φ f j = ω 2 f i δ ij ( 26 
)
where Φ f i have been normalized with respect to the fluid mass matrix.

By introducing the matrix

Φ f = Φ f 1 • • • Φ f N f of size (M f × N f
) corresponding to the acoustic basis (M f is the total number of degrees of freedom in the finite elements model associated to the internal acoustic domain), the pressure is sought as

P = Φ f q f (ω) (27) 
where the vector

q f = q f 1 • • • q f N f
T is the vector of modal amplitudes of the fluid pressure.

Substituting this relation into Equation [START_REF] Larbi | Finite element formulation of smart piezoelectric composite plates coupled with acoustic fluid[END_REF] after pre-multiplying it by Φ T f and taking into account Equation ( 20), we obtain

Φ T f K p Φ f q f -ω 2 Φ T f C T up Φ s q s -ω 2 Φ T f M p Φ f q f = 0 (28) 
This matrix equation represents the reduced order model of the internal acoustic problem. If only few modes are kept for the projection, the size of this reduced order model (N f × N f ) is much smaller than the initial one (M f × M f ).

Boundary element formulation for external fluid

The boundary element formulation is used for the exterior acoustic domain. The Helmholtz equation is valid for the pressure p at the arbitrary collocation point x within the acoustic domain Ω F e . A weak form of this equation is obtained by weighting with the fundamental solution:

G(x, y) = e ik|x-y| 4π|x -y| (29) 
where |x -y| denotes the distance between an arbitrary point x and the load source point y.

Applying Green's second theorem, the Helmholtz equation can be transformed into a boundary integral equation, which can be expressed as follows

c(x)p(x) = Σe p(y) ∂G(x, y) ∂n y dS - Σe ∂p(y) ∂n y G(x, y)dS (30) 
where

c(x) =        1 x in fluid domain 1 2
x on smooth boundary of fluid domain

Ω(x) 4π
x on nonsmooth boundary of fluid domain 0 x outside fluid domain [START_REF]Smart Material Corp. Macro-Fibre Composites Technical Data, www.smart-material[END_REF] and

Ω(x) = 4π + Σe ∂(|x -y| -1 )
∂n y dS is the solid angle seen from x. Note that the value c(x) = 1 2 is valid if the surface Σ e is assumed to be closed and sufficiently smooth, i.e. there is a unique tangent to Σ e at every x ∈ Σ e . For the general case, where a nonunique tangent plane exists at x ∈ Σ e , we use c(x) = Ω(x) 4π (for example, when x is lying on a corner or an edge).

The fluid boundary is divided into N quadrilateral elements (∂Ω F = N j=1 S j ) and Equation ( 30) is discretized. After using the relation between the acoustic pressure and the fluid normal velocity ∂p ∂n = -iρ F ωv (where v = v F • n F ), the discrete Helmholtz equation can be written for any point x defined by the node i as

c i p i = N j=1 S j p j (y) ∂G(x i , y) ∂n y dS + iρ F ω N j=1 S j v j (y)G(x i , y)dS (32) 
For each quadrilateral element j, the pressure p j (y) and the normal velocity v j (y) can be expressed as a function of their nodal values

p j (y) = 4 k=1 N k p k j = Np j , v j (y) = 4 k=1 N k v k j = Nv j ( 33 
)
and Equation (32) becomes

c i p i = N j=1 4 k=1 S j N k ∂G(x i , y j ) ∂n y dSp k j + iρ F ω N j=1 4 k=1 S j N k G(x i , y j )dSv k j ( 34 
) or in the following form

c i p i = N j=1 4 k=1 H k ij p k j + iρ F ω N j=1 4 k=1 G k ij v k j ( 35 
)
where

H k ij = S j N k ∂G(x i , y j ) ∂n y dS , G k ij = S j N k G(x i , y j )dS ( 36 
)
We now place the point x i at each of nodal points on the boundary y j successively, which is known as a "collocation point". We obtain

c i δ ij p j = N j=1 4 k=1 H k ij p k j + iρ F ω N j=1 4 k=1 G k ij v k j (37)
When the collocation scheme is repeated for all nodal points N n of the boundary element mesh, a set of N n expressions in the nodal field variables is obtained which can be assembled into the following matrix equation

HP Σe = iρ F ωGv Σe ( 38 
)
where P Σe and v Σe are the vectors with sound pressure and velocity in the normal direction to the boundary surface at the nodal position of the boundary element mesh.

