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We perform a detailed analysis of electronic polarizability of graphene with different theoretical approaches.
From Kubo’s linear response formalism, we give a general expression of frequency and wave-vector dependent
polarizability within the random phase approximation. Four theoretical approaches have been applied to the
single-layer graphene and their differences are on the band overlap of wave functions. By comparing with the
ab initio calculation, we discuss the validity of methods used in literature. Our results show that the tight-
binding method is as good as the time-demanding ab initio approach in calculating the polarizability of graphene.
Moreover, due to the special Dirac-cone band structure of graphene, the Dirac model reproduces results of the
tight-binding method for energy smaller than 3 eV. For doped graphene, the intraband transitions dominate
at low energies and can be described by the Lindhard formula for two-dimensional electron gases. At zero
temperature and long-wavelength limit, with the relaxation time approximation, all theoretical methods reduce
to a long-wave analytical formula and the intraband contributions agree to the Drude polarizability of graphene.
Effects of electrical doping and temperature are also discussed. This work may provide a solid reference for
researches and applications of the screening effect of graphene.

DOI: 10.1103/PhysRevB.103.125421

I. INTRODUCTION

As the first isolated single-layer material, graphene has
attracted intense interest for its unique electronic structures
[1–3]. Due to the unusual gapless linear band structure with
a vanishing density of state at the Fermi energy, screening
properties in graphene differ significantly from conventional
two-dimensional (2D) materials and become one of the most
important quantities for prospective applications in many fun-
damental physics [4]. The dynamical electric screening can
be charactered by a frequency and wave-vector dependent po-
larizability �(q, ω) which describes the response of induced
charge density to a time-dependent effective potential. The
quantities such as electrical conductivity, dielectric function,
electrical susceptibility, reflection coefficient, have simple re-
lations with the electronic polarizability that usually involve
the pure Coulomb interaction v. For example, the electrical
dielectric function has the form ε = 1 − v� with its zeros
correspond to the poles of the response function that describe
the plasmon modes. In the momentum space, the 2D electrical
conductivity has the relation σ = iω�/q2 that can be obtained
from the linear response electrodynamics. These quantities
have been proved to play a pivotal role in developing a variety
range of physical applications especially for the near-field
energy transport [5–12] and the Casimir effects [13–18].

In general, the polarizability of graphene is nonlocal that
depends on both the frequency and the wave vector. Other
factors like temperature, electrical doping (chemical poten-
tial), and sometimes the mass-gap can also play an important
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role. Many theoretical approaches have been developed to
study the screening effect of graphene, for both polarizabil-
ity [19,20] and conductivity [21–26]. In particular, Wunsch
et al [19] gives an analytical formula of dynamical polar-
izability with the Matsubara technique at zero temperature,
which agrees with the work of Hwang and Das Sarma [20].
In the long-wavelength limit q → 0, Falkovsky and Varlamov
[23,24] obtained simple analytical expressions of conductivity
of graphene via Green’s functions approach. Besides, Bor-
dag et al [27,28] performed the quantum electrodynamics in
(2+1)-dimensional space-time to get the complete compo-
nents of polarization tensor of graphene. Then the electrical
conductivity of graphene at arbitrary temperature is developed
taking into account mass-gap parameter by Klimchitskaya
et al [25,26]. However, most of the theoretical treatments
are based on the Dirac model that the energy dispersion is
assumed to be linear around the K points of the Brillouin
zone. This assumption is only applicable to the nearest π

band of graphene with energy less than a few electron volts.
Moreover, with finite electrical doping, the Drude model has
been widely used to calculate the intraband contributions to
the heat transfer and the Casimir force [5,13]. A detailed
discussion on the validity of these theoretical treatments is still
lacking.

In this paper, we present a derivation, comparison, and dis-
cussion of different methods to calculate the frequency- and
wave-vector-dependent electric polarizability of graphene.
The effects from temperature and chemical potential are
also discussed. We focus on the density-density correlation
function of graphene at the quasistatic limit such that only
the longitudinal component of polarizability is considered
in this work. We also do not consider the dependence on
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the mass gap parameter throughout our discussion. We study
four theoretical approaches, namely, density functional theory
(DFT) based ab initio method, nearest-neighbor tight-binding
method, the Dirac model, as well as the Lindhard formula
for two-dimensional electron gas (2DEG) [29,30]. From the
linear response Kubo formula [31], we obtain a general ex-
pression of the electrical polarizability and then employ it to
graphene with different approximations. The only difference
between different methods is given by a so-called prefactor
that describes the band overlap of wave functions. Our results
show that the tight-binding method can produce comparable
results to the ab initio calculation. When the energy is smaller
than 3 eV, the Dirac model reproduces the results of the
tight-binding method. With finite electrical doping, intraband
transitions become dominant at low energy and can be well
described by the Lindhard formula.

