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Abstract

Vibration energy harvesting using the direct effect of piezoelectricity has

attracted increasing attention during the last two decades. Different mod-

eling techniques have been applied to describe the electromechanical cou-

pling effect of a piezoelectric harvester and to predict its electrical output.

This study aims to identify the most important properties of both harvester

substrate material and piezoelectric material that cause uncertainty in the

predicted performances of the harvester. Global sensitivity analysis, applied

in this paper, is a promising method used to identify systems parameters

which have significant impact on the system output. In this paper, the El-

ementary Effects method (EEs), a particular implementation of the global

sensitivity method, is used to identify the impact of substrate and piezo-

electric material properties on the voltage frequency response function of a

typical bimorph piezoelectric energy harvester with fixed geometry. With a

small number of model evaluations at selected ranges of material properties,
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it has been found that the elastic modulus and density of the piezoelectric

layer are the parameters which lead to the largest output variability. Fur-

thermore, it has been found that the order of importance of the parameters

can change from short-circuit to open-circuit conditions.

Keywords: Global Sensitivity Analysis, Elementary Effects, Piezoelectric

Energy Harvesting, Finite Element Method

1. Introduction1

Energy harvesting using piezoelectric material has attracted consider-2

able interest in the last decade. Piezoelectric material displays converting3

capabilities due to its direct and indirect electromechanical effect. Several4

approaches have been developed to model Piezoelectric Energy Harvesters5

(PEHs). In particular, two methods have been accepted and are the most6

widely used in the scientific community: (i) the analytical distributed param-7

eter model introduced by Erturk and Inman [1, 2] is applied for unimorph8

and bimorph harvesters to obtain a modal solution of second-order ordinary9

differential equations, (ii) the finite element method, adapted by De Marqui10

Junior et al. [3, 4], uses standard discretization to provide discrete models11

with less restrictive assumptions on the global electrical variables. The two12

modeling approaches are particularly useful as they have been amply tested13

showing close correlation with experimental data.14

In the frame of numerical approaches, sensitivity analysis is a very useful15

tool for modeling and design analysis of mechatronic systems. It is applied16

in various engineering problems such as structural analysis, model updating,17

design optimization of structures, system control and uncertainty propaga-18

tion [5]. Sensitivity analysis enables the evaluation of the degree of influence19
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of input parameters on the output responses of the modeled system. Fur-20

thermore, this method process is widely considered as the most important21

step in design optimization since significant number of optimization algo-22

rithms require the prediction of the evolution of the output responses of the23

system for different values of design variables [6].24

Sensitivity analysis techniques can be classified into local and global25

methods. Local sensitivity analysis, often referred to as a one factor at time26

analysis, is based on the approximation of partial derivatives to assess how27

uncertainty in one factor affects the model response keeping other factors28

fixed at their nominal values. Global Sensitivity Analysis (GSA), on the29

other hand, offers a comprehensive approach to the studied model, since it30

evaluates the effect of factors that are varying within the considered multi-31

dimensional input space [7].32

In recent published research, Sharp and Brooks [8] introduced expres-33

sions for the sensitivities of the Frequency Response Functions (FRFs) of34

linear constant coefficient systems with distinct eigenvalues to perturba-35

tions of the design parameters suggesting several engineering applications of36

the developed theory. Lasecka-Plura et al [5] studied the sensitivity of the37

FRF and steady-state vibration response of planar frames with viscoelastic38

dampers. A comparison was made between the first-order, the second-order39

and the exact solution sensitivities. Analysis show that the second order40

sensitivity gives results which are very close to the exact solution, when the41

perturbation of the parameter is smaller than 20%. Lima et al [6, 9] inves-42

tigated the first order sensitivity of complex frequency response functions43

for composite sandwich plates composed of a combination of fiber-reinforced44

and elastomeric viscoelastic layers, frequently used for noise and vibration45

attenuation. The study aims to find the sensitivity of viscoelastic struc-46
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tures to variation of temperature and structural parameters. Ng and Liao47

[10] used the first order sensitivity to evaluate the performances of sensing48

and power generation of the piezoelectric energy harvesters to variation of49

elastic substrate properties for three type of sensors. The reported research50

results show that for the series bimorph piezoelectric sensor, the voltage51

sensitivity is the highest and the charge sensitivity is the lowest. For the52

parallel bimorph piezoelectric sensor, the voltage sensitivity is the lowest53

and charge sensitivity is highest. A unimorph sensor, however, has rela-54

tively medium sensitivities of charge and voltage responses. Ruiz et al [11]55

analyzed the uncertainty propagation and global sensitivity of the FRFs of56

the output voltage of piezoelectric energy harvesters. Their approach is57

based on the identification of Sobol’ indices to assess the robustness of the58

stochastic prediction. Peralta et al [12] introduced a procedure to update the59

electromechanical properties of the PEHs based on Bayesian updating tech-60

niques and global sensitivity analysis. The introduced approach constitutes61

a powerful method for the robust design and prediction of the performances62

of piezoelectric energy harvesters.63

In the literature, several GSA methods are applied [13, 14, 15] ranging64

from qualitative screening techniques [16, 17] to quantitative methods based65

on variance decomposition [18, 19]. The Morris method [16] is a global66

sensitivity screening technique used to derive sensitivity measures from a set67

of local derivatives sampled on a grid throughout the parameter space [20].68

This technique investigates the model response to a change in the inputs by69

varying One-At-a-Time (OAT), while keeping all other variables fixed. The70

local sensitivity measure associated to each factor is called elementary effect71