The boundary conditions given in Equation ( 22b) can be expressed in discretized form

v Σe = iωTU ( 39 
)
where T is the global coupling matrix that transforms the nodal normal displacement of the structure to the normal velocity of the acoustic fluid at the interface. Substituting this relation into Equation (38), we obtain

HP Σe = -ρ F ω 2 GTU (40)
4. Reduced FE/BE formulation for the fluid-structure coupled problem with piezoelectric shunt systems and viscoelastic materials By combining Equation [START_REF] Hagood | Damping of structural vibrations with piezoelectric materials and passive electrical network[END_REF] with Equations ( 28) and (40), we find the following coupled FE/BE matrix equation

    Φ T s K * u (ω) + C uV K -1 V C T uV Φ s Φ T s C uV K -1 V -Φ T s C up Φ f -Φ T s C up K -1 V C T uV Φ s K -1 V 0 0 0 0 Φ T f K p Φ f 0 0 0 0 H         q s Q q f P Σe     +iω     0 0 0 0 0 R 0 0 0 0 0 0 0 0 0 0         U Q q f P Σe     -ω 2     Φ T s M u Φ s 0 0 0 0 L 0 0 Φ T f C T up Φ s 0 Φ T f M p Φ f 0 ρ F GT 0 0 0         q s Q q f P Σe     =     Φ T s F 0 0 0     (41) 
This matrix equation represents the reduced order model of the fully coupled visco-electro-mechanical-acoustic system.

The matrices H and G, associated to the BE formulation for the external fluid, are complex-valued, nonsymmetric, full and frequency-dependent. This represents a main drawback compared to the FEM where matrices are sparse, symmetric, and the frequency dependency can be taken out of the elementary matrices (case of the acoustic interior problem). Moreover, the stiffness matrix of the structure K * u is complex and frequency-dependent. Consequently, the matrices of Equation (41) must be evaluated at each frequency and the dynamic response is computed by a direct method. Despite the reduction of the degrees-of-freedom of the structure and the internal fluid in the system, the use of the BEM for the external fluid can prove to be costly. A possible acceleration of the direct solution can be performed using frequency interpolation methods [START_REF] Atalla | Finite element and boundary methods in structural acoustics and vibration[END_REF] but is beyond the scope of this paper. Furthermore, because the Greens function is a function of 1/r, a special numerical treatment is necessary when the collocation point x coincides with the interpolation point y (see for example [START_REF] Atalla | Finite element and boundary methods in structural acoustics and vibration[END_REF] for more details about the BEM implementation techniques).

Remarks: acoustic indicators

In order to evaluate the vibroacoustic performance and the vibration reduction properties of the viscoelastic and piezoelectric materials, the radiated sound power (Π) in the external acoustic domain and the mean quadratic normal velocity V 2 are used as vibroacoustic indicators in this work.

• The sound intensity I at every point Q on the vibrating surface may be calculated from

I = 1 2 Re {p(Q)v * (Q)} = 1 2 Re p(Q)(iωu(Q) • n S ) * (42) 
where Re denotes the real part of the expression in parentheses and * denotes the complex conjugate.

• The intensity is the sound power radiated per unit area of the transmission; the total radiated sound power Π is found by integrating the intensity over the surface Σ e :

Π = Σe I ds = ω 2 Im U * T C up P Σe = ω 2 Im q * T s Φ T s C up P Σe (43) 
• The mean quadratic normal velocity V 2 is given by

V 2 = 1 2Σ i Σ i v 2 ds = ω 2 2Σ i w * Mu w ( 44 
)
where w is the vector of nodal normal displacements of the structure and Mu is the structure mass matrix reduced to the dofs of interest.

Numerical example

In this last section, numerical results obtained with a Matlab program developed by the author are proposed in order to validate and analyze the results calculated from the proposed formulation.

We consider a flexible sandwich plate (in-plane (x, y) dimensions are A= 1.5 m, B=1.25 m) composed of two identical glass plates bonded together by a PVB interlayer. The thickness of the outer and inner glass ply is 3 mm and those of the PVB interlayer is 1.14 mm (figure 3). The inner face of the plate is coupled to a 3D hexahedric acoustic cavity of size A, B and C=1 m along the directions x, y, and z, respectively. The cavity is completely filled with air (density ρ=1.2 kg/m 3 and speed of sound c=340 m/s). The cavity walls are rigid except the top one, which is in contact with the sandwich plate.

The outer face of the plate is in an infinite baffle, radiating into an infinite half-space acoustic domain filled with air. The glass ply is modeled as linear elastic material (density 2500 kg/m 3 , Young's modulus 72 GPa, and Poisson ratio 0.22). The material properties of the PVB are both thermal and frequency dependent. The complex PVB shear modulus is represented by the fractional derivative model given in section 2.1 (the Poisson ratio is 0.4 and density is 999 kg/m 3 ). A normal incidence plane wave with an amplitude of 1 N/m 2 is applied to the outer face of the sandwich plate as the only external force to the system.

