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Abstract
Piezoelectric macro fiber composites (MFCs) are widely used for energy harvesting due to their flexibility and high 
electromechanical conversion efficiency. In previous research studies, numerical and analytical models have been developed 
for MFC-harvesters using homogenized electromechanical properties. In this paper, an analytical electroelastic coupled 
model, based on the mixing rules, is used to predict the output responses of an MFC-harvester coupled in
33-mode of the PZT fibers. The predicted responses exhibit variation because of the uncertainty of the parameters used in 
the proposed model. The research reported in this paper aims to estimate the effect of the uncertainty in the physical 
properties of both piezoelectric fibers and epoxy matrix on the model responses and to identify the parameters which cause 
large output variability. The uncertainties of the parameters are defined as the variability bounds based on the tolerances 
reported by the manufacturers. Global sensitivity analysis (GSA) is an appropriate method to study the effect of the 
uncertainty of parameters on the electromechanical response of the harvester. Two GSA are applied in this paper: (i) the 
Morris method based on the elementary effects measures and (ii) the variance method which consists in computing the 
Sobol’ indices, whose goal is to identify systems parameters which have significant impact on the voltage and the power 
outputs of a bimorph MFC-harvester. This study leads to a qualitative comparison between the two methods which are 
strategically different. Both methods indicate that the elastic modulus and the density of the piezoelectric fibers, the length 
and the thickness of the representative volume element of the MFC-patch are the most influential parameters that affect the 
output voltage. It has also been shown that the order of importance of the parameters can change from the short-circuit to the 
open-circuit condition. Furthermore, Monte Carlo simulations are used to propagate the uncertainties of the parameters in 
order to determine the envelope of the variability of the responses. This study reveals the importance of considering model 
parameter uncertainties in the development of robust prediction tools for piezoelectric energy harvesting devices.

Keywords: Global sensitivity analysis, Stochastic prediction, Piezoelectric energy harvesting,
Macro fiber composites
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Smart materials such as piezoelectric, magnetostrictive and
shape memory alloys have recently found an increasing
interest in several engineering applications including shape
control, energy harvesting, vibration control and structural
health monitoring [1, 2]. In particular, piezoelectric mater-
ials are widely applied in engineering applications due to
their beneficial features, especially for vibration attenuation
[3–5] and vibration energy harvesting [6]. Piezoceramics,
commonly used piezoelectric materials, are brittle and sus-
ceptible to fracture during handling and bonding procedures.
Moreover, these materials cause often a high structural stiff-
ness, which is not desirable for large strain applications or
when the material in a patch form is bonded to curved sur-
faces. Consequently, researchers developed composite materi-
als based on piezoelectric materials to reduce these limitations.

Macro fiber composites using piezoceramic fibers,
developed by NASA Langley Research Center [7–9], have
been used formany sensing and actuation applications because
of their beneficial flexibility features and integration easiness
compared to the monolithic piezoceramic patches. An MFC-
patch consists of monolithic piezoceramic fibers embedded in
a polymer matrix covered by inter-digitated electrodes on the
top and bottom surfaces of the composite patch [10]. Many
research studies on analytical and numerical modeling of
MFCs have focused on homogenization and characterization
of the mechanical and electrical properties [9, 11–13]. The
modeling of the MFC-patches is more delicate than that of
monolithic piezoelectric patches because of the non-uniform
and piece-wise defined electric field when the piezoelectric
33-mode is used. Erturk et al [14] investigated piezoelec-
tric energy harvesting capabilities using MFC patches for
morphing of aircraft wings subjected to air flow excitation. A
subsequent experimental study confirmed the results obtained
from the analytical modeling. Song et al [15, 16] presented
a parametric analytical study of an MFC-harvester subjected
to harmonic base excitation. This research was performed to
gain insight into methods to maximize the electrical gener-
ated power and current by varying the physical parameters of
the harvester. Both 31- and 33-coupling modes of the MFC
patches are considered and harvester responses are determined
for different levels of base acceleration. The results obtained
in this study show that the d33-type produced a slightly
higher power. However, the d31-type generated higher max-
imum current. This means that the d31-type may be a better
choice than the d33-type MFC for energy storage applica-
tions. Bilgen et al [17] proposed a linear distributed parameter
electromechanical model to predict the actuated structural
response of clamped-free MFC unimorph beams. The model
is applied to determine the response of the MFC harvester
for various substrate materials and substrate thicknesses. The
authors confirmed experimentally their theoretical findings.
Shahab et al [18] investigated the electroelastic coupling of
a bimorph MFC-harvester which employs interdigitated elec-
trodes and the 33-mode coupling. The developed distributed-
parameter model using equivalent electromechanical proper-
ties obtained from the rules of mixture, is applied for different

elastodynamic scenarios of piezoelectric power generation
and dynamic actuation. A good concordance agreement is
reported compared to experimental electrical and mechanical
responses.

Sensitivity analysis has long been considered an effect-
ive method for better study of mechatronic systems. This
method of analysis is applied to determine the sensitivity of
the model responses to uncertainties of the input paramet-
ers. The classical approach of sensitivity analysis, known as
the local approach, considers the impact of small perturba-
tions of the inputs around nominal values on the model out-
put [19–24]. For instance, Aloui et al [25] investigated the
first order sensitivity analysis of complex frequency response
functions of piezoelectric energy harvesters based on the finite
difference approach to evaluate the electromechanical outputs
to small variations of the load resistance. In contrast to local
sensitivity analysis, the global sensitivity analysis overcomes
the limitations of the first local sensitivity by considering the
whole range of variation of the inputs [26]. Ruiz et al [27] ana-
lyzed the global sensitivity of the voltage frequency response
function of several configurations of piezoelectric energy har-
vesters. The approach applied in this research is based on the
variance decomposition which yields Sobol indices to assess
the robustness of the stochastic prediction. Aloui et al [28]
applied the Elementary Effects method (EEs) as a particular
implementation of the global sensitivity method to identify
the impact of substrate and piezoelectric material properties on
the voltage frequency response function of a typical bimorph
piezoelectric energy harvester with fixed geometry. Kucher-
enko et al [29] presented a novel approach of the derivative-
based global sensitivity measures. The proposed method is
then compared to the Morris and Sobol’ indices to reveal a
close link between the proposed method and Sobol’ sensitiv-
ity approach.

The electromechanicalmodeling ofMFCmaterial is widely
investigated in several published researches; however, few
studies focused on the sensitivity analysis as a technique for
the input/output characterization of the MFC-system. In this
paper, we propose an in-depth characterization of an MFC-
harvester using the 33-mode of electromechanical coupling,
which is recently introduced for energy harvesting applic-
ations, based on the global sensitivity analysis of the out-
put responses to its physical properties. Furthermore, uncer-
tainty analysis is applied to validate the computational results
obtained using the sensitivity analysis. Monte Carlo simula-
tion method is thus applied to calculate the propagation of
uncertainties of parameters to the output voltage of the har-
vester in both short- and open-circuit conditions.