and is defined as the ratio between the variation in the model response72

output and the variation in the input factor. In order to obtain a global73
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sensitivity measure, different elementary effects (local derivatives taken at74

points sampled throughout the parameter space) for each parameter are75

estimated and averaged. Two sensitivity measures are carried out, the first76

one is the mean of the EEs which is refined by Campolongo et al [7, 21]77

consisting in averaging the absolute values of the elementary effects. The78

second measure is the standard deviation of the EEs. By plotting both79

sensitivity measures, the Morris method identifies the hierarchical order of80

influence of the input parameters on the model output.81

Most of the previous researches were limited to local sensitivities for82

variation of system parameters in the vicinity of the considered nominal83

configuration. Generally, an interval variation of system parameter is more84

acceptable than a nominal parameter, hence the importance of applying85

global sensitivity. Morris method computes global sensitivity in an efficient86

way. Previously published research work does not seem to have applied87

this method in sensitivity analysis of piezoelectric harvesters. In this paper,88

we propose combining the implementation of the PEH model with Morris89

elementary effect estimation method to determine the effect of uncertain90

electromechanical parameters of a bimorph piezoelectric energy harvester91

on the output voltage for short-circuit and open-circuit conditions. Further-92

more, the effective electromechanical coupling factor is monitored for the93

model evaluations used to compute elementary effects. In order to predict94

the output voltage of the studied harvester, a finite element formulation of a95

laminated piezoelectric harvester is applied. The mathematical development96

of the model is given in Section 2. This model is used in Section 3 to derive97

the complex FRFs of a bimorph piezoelectric energy harvester considered98

as a case study in this paper. In Section 4, the Morris method is applied99

using the modulus of the voltage FRF of the harvester as an output and100
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a set of uncertain physical parameters. The considered numerical example101

presented in Section 5 shows the robustness of the EEs method compared102

to others GSA methods. Furthemore, the global sensitivities of the volt-103

age FRF of a bimorph piezoelectric harvester based on elementary effects104

have been compared with those computed using the variance decomposition105

based sensitivity analysis method described in reference [11] for different106

configurations of the PEHs.107

2. Finite Element Modeling of a Piezoelectric Composite Beam108

Considering a laminated piezoelastic beam composed of K layers includ-109

ing P piezoelectric layers excited under base motion at the clamped end110

as shown in Figure 1. In the absence of mechanical dissipative effects, the111

extended Hamilton’s principle for an electromechanical body, between the112

two known times t1 and t2, is [22]:113 ∫ t2

t1
(δT − δU + δWnc)dt = 0 (1)

where δT is the first variation of the kinetic energy, δU is the first variation of114

the internal energy including the piezoelectric effect contribution and δWnc115

is the virtual work done by the non-conservative electric charge components.116

117

The thin piezoelectric layers of the cantilever beam are poled in the118

thickness direction with an electrical field applied parallel to this polariza-119

tion direction. Such a configuration is characterized in particular by the120

electromechanical coupling between the axial strain and the transverse elec-121

trical field [23]. The reduced constitutive equations corresponding to the pth122

piezoelectric layer is written as follows, p ∈ {1, · · · , P}:123

σ
(p)
1 = c

(p)
11 ε

(p)
1 − e

(p)
31 E

(p)
3 (2)
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Figure 1: A multilayer piezoelectric cantilever beam: k ∈ {1, · · · ,K}

D
(p)
3 = e

(p)
31 ε

(p)
1 + ε

(p)
33 E

(p)
3 (3)

where σ(p)
1 , ε(p)

1 , E(p)
3 and D(p)

3 are respectively the normal stress, the normal124

strain, the electric field and the electric displacement; c(p)
11 is the elastic mod-125

ulus, e(p)
31 is the piezoelectric coupling coefficient and ε(p)

33 is the permittivity126

at constant strain. The electric field E
(p)
3 is normal to the electrodes of the127

piezoelectric layer and its intensity is assumed to be uniform in the piezo-128

electric thickness direction. The superscript (p) refers to the piezoelectric129

material. Moreover, the thickness of the electrodes is much smaller than130

the thickness of piezoelectric layer so that the equipotentiality assumption131

in the piezoelectric electrodes is well satisfied. Thus the electric field can be132

expressed as:133

E
(p)
3 = −V

(p)

h(p) (4)

where V (p) is the potential difference between the upper and the lower elec-134

trode surfaces and h(p) = zp − zp−1 is the thickness of the pth piezoelectric135

layer.136

The equations of the coupled electromechanical variational formulation137
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can be rewritten in the following form [23, 24]:138