In this example, the structure and the acoustic cavity are represented by FE reduced order model obtained by projection the mechanical displacement unknown on a truncated basis composed by the first real "in vacuo" normal modes and the internal pressure unknown on a truncated basis composed by the first acoustic modes with rigid boundaries conditions.

A modal damping coefficient η= 0.001 is applied for the computation of the dynamic response of the plate with and without viscoelastic interlayer. This coefficient represents the damping in the glass layers independently of the viscoelastic damping. It is applied for all eigenmodes in the selected structural modal basis. The sound radiated by the structure in the external acoustic domain is represented by the BEM.

Concerning the finite element discretization, we have used, for the structural part, 10×10 rectangular elements for the sandwich plate developed by the author in [START_REF] Larbi | Vibroacoustic behavior of a laminated plate with frequency dependent viscoelastic core: finite element and experimental analysis[END_REF]. This element is based on the layerwise theory with a first order shear deformation in each layer. The skins are described according to the Kirchhoff-Love theory with a correction which takes into account the rotational influence of the transversal shearing in the core. A Mindlin model is used to describe the displacement field of the core. The element has four nodes with seven degrees-of-freedom (dof) per node. The in-plane displacements and the rotations of the core are discretized by conforming bi-linear Lagrange shape functions, while the transverse displacement and rotation of the skins are discretized by non-conforming cubic Hermite shape functions. This choice was proved to be efficient compared to other FE models and well adapted to structural-acoustic applications. The acoustic cavity is discretized using 10×10×10 hexahedric elements with one degree-of-freedom per node, corresponding to the acoustic pressure. The structural and acoustic meshes are compatible at the interface, and the fluid-structure coupling is realized through the C up matrix.

For the BEM formulation of the external acoustic fluid domain and the coupling with the sandwich plate, besides the FE discretization of the plate, only the boundary Σ e of the external fluid domain is discretized with boundary elements. Notice that the BE nodes on this part must coincide with FE nodes.

Influence of internal fluid

In order to study the influence of the acoustic cavity on the vibrations of the plate, we consider an equivalent glass plate with the same mass (without viscoelastic interlayer and obtained by adjusting its thickness) coupled to the acoustic cavity. Table 2 presents the first ten eigenfrequencies in three cases: (i) the 3D rigid acoustic cavity, (ii) the plate without fluid and (iii) the plate/acoustic-cavity coupled system in the short circuited case. All results are computed from the finite element formulation presented in [START_REF] Larbi | Vibroacoustic behavior of a laminated plate with frequency dependent viscoelastic core: finite element and experimental analysis[END_REF].

The sixth and ninth frequencies of the coupled system are associated with the first two acoustics modes in the rigid cavity lower than 280 Hz, while the other frequencies correspond to the first eight vibration modes of the structure. This can be confirmed by comparing the mode shapes in case (iii) with those obtained in case (i) or case (ii), which are not shown here for the sake of brevity. Moreover, as expected, the natural frequencies of the coupled modes (structure dominated) are lower than those for the structure in vacuum (except for the first mode) due to the added-mass effect of the fluid. 

Fluid

Influence of the viscoelastic layer

A comparison between a simple glass and a laminated glass with PVB interlayer with an equivalent surface mass is shown in Figures 4 and5. Calculation was limited to 1000 Hz maximum. This comparison shows that laminated glass has a much lower acoustic radiation compared to conventional glass at resonance frequencies due to the effect of the viscoelastic layer. The reduction of sound radiation power is around 5 dB in lower frequencies and around 10 dB in higher frequencies. For each mode, a frequency shift is observed (for example, the frequency of the first coupled mode is about 33.22 Hz without PVB and about 38 Hz with the PVB interlayer) .

In fact, at low frequencies, the viscoelastic material is soft and the damping is small. At higher frequencies, the stiffness decreases rapidly and the damping is highest. Moreover, flexural vibrations cause shear strain in the viscoelastic core which dissipates energy and reduces vibration and noise radiation. Note that the thickness of the viscoelastic layer has a significant influence in terms of attenuation. 