This research paper is organized into six sections. Follow-
ing this introduction, an analytical modeling of a vibration
energy harvester using piezoceramic MFC patches is intro-
duced in section 2 to derive the complex frequency response
functions. A brief review on two global sensitivity analysis
methods are presented in section 3, which are: (i) the Ele-
mentary Effects method (EEs) [30] and (ii) the variance-based
sensitivity analysis used to determine the Sobol’ indices [31].
These two methods are given in terms of the model out-
put responses. Section 4 presents the principles of stochastic

2



A
c
c
e
p
te

d
 M

a
n
u
s
c
ri
p
t

Figure 1. A schematic of the modeling strategy from representative
volume element (RVE) of an MFC-patch to the MFC-harvester
laminated beam.

prediction and the propagation of the uncertainty on the input
parameters to the model outputs. A numerical example is
presented in section 5 providing a comparison between the two
GSAmethods. The uncertainty quantification is applied in this
section for robustness stochastic prediction analysis. These
two sensitivity analysis approaches are applied on a bimorph
MFC-harvester considered as a case study in this paper. The
paper is concluded in section 6.

2. Analytical modeling of a piezoceramic
MFC-harvester

The electromechanical modeling of a piezoelectric energy har-
vester is based on the distributed parameter model introduced
by Erturk and Inman [32, 33]. The model is developed for
both unimorph and bimorph cantilever beams with a mono-
lithic piezoceramic layers subjected to base excitation. The
modeling strategy starts from a representative volume element
(RVE) to build the periodical structure of the MFC-patch in
both transverse and longitudinal directions as illustrated in
figure 1, then the patch model is incorporated into the lam-
inated MFC-harvester.

Themodeling of the coupled distributed parameter problem
of the MFC-harvester is based on the following assumptions:

• The model is based on Euler-Bernoulli beam theory; i.e.
shear deformations and rotary inertia effects are neglected.
Note that the thickness and the width of the structure are
small compared to its length, which justifies the use of the
beam theory.

• The deformation of the substrate and piezoceramic patches
are assumed to be linear elastic following Hooke’s law.

• The interdigitated electrodes of the patches are assumed to
have negligible mass and stiffness contribution to the har-
vester. Hence, the harvester is assumed to be uniform in the
length direction.

The MFC-patch is composed of uni-axially aligned piezo-
electric fibers embedded into a polymer matrix. The fibers

have rectangular cross-sections as shown in figure 2. Further-
more, the MFC patch includes interdigitated electrodes for
adaptation to the electric field along the length of the fibers
and to provide a supporting structure for the harvester.

2.1. Electromechanical modeling of the MFC-patch

The MFC-patch is assumed to be a symmetric laminate com-
posed of a PZT-epoxy composite layer covered by two interdi-
gitated electrodes layers on the top and the bottom surfaces of
the composite layer. The PZT fibers are traditionally oriented
parallel to the x-direction while the electrodes are aligned in
the transverse direction (the y-direction). The MFC-patch is a
periodical structure of a representative volume element in both
x- and y-directions as shown in figure 2. The patch is composed
of (N×M) RVEs respectively in the length and width direc-
tions; i.e. N and M are respectively the number of electrode
pairs and the number of PZT fibers.

The piezoceramic fibers of theMFC-patch obey the follow-
ing linear constitutive equations based on the Euler-Bernoulli
beam assumptions and the 33-mode of electromechanical
coupling [18]:

σ3 = cE33,eε3 − e33,eE3 (1a)

D3 = e33,eε3 + ϵS33,eE3 (1b)

where σ3 is the stress, ε3 is the strain, E3 is the electric field,
D3 is the electric displacement, cE33,e is the elastic modulus at
constant electric field, e33,e is the effective piezoelectric stress
constant, ϵS33,e is the permittivity component at constant strain.
The subscript e stands for the equivalent properties which are
defined based on mixing rules formulation for an RVE as fol-
lows:

cE33,e = νcE33,p+(1− ν)cE33,m (2)

d33,e =

(
1

cE33,e

)
νd33,pc

E
33,p (3)

ϵS33,e =
[
νϵσ33,p+(1− ν)ϵσ33,m

]
−
(
d33,e

)2
cE33,e (4)

where the subscripts p and m refer respectively to the piezo-
electric fibers and the polymer matrix, ν is the fiber to matrix
volume ratio and ϵσ33 is the permittivity component at constant
stress. Furthermore, the piezoelectric strain coefficient d33,e
can be expressed in terms of the more common piezoelectric
stress constant as follows:

d33,e =
e33,e
cE33,e

(5)

Although the electric field is non-uniform within the
piezoceramic fibers as shown in figure 2(b), the electric
field in the 33-mode of electromechanical coupling can be
approximated by:
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Figure 2. (a) An MFC-patch, (b) a representative part of the MFC-patch showing the PZT fibers with the electric field lines separated by the
polymer matrix and the interdigitated electrodes in the 33-mode of electromechanical coupling of piezoelectricity and (c) an RVE of
symmetric shape.

E3 ≈
±v(t)
Le

(6)

where v(t) is the voltage across the interdigitated electrodes
and Le is the distance between two subsequent electrodes (i.e.
the length of the RVE) as shown in figure 2.

2.2. Electromechanical coupling under base excitation

The transverse displacement of the beam can be expressed as:

w(x, t) = wb(t)+wrel(x, t) (7)

where wrel(x, t) is the transverse displacement relative to base
motion wb(t). Expressing the strain component in terms of the
curvature and the electric field in terms of the voltage and
substituting equation (7) into the governing partial differential
equation of free vibration of the cantilevered harvester gives
the following forced partial differential equation for the relat-
ive response wrel(x, t) [33, 34]:

YI
∂4wrel(x, t)

∂x4
+ csI

∂5wrel(x, t)
∂x4∂t

+ ca
∂wrel(x, t)

∂t
+m

∂2wrel(x, t)
∂t2

+ v(t)
d2Γ(x)
dx2

=

−m
∂2wb(t)
∂t2

− ca
∂wb(x, t)

∂t

(8)

where cs and ca are respectively the strain rate damping coef-
ficient and the viscous air damping coefficient, YI is the bend-
ing stiffness which is obtained from the equivalent properties
of the laminates, given by the mixing rules, and the parallel
axis theorem, m is the mass per unit length of the beam which

must account for all the material density entities in a trans-
verse section and Γ(x) accounts for the spatial distribution of
the electric potential:

Γ(x) = ϑ
N∑

n=1

[H(x− (n− 1)Le)−H(x− nLe)] (9)

where H(x) is the Heaviside function, and nth is the index
of the RVE located at a distance x from the fixed end of the
bimorph, N is the number of RVEs in the x-direction (number
of pairs of electrodes) in the active length L = N× Le of the
MFC-patch and ϑ is the backward coupling coefficient which
can be expressed as follows:

ϑ=Md33,ec
E
33,e

Ae
Le
hpc =Me33,e

Ae
Le
hpc (10)

where hpc is the distance from the neutral axis to the center of
the piezoceramic, and Ae is the effective surface area which
is introduced to account for the approximation of the electric
field [35]. Furthermore, the effective area corresponds to the
contact area between the electrodes and the piezoceramic fiber
(i.e. the effective electrode area).