K∑
k=1

∫
Ωk
ρk ( ..

u xδux + ..
u zδuz

)
dΩ +

K∑
k=1

∫
Ωk
ck

11ε1δε1dΩ +
P∑

p=1

V (p)

h(p)

∫
Ω(p)

e
(p)
31 δε1dΩ = 0

(5)139

−
P∑

p=1

δV (p)

h(p)

∫
Ω(p)

e
(p)
31 ε1dΩ +

P∑
p=1

δV (p)

h(p)

∫
Ω(p)

ε
(p)
33
V (p)

h(p) dΩ +
P∑

p=1
δV (p)Q(p) = 0

(6)

where ρk and Ωk are respectively the mass density and the domain occupied140

by the kth layer, and Q(p) is the electrical charge of the pth piezoelectric141

layer. Furthermore, the mechanical displacements fields ux and uz of the142

laminated harvester under base excitation, based on Euler-Bernoulli beam143

assumptions, are defined as follow:144

ux(x, z, t) = u(x, t)− zθ(x, t) (7)
145

uz(x, z, t) = w(x, t) = wb(t) + wrel(x, t) (8)

where u is the axial displacement of the center line of the beam, θ =146

∂wrel/∂x is the beam section rotation, w is the transverse displacement,147

wb(t) = wbe
jωt is the base displacement and wrel is the relative transverse148

displacement of clamped-free beam.149

Applying the finite element method, the previous formulations uses a150

standard discretization of N mechanical Degrees Of Freedom (DOFs) and151

provides less restrictive assumptions on the electrical DOFs: only one elec-152

trical DOF for each piezoelectric layer is needed due to the equipotentiality153

in the electrodes. In this paper, three mechanical degrees of freedom per154

node are assumed (u, w, θ). Details of the stratified beam finite element155

discretization are provided in [23] for the master element shape functions.156

The various terms appearing in the variational formulation of Equations (5)157
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and (6) in terms of Hamilton’s principle are now discussed. The discrete158

form for each term is provided [22]:159

(i) The kinetic energy variation is:160

δT = −
K∑

k=1

∫
Ωk
ρk ( ..

u xδux + ..
u zδuz

)
dΩ⇒ −δUT Mm

..
U(t) + δUT F(t) (9)

where Mm is the global (N ×N) mass matrix, U(t) = Uejωt is the global161

(N × 1) vector of mechanical coordinates displacements, F(t) = Fejωt is the162

global (N ×1) forcing vector due to base excitation, which can be expressed163

as an (N × 1) effective mass vector m∗ multiplied by the base acceleration164

[3, 22] as follows:165

−
K∑

k=1

∫
Ωk
ρkδwrelẅbdΩ⇒ δUT m∗ẅb(t) = δUT F(t) (10)

(ii) The internal energy variation is:166

δU =
K∑

k=1

∫
Ωk
ck

11ε1δε1dΩ +
P∑

p=1

V (p)

h(p)

∫
Ω(p)

e
(p)
31 δε1dΩ

+
P∑

k=1

δV (p)

h(p)

∫
Ω(p)

e
(p)
31 ε1dΩ−

K∑
k=1

δV (p)

h(p)

∫
Ω(p)

ε
(p)
33
V (p)

h(p) dΩ

(11)

• The first term of Equation (11) is the mechanical contribution to the167

internal energy variation:168

K∑
k=1

∫
Ωk
ck

11ε1δε1dΩ⇒ δUT KmU(t) (12)

where Km is the global (N ×N) stiffness matrix.169

• The second and third terms in Equation (11) are the piezoelectric170

contributions to the internal energy variation related to the direct and171

inverse effects:172

P∑
p=1

V (p)

h(p)

∫
Ω(p)

e
(p)
31 δε1dΩ⇒ δUT KcV(t) (13)
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173
P∑

k=1

δV (p)

h(p)

∫
Ω(p)

e
(p)
31 ε1dΩ⇒ δVT KT

c U(t) (14)

where Kc = (K(1)
c · · ·K(P )

c ) is the global (N × P ) electromechanical174

coupling matrix, V(t) = Vejωt is the global (P × 1) vector of voltage175

outputs.176

• The last term in Equation (11) is the electrostatic contribution to the177

internal energy variation is:178

K∑
k=1

δV (p)

h(p)

∫
Ω(p)

ε
(p)
33
V (p)

h(p) dΩ⇒ δVT KeV(t) (15)

where Ke = diag(C(1) · · ·C(P )) is the diagonal global (P × P ) ca-179

pacitance matrix, and C(p) = b× L
h(p) ε

(p)
33 is the capacitance of the pth180

piezoelectric layer.181

(iii) The variation of work due to the charges is:182

δWnc =
P∑

p=1
δV (p)Q(p) ⇒ δVT Q(t) (16)

where Q(t) = Qejωt is the global (P × 1) vector of electric charge outputs.183

The harvested energy is dissipated through a resistive electrical load R.184

Using Ohm’s law, the following additional equation relates the voltage vector185

V to the time derivative of the charge vector Q:186

V(t) = R
.