II. POLARIZABILITY

To get explicit response function from a microscopic
electronic structure, we consider a system under small time-
dependent external perturbation that the Hamiltonian has the
form H = H0 + H1(t ), where H0 is the unperturbed term and
H1 represents time-dependent interactions between the charge
density ρ(r) and an external electric potential φ(r, t ). Assum-
ing the perturbation is switched on adiabatically, we can write
the interaction term as

H1(t ) =
∫

d3r ρ̂(r)φ(r, t )eηt , (1)

where ρ̂ is the charge density operator. The damping factor
η is an infinitesimal positive quantity which ensures that the
perturbation vanishes at t → −∞ and accounts for the car-
rier relaxation that is provided by the long-range scatterers
[24]. In the interaction picture, the charge density operator
ρ̂(r, t ) = eiH0t/h̄ρ̂(r)e−iH0t/h̄ and the expectation value of the
induced charge density δρ is a linear response of the external
perturbation:

〈δρ̂(r, t )〉 =
∫

dt ′
∫

d3r′χ (r, r′, t − t ′)φ(r′, t ′), (2)

where χ is the electric susceptibility that is given by the Kubo
formula [31]

χ (r, r′, t − t ′) = − i

h̄
�(t − t ′)〈[ρ̂(r, t ), ρ̂(r′, t ′)]〉. (3)

where � is the Heaviside step function that equals 1 for t > t ′
and 0 otherwise.

Here we are more interested in the electric polarizabil-
ity � which represents the linear response of the induced
charge density to the total (external + induced) potential of
the system. The relation between � and χ is given by the
Dyson equation χ = � + �vχ where v is the bare Coulomb
interactions of 2D system [32,33]. For noninteracting electron
systems, we can consider only the bare bubble diagram of
the Dyson equation so that the electric polarizability in the

random phase approximation (RPA) [34] writes

�(r, r′, ω) = 2e2
∑
i, j

( f j − fi )
ψ j (r)ψ∗

j (r′)ψ∗
i (r)ψi(r′)

ε j − εi − h̄ω − iη
,

(4)

where we transformed Eq. (3) into frequency domain and cal-
culate the expectation value of density operator commutator
with independent particle wave-functions ψ and correspond-
ing energies ε of unperturbed Hamiltonian H0. The index
i, j denote different states, the factor 2 accounts for the spin
degeneracy, and e is the electron charge. The function f =
(1 + eβ(ε−μ) )−1 is the Fermi distribution function with β =
1/kBT and μ the chemical potential.

For systems with a periodic crystal, it is more convenient
to calculate the polarizability in momentum space. According
to the Bloch theorem, the sum over states in Eq. (4) can be
replaced by a sum over bands and k points (i → nk, j → n′k′)
where k lies within the first Brillouin zone. Due to the lattice
translation symmetry, we have �(r + R, r′ + R) = �(r, r′),
where R is any real-space lattice vector. It can be shown
from Fourier transform of Eq. (4) that �(q, q′, ω) is only
nonzero if q and q′ differ by a reciprocal lattice vector G
and the quasimomentum conservation holds, i.e., k′ = k + q
modulo G. Writing wave-function ψn,k(r) = un,k(r)eik·r with
the Bloch function un,k(r), we have

�G,G′ (q, ω)

= 2e2

N�

∑
n,n′,k

〈unk|e−iG·r|un′,k+q〉〈un′,k+q|eiG′ ·r′ |unk〉

× fn′,k+q − fn,k

εn′k+q − εnk − h̄ω − iη
, (5)

where N is the number of k points in the first Brillouin zone
and r is the electron position operator. For 2D materials, � is
the area of the primitive cell and q is the in-plane Bloch wave
vector.

III. MODELS FOR GRAPHENE

The general formula of polarizability � in Eqs. (4) and (5)
are summing over transitions from different states and the key
quantity is the unperturbed stationary eigenfunctions and cor-
responding eigenvalues. In this section, we apply this general
formula to graphene with specific band structures obtained
from different theoretical frameworks and approximations.

