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Abstract

With the development of practical applications in the domain of information sys-

tems, a wide variety of non-classical logics are part of current studies. Most of

these systems have a natural algebraic model (namely their Lindenbaum algebra)

which is a distributive lattice with additional operators. In order to find examples

of these models, one way is to consider pairs of elements.

The purpose of this paper is to provide a general framework, built from a pair of

Boolean operators -a quantifier and a co-quantifier- on a complete Heyting-Brouwer

algebra, focusing on the lattice part, which is common to all these structures.

1. Introduction

It turns out that, for a variety of sound reasons, researchers are occasionally

interested in topics related to pairs of sets. Below we will report some sources that

have influenced our work.

According to ([13], p.88), the idea of considering pairs of elements in ordered

sets in view of a generalization of the cardinal arithmetic (Hausdorff), comes back

to Garrett Birkhoff ([1], p.312). Thus, given two ordered sets X and Y , “the

product X ⋅ Y of X and Y is meant the system whose members are all couples

[x, y] with x ∈ X and y ∈ Y , and in which [x, y] ≤ [x′, y′] means that x ≤ x′ in X

and y ≤ y′ in Y . X ⋅ Y is an ordered set and if X and Y are lattices, then so is

X ⋅Y . Moreover any laws such as the modular and distributive laws which hold in

X and Y hold in X ⋅ Y ”.

Using ordered pairs of Boolean elements to represent algebraic structures re-

lated to logics comes back to Gr. C. Moisil. Indeed, in [12], this author was able to

characterize -from an algebraic-algorithmic point of view- the  Lukasiewicz three-

valued logic. With the aim of giving an example as well as a representation of this

structure, this author considered sets of pairs [NµNx,µx], where N is a Kleene

negation and µ an endomorphism from the  Lukasiewicz three-valued algebra to the

Boolean subalgebra of Chrysippian elements. The construction of Moisil has been

adapted numerous times to other propositional logics and has been generalized to

other contexts.
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In the case of lower and upper approximations of a set, Z. Pawlak (1981)

proposed the notion of rough set, as the approximation of a set by other sets and

T. B. Iwiński (1987) started their lattice-theoretical study considering rough sets

as pairs of [lower approximation, upper approximation].

In order to approach a set of objects -by default and by excess- a very old idea

is to consider the universe Ob provided with a partition P . From an algebraic

point of view, this partition generates an equivalence relation RP . Let R∗P be the

family of all equivalence classes ∣x∣ of RP , that is R∗P = {∣x∣ ∶ x ∈ Ob}. It is well

known that on the Boolean algebra (P(Ob),∩,∪,−,∅,Ob), where P(Ob) denotes

the powerset of Ob, and −X the complementation of X, the relation RP induces a

monadic closure operator MP and a monadic interior operator LP in the

following way, for X ⊆ Ob:

MPX = ⋃{∣x∣ ∈ R∗P ∶ x ∈X}

LPX = ⋃{∣x∣ ∈ R∗P ∶ ∣x∣ ⊆X}.

Since LPX ⊆ X ⊆MPX, ordered pairs of the form [LPX,MPX] with X ⊆ Ob,

are rough sets. The collection of these pairs, equipped with a suitable structure,

allows us to give a ‘typical’ example of three-valued  Lukasiewicz algebra. These

algebraic structures are adapted to three-valued situations and, in particular, they

are monadic Boolean algebras.

It is well known that the study of monadic Boolean algebras was initiated by

Halmos around 1955 [3]. They are Boolean algebras with, in addition, a unary

operator characterized by axioms analogous to those of an universal quantifier ∀

or an existential quantifier ∃.

In the nineties, in particular in 1996 (the essays dedicated to the memory of

Helena Rasiowa were published in 1999 [5]), I proved that the notion of monadic

Boolean Algebra is the good abstract algebraic structure to manage rough sets.

In order to be closer to Rasiowa’s lines of research I worked with  Lukasiewicz

algebras. Moreover, if the classical negation is not taken as an essential operation,

the concept of monadic Tarski algebra, known in the literature, can replace the

notion of monadic Boolean algebra [8].