Q (t) (17)

To account for system damping, a proportional viscous damping is assumed187

and included in the model. The global (N × N) damping matrix Cm is188

assumed to be a linear combination of the mass and stiffness matrices (the189

Rayleigh damping), so that:190

Cm = αMm + βKm (18)
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where α and β are real proportional coefficients which are typically deter-191

mined from the measurement of modal damping.192

The general damped electromechanical equations obtained from the pre-193

vious finite element formulation can be expressed as [25, 26, 27]:194

Mm

..
U (t) + Cm

.
U (t) + KmU(t) + KcV(t) = F(t) (19)

195

KeV(t)−KT
c U(t) + Q(t) = 0 (20)

where Equation (19) corresponding to the mechanical equation of motion196

includes the inverse effect electromechanical coupling term, whereas Equa-197

tion (20) corresponding to the electrical equation includes the direct effect198

electromechanical coupling term introduced by the piezoelectric behavior.199

2.1. Natural frequencies of the harvester for the short-circuit and the open-200

circuit conditions201

The natural frequencies of the harvester are calculated by solving the202

free undamped system corresponding to Equation (19). For piezoelectric203

energy harvesters, two natural frequencies are defined as a characteristic204

limit bounds for each vibration mode: (i) the short-circuit natural frequen-205

cies are calculated by assuming that no potential difference exists across the206

piezoelectric layers in free vibration. As a result, the electromechanical cou-207

pling in Equation (19) is omitted, (ii) the open circuit natural frequencies,208

however, are calculated by assuming that no charge flows in the electrical209

circuit [28]. In practice, these natural frequencies are determined in terms of210

the load resistance value. The short-circuit condition corresponds to a low211

resistive load connected to the electrodes of the piezoelectric layers (R→ 0),212

whereas the open-circuit condition is determined for a high load resistance213

(R → ∞). The main motivation of computing these particular limits is214

11



to determine the electromechanical coupling factor, using a classical elastic215

mechanical formulation, which corresponds to the electromechanical energy216

ratio.217

The normal modes of the short-circuit system are obtained assuming218

harmonic solutions of the undamped equations of motion (19) for V = 0219

and F = 0.220 [
Km − ω2

i Mm

]
Φi = 0 (21)

where ωi is the natural frequency and Φi is eigenvector for the ith mode221

for short-circuit condition. These modes verify the following orthogonality222

properties:223

ΦT
i MmΦj = δij and ΦT

i KmΦj = ω2
i
δij (22)

where δij is the Kronecker symbol and the mode Φi is normalized with224

respect to the structural mass matrix.225

The eigenvalue problem for the open-circuit condition is derived by cou-226

pling Equations (19) and (20) substituting Q = 0 and F = 0:227

[
K̂m − ω̂2

i Mm

]
Φ̂i = 0 (23)

where K̂m = Km + KcK−1
e KT

c is the stiffness matrix for the open-circuit228

condition which depends on the piezoelectric system properties, ω̂i is the229

natural frequency and Φ̂i is eigenvector for the ith vibration mode. These230

modes verify the following orthogonality properties:231

Φ̂T
i MmΦ̂j = δij and Φ̂T

i K̂mΦ̂j = ω̂2
i
δij (24)

2.2. Effective Electromechanical Coupling Factor232

The dimensionless Effective Electromechanical Coupling Factor (EEMCF)233

of the piezoelectric laminated beam for the ith mode can be expressed in234
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terms of the natural frequencies of the short and open-circuit conditions.235

This factor defines the exchange of energies of the vibrating structure at the236

ith mode. It is usually defined, as follows [29, 30, 31]:237

k2
eff,i = ω̂2

i − ωi
2

ωi
2 (25)