A. Ab initio

We can calculate the electronic band structure of graphene
from the ab initio methods that solve the many-body
Schrödinger equation in the self-consistent-field approach.
In principle, many first principles methods, such as the GW
method [35] and the time-dependent density functional theory
[33], can be used to obtain the excitation properties. In this
work, we calculate the polarizability of graphene using DFT
in the Kohn-Sham scheme [36] that the effective Hamiltonian
writes

H = −h̄2

2m
∇2 + (Vext + VH + Vxc), (6)
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where Vext is the external potential, VH the Hartree potential,
and Vxc the exchange-correlation potential. The Kohn-Sham
equation can be solved self-consistently to get the ground state

wave functions, which have the form of Slater determinant
[37] of single-particle orbitals. In RPA, the independent parti-
cle polarizability yields the Adler-Wiser formula [38,39]

�G,G′ (q, ω) = 2e2

N�

∑
n,n′,k

〈φnk|e−i(q+G)·r|φn′k+q〉〈φn′k+q|ei(q+G′ )·r′ |φnk〉 fn′k+q − fnk

εn′k+q − εnk − h̄ω − iη
, (7)

where φnk and εnk are Kohn-Sham wave functions and eigen-
values, respectively. This formula reduces to Eq. (5) if writing
the Kohn-Sham wave functions in the form of Bloch func-
tions, i.e., φn,k(r) = un,k(r)eik·r. Because the ground state
electronic structure corresponds to zero temperature, the
Fermi function becomes a step function that f equals 1 for
occupied states and 0 for unoccupied states.

It is worth noting that Eq. (7) is not limited to the Kohn-
Sham-RPA scheme and further improvements are possible.
For example, one can substitute the Kohn-Sham eigenvalues
εnk by the quasiparticle particle energies En,k obtained from
GW method (GW-RPA) as the former has intrinsic problems
of underestimating the energy states. Moreover, the electron-
hole interactions can be taken into account by solving the
Bethe-Salpeter equation [40] on top of the GW -RPA calcu-
lations [33].

B. Tight binding

Figure 1 shows the hexagonal lattice structure of graphene
and its Brillouin zone. The unit cell of graphene consists of
two different sites A and B. Considering only nearest-neighbor
hopping, the tight-binding Hamiltonian for graphene has the
form [4]

H = −γ
∑
〈i, j〉

(a†
i b j + b†

jai ), (8)

where ai (a†
i ) annihilates (creates) an electron on site ri on

sublattice A (similarly for b j , b†
j on sublattice B). γ ≈ 2.8 eV

is the nearest-neighbor hopping parameter between different
sublattices. The sum index 〈i, j〉 means the nearest neighbors
are summed once for each pair.

FIG. 1. Honeycomb lattice of graphene and its Brillouin zone.
(a) Lattice structure of graphene, a0 = 1.42 Å the distance between
two nearest neighbor carbon atoms; a1 and a2 are lattice vectors of
the unit cell which consists of two different sites A and B; δi, i =
1, 2, 3 are the nearest-neighbor vectors. (b) The Brillouin zone of
graphene. b1 and b2 are reciprocal vectors. The Dirac cones locate at
the K and K ′ points.

Due to the honeycomb lattice of carbon atoms, the matrix
representation of Hamiltonian of graphene is diagonal in the
momentum space

H (k) =
[

0 −γ f (k)
−γ f ∗(k) 0

]
, (9)

where f (k) = ∑
i eik·δi with δ1 = a0(−1, 0)T , δ2 =

a0(1/2,
√

3/2)T , and δ3 = a0(1/2,−√
3/2)T as depicted

in Fig. 1. The eigenvalues of the tight-binding Hamiltonian
can be written as εn,k = nγ | f (k)| where n = ±1 denotes
two modes of the conduction (+1) and valence bands (−1).
Introducing the phase factor e−iϕ(k) = f (k)/| f (k)|, the cell
normalized Bloch eigenstates of graphene become

Sn,k = 1√
2

[
1

neiϕ(k)

]
.