The equation for the electrical output voltage is obtained
by using the integral form of Gauss’s law and the constitutive
equation (1b), as follows:

C
dv(t)
dt

− v(t)
R

+ϑ

L
ˆ

0

∂3wrel(x, t)
∂x2∂t

dx= 0 (11)

where C is the capacitance of the MFC-patch; assuming that
the capacitance of the interdigitated electrodes is negligible
[36]. This capacitance is expressed as follows [37]:
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M∑

m=1

N∑

n=1

ϵS33,e
Ae
Le

=MNϵS33,e
Ae
Le

(12)

2.3. Modal analysis of the harvester

The vibration response of anMFC-harvester relative to its base
can be expressed in terms of the eigenfunctions as follows:

wrel(x, t) =
∞∑

r=1

ϕr(x)qr(t) (13)

where ϕr(x) and qr(t) are respectively the mass normalized
eigenfunction and the modal mechanical coordinate of the
clamped-free beam for the rth mode. The eigenfunction of the
undamped system is:

ϕr(x) =

√
1
mL

[
cosh

λr
L
x− cos

λr
L
x

−ϱr

(
sinh

λr
L
x− sin

λr
L
x

)]
(14)

where the dimensionless eigenvalues λr are obtained from the
following characteristic equation:

1+ cosλcoshλ= 0 (15)

and ϱr is expressed as:

ϱr =
sinhλr− sinλr
coshλr+ cosλr

(16)

The natural frequency for the rth mode ωr is related to the λr
as follows:

ωr = λ2
r

√
YI
mL4

(17)

which corresponds approximately to the rth resonance fre-
quency of the structure when the MFC-harvester is in short
circuit condition. The mass-normalized eigenfunctions satisfy
the following orthogonality conditions [38]:

Ĺ

x=0
mϕs(x)ϕr(x)dx= δrs and

Ĺ

x=0
YIϕs(x)

d4φr(x)
dx4 dx= ω2

r δrs

(18)
where δrs is the Kronecker delta function which is equal to 1
if r= s, and 0 otherwise.

2.4. Steady state frequency responses functions of the
MFC-harvester

Considering a harmonic steady-state modal mechanical
response qr(t) = qrejωt and voltage response v(t) = vejωt

for an excitation due to a harmonic base excitation wb(t) =
wbejωt and transforming Equations (8) and (11) to the fre-
quency domain using the modal expansion in equation (13)
yields:

(ω2
r −ω2 + j2ζrωrω)qr− θrv= fr(t) (19a)

(
1
R
+ jωC

)
v+ jω

∞∑

r=1

θrqr = 0 (19b)

where ζr is the modal mechanical damping ratio which is
defined as follows:

ζr =
csIωr
2YI

+
ca

2 mωr
(20)

Themodal electromechanical coupling term of theMFC-patch
is defined as follows:

θr =Me33,e
Ae
Le
hpc

dϕr(x)
dx

|x=L = ϑ
dϕr(x)
dx

|x=L (21)

and the modal force is expressed as f r(t) which is defined as
follows:

fr(t) =

(
−m
ˆ L

0
ϕr(x)dx

)
ẅb(t) =−σrẅb(t) (22)

where σr is the modal effective mass of the harvester.
The association of two identical MFC-patches, either in

series or in parallel connectionwith the electrical circuit makes
it possible to write an equivalent problem with equivalent
terms. Table 1 presents the equivalent modal electromechan-
ical coupling and the equivalent capacitance for the series and
parallel connections.

Thus, the FRFs for the voltage output-to-base acceleration
of the bimorph MFC-harvester can be expressed as [32, 37]:

v(t)
−ω2wbejωt

=

∞∑
r=1

−jωθeqr σr
ω2
r−ω2+j2ζrωrω

1
R + jωCeq+

∞∑
r=1

jωθ
eq
r

2

ω2
r−ω2+j2ζrωrω

(23)

The relative tip displacement-to-base acceleration FRF, as
a function of the voltage FRF, is:

wrel(L, t)
−ω2wbejωt

=
∞∑

r=1





σr− θeqr

∞∑
r=1

−jωθeqr σr
ω2
r−ω2+j2ζrωrω

1
R + jωCeq+

∞∑
r=1

jωθ
eq
r

2

ω2
r−ω2+j2ζrωrω




ϕr(L)
ω2
r −ω2 + j2ζrωrω


 (24)
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tTable 1. The equivalent modal electromechanical coupling and

capacitance of a bimorph MFC-harvester for the series and parallel
connections of the MFC-patchs.

Series connection Parallel connection

θ
eq
r θr 2θr

Ceq
C
2

2 C

The electrical power FRF can be derived from the voltage FRF
for a given external load resistance as follows:

P(t)

(−ω2wbejωt)
2 =

1
R




∞∑
r=1

−jωθeqr σr
ω2
r−ω2+j2ζrωrω

1
R + jωCeq+

∞∑
r=1

jωθ
eq2
r

ω2
r−ω2+j2ζrωrω




2

(25)

3. Global sensitivity analysis of the frequency
response functions

The frequency response functions given in equations (23), (24)
and (25) establish the dependence of the output responses on
a set of parameters representing the physical characteristics of
the harvester. These parameters are regrouped in a vector θ
which is assumed to contain k independent random paramet-
ers. The output Y is determined using a deterministic model
M which depends on the components of vector θ. In general,
we assume that for any complex frequency response function
H of the bimorph MFC-harvester, the output can be expressed
in the following form:

Y=M(θ) = |H(ω,θ)| (26)

where |.| is the modulus and ω is the excitation angular fre-
quency. Even though the response Y depends on ω, the sensit-
ivity analysis is limited to the set of parameters of vector θ.

In practice, the global sensitivity analysis is conducted
by applying the following steps [28, 39]: (a) defining the
model and its input parameters, (b) assigning a Probability
Density Function (PDF) to each input parameter, (c) gener-
ating an input matrix using an appropriate random sampling
method (e.g. latin hypercube sampling, Monte Carlo sampling
...), (d) calculating the corresponding output response vec-
tor, and (e) computing the appropriate sensitivity measures
of each input/output relationship. In this paper, two GSA
methods are applied for sensitivity analysis of the frequency
response functions of an MFC harvester to variations of its
physical parameters which are introduced in the following two
subsections.

3.1. The elementary effects method

The elementary effects method constitutes a simple way for
screening the effect on the model output of a few import-
ant input factors among many others. The fundamental idea
behind this technique is given by Morris [40, 41], who intro-
duced the concept of Elementary Effects (EEs), proposing two

sensitivity measures: themean and the standard deviation of a
set of EEs for each input factor. The main goal is to determine
which factors could be considered to have effects which are: (i)
negligible (low mean, low standard deviation), (ii) linear and
additive (high mean, low standard deviation), (iii) non-linear
or involved in interactions with other factors (high standard
deviation) [42].