3. The Bimorph Piezoelectric Energy Harvester238

The finite element formulation, presented in Section 2, can be easily239

adapted to the case of a bimorph piezoelectric energy harvester considered240

as a case study in this paper. The harvester is composed of two identical241

piezoelectric layers, so that P = 2 and C(1) = C(2) = C, bonded to an242

elastic substrate beam as shown in Figure 2. Thus, the harvester has a total243

of three layers (K = 3). The harvester is assumed to be a linear input-244

output system which is characterized by its Frequency Response Functions.245

Figure 2: A Clamped free bimorph piezoelectric energy harvester under base excitation

with a load resistance mounted in series
246

The FRFs are defined here as the output responses of the harvester (dis-247

placement or voltage) per base acceleration versus the excitation frequency.248
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Transforming Equations (19) and (20) to the frequency domain, the equiva-249

lent expression for nodal displacements FRFs relative to the electrical config-250

urations (load resistance mounted in series or parallel connection) is given in251

the following equation in which the electrical DOFs are eliminated [32, 33].252

U
−ω2wb

=

−ω2Mm + jωCm + Km + jω Keq
c KeqT

c(
1
R + jωCeq

)
−1

m∗ (26)

where Keq
c and Ceq are respectively the equivalent electromechanical cou-253

pling vector and the equivalent capacitance for a series and parallel connec-254

tions of the load resistance with piezoelectric layers [33], which are given in255

Table 1. For the mechanical vibration response, only the transverse tip dis-256

placement FRF
(

wn

−ω2wb

)
is considered in this study. The index n = N/3 is257

the total number of nodes used to discretize the beam harvester with linear258

elements.259

Table 1: Equivalent terms of a bimorph energy harvester for the series and the parallel

connections of the piezoceramic layers

Terms Series connection Parallel connection

Keq
c

K(1)
c + K(2)

c

2 K(1)
c + K(2)

c

Ceq C

2 2C

Similarly, for the electrical outputs, the resultant voltage FRF of the har-260

vester is obtained as a function of the nodal displacements FRFs as follows261

[32]:262

V

−ω2wb
= jω KeqT

c(
1
R + jωCeq

p

)( U
−ω2wb

)
(27)

The current I and the electrical power P FRFs are derived from the263

14



voltage FRF:264

I

−ω2wb
= 1
R

(
V

−ω2wb

)
(28)

265

P

(−ω2wb)2 = 1
R

(
V

−ω2wb

)2
(29)

The global finite element matrices appearing in the frequency response266

functions Equations (26) and (27) establish the dependence of the response267

of the system on a set of parameters representing the physical characteristics268

of the harvester structure. In general, we assume that any complex frequency269

response function H of the BPEH can be expressed in the following form:270

H = H (ω,θ) (30)

where θ is a vector of physical parameters of the harvester.271

4. Global Sensitivity Analysis of the Frequency Response Func-272

tions273

4.1. The Elementary Effects Method274

The Elementary Effects Method constitutes a simple way for screening275

the effect on the output responses of a few important input factors among the276

many factors that can be contained in the studied model. The fundamental277

idea behind this method is given by Morris [16, 34], who introduced the278

concept of elementary effects, proposing the construction of two sensitivity279

measures: the mean and the standard deviation of the EEs for each input280

parameter. In practice, this method is conducted by: (a) defining the model281

and its input parameters, (b) assigning Probability Density Function (PDF)282

to each input parameter, (c) generating an input matrix using an appropriate283

random sampling method, (d) calculating the corresponding output response284

15



vector, and (e) computing the EEs and then the sensitivity measures of each285

input/output relationship [35]. The average and standard deviation are then286

computed for a set of elementary effects for each factor. The main goal is287

to determine which input factors could be considered to have effects which288

are [16, 17]:289

1. Negligible (low mean, low standard deviation).290

2. Linear and additive (high mean, low standard deviation).291

3. Nonlinear or involved in interactions with other factors (high standard292

deviation).293

This method computes the sensitivities of the outputs considering one factor294

at time among the input factors through the concept of EEs, which are295

approximations of the first order partial derivatives of the response. These296

elementary effects are estimated at a set of sampled points in the input297

space.298

The finite element model of the bimorph piezoelectric energy harvester299

defined in Equations (26) and (27), is the model-parameters considered. The300

frequency response function H in Equation (30) is the model-output and the301

k independent parameters in vector θ are the model-inputs. Each parameter302

θi is assumed to be scaled to take on values in the interval [0, 1] as follows:303

θi = θi − θi,min

θi,max − θi,min
(31)

where θi,max and θi,min are respectively the maximum and minimum bounds304

of the ith parameter. The bar is omitted below to simplifying the nota-305

tion. Thus, these non-dimensional parameters are randomly selected in a306

k-dimensional unit hypercube.307

A discretized approach of the input space is proposed. In fact, the pos-308

sible input values will be restricted to an experimental design, which is a309

16



regular k-dimensional p-levels grid, where each θi may take a value from the310

set {0, 1/(p − 1), 2/(p − 1), · · · , 1}. For a given vector θ, the elementary311

effect of the ith input parameter is defined as follows [36, 16]:312

EEi(θ) = |H(θi + ∆,θ∼i)| − |H(θ)|
∆ (32)

where |.| is the modulus, θi varies between 0 and (1−∆); ∆ is the variation313

size which is a predetermined multiple of 1/(p − 1), and θ∼i is the set of314

all parameters except the ith parameter. The originality of the elementary315

effects method is based on selecting a set of r trajectories where parameters316

are changed one at a time on the design grid [7]. A trajectory enables317

the calculation of an elementary effect for each input parameter i between318

two points of the trajectory (θ(j) and θ(j+1), where j ∈ {1, .., k}) [17, 37].319