Encouraged (around 2011) by the advise of an anonymous referee who has eval-

uated one of my papers, I have extended the study of lower and upper approxima-

tion by means of preorders in view of practical applications and representation

theorems of some structures related to non-classical logics.

During years, a large number of non-classical logics and their algebraic semantic

have been considered. In ([22], p.227 (or p.154)), we can read that most of the

well-studied non-classical systems are logics based on classes of distributive lattices

with operators (see for example, the T -structures in [6], [7] or T -rough algebras and

their applications in [21], where T is a finite ordered set of co-operating agents).

In the case the approach of pairs is chosen, the main goal of this paper is to

find a general pattern to be able to manage lattice operations of pairs.
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In the particular case cited above, where the universe Ob is enriched with an

equivalence relation RP , the lower and upper approximation sets are related by

means of the Boolean negation in P(Ob). In fact, LPX = −MP−X. The boundaries

are empty. This is no longer the case if the relation R is only a preorder.

2. A ‘concrete’ Rauszer Boolean algebra

With the aim of taking into account the boundaries [10], we consider the ‘con-

crete’ Rauszer Boolean algebra introduced in ([17] and [18]) as an example of

a bi-topological algebra (see also [9]).

Roughly speaking, they are Boolean algebras with, in addition, two unary

operators, IR an interior and CR a closure, not related by the Boolean negation.

In this section we point out some basic notions related to a Rauszer Boolean

algebra.

Let Ob be a nonempty set (set of objects) and R a preorder relation on Ob.

For x ∈ Ob, let

R(x) = {y ∈ Ob ∶ xRy}.

and R∗ = {R(x) ∶ x ∈ Ob}.

By the reflexivity of R we infer that x ∈ R(x). Also, if z ∈ R(x) and u ∈ R(z)

then xRz and zRu, so by transitivity xRu, that is R(z) ⊆ R(x).

On the Boolean algebra (P(Ob),∩,∪,−,∅,Ob), where P(Ob) denotes the pow-

erset of Ob, and −X the complementation of X, a preorder relation R induces two

unary operators CR and IR in the following way, for X ⊆ Ob:

CRX = ⋃{R(x) ∈ R∗ ∶ x ∈X}

IRX = ⋃{R(x) ∈ R∗ ∶ R(x) ⊆X}

CR and IR are respectively a closure and an interior operator over P(Ob). This

‘concrete’ Rauszer Boolean algebra B = (P(Ob), IR,CR) has many interesting al-

gebraic properties.

In fact:

IRCRX = CRX and CRIRX = IRX,

that is, they are conjugate over P(Ob) ([18], p.228).

Also, a set X ∈ P(Ob) is called R-closed in the case CRX =X and R-open in

the case IRX =X. As in the case of monadic Boolean algebras we have here that:

X is R-open if and only if X is R-closed.

Let OR be the family of all R-open (=R-closed) sets. Thus, (OR,∩,∪,∅,Ob)

is a lattice with zero and unit.
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For all G,H ∈ OR, where ⊃ is the classical implication, two operations ⇒ and
⋅– on OR, are defined ([18], p.235):

G⇒H = IR(G ⊃H) and G ⋅– H = CR(G ∩ −H)

On OR, the operation ⇒ is the Heyting implication and the operation ⋅– is a

Brouwer implication (also called the pseudo-difference or the residual). In addition

we have two negations: ⌝G = G⇒∅ and ⌜G = Ob ⋅– G.

Therefore the system (OR,∩,∪,⇒, ⋅– ,⌝,⌜,∅,Ob) is a Heyting-Brouwer alge-

bra.

Let IR(P(Ob)) be the image of P(Ob) by IR. We have the following equiva-

lences:

Z ∈ IR(P(Ob)) ⇐⇒ there is X ∈ P(Ob) such that IRX = Z ⇐⇒

there is X ∈ P(Ob) such that IRZ = IRIRX = IRX = Z ⇐⇒ Z ∈ OR

Thus, the image IR(P(Ob)) = (OR,∩,∪,∅,Ob) is a distributive lattice, with

zero and unit.

In addition, OR satisfies the following property ([14], p.177):

If for all k ∈ K, Gk ∈ OR then the lower upper bound (l.u.b.) ⋁k∈K Gk =

⋃k∈K Gk is in OR.