A discretized approach of the input space is proposed. Each
parameter θi is assumed to be non-dimensional and scaled
to take on values in the interval [0, 1]. Thus, these para-
meters are randomly selected in a k-dimensional unit hyper-
cube. In practice, the possible input values will be restricted
to an experimental design, which is a regular k-dimensional
p-levels grid, where each θi may take a value from the set
{0,1/(p− 1),2/(p− 1), · · · ,1}. For a given vector θ, the ele-
mentary effect of the ith input parameter is defined as follows
[30, 42]:

di(θ) =
Y(θi+∆,θ∼i)− Y(θ)

∆
(27)

where θi varies between 0 and (1−∆);∆ is the variation size
which is a predetermined multiple of 1/(p− 1), and θ∼i is the
set of all parameters except the ith parameter. The originality of
the elementary effects method is based on selecting a set of r
trajectories in which the parameters are changed one at a time
on the design grid [43]. A trajectory enables the calculation of
an elementary effect for each input parameter θi between two
points of the trajectory (θ( j) and θ

( j+1), where j ∈ {1, ..,k}).
Therefore, each trajectory requires (k+ 1) model evaluations
to calculate k elementary effects (one EE per parameter). A
set of r different trajectories (with index t, where t= 1, .., r)
provides r estimates of elementary effects related to each input
parameter ith, at the cost of r× (k+ 1) simulations.

The firstmeasure of sensitivity is the average of the absolute
values of the elementary effects which is computed for each
input parameter ith:

µ∗

i =
1
r

r∑

t=1

|d∗(t)i | (28)

where d∗i is the normalized elementary effect to the interval of
variability corresponding to the parameter θi.

The second proposed measure is the standard deviation
of the EEs σi, which assesses the extent of interactions and
non-linear effect of each input parameter ith. This measure is
defined as follows:

σi =

√√√√ 1
r− 1

r∑

t=1

(|d∗(t)i | −µ∗

i )
2 (29)

3.2. Variance based sensitivity analysis

Among the large number of variance-based methods proposed
for sensitivity analyses, the method based on Sobol’ indices
is commonly used and widely applied to characterize para-
meter sensitivities. This method decomposes the variance of
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inputs or sets of inputs. The output Y in equation (26) can be
orthogonally decomposed as follows [31]:

Y(θ) =M0 +
k∑

i=1

Mi(θi)+
k∑

i<j

Mij(θi,θj)+ · · ·+M12···k(θ)

(30)
where the constant M0 and conditional expectations
Mi,Mij, · · · ,M12···k are expressed as follows:

M0 = E(Y) (31a)

Mi(θi) = E(Y|θi)−M0 (31b)

Mij(θi,θj) = E(Y|θi,θj)−M0 −Mi−Mj (31c)

...etc

This expansion is unique under the following conditions [44]:

ˆ 1

0
Mi1···is(θi1 , · · · ,θis)dθit = 0, 1≤ t≤ s,

{i1, · · · , is} ⊆ {1, · · · ,k} (32)

The variance of the output Y is decomposed as follows:

Var(Y) =
k∑

i=1

Di(Y)+
k∑

i<j

Dij(Y)+ · · ·+D12···k(Y) (33)

where Di(Y) = Var [E(Y|θi)], Dij(Y) = Var [E(Y|θi,θj)]−
Di(Y)−Dj(Y) and so on for higher order interactions. Hence,
the Sobol’ indices are obtained as follows:

Si =
Di(Y)
Var(Y) , Sij =

Dij(Y)
Var(Y) , · · · (34)

The important indices in practice are the main effect Si and
the total effect STi which is defined below. Their values in most
cases provide sufficient information for the sensitivity ana-
lysis of the output system to its individual input variables. The
simplest approach is to estimate the first order indices (main
effects) {S1, · · · ,Sk} and to sort these indices in descending
order [30, 31]. The indices are all positive and varying between
0 and 1; the larger is an index with a value close to 1, the most
significant is effect on the output.

The total sensitivity index (total effect), denoted as STi,
includes all the effects associated with the parameter θi and
defined as the sum of all the indices associated with θi which
corresponds to the variance of Y induced by θi for fixed values
of other variables. Thus:

STi = 1− Var [E(Y|θ∼i)]

Var(Y)
(35)

where θ∼i denotes all factors except θi. The condition STi≈ 0
is necessary and sufficient for θi to be a non-influential factor.
If STi= 0, then θi can be fixed at any value within its range
of uncertainty without appreciably affecting the value of the
output variance Var(Y). Thus, the total indices can be used in
setting certain parameters at fixed value.

The difference between the two Sobol’ indices STi and Si
corresponds to the interactions effect of θi with the other para-
meters which is included into STi but not in Si.

4. Stochastic prediction analysis and uncertainty
propagation

The variability in the model parameters are transferred to
the model output Y of the MFC-harvester; and influence its
response distribution, which leads to the uncertainty quan-
tification issue known as uncertainty propagation [45]. The
uncertainty analysis requires the construction of a consistent
stochastic model.

4.1. Prediction analysis

The stochastic model requires the assumption of a probability
distribution function p(Y|θ) of the real output Y at the interest
point θwhich corresponds to themodel parameters vector. The
expected value of the output response Y for a given vector θ is
expressed as follows:

E [Y|θ] =
ˆ

Yp(Y|θ)dY (36)

The uncertainties propagation related to model parameters is
incorporated into equation (36) by including the probability
distribution function of the parameters, denoted as p(θ), thus:

E [Y] =
ˆ

Yp(Y|θ)p(θ)dYdθ (37)

This concept can be extended to define the expected value of
any other performance function f(Y) depending on the output
Y as follows:

E [f(Y)] =
ˆ

f(Y)p(Y|θ)p(θ)dYdθ (38)

The variance of the real output Y is defined as follows [46]:

Var [Y] =
ˆ

(Yp(Y|θ))2p(θ)dYdθ− (E [Y])2 (39)

The probabilistic integral is commonly solved via stochastic
simulations, corresponding to a broad class of computational
methods that are sampling-based (e.g. Monte Carlo method,
Latin hypercube ...). A brief overview of the direct Monte
Carlo method is presented in the next section.
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The most frequently technique used to compute the propaga-
tion of the parameters uncertainties through a computational
model is theMonte Carlo method (MCM), originally proposed
by N Metropolis and S Ulam [47]. Briefly, the uncertainty
propagation problem consists in determining the probability
distribution of the model output based on selected probability
distributions for the uncertain input-parameters.