Therefore, each trajectory requires (k + 1) model evaluations (simulations)320

to calculate k elementary effects (one EE per parameter).321

Figure 3 presents a trajectory in a 3-dimensional space which is com-322

posed of a four sampling points {θ(1), · · · ,θ(4)} and ∆ = 0.25. Along a323

trajectory each input parameter is increased or decreased by the same step324

∆. Considering, for example, the third component θ3. This components325

differs only in the two consecutive sample points θ(3) and θ(4), thus:326

EE3 = |H(θ4)| − |H(θ3)|
0.25 (33)

327

A set of r different trajectories (with index t, where t = 1, .., r) provides328

r estimates of elementary effects related to each input parameter i, at the329

cost of r × (k + 1) simulations.330

The first measure of sensitivity is the average of the elementary effects331
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Figure 3: An example of a trajectory in the input domain for k = 3 and p = 5

which is computed for each input parameter i:332

µi = 1
r

r∑
t=1

EE
∗(t)
i (34)

where EE∗(t)
i is the normalized elementary effects of EE(t)

i . This measure333

has been rectified by Campolongo et al. [21], who has recommended the334

use of the mean of absolute elementary effects, defined in Equation (32),335

rather than the usual average, since some EEs can eliminate each other in336

non-monotonic models. Thus, the mean of the absolute values of EEs is:337

µ∗
i = 1

r

r∑
t=1
|EE∗(t)

i | (35)

For a given parameter i, if the r estimates of EEs have the same sign, that338

means that this parameter has a monotonic effect on the output response,339

increasing or decreasing, depending on the sign of the EEs. In this case, µ∗
i340
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is equal to the absolute value of µi. The reverse is also true; if µ∗
i = abs(µi),341

the effects of the ith parameter are monotonic.342

The second proposed measure is the standard deviation of the EEs σi,343

which assesses the extent of interactions and non-linear effects of each input344

parameter i. This measure is defined as follows:345

σi =

√√√√ 1
r − 1

r∑
t=1

(|EE∗(t)
i | − µ∗

i )2 (36)

A graphical representation of the (µ∗
i , σi) points in the (µ∗, σ) plane346

allows a comparison of the sensitivities of different parameters taking into347

account at the same time the two sensitivity measures.348

4.2. Latin Hypercube Sampling for Elementary Effects Method349

Latin Hypercube Sampling (LHS) has become a popular technique for350

generating designs to computational experiments [38, 39]. To do that for the351

elementary effects method, three steps are essential: (1) The LHS generates352

p = 2×r random samples of k uncorrelated parameters in the k-dimensional353

unit hypercube; where each component of θ has an uniform distribution in354

the interval [0, 1]. (2) Returning to the specified distribution of the uncertain355

parameters by inverting the Cumulative Distribution Function (CDF). (3)356

Applying the One factor at a time strategy, which consists in adding the357

r×(k−1) points in order to establish r trajectories, each trajectory contains358

k+ 1 points. Therefore, the computational experiments matrix is composed359

of r× (k+ 1) random points of k uncorrelated parameters. Each row of the360

matrix is a point in the input space. The rows of the matrix are sorted in361

r blocks, each block includes k + 1 rows (each block presents a trajectory).362

Inside each block, points differ only in one component at a time. Thus, each363

block allows to compute one Elementary Effect per input parameter.364
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Figure 4 shows an example of two parameters uniformly distributed in365

[0 1]2 space. In order to determine 4 elementary effects per parameter, the366

LHS method generates 8 random points given in Figure 4.a. Adding 4 points367

whose one parameter changes at the time, provides 4 trajectories as shown368

in Figure 4.b. The LHS with the one factor at the time strategy ensure two369

levels per input parameter for one trajectory of the EEs method.370
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Figure 4: (a) Random points generated by the LHS method in two unit dimensions, (b)

4 trajectories in [0 1]2 space for the EEs method

5. Numerical Example371

This section presents a numerical example of the harvester introduced in372

Section 4, which is composed of two identical piezoceramic layers of PZT-373

5A bonded on the top and the bottom surfaces of an aluminum substrate.374

The geometrical dimensions and material properties of the harvester used375

in this example are given in Table 2 (adapted from Erturk and Inman [1]).376
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The ratio of the overhang length to the total thickness of the harvester377

is about 85.7, which makes it reasonable to neglect the shear deformation378

and the rotary inertia effects for the first few vibration modes. For the379

numerical simulation, we used modal mechanical damping ratios ζ1 = 0.01380

and ζ2 = 0.012 for the first two modes. The proportional coefficients α and381

β given in Equation (18) are computed using these two damping ratios. The382

load resistance R is mounted in series with the piezoceramic layers as shown383

in Figure 2.