In other words, this means that IR(⋃k∈K Gk) = ⋃k∈K Gk. Hence OR is a sup-

complete distributive lattice.

In the ‘concrete’ Rauszer Boolean algebra B = (P(Ob), IR,CR), the lattice OR

has another property which is, in general, not true in topological spaces.

Proposition 2.1 If for all k ∈K, Gk ∈ OR then IR(⋂k∈K Gk) = ⋂k∈K Gk.

Proof. Indeed, (i) IR(⋂k∈K Gk) ⊆ ⋂k∈K Gk since IR is an interior operator. On

the other hand, we will prove that ⋂k∈K Gk ⊆ IR(⋂k∈K Gk) =

⋃{R(u) ∶ R(u) ⊆ ⋂k∈K Gk}.

Let z ∈ ⋂k∈K Gk. For all k ∈ K we have z ∈ Gk = IRGk, that is, for all k ∈ K

there is uk ∈ Gk such that z ∈ R(z) ⊆ R(uk) ⊆ Gk. Hence z ∈ R(z) ⊆ ⋂k∈K Gk. This

leads to z ∈ IR(⋂k∈K Gk), that is (ii) ⋂k∈K Gk ⊆ IR(⋂k∈K Gk).

From (i) and (ii) we get the result.

Owing to the previous results, we infer that the ordered set (OR,∩,∪,∅,Ob)

is a complete distributive lattice with zero and unit. The g.l.b. and l.u.b.

being the intersection and union of sets respectively.

Let CR be the family of all R-closed elements under R and CR(Ob) the image

of Ob by CR. By a result above, we conclude that CR = OR.

This type of algebras were remarked by McKinsey and Tarski in ([11], p.129)

and referred to as “double Brouwerian algebras”. According to these authors, this
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notion seems to have been discussed for the first time in a paper by Skolem in

1919 (implicative and subtractive lattices). In the 1970’s, they were extensively

investigated by Rauszer in several papers, under the name of semi-Boolean alge-

bras [17]. We remark that, in the literature, this latter name has also been used

for other structures. They are an algebraic counterpart of an extension of the intu-

itionistic logic that she called Heyting-Brouwer (H-B)-logic [19]. For this reason,

we preferred to call them Heyting-Brouwer algebras (H-B-algebras in brief).

For more information see for example [4].

Under the name of co-Heyting algebras [10], or Bi-Heyting algebras [20], they

occur in categorical logic (the Lawvere topos). Thus, Lawvere [10] wrote that

“they occur in practice directly, not only as formal opposites of Heyting algebras”.

This structure, as in the case of toposes, allows us to define a boundary operator

δ(G) = G ∩ ⌜(G) [10]. Otherwise, the idea of iterating the two negations can be

found in ([18], p.222) and ([4], p.552). Using these facts, we are able to get two

particular dual operators on OR needed to obtain our purpose.

For a later need we recall that, since OR is a complete distributive lattice,

two “infinite distributive laws”: G∩⋃tHt = ⋃t(G∩Ht) and G∪⋂tHt = ⋂t(G∪Ht)

hold in OR (cf. Birkhoff-Tarski or ([18], p.235)).

3. The complete H-B-subalgebra

(OR,∩,∪,⇒, ⋅– ,⌝,⌜,∅,Ob)

According to ([18], p.222), ([4], p.552), from negations ⌝G = G ⇒ ∅ and

⌜G = Ob ⋅– G we can list a few fundamental properties, for all G,H ∈ OR:

(1.) ⌝ and ⌜ are order reversing. Hence, ⌝⌜ and ⌜⌝ are order preserving

(2.) ⌝∅ = Ob, ⌝Ob = ∅ ; ⌜∅ = Ob, ⌜Ob = ∅

(3.) G ∩ ⌝G = ∅, G ∪ ⌜G = Ob ; i.e. ⌝G is the largest element X such that

G ∩X = ∅ and ⌜G is the smallest element Y such that G ∪ Y = Ob

(4.) ⌝(G ∪H) = ⌝G ∩ ⌝H, ⌜(G ∩H) = ⌜G ∪ ⌜H

(5.) ⌝G ⊆ ⌜G ; ⌝⌜G ⊆ ⌜⌜G ⊆ G ⊆ ⌝⌝G ⊆ ⌜⌝G ; ⌝⌝⌝G = ⌝G, ⌜⌜⌜G = ⌜G

(6.) ⌝ ⌜ (G ∩H) = ⌝(⌜G ∪ ⌜H) = (⌝ ⌜G ∩ ⌝ ⌜H)