Because the charge distribution is homogeneous for the two
sub-lattice of graphene, one can neglect the reciprocal lattice
vector G (i.e., the local field effect [41,42]) and finally write
the tight-binding polarizability of graphene as [7]

�(q, ω) = 2e2

N�

∑
n,n′=±1,k

S†
n,kSn′,k+qS†

n′,k+qSn,k

× fn′,k+q − fn,k

εn′k+q − εnk − h̄ω − iη
. (10)

C. Dirac model

We can numerically calculate the tight-binding polarizabil-
ity of Eq. (10) with proper sampling of k and q in the first
Brillouin zone. However, due to the special electronic band
structure, the energy dispersion of graphene is linear around
the vicinity of K and K ′ points of the Brillouin zone. When
q is small, we can expand the f (k) around the Dirac point
and the matrix element of Eq. (9) f (k) ≈ −3a0(kx − iky)/2
in the Dirac model. The Dirac Hamiltonian of graphene has
the form H = h̄vF k · σ where σi are the Pauli matrices. The
Fermi velocity vF = 3a0γ /2h̄ has the value ∼106 m/s that
does not depend on the energy or momentum. The eigenvalues
of the Dirac Hamiltonian can be expressed as εnk = nh̄vF |k|.
Substituting the eigenvectors in Eq. (10) into Eq. (10) and
taking into account the valley degeneracy, we can further write
the Dirac polarizability of graphene as

�(q, ω) = 4e2
∑

n,n′=±1

∫
d2k

(2π )2

1

2
(1 + nn′ cos θ )

× fn′,k+q − fn,k

εn′k+q − εnk − h̄ω − iη
, (11)
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where we have replaced the sum of k points in the first
Brillouin zone by an integral of k in the momentum space
because the Dirac Brillouin zone 2π/a0 → ∞. The angle
θ = ϕ(k + q) − ϕ(k), and the factor 4 accounts for both spin
and valley degeneracies. In the Dirac model, the phase factor
has the form eiϕ(k) = (kx + iky)/|k| and thus θ is just the angle
between k and k + q in the momentum space.

It is worthwhile to emphasize that Eq. (11) depends on
the wave vector, frequency, chemical potential, as well as
temperature. This formula can be evaluated numerically by
integrating the Brillouin zone with

cos θ = k · (k + q)

|k||k + q| (12)

for all nonvanishing wave vector of k and k + q.
Besides the general expression of Dirac polarizability of

Eq. (11), many analytical formulas based on the Dirac model
have been derived under certain conditions and approxima-
tions. Firstly, at zero temperature, the Fermi function becomes
a simple step function that the conduction band is empty
( f+1 = 0) and the valence band is fully occupied ( f−1 = 1).
For intrinsic undoped graphene, because of the gapless Dirac
band structure, only interband transitions are possible. How-
ever, real graphene samples are usually doped that both intra-

and interband transitions can occur. The doping effect is char-
acterized by a nonzero chemical potential μ in the Fermi
function. At zero temperature, Wunsch et al. [19] reported
a relatively simple analytical formula of the polarizability of
graphene with arbitrary wave vectors. Similar work has been
done by Hwang and Das Sarma [20] and their formula pro-
duce exactly the same numerical results as that of Wunsch’s.
Secondly, in the optical region, the magnitude of the wave
vector q → 0 and one can omit the spatial dispersion. This
was done by Falkovsky [24] in the study of conductivity of
graphene. Moreover, within the framework of quantum elec-
trodynamics, Klimchitskaya et al. [25,26] report an analytical
formula of conductivity of graphene based on the Dirac model
at finite temperature and mass gap.

If the scattering process induced carrier relaxations are
taken into account with the relaxation time approximation
(h̄ω → h̄ω + iη) [43,44], for the local (q → 0) polarizabil-
ity of graphene at zero temperature (T → 0) and zero mass
gap with ω > vF q fixed, the consensus was reached for the
Dirac polarizability obtained form the Kubo formalism and
from the quantum electrodynamics. All reported analytical
formulas reduce to what we call the long-wave polarizability
of graphene [19,20,23–26]

�(T,q)→0(ω) = q2e2

2π (h̄ω + iη)

[
2μ

h̄ω + iη
+ 1

2
ln

|2μ − h̄ω − iη|
|2μ + h̄ω + iη| − i

π

2
�(h̄ω − 2μ)

]
. (13)

The first term in the square brackets of Eq. (13) gives
intraband transitions that is proportional to the chemical po-
tential. For graphene, the chemical potential can be written as
μ = h̄vF kF with the Fermi momentum kF = √

π |n| and |n|
the 2D carrier density [20]. Given the relation σ = iω�/q2

for 2D systems, the first term of Eq. (13) yields σ (ω) =
iD/π (ω + i�) which is exactly the Drude conductivity of
graphene [45]. The scattering rate � = η/h̄ and the Drude
weight D = (vF e2/h̄)

√
π |n|.