Table 2: Physical parameters values of the harvester structure of Fig.2

Parameters Descriptions Units1 PZT-5A Aluminum

L Beam length mm 30 30

b Beam width mm 5 5

hp , hs Layers thickness mm 0.15 0.05

Ep , Es Young’s modulus GPa 61 70

ρp , ρs Mass density kg/m3 7750 2700

e31 Piezoelectric constant C/m2 -10.4 –

ε33 Permittivity constant nF/m 13.3 –

384

For the finite element discretization, the harvester is modeled in 1D using385

30 linear elements with three degrees of freedom per node.386

The model is validated for the frequency range from 0 to 5000 Hz by387

comparing the first three resonance frequencies computed by the finite ele-388

ment model to those given by the analytical solution computed by Erturk389

et Inman [1] for the same harvester for the short-circuit and open circuit390

1Unit of parameter (PU), it will be used to define sensitivities units
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conditions. The first three natural frequencies are listed in Table 3 with391

the effective electromechanical coupling factor keff defined in Equation (25)392

which is computed for the FE-model. We can notice that the natural fre-393

quencies for the open-circuit condition are higher than those obtained in394

the short-circuited case due to the electromagnetical coupling effects and395

the added stiffness in the open-circuit condition. Therefore, the natural fre-396

quencies for the two approaches are in excellent agreement for all modes.397

An infinitesimal error for the third mode can be due to the numerical com-398

putational errors caused by the approximation solution of the finite element399

method, which is so sensitive to the assigned discretization. These results400

confirm the validation of the finite element harvester model and allow for401

pursuing the study.

Table 3: The first three natural frequencies for the short circuit and open circuit conditions

computed from the Finite Element Method (FE) and the Analytical solution (Anal.) [1]

.
Mode (r) f cc

r (FE) f cc
r (Anal. [1]) f co

r (FE) f co
r (Anal. [1]) keff,r (FE)

1 185.1 185.1 191.1 191.1 0.2561

2 1159.8 1159.7 1171.7 1171.6 0.1435

3 3246.7 3245.3 3258.2 3254.1 0.0845

402

The selected uncertain parameters are the Young modulus and the ma-403

terial densities for both the substrate and the piezoelectric layers, also the404

premittivity and piezoelectric constants for the piezoceramic layers. Table 4405

lists the tolerances provided by the manufacturers as percent varation from406

the nominal values [11]. A tolerance of±20% is reported for the piezoceramic407

PZT-5A electromechanical properties and ±10% for the Young’s modulus408
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and density of the aluminum substrate material. An uniform distribution is409

assumed for all materials properties of the harvester.410

Table 4: Bounds for the uniform PDF distribution associated to the electromechanical

parameters; bounds are expressed in terms of the nominal values [11]

Parameters Bounds

Ep ±20%

Es ±10%

ρp ±20%

ρs ±10%

e31 ±20%

ε33 ±20%

The application of the Morris method for the voltage FRF of the bimorph411

piezoelectric energy harvester consists in computing r = 10 elementary ef-412

fects for each parameter listed in table 4. Thus, 70 simulations are required413

for a fixed excitation frequency and load resistance. The aim of the study is414

to identify the effect of the excitation frequency on the importance order of415

the parameters particularly in the vicinity of the first mode. Furthermore,416

the system is be studied for both a short-circuit condition simulated using417

a load resistance R = 100 Ω and an open-circuit condition simulated using418

for a load resistance R = 107 Ω.419

Figure 5 shows the voltage and tip displacement FRFs responses of the420

harvester versus the excitation frequencies in the vicinity of the first mode for421

70 samples. One can be observe the variability in the first natural frequency422

and in amplitude peaks. The voltage FRF peak varies between 0.02032 and423

0.01152 V/g whereas the tip displacement FRF peak varies between 442.46424
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and 756.55 µm/g.
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Figure 5: Modulus of FRFs versus excitation frequencies of the first mode for the 70

simulations of: (a) voltage and (2) Tip displacement for the short circuit condition R =