The MCM is used to generate K random samples of the k
parameters based on a selected joint distributions stochastic
model. Thus, the computational experiments are organized
using θ

( j) as the jth row of the K× k dimensional input mat-
rix. Based on the central limit theorem, the MCM consists in
estimating the expected value of the output Y using the average
of all realizations Y(θ( j)) as follows [48, 49]:

Ŷ=
1
K

K∑

j=1

Y(θ( j)) (40)

Thus, Ŷ is the approximation of the theorical E [Y] obtained
using the Monte Carlo method. The minimum number of
required samples K can be estimated by selecting a value for
the coefficient of variance δMC defined as follows [27]:

δMC =
1√
K

√√√√ 1
K

K∑
j=1

Y(θ( j))
2 −
(

1
K

K∑
j=1

Y(θ( j))

)2

1
K

K∑
j=1

Y(θ( j))

(41)

It should be noted that if K approaches infinity than δMC
approaches zero.

5. A numerical example

5.1. Description of the MFC harvester and settings for
bounds of model parameters

Considering an MFC-harvester which consists of a cantilever
beam subjected to base vibration as shown in figure 3. The har-
vester is composed of two laminated MFC-patches M-8514-
P1 manufactured by Smart Materials [50] which are bonded
together using a vacuum process. Therefore, an epoxy bond-
ing layer is formed between the two MFC-patches. The geo-
metrical dimensions and material properties of the harvester
used in this example are given in tables 2 and 3. Moreover,
the effective surface area Ae is calculated to be 0.02 mm2

using the experimental measured capacitance of the MFC-
patch; the data is adapted from Shahab and Erturk [18, 37].
In this study, the effective surface area Ae = bp× ue, where
ue = 5.626× 10−2 mm is the effective electrode width in the
length direction (x-direction) and bp is the uncertain width of
the piezoceramic fiber. For the numerical simulation, the first
and second modal mechanical damping ratios are set to val-
ues ς1 = 0.02 and ς2 = 0.022. The load resistance R is assumed
to be mounted in parallel with the MFC-patches as shown in
figure 3(c).

The selected uncertain parameters are the Young’s modu-
lus, the material densities for both the epoxy matrix and the
piezoceramics fibers; in addition to the geometrical dimen-
sions of the the RVE and the permittivity and piezoelec-
tric constants for the PZT fibers. Table 3 lists the tolerances
provided by the manufacturers for the M-8514-P1 as a per-
cent variation from the nominal values [27, 50]. A tolerance
of ±20% is reported for the piezoceramics electromechanical
properties and ±10% for the Young’s modulus and density of
the epoxy matrix. For the geometrical dimensions of the RVE,
an interval of ±2.5% for the length, ±10% for the thickness
(the same thickness for the fibers and epoxy matrix) and±7%
for the width of both fibers and epoxy matrix are assumed.
For the sensitivity analysis, all values within these bounds are
assumed to have the same likelihood. Therefore, a uniform dis-
tribution is assumed for all parameters of the harvester.

5.2. Electromechanial response analysis of the MFC
harverster

The validation of the MFC-harvester model is fulfilled for the
frequency range from 0 to 1000 Hz by comparing the few
first resonance frequencies computed by the analytical model,
equation (17), to those found by experimentation as reported
in [18, 37] for the same structure and for the short-circuit and
open-circuit conditions. The first three natural frequencies are
listed in table 4. The open-circuit natural frequencies corres-
pond to the peaks of the resonance frequencies of the displace-
ment response of the harvester when the load resistance tends
infinity. In practice, these can be determined by connecting a
very large electrical resistance so that any further increase of
load resistance does not change the resonance frequency of
the tip displacement response. In that case, the peaks of the
displacement response match the open-circuit resonance fre-
quencies. Since it is a forced system, the verification of the
response amplitude is essential for model validation. For that
reason, the experimental data from the research paper [18] are
added to figure 4(a). We can notice that the natural frequencies
for the open-circuit condition are higher than those obtained
in the short-circuit case due to the electromechanical coup-
ling effects and the added stiffness in the open-circuit condi-
tion. The short-circuit natural frequencies found analytically
are thus in good agreement for the first and the second mode
with errors not exceeding 3%. These results support the valid-
ity of the analytical MFC-harvester model and allow for pur-
suing the sensitivity analysis of the responses.

Figure 4 shows the voltage output and the tip displacement
FRFs (per base acceleration) of the MFC-harvester for a fre-
quency range (20 Hz,80 Hz) in the vicinity of the first mode
which are obtained using equations (23) and (24). The val-
ues of the electrical load resistance are chosen similar to those
used in the experimental investigation on the same harvester
reported in [37] so that a computed output can be compared to
their measured counterparts. As can be seen from figure 4(a),
the voltage amplitude increases with increasing electrical load
resistance for all excitation frequencies. Furthermore, increas-
ing the resistance, the first natural frequency moves slightly
from the short circuit to the open circuit resonance frequency.
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Figure 3. Two-dimensional view of the bimorph MFC-harvester with geometrical specifications and the two electrical circuit
configurations: (a) the MFC-harvester with base excitation, (b) details X and Y, (c) the series and parallel connections of the load resistance.

Table 2. Geometrical and material properties of the MFC-patch Smart Material M-8514-P1.

Parameters Descriptions Values Units

L Active length 75.5 mm
b Active width 14 mm
Ek Young’s modulus of the Kapton 2.8 GPa
Ee Young’s modulus of the electrode copper 117.2 GPa
cE33 Overall Young’s modulus for one patch 31.1 GPa
e33 Overall piezoelectric constant for one patch 13.6 C m−2

M Number of PZT fibers along the y-direction 36 –
Nth Number of electrode pairs 185 –
ν1 PZT fibers volume fraction 0.9 –
ν2 Electrodes copper volume fraction 0.24 –

Table 3. Bounds for the uniform PDF distribution associated to the
electromechanical parameters of the RVE in figure 2; bounds are
expressed in terms of the nominal values [27, 50, 51].

Parameters Nominal values Units Bounds

cE33,p = Ep 48.3 GPa ±20%
cE33,m = Em 3.1 GPa ±10%
ρp 7750 kg m−3

±20%
ρm 1100 kg m−3

±10%
ϵ33,p 1850× 8.854 pF m−1

±20%
ϵ33,m 4.25× 8.854 pF m−1

±10%
d33,p 440 pm V−1

±20%
Le = Lpm 407.18 µm ±2.5%
hpm 180 µm ±10%
bp 355.5 µm ±7%
bm 34.4 µm ±7%

For a given load resistance, the maximum voltage output is
obtained at the resonance frequency of the fundamental vibra-
tion mode. Moreover, for every excitation frequency, the max-
imum voltage output is obtained when the system is close
to the open circuit condition. Figure 4(b) shows the resist-
ive shunt damping effect on both natural frequency shift and
vibration amplitude attenuation at the tip of the harvester. By
increasing the load resistance, the electromechanical system

moves from the short-circuit to the open-circuit conditions.
Furthermore, the peak vibration amplitude of 4 317.2 µm g−1

for a 1 kΩ resistance at 47.9 Hz is attenuated to a peak amp-
litude of 4 042.8 µm g−1 for a 909.1 KΩ load resistance at
48.3 Hz, which means an increased damping effect by a factor
of about 1.07. Unlike viscous damping, the resistive shunt
damping shifts the frequency of peak vibration amplitude to
higher values. Increasing the load resistance, the peak vibra-
tion amplitude is reduced to a minimum and then increases
back up to the open-circuit condition. Physically, the stiffness
of the piezoceramic fibers of the MFC patches increases from
the constant electric field value to the constant electric dis-
placement value and without overall energy dissipation. Since
the maximum of the voltage and tip displacement FRFs for a
given load resistance does not occur at the same frequency, it
should be pointed out that the resonance frequencies for these
output FRFs are slightly different.