Influence of the shunted piezoelectric patches

In order to reduce the vibrations and the sound radiations around the first resonance of the sandwich plate, four very thin identical piezoelectric patches (length 75 cm, width 5 cm, thick 0.5 mm ) are mounted on the plate (free of any mechanical charge) and tuned to an RL shunt circuit (see figure 3). The patch is composed of piezoelectric Macro Fiber Composite (MFC). The material properties of the MFC are: E 1 =30 GPa, E 2 =15.5 GPa, E 3 =15.5 GPa, G 13 =10.7 GPa, G 23 =10.7 GPa, G 12 =5.7 GPa, ν 13 =0.4, ν 12 =0.35, d 33 = 4.18 × 10 -10 m/V, d 32 = d 31 = -1.98 × 10 -10 m/V, 33 / 0 =1558,6 ( 0 =8.854 10 -12 F/m is the permittivity of free space), ρ =4700 kg/m 3 [START_REF]Smart Material Corp. Macro-Fibre Composites Technical Data, www.smart-material[END_REF][START_REF] Trindade | On the finite element characterization of d31 macro-fibre composites effective properties[END_REF]. Note that the e ij piezoelectric constants (in Coulomb/m2) can be deduced from the d ij piezoelectric constants (expressed in m/V or Coulomb/Newton) using the elastic compliances at constant electric field [START_REF] Rogacheva | The theory of piezoelectric shells and plates[END_REF].

The resistance R and the inductance L can be adjusted and properly chosen to maximize the damping effect of this particular mode. The optimal resistance and inductance of the ith mode for a series resonant shunt are given by [START_REF] Hagood | Damping of structural vibrations with piezoelectric materials and passive electrical network[END_REF]:

R opt = 2k 2 eff,i Cω i (1 + k 2 eff,i ) (45a) 
L opt = 1 Cω 2 i (1 + k 2 eff,i ) (45b) 
where ω i is the short circuit natural frequency of the ith mode, C is the capacitance of the piezoelectric patch and k eff,i is the effective electromechanical modal coupling factor (EEMCF), characterizing the energy exchanges between the mechanical structure and the piezoelectric patches and defined by:

k 2 ef f,i = ω2 i -ω 2 i ω 2 i ( 46 
)
and where ω i is the open-circuited natural frequency. For the chosen mode, the optimal values of the shunt electrical parameters are then, R=429 Ω and L=83 H. Note that the portions of the plate covered by the piezoelectric patches have been modeled according to the first-order shear deformation laminated theory and only one electrical degree of freedom is used to represent the electrical charge Q in each patch. Figures 6 present the mean quadratic normal velocity and the sound power radiated by the plate in the external acoustic domain with and without piezoelectric shunt. The system response is obtained with the proposed FEM/BEM reduced order approach. The unknown mechanical displacements are projected on the basis formed by the first 20 real short-circuited modes and the first 20 real open-circuited modes. These modes are associated to the in-vacuo sandwich plate with viscoelastic interlayer and equipped with the piezoelectric patches. They are calculated from Equations ( 15) and (17) using the real and constant shear storage modulus G ∞ . The unknown pressures are projected on the basis formed by the first 20 acoustic modes of the internal fluid in rigid cavity calculated from Equation [START_REF] Larbi | Vibration reduction of an elastic structure using shunted piezoelectric systems: New reduced order finite element models[END_REF]. It can be seen that the resonant magnitude of the first mode has been significantly reduced (around 18 dB). In fact, the strain energy contained in the piezoelectric material is converted into electrical energy and hence dissipated into heat using the RL shunt device.

Conclusions

In this work, a coupled finite element/boundary element formulation (FEM/BEM) used to model the reduction of noise and vibrations by viscoelastic materials and piezoelectric techniques is presented. The multiphysics studied system is constituted of a sandwich structure with a viscoelastic core, equipped with shunted piezoelectric patches and coupled to interior and exterior acoustic domains. A reduced-order FE model, based on normal mode expansion, is developed for modeling the internal fluid-structure coupled problem. The proposed methodology requires the computation of the uncoupled eigenmodes of the undamped structure with short-circuited and open-circuited conditions and the acoustic eigenmodes of the fluid in a rigid cavity. Despite its reduced size, this model is proved to be very efficient for simulations of dynamic analysis of structural-acoustic coupled systems with viscoelastic interlayers and with shunt damping when appropriate damping terms are inserted into the modal equations of motion. Further investigations will concern the introduction of passive dissipation into the fluid and experimental aspects.
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 1 Figure 1: Studied coupled problem.
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 2 Figure 2: Complex shear modulus of PVB determined with a fractional derivative model.
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Figure 3 :

 3 Figure 3: Sandwich structure equipped with piezoelectric shunted patches and coupled to internal/external acoustic domains.
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 4 Figure 4: The mean quadratic normal velocity and the sound pressure level at the cavity center with and without viscoelastic layer.

Figure 5 :

 5 Figure 5: Radiated sound power of the plate in the exterior acoustic domain with and without viscoelastic layer.
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 6 Figure 6: The mean quadratic normal velocity and the radiated sound power of the plate with and without shunted piezoelectric patches.
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 2 Computed frequencies (Hz) of the structural-acoustic coupled system.