(7.) ⌜ ⌝ (G ∪H) = ⌜(⌝G ∩ ⌝H) = (⌜ ⌝G ∪ ⌜ ⌝H)

(8.) ⌜⋂tGt = ⋃t ⌜Gt ([18], p.235)

(9.) ⌝⋃tGt = ⋂t ⌝Gt ([19], p.129).



6

Following [17], [18], [4], we can consider on OR the sequences Sn and Tn, for

n ≥ 1, in the following way, for all G ∈ OR:

S1G = ⌝ ⌜G T1G = ⌜ ⌝G

SnG = ⌝ ⌜ ⌝ ⌜⋯ ⌝ ⌜
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

2n

G TnG = ⌜ ⌝ ⌜ ⌝⋯ ⌜ ⌝
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

2n

G.

In other words Sn, is obtained by iterating n times the composition ⌝⌜, whereas

Tn is obtained by iterating n times the dual composition ⌜⌝.

By properties recalled above we deduce that:

S1G ⊆ G ⊆ T1G and SnG ⊆ G ⊆ TnG.

In addition, since the H-B-algebra OR is complete we can define operators SR

and TR on OR as follows:

SRG = ⋂
n
SnG and TRG = ⋃

n
TnG

The notions of TRG and SRG are perfectly duals.

Theorem 3.1 The operator TR defined above is a quantifier on the bounded

distributive lattice (OR,∩,∪,∅,Ob) and SR is a co-quantifier on the same lattice.

In other words, TR satisfies the following conditions ([2], p.185):

(Q0) TR∅ = ∅ normalized

(Q1) G ∩ TRG = G increasing

(Q2) TR(G ∩ TRH) = TRG ∩ TRH quasi-multiplicative

(Q3) TR(G ∪H) = TRG ∪ TRH additive

The corresponding assertions for the co-quantifier SR are obtained from (Q0)-

(Q3) upon replacing TR, ∅, ∩, and ∪ by SR, Ob, ∪, and ∩, respectively:
(Q’0) SROb = Ob

(Q’1) SRG ∪G = G

(Q’2) SR(G ∪ SRH) = SRG ∪ SRH

(Q’3) SR(G ∩H) = SRG ∩ SRH

In order to shorten the proof of Theorem 3.1 we will first present same ele-

mentary consequences of the definitions given above. Also, in view of the perfect

existing duality, some proofs can be omitted.

Lemma 3.2 On account of definitions SR and TR we have:

(p0) SROb = Ob ; TR∅ = ∅ ;

(p1) SR and TR are order preserving
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(p2) SRG ⊆ G ⊆ TRG, more precisely

SRG ⊆ SnG ⊆ Sn−1G ⊆ ⋅ ⋅ ⋅ ⊆ G ⊆ ⋅ ⋅ ⋅ ⊆ Tn−1G ⊆ TnG ⊆ TRG

(p3) ⌝ ⌜ SRG = SRG and ⌜ ⌝ TRG = TRG

Proof. These assertions follow immediately from properties (1.) − (9.) above.

In the past, authors have been interested in the study of modal operators of

necessity and possibility on distributive lattices. In [20], the operators SR and

TR have been considered to define two modal operators in complete bi-Heyting

toposes. They have a very nice geometrical interpretation in the case of the bi-

Heyting algebras of subgraphs of a given graph.

For the sake of proof, according to [20], we recall the following results. We

note (B(OR),∩,∪,−,∅,OR) the subalgebra of Boolean elements in OR, that is the

set of elements G ∈ OR such that ⌝G = ⌜G. Here ‘-’ is the Boolean negation on

B(OR).