The output voltage and the vibration response at the tip of
the MFC-harvester are further analyzed for the excitation at
the short- and open-circuit resonance frequencies of the first
fundamental vibrationmode with variation of the external load
resistance as shown in figure 5. It is important to note that the
peak FRF varies monotonically for the voltage FRFs in short-
and open-circuit conditions in contrast to the tip displacement
FRF. Figure 5(a) shows that the peak voltage increases for
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(Anal.) and the experimental study (Exp.) of [18, 37].

Mode (r) f scr (Anal.) f scr (Exp.) Error (%) f ocr (Anal.) f ocr (Exp.) Error (%)

1 47.91 47.9 0.02 48.60 48.5 0.2
2 300.23 309.8 3 300.9 –* –*

3 840.66 –* –* 846.10 –* –*

Figure 4. The modulus output FRFs of the bimorph MFC-harvester versus the frequency excitation for frequencies in the vicinity of the
first vibration mode: (a) voltage FRF (b) tip displacement FRF.

low resistance values at these two particular excitation fre-
quencies with approximately the same slope on a logarithmic
scale for both x and y axis (see the enlarged view). For these
low resistances, the voltage output at the short circuit reson-
ance frequency is greater than that of the closed-circuit res-
onance frequency. The two curves intersect at a resistance
of approximately 0.83 MΩ . For resistances greater than that
of the intersection point, the voltage at the open circuit res-
onance frequency is slightly greater. Considering the vibra-
tion responses shown in figure 5(b), the vibration amplitude at
the short circuit excitation frequency 47.9 Hz decreases from
4 320.3 µm g−1 for a resistance of 100 Ω to 3042 µm g−1 for
a resistance of 1 MΩ . Further increase of the load resistance
up to 100 MΩ at this excitation frequency, amplifies slightly
the vibration amplitude, to reach 3493, 7 µm g−1. Whereas the
vibration amplitude at the open circuit excitation frequency of
48.6 Hz decreases slightly from 3 462.1 µm g−1 for a resist-
ance of 100 Ω to 3 006.3 µm g−1 for about a resistance of
0.5 MΩ then it is strongly amplified as the load resistance is
further increased to reach an amplitude of 4 226.2 µm g−1.

Moreover, it is also useful to note that these resistance
loads of maximum vibration attenuation are not those of max-
imum harvested voltage. Thus, shifting the excitation fre-
quency of the harvester from 47.9 Hz to 48.6 Hz (i.e. from
the short- to the open-circuit excitation frequencies) induces
an attenuation of the tip displacement per base accelera-
tion amplitude by 19.86% in the short-circuit condition and
an amplification by 20.97% in the open circuit condition at
100 MΩ .

5.3. Global sensitivity and uncertainty analysis of the output
voltage

Considering the application of the GSA on the output voltage
of the bimorph MFC-harvester, the Morris method is firstly
applied with r= 30 elementary effects for each of the k= 11
parameters listed in table 3. Thus, the numerical computation
cost is r× (k+ 1)= 360 model evaluations (simulations) for
a fixed excitation frequency and external load resistance. For
a given parameter θi, if the r estimates of elementary effect
have the same sign, that means that this parameter has a mono-
tonic effect on the output response, increasing or decreasing,
depending on the sign of the elementary effect. Secondly, the
Sobol indices are computed using equations (34) and (35).
Monte Carlo estimations of the response are then computed
by employing 1000× (k+ 2)= 13000 samples. The Morris
elementary effects and the Sobol indices are computed for a
set of excitation frequencies in the vicinity of the first fun-
damental natural frequency of the MFC-harvester for a small
load resistance value (i.e. a nearly short-circuit condition)
then for a high resistance which approximates the open-circuit
condition.

5.3.1. Global sensitivity analysis using Morris elementary
effects. Figure 6 shows the absolute average µ* and the
standard deviation σ of the elementary effects corresponding
to the uncertainty on the 11 physical parameters of the bimorph
MFC energy harvester for the output voltage FRF at a selected
set of excitation frequencies in the vicinity of the first natural
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Figure 5. Variation of the modulus of the voltage and the tip displacement FRFs relative to the base excitation with the electrical load
resistance for excitations at the short-circuit and the open-circuit resonance frequencies of the first vibration mode.

frequency. The excitation frequencies are varied from 35 Hz to
60 Hz by a step of 5 Hz . The MFC-harvester has a 100 Ω load
resistance mounted in parallel connection between the inter-
digitated electrodes. For an easier analysis of the results, the
parameters are presented in a decreasing order of their import-
ance. Figure 6(a) shows that the hierarchical influence of the
input parameters on the output voltage is unchangeable and
independent of the excitation frequency. The density of the
piezoelectric fibers ρp, the elastic modulus of the piezoceram-
ics fibers Ep, the length Lpm and the thickness hpm of the RVE
have the highest values of the EEs indicators whereas the per-
mittivity constant of both fibers and matrix have the lowest
values. These results confirm other research findings of Aloui
et al [28] and Ruiz et al [27] which indicate that the hierarch-
ical influence of the input physical parameters is unchange-
able and independent of the excitation frequency. Therefore,
a sensitivity analysis of the MFC-harvester at a single excita-
tion frequency is sufficient to identify the parameters with the
highest effect on the output. Figure 6(b) shows the standard
deviation of the EEs of the uncertain parameters considered
above. The density of the piezoelectric fibers ρp, the thick-
ness hpm and the length Lpm of the RVE and the elastic mod-
ulus of the piezoceramics fibers Ep have the highest values.
This means that these parameters are strongly influenced by
the non-linear effects and interactions with others paramet-
ers. In addition, it should be noted that the variation of these
parameters affects the responses of the harvester through the
modal damping ratio ζr and the electromechanical coupling
term θr. The damping ratio given in equation (20) depends on
the internal strain damping and the external air viscous damp-
ing in addition to the geometrical andmaterial properties of the
harvester and the considered natural frequency. The increase
of damping ratio reduces the peak of the voltage response
at the considered natural frequency and increases the band-
width response so that more tolerance is allowed for the vari-
ation of the excitation frequency in the vicinity of the natural

frequency. On the other hand, the modal electromechanical
coupling term given in equation (21) depends on geometrical,
material, and density of fibers for a given vibration mode. For
a given choice of fibers, this term can be increased by increas-
ing fiber densityM, reducing the interdigitated electrodes and
the distance of the fiber from the neutral axis. The variation
of the electromechanical coupling term, for a given load res-
istance, induces a variation in the electromechanical stiffness
that affects the overall rigidity of the harvester. So that, this
term impacts the resonance frequency and affects the output
voltage amplitude.