100Ω

425

Figure 6 shows the average µ∗ and the standard deviation σ of the EEs426

to the electromechanical characteristics of the bimorph piezoelectric energy427

harvester for the output voltage FRF at the selected excitation frequencies428

in the vicinity of the first natural frequency. The harvester has a 100 Ω load429

resistance connected in series between the two piezoelectric layers. One can430

notice that the hierarchical influence of the input parameters is unchange-431

able and independent of the excitation frequency. Moreover, the density432

and the elastic modulus of the piezoceramic layers have the highest val-433

ues of the EEs indicators whereas the premittivity constant has the lowest434

values. These results provide a useful information about how significant un-435

certain parameters affect the output voltage of the harvester and how much436
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interaction exists between the parameters.
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Figure 6: EEs measures for the voltage FRF of the bimorph piezoelectric energy harvester

harvester for a load resistance R = 100 Ω at excitation frequencies in the viscinity of the

first natural frequency (a) the mean and (b) the standard deviation

437

Figure 7 shows the (µ∗, σ) scatter graph of the FRF voltage for the six438

parameters to the variation of the electromechanical characteristics for a439

load resistance R = 100 Ω and and excitation frequency equal 185 Hz. The440

limits of the boxes correspond to a confidence interval of 95%. Clearly,441

we can see that the sensitivities of the absolute mean and standard devia-442

tion of the piezoelectric density ρp and the elastic modulus Ep are relatively443

significant compared to those of the piezoelectric constant, permittivity con-444

stant and substrate properties. Therefore, the density and elastic modulus445

of piezoelectric layers are the most important parameters that affect the446

output voltage FRF. Furthermore, the average and the standard deviation447

are of the same order of values. This means that the elastic modulus and448
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density of the piezoelectric layers are strongly influenced by the nonlinear449

effects and interactions with others parameters.
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Figure 7: (µ∗, σ) Scatter graph of the voltage FRF for bimorph piezoelectric energy har-

vester harvester for a load resistance R = 100 Ω and an excitation frequency 185 Hz with

95% confidence interval

450

Considering next the sensitivity analysis for a roughly open circuit con-451

dition depicted by a load resistance R = 107 Ω. Figure 8 shows the average452

µ∗ and the standard deviation σ of the EEs for the output voltage FRF453

at a set of excitation frequencies in the vicinity of first natural frequency.454

One can notice the EEs sensitivity measures are in the same order for all455

considered frequencies. This means that the parameters importance is the456

same for any of the excitation frequency. However, the order influence of457

the parameters change form the short to the open circuit condition. The458

influence of the permittivity constant becomes higher than the Aluminum459

substrate material properties. The density and the elastic modulus of the460

piezoceramic layers remain the highest EEs indicators similarly to the case461
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of a roughly closed circuit whereas the EEs indicators for the aluminum462

properties become the lowest.
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Figure 8: EEs measures for the voltage FRF of the bimorph piezoelectric energy harvester

harvester for a load resistance R = 107 Ω at excitation frequencies in the viscinity of the

first natural frequency (a) the mean and (b) the standard deviation

463

Figure 9 presents the standard deviation versus the absolute mean of the464

EEs and the confidence interval of 95% for the k electromechanical charac-465

teristics of the harvester for the case of a roughly open circuit condition466

depicted by a load resistance R = 107 Ω and for an excitation frequency of467

185 Hz. One can clearly notice that the piezoelectric density and elastic468

modulus remain the major contributors for the uncertainty of the voltage469

FRF. The premittivity constant becomes more significant compared to the470

Aluminum substrate characteristics which have negligible effect on the har-471

vester voltage response in both short and open circuit.472

In order to evaluate the harvester performance, The EEMCF defined in473
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Figure 9: (µ∗, σ) Scatter graph of the voltage FRF for the bimorph piezoelectric energy

harvester harvester for a load resistance R = 107 Ω and excitation frequency 185 Hz with

95% confidence interval

(30) as the ratio of the exchanged mechanical energy and electrical energies474

is shown in Figure 10 for each of the 10 electromechanical characteristic475

sample vectors used in this GSA study. One can observe that the EEMCF476

can reach a maximum value of 0.34 for the 42th sample vector. This results477

can be very useful for the research of optimal harvester parameters that478

maximize this factor.479

6. Conclusion480

In this paper, a finite element formulation of the electromechanical cou-481

pling problem for a laminated piezoelectric cantilever beam introduced. The482

finite element formulation is applied in the case of a symmetric bimorph483

piezoelectric energy harvester. The FRFs of the harvester are used as the484

performance predictors. The Morris global sensitivity method using the el-485
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Figure 10: The EEMCF keff for the 70 simulations used in the GSA

ementary effects is used to study the effect of the variability of the material486

properties of the substrate and piezoelectric layers on the voltage FRF out-487

put of the harvester. The EEs method can estimate the effect of parameters488

and their interactions by considering both the mean and the variance of489

the elementary effects. Using only 70 simulations, the sensitivities measures490

show that the piezoelectric elastic modulus and its density are the most491

influential parameters on the voltage FRF. These results are in agreement492

with the published research of Ruiz et al [11] which used the Sobol’ indices493

as a variance based sensitivity analysis method. The method of Morris cor-494

rectly screens the most and least sensitive parameters among few selected495

parameters for a spatially distributed bimorph piezoelectric energy harvester496

FE-model with fewer model evaluations than the Sobol’s method.497

Future research may consider second order sensitivity analysis using the498

elementary effects method to minutely study the interactions between pa-499
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rameters properties of the harvester.500
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