Lemma 3.3 The operators SR and TR defined above, satisfy -in addition- the

following properties:

(p4) SR and TR are applications from OR to B(OR), that is:

⌝SRG = ⌜SRG and ⌝TRG = ⌜TRG

(p5) If G is Boolean, i.e. G in B(OR) then, SRG = TRG = G

(p6) SR(SRG) = SRG ; TR(TRG) = TRG

(p7) SR and TR are conjugate, i.e. SR(TRG) = TRG and TR(SRG) = SRG

(p8) SRG = ⌜ TR ⌜G and TRG = ⌝ SR ⌝G

that is, SR(resp.TR) is definable in terms of TR and ⌜ (resp.SR and ⌝)

Proof.

(p4) By (5.) we have (i) ⌝SRG ⊆ ⌜SRG. To prove the reverse inclusion, we

see by (3.) that ⌝ ⌜ SRG ∩ ⌜SRG = ∅ and by (p3) we infer that SRG ∩ ⌜SRG = ∅.

Thus (ii) ⌜SRG ⊆ ⌝SRG. From (i) and (ii) the result follows. Similar proof for

⌝TRG = ⌜TRG.

(p5) If G is Boolean (i.e. G in B(OR)) then, by (5.) we obtain G ⊆ ⌝ ⌝G =

⌝ ⌜G = S1G ⊆ G. By induction on n we obtain SRG = G. Analogous proof for TR.

(p6) Since SRG is Boolean then, from (p4) and (p5), we get SR(SRG) = SRG.

By duality TR(TRG) = TRG.

(p7) By (p4), TRG is Boolean so, via (p6), we have SR(TRG) = SRG.

(p8) In fact, by (p2) we get ⌜G ⊆ TR ⌜ G then, by (1.) and (5.) we obtain

⌜TR ⌜G ⊆ ⌜⌜G ⊆ G. Consequently, SR(⌜TR ⌜G) ⊆ SRG by (p1). Since ⌜TR ⌜G is

Boolean, by (p5) we deduce (i) ⌜TR ⌜G ⊆ SRG.
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In the opposite way, by (p2) we have SRG ⊆ G. On account of (1.), (p1),

(p4) and (p5) we deduce ⌜G ⊆ ⌜SRG and TR ⌜G ⊆ TR ⌜ SRG = ⌜SRG. Therefore

TR ⌜ G ⊆ ⌜SRG and this implies by (1.) that ⌜ ⌜ SRG ⊆ ⌜TR ⌜ G. Thus (ii)

SRG ⊆ ⌜TR ⌜G because SRG is Boolean. From (i) and (ii) the result holds. By

duality, TRG = ⌝SR⌝G. Using ”-” we can write: SRG = −TR⌜G and TRG = −SR⌝G

Finally, from the definitions and results already established, we can prove

that operators TR and SR are respectively a quantifier and a co-quantifier on the

bounded distributive lattice OR.

Proof. of Theorem 3.1.

(Q0) and (Q1) are (p0) and (p2) respectively.

(Q3) TR(G ∪H) = TRG ∪ TRH

In fact: G ⊆ G ∪H and H ⊆ G ∪H then by (p1) we get TRG ⊆ TR(G ∪H) and

TRH ⊆ TR(G ∪H). Thus (i) TRG ∪ TRH ⊆ TR(G ∪H).

In the other direction, by (p2), G ⊆ TRG andH ⊆ TRH, thenG∪H ⊆ TRG∪TRH.

By (p1) we obtain TR(G∪H) ⊆ TR(TRG∪TRH). Since, by (p4), TRG and TRH are

in B(OR) we infer TRG ∪ TRH is also in B(OR). Therefore, by (p5), we conclude

(ii) TR(G ∪H) ⊆ TRG ∪ TRH. From (i) and (ii) we obtain the result.

Interchanging the roles of TRH and SRH leads to (Q′3) SR(G∩H) = SRG∩SRH.

(Q2) TR(G ∩ TRH) = TRG ∩ TRH

By (p2) we have G ∩ TRH ⊆ TRG ∩ TRH and as TR is increasing we get (i)

TR(G ∩ TRH) ⊆ TR(TRG ∩ TRH) = TRG ∩ TRH by (p5) because TRG ∩ TRH is in

B(OR).