Figure 7 shows the scatter graph of the Morris measures
(µ*,σ) of the voltage FRF for the eleven uncertain paramet-
ers of the electromechanical and geometrical characteristics
given in table 3 for the short circuit condition and for an elec-
trical load resistance R = 100 Ω and excitation frequency
equal to 50 Hz . The bounds of the boxes correspond to a
confidence interval of 95%. The figure shows that the sens-
itivity measures of the absolute mean and standard deviation
of the piezoelectric density ρp, the elastic modulus of the
fibers Ep, the length Lpm and the thickness hpm of the RVE
are relatively significant compared to those of the piezoelec-
tric constant d33,p, permittivity constant ε33,p and other geo-
metrical dimensions for both piezoceramic fibers and epoxy
matrix. Therefore, the density and elastic modulus of piez-
ceramic fibers are the most important parameters that affect
the output voltage FRF in terms of material properties, as well
as the length and the thickness of the RVE for the geomet-
rical characteristics. Furthermore, the absolute mean and the
standard deviation of the EEs are of the same order of val-
ues. This shows that this group of parameters are also strongly
influenced by the non-linear effect and interactions with others
parameters.

Now, considering the sensitivity analysis for a nearly
open circuit condition simulated by using a load resistance
R= 9.08 MΩ for electrical energy dissipation. Figure 8 shows
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Figure 6. EEs measures for the voltage FRF of the bimorph MFC-harvester for a load resistance R = 100 Ω at excitation frequencies in the
vicinity of the first natural frequency (a) the mean and (b) the standard deviation.

Figure 7. Scatter graph in the (µ*,σ) plane of the modulus of
voltage FRF of the MFC-harvester for an excitation frequency
f = 50 Hz with boxes defining the limits of the 95% confidence
intervals for the nearly short-circuit condition.

the absolute mean µ* and the standard deviation σ of the
elementary effects for the voltage output at a set of excita-
tion frequencies in the vicinity of the first fundamental nat-
ural frequency. The figure reveals that the elementary effects
sensitivity measures follow the same order of significance
for all considered excitation frequencies. This confirms that
the order of importance of the effect of parameters on the
voltage output is the same independently of the excitation
frequency. Furthermore, one can notice that the influence of
the permittivity constant of the PZT fibers becomes more

significant compared to the short-circuit condition. Thus, the
influence order of the parameters on the output changes
from the short to the open circuit conditions. Nevertheless,
the density ρp, the elastic modulus Ep of the PZT fibers,
the length Lpm and the thickness hpm remain the parameters
with the highest effect on the voltage output in addition to
the piezoelectric coupling constant d33,p and the permittivity
constant ε33,p.

5.3.2. Global sensitivity analysis using the variance method.
Considering the sensitivity analysis using the variance
method, figure 9 presents the Sobol’ indices (Si,STi) of the
voltage FRF for the parameters listed in table 3, for a load res-
istance R= 100 Ω (i.e. a nearly short circuit condition) and a
base excitation frequency of 50 Hz . The figure reveals that
the sensitivity measures of the main effects (Si) and those of
the total effects (STi) are particularly significant for the density
ρp and the elastic modulus Ep of the piezoceramics fibers, as
well as the length Lpm and the thickness hpm of the RVE com-
pared to other uncertain parameters. Thus, the piezoceramics
fiber density and elastic modulus are the most influential para-
meters with the highest impact on the output voltage of the
MFC-harvester. Furthermore, the length and the thickness of
the RVE are the most influential geometrical characteristics.
These findings confirm the global sensitivity analysis using the
screeningmethod ofMorris described above. Both GSAmeth-
ods lead to the same conclusion and provide more confidence
on the results of the sensitivity analysis.

Table 5 presents the absolute mean µ∗

i and the standard
deviation σi of the elementary effects and the main effect Si
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Figure 8. EEs measures for the voltage FRF of the bimorph MFC-harvester for a load resistance R = 9.08 MΩ at excitation frequencies in
the vicinity of the first natural frequency (a) the mean and (b) the standard deviation.

Figure 9. Sobol’s indices for the modulus voltage FRF of the MFC-harvester for an excitation frequency f = 50 Hz and a nearly
short-circuit condition simulated by using a load resistance R = 100 Ω.

and the total effect STi for the eleven uncertain physical char-
acteristics of the MFC-harvester for the case of a nearly open
circuit condition depicted by a load resistance R = 9.08 M
Ω and for an excitation frequency of 50 Hz . One can clearly
notice that the PZT fiber density ρp and its elastic modulus
Ep remain the major contributors for the uncertainty of the
voltage FRF. The permittivity constant of the piezoelectric
fibers becomes more significant compared to the epoxy matrix
characteristics which have negligible effect on the harvester
voltage output in both short and open circuit. Furthermore, the

width of both PZT fibers and epoxy matrix have negligible
effect on the variability of the output. The two GSA meth-
ods are in agreement about the parameters which have the
most influence on the response. These parameters are iden-
tified based on the average µ∗

i of the EEs method and the
main effect Si (first order sensitivity of the variance method).
The total effect sensitivity index STi shows a strong inter-
action for these parameters. In addition, the widths of both
fibers and matrix and the epoxy properties retain their order of
importance compared to the short-circuit condition; however,
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modulus voltage FRF of the MFC-harvester for an excitation
frequency f = 50 Hz for the open-circuit condition.

µ∗

i σi Si STi

Ep 104.676 87.191 0.160 0.708
Em 0.239 0.268 0.021 0.027
ρp 87, 258 73.671 0.201 0.826
ρm 0.817 0.636 0.022 0.030
ϵ33,p 46.831 39.697 0.121 0.087
ϵ33,m 0.008 0.011 0.021 0.027
d33,p 51.650 37.781 0.117 0.094
Lpm 52.310 37.839 0.173 0.491
hpm 54.051 43.428 0.185 0.512
bp 2.776 2.754 0.023 0.034
bm 2.510 2.214 0.020 0.031

the permittivity constant of PZT fibers becomes more sig-
nificant with small interaction effect according to the total
effect.

Although the two GSA methods used are strategically dif-
ferent, they give very close and agreeable results. The ele-
mentary effects method is only semi-quantitative which is not
a favorable feature of the method. However, the focus of the
sensitivity analysis of this paper is limited to finding the order
of importance of the parameters. For the variance-based sens-
itivity method, we have found that the numerical stability of
the Sobol’ indices in this case study is quite low which means
that the results for a given sample size showed high variance.
This effect did not diminish with increasing sample size.