On the other side, by (p4), G ∪ ⌝ TRH = (G ∩ (TRH ∪ ⌝ TRH)) ∪ ⌝ TRH =

(G∩TRH) ∪ (G∩⌝ TRH) ∪⌝ TRH = (G∩TRH) ∪⌝ TRH. By applying TR of both

sides of the equality we obtain: TR(G ∪ ⌝ TRH) = TR((G ∩ TRH) ∪ ⌝ TRH). On

account of (Q3) (twice), we deduce TRG∪ TR ⌝ TRH = TR(G∩ TRH) ∪ TR ⌝ TRH.

Since ⌝ TRH is Boolean we infer by (p5) that TRG ∪ ⌝ TRH =

TR(G∩TRH)∪⌝ TRH. Forming the intersection of both sides of this relation with

TRH we obtain: (TRG ∪ ⌝ TRH) ∩ TRH = (TR(G ∩ TRH) ∪ ⌝ TRH) ∩ TRH. By

distributivity (TRG ∩ TRH) ∪ (⌝ TRH ∩ TRH) =

= (TR(G ∩ TRH) ∩ TRH) ∪ (⌝ TRH ∩ TRH). By (p4) and (p6) we deduce

(ii) TRG∩TRH = TR(G∩TRH)∩TRH ⊆ TR(G∩TRH). From (i) and (ii) we obtain

(Q2).

Interchanging the roles of TRH and SRH leads to (Q′2) SR(G ∪ SRH) =

SRG ∪ SRH.

This completes the proof of Theorem 3.1.

For every frame (Ob,R), where R is a preorder on the set Ob, we can consider

the system (OR, SR, TR), where (OR,∩,∪,⇒, ⋅– ,⌝,⌜,∅,Ob) is a complete H-B-

algebra and SR and TR are respectively a co-quantifier and a quantifier on the
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distributive lattice OR. This system provides a new algebraic structure. According

to [15] we could call it a complete bi-monadic H-B-algebra and it deserves to be

studied by its own interest.

To stay within the scope of our work, that is, to provide a general pattern of

pairs of elements to model lattices, the fact of having obtained a quantifier TR and

a co-quantifier SR leads us to consider pairs of the form [SRG,TRG].

To supply a structure of lattice to the collection of these pairs, we are going

to introduce, as suggested by ([16], p.160) two new operations ⩀ and ⊎, for all

G,H ∈ OR:

G ⩀H = TRG ∩H ∩ (G ∪ ⌝SRH)

G ⊎H = SRG ∪H ∪ (G ∩ ⌜TRH)

We can point out that:

Lemma 3.4 Operations ⩀ and ⊎ have two suitable proprieties:
(p9) SR(G ⩀H) = SRG ∩ SRH (p’9) SR(G ⊎H) = SRG ∪ SRH

(p10) TR(G ⩀H) = TRG ∩ TRH (p’10) TR(G ⊎H) = TRG ∪ TRH

Proof. For technical convenience, we present (p9) and (p10) in two ways. Thus:

G ⩀H = TRG ∩H ∩ (G ∪ ⌝SRH) = (G ∩H) ∪ (TRG ∩H ∩ ⌝SRH)

G ⊎H = (G ∪H) ∩ (SRG ∪H ∪ ⌜TRH) = SRG ∪H ∪ (G ∩ ⌜TRH)

(p9) Taking into account: ((Q′3) and (p5)), ((p7), (Q′2)), distributivity, ((p2),

(p5)), (p4) we deduce, step by step, that:

SR(G ⩀H) = SR(TRG ∩H ∩ (G ∪ ⌝SRH))

= SR(TRG) ∩ SRH ∩ SR(G ∪ SR ⌝ SRH)

= TRG ∩ SRH ∩ (SRG ∪ SR ⌝ SRH)

= (TRG ∩ SRH ∩ SRG) ∪ (TRG ∩ SRH ∩ SR ⌝ SRH)

= (SRH ∩ SRG) ∪ (TRG ∩ SRH ∩ ⌝SRH) = (SRH ∩ SRG) ∪ (TRG ∩ ∅)