5.3.3. Uncertainty analysis using Monte Carlo simulations.
In the following, the uncertainty analysis applied using
Monte Carlo simulations is presented. The analysis consists in
quantifying the uncertainty of the model output due to uncer-
tain input parameters which are uniformly distributed within
ranges given in table 3. Figure 10 shows the density histo-
gram and the normal probability plot for the voltage FRF amp-
litude, at 20 Hz and 30 Hz excitation frequencies and 100 Ω
load resistance, according to the model parameters uncertain-
ties. The voltage output of the stochastic harvester model is
evaluated 13000 times using independent realizations gener-
ated with the Monte Carlo method. The voltage output fol-
lowed an approximately Gaussian probability density function
even though it lacks symmetry. Despite the high computa-
tional cost due to the Monte Carlo simulations, the simulation
results provide a mean for understanding the influence of the
input uncertainties on the voltage produced by theMFC energy
harvester.

Figure 11 shows the nominal voltage FRF and the expec-
ted FRF relative to the stochastic model of the MFC-harvester
for the short and open circuit conditions and for a frequency
range (20 Hz, 80 Hz) . The 95% confidence interval is shown
as a shaded band around the curve of the expected FRF. The
parameters of low effect on the output voltage have been
maintained constant in the simulation. Figure 11(a) presents
the uncertainty propagation in the short circuit-condition, in

which only the density ρp, the elastic modulus Ep of the PZT
fibers, the length Lpm and the thickness hpm of the RVE and
d33,p of the PZT fibers are considered as uncertain paramet-
ers. Whereas, figure 11(b) presents the uncertainty quanti-
fication in the open circuit-condition, where the considered
uncertain parameters are the same as those of the short-
circuit case but adding the permittivity ε33,p of the PZT fibers.
The fixed parameters are the properties of the epoxy mat-
rix (Em,ρm), the width of both fibers and matrix (bp,bm)
and the permittivity constant of the epoxy matrix ε33,m. It
can be observed in both figures 11(a) and (b) that the nom-
inal voltage FRF amplitude may exceed the expected FRF or
even the upper limit of 95% confidence interval in the vicin-
ity of the resonance frequency. The first interesting obser-
vation is that the probability of obtaining the nominal peak
amplitude is less than 5%. Another research study carried
out on monolithic piezoelectric harvester confirms this res-
ult [27]. In addition, away from the resonant frequency, the
nominal FRF underestimates the expected amplitude of the
FRF. These results have important implications for the design
process of the MFC-harvester. Since the vibration source
is frequently a narrow band process, there is at least 95%
probability that the actual output voltage is lower than the
nominal voltage output due to the uncertainty of the input
parameters.

5.4. Global sensitivity analysis of the output power

This section presents the global sensitivity analysis of the
power FRF of the bimorph MFC-harvester for the uncer-
tain physical parameters. The power is defined as a function

of the output voltage P(t) =
v(t)2

R
, and its FRF is given in

equation (25). Indeed, the goal is to check if the global sens-
itivity analysis of the power output leads to the same conclu-
sions as the global sensitivity of the voltage output. The GSA
of the power output is thus performed using only the Morris
method which is chosen because of its low computational cost.

Figure 12 shows the scatter graph of the Morris measures
(µ*,σ) for the power FRF, with a confidence interval of 95%
presented by the boxes, for the eleven uncertain parameters
for the short-circuit and open-circuit conditions. Figure 12(a)
shows that the absolute mean and standard deviation of the
EEs of the piezoelectric density ρp, the elastic modulus of the
fibers Ep, the length Lpm and the thickness hpm of the RVE
are relatively important compared to those of the piezoelectric
constant d33,p, permittivity constant ε33,p and other geometrical
dimensions for both piezoceramic fibers and epoxy matrix. In
figure 12(b), the results correspond to the open-circuit condi-
tion which is simulated using a high load resistance. One can
notice that the importance order of the parameters effect on
the output power changes compared to the short-circuit condi-
tions. Indeed, the permittivity constant of the PZT fibers ε33,p
becomes more significant. However, the elastic modulus Ep,
the density ρp of the PZT fibers, the length Lpm and the thick-
ness hpm remain the parameters with the highest impact on the
output power in addition to the piezoelectric coupling constant
d33,p and the permittivity constant ε33,p. These results confirm
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Figure 10. (a) the density of the voltage output (b) normal probability plot for of the voltage output.

Figure 11. The modulus of the voltage FRF of the MFC-harvester for nominal configuration, expected prediction, and its 95% confidence
interval: (a) short-circuit and (b) open-circuit condition.

Figure 12. (µ*,σ) Scatter graph of the modulus power FRF of the MFC-harvester for an excitation frequency f = 50 Hz with 95%
confidence intervals for: (a) the short-circuit condition with R= 100 Ω and (b) the open-circuit condition with R= 9.08 MΩ .
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tthe a priori hypothesis that the voltage and the electrical powerare similarly sensitive to the uncertain physical parameters.

6. Conclusions

In this paper, the distributed-parameters coupled elec-
tromechanical problem is firstly introduced for a bimorph
MFC-harvester. The equivalent electroelastic properties of
the MFC-patch are calculated using the rule of mixture for
a representative volume element. Afterwards, the frequency
response functions relative to the base motion of the harvester
are determined and used as the deterministic performance
predictors for both tip displacement amplitude and voltage
output. The global sensitivity analysis is performed for the
voltage FRF of theMFC-harvester using the screening method
ofMorris based on the elementary effects measures and Sobol’
indices based on the variance decomposition to study the effect
of the variability of the material properties and geometrical
dimensions of the MFC-patches on the voltage output of the
harvester. The Morris method correctly screened the most and
least sensitive parameters among the eleven selected paramet-
ers and showed that the piezoelectric density ρp, the elastic
modulus Ep, the length Lpm and the thickness hpm are relat-
ively influential compared to others parameters. Furthermore,
a large output sensitivity does not necessarily match signific-
ant uncertainties because the input uncertainty might be very
small in a real system; e.g. the case of the RVE length Lpm in
this study. These results are confirmed by the variance method
using Sobol’ indices. The results obtained from the two meth-
ods are in agreement in ranking the parameters according to
their influence on the voltage output. Furthermore, it has been
shown that the order of importance of the parameters can
change from the short-circuit to the open-circuit condition.
For instance, some parameters have gained more influence on
the output in the open-circuit condition; e.g. the permittivity
constant of the PZT fibers. Monte Carlo simulations were per-
formed to evaluate the effect of parametric uncertainties on the
voltage output of the MFC-harvester using a stochastic model
and to estimate the overall output uncertainty. The voltage out-
put bounds are determined for a confidence interval of 95%
in the short- and the open-circuit conditions. The research
reported in this paper provide valuable information about the
parameters that have a significant impact on the voltage and
the power outputs of a bimorph MFC-harvester and which
should be used in priority by manufacturers to improve their
MFC-patch design.
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