= SRG ∩ SRH

(p10) It follows from ((Q3) and (p5)), (Q2), (distributivity and (p6)), ((p1)

(twice) and (Q3)), ((p2) and (p4)), (p1) that the following equalities hold:

TR(G ⩀H) = TR((G ∩H) ∪ (TRG ∩H ∩ ⌝SRH))

= TR(G ∩H) ∪ TR(TRG ∩H ∩ TR ⌝ SRH)

= TR(G ∩H) ∪ (TRTRG ∩ TRH ∩ TR ⌝ SRH)

= (TR(G ∩H) ∪ TRG) ∩ (TR(G ∩H) ∪ TRH) ∩ (TR(G ∩H) ∪ (TR ⌝ SRH))

= TRG ∩ TRH ∩ TR((G ∩H) ∪ ⌝SRH))

= TRG ∩ TRH ∩ TR(G ∪ ⌝SRH) ∩ (H ∪ ⌝SRH)

= TRG ∩ TRH ∩ TR((G ∪ ⌝SRH) ∩Ob)

= TRG ∩ TRH.
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In like manner we can can establish that: (p′9) SR(G ⊎H) = SRG ∪ SRH and

(p′10) TR(G ⊎H) = TRG ∪ TRH

This completes the proof of Lemma 3.4.

Since SRG ⊆ G ⊆ TRG we can consider the collection B⋆ of ordered pairs of the

form [SRG,TRG], for all G ∈ OR. Our next task will be to endow B⋆ with a lattice

structure.

Theorem 3.5 For every frame (Ob,R), where R is a preorder on the set Ob, the

system (B⋆,∩,∪,∅,Ob) is a distributive lattice with zero and unit.

Proof. Since SRG ⊆ G ⊆ TRG, we can consider -following the ideas above- the

collection B∗ of all pairs [SRG,TRG]. We will define on B∗ the following poinwise

operations ∩ and ∪:

[SRG,TRG] ∩ [SRH,TRH] = [SR(SRG ∩ SRH), TR(TRG ∩ TRH)]

= [(SRG ∩ SRH), (TRG ∩ TRH)]

= [SR(G ⩀H), TR(G ⩀H)],on account of Lemma 3.4.

[SRG,TRG] ∪ [SRH,TRH] = [SR(SRG ∪ SRH), TR(TRG ∪ TRH)]

= [(SRG ∪ SRH), (TRG ∪ TRH)]

= [SR(G ⊎H), TR(G ⊎H)],by Lemma 3.4.

0 = [∅,∅] ; 1 = [Ob,Ob]

This completes the proof of Theorem 3.5.

In this manner we have showed that the bounded distributive lattice

(B⋆,∩,∪,∅,Ob) is a sublattice of P(OR) × P(OR).

In the case that R is an equivalence relation, the H-B-algebra is Boolean, the

quantificateurs SR and TR are related by the Boolean negation, the boundaries are

empty, and we obtain classical results.

4. Conclusion

The suitable connection between pairs of subsets of a given ‘concrete’ universe

Ob and the abstract structures to represent them has valuable advantages: to

avoid duplications of questions and proofs, and knowing which property is general

or depending on a particular situation.

Here, starting from an universe Ob enriched with a preorder R we have consid-

ered a ‘concrete’ Rauszer Boolean algebra B = (P(Ob), IR,CR). On the complete

H-B-subalgebra of closed elements (OR,∩,∪,⇒, ⋅– ,⌝,⌜,∅,Ob), the combination

of two negations in two different ways, allows us by iteration and passing to the

limit to obtain two Boolean operators: a quantifier TR and a co-quantifier SR.
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Pairs of the form [SRG,TRG], for G ∈ OR, provide a general framework for the

distributive lattice part, which is common to many algebraic systems related to

non-classical logics. In the search for algebraic models, this is the first common

step.

The many questions asked in the context of information systems, in partic-

ular the approximation of a set by a pair of sets, lead readers to request about

mathematical foundations of the specific applied results and help the advance of

theoretical research.

Acknowledgement. The author would like to thank the anonymous referee for

constructive and sound suggestions.
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