The second and third terms represent interband transitions,
which become negligible when h̄ω << 2μ. Nevertheless,
for h̄ω > 2μ, the interband transitions contribute and the
corresponding conductivity of graphene has the form of
σ0 = e2/4h̄ which is the so-called universal conductivity of
graphene [25,46].

D. Lindhard

We have shown that at finite electrical doping, the transport
property of graphene is governed by the intraband transitions
when h̄ω << 2μ. With large carrier concentrations, one can
infer that the intraband contributions to the polarizability
of graphene correspond to that of 2DEG. In this case, the
wave function has the form of plane waves so that the cell
normalized Bloch function un,k become a constant and the
overlapping term of wave functions can be omitted. Then we
have the Lindhard polarizability of 2DEG as [29]

�(q, ω) = 4e2
∑
n,n′

∫
d2k

(2π )2

fn′,k+q − fn,k

εn′k+q − εnk − h̄ω − iη
. (14)

With the Dirac dispersion εnk = h̄vF |k|, one can numer-
ically solve Eq. (14) to get the intraband polarizability of
graphene. Interestingly, Eq. (14) corresponding to the Dirac
polarizability of Eq. (11) with θ = 0 fixed that implies k + q
has the same direction as k for intraband transitions.

For small wave vector q, we can expand the numerator
of Eq. (14) as q · ∇k fk and the difference of energies in
the denominator as h̄q · vk with vk = vF k/|k| is the carrier
velocity. Then we get the analytical formula of polarizability
of graphene given by Svintsov and Ryzhii [47]

�(q, ω) = 2e2

π h̄2v2
F

(
ln(1 + eβμ)

β

)(
s√

s2 − 1
− 1

)
, (15)

where β = 1/kBT and s = (h̄ω + iη)/h̄vF q.
In Eq. (15), when T → 0, the first bracket term reduces to

μ and when q → 0, the second bracket term reduces to 1/2s2.
In this case, we may write

�(T,q)→0(ω) = μq2e2

π (h̄ω + iη)2
, (16)

which is exactly the Drude term of polarizability as shown in
Eq. (13).

E. Summary

We have derived expressions of the polarizability of
graphene from different methods. In the linear response
scheme, the general formula of polarizability is given by
Eq. (5) that involves the eigenvalues and eigenfunctions

125421-4



DYNAMICAL POLARIZABILITY OF GRAPHENE WITH … PHYSICAL REVIEW B 103, 125421 (2021)

of unperturbed Hamiltonian. Due to the special electronic
properties of graphene, different theoretical frameworks and
approximations can be applied at certain conditions. Up
to now, we have shown four theoretical approaches, i.e.,
ab initio, tight-binding, Dirac, and the Lindhard formula for
intraband transitions. For all of these methods, we may write
a unified formula of the polarizability of graphene as

�(q, ω) = 2e2
∑
n,n′

∫
d2k

(2π )2

F n,n′
k,q ( fn′,k+q − fn,k )

εn′k+q − εnk − h̄ω − iη
, (17)

where the prefactor F n,n′
k,q denotes the band overlap of the wave

functions in Eq. (5). Neglecting the local field effect, we can
summarize the prefactor of each method as

General form : 〈unk|un′,k+q〉〈un′,k+q|unk〉;
Ab initio : 〈φnk|e−iq·r|φn′,k+q〉〈φn′,k+q|eiq·r′ |φnk〉;

Tight-binding : S†
n,kSn′,k+qS†

n′,k+qSn,k;

Dirac :
gv

2
(1 + nn′ cos θ );

Lindhard : gv, (18)

where gv = 2 is the valley degeneracy for graphene.

IV. COMPARISON AND DISCUSSION

In this section, we compare the polarizability of graphene
calculated from different models as discussed above. We treat
the parameter-free ab initio results as the reference to discuss
the validity of each method with different wave vectors and
frequencies. Dependences on chemical potential and temper-
ature are also discussed. It was reported that the temperature
dependence of electron transport in graphene is remarkably
weak in the temperature range 0.03–300 K [48]. So we fix
T = 300 K for all calculations except for the discussion on
temperature dependence. We assume a rather conservative
value for the energy broadening that the damping factor η

is set to 0.05 eV. This corresponds to the lifetime of elec-
tron τ ∼ 10−14 s for graphene [49–51]. We numerically solve
Eqs. (10), (11), and (14) to calculate the tight-binding, Dirac,
and Lindhard polarizability of graphene, respectively. The
nearest-neighbor hopping parameter γ is set to 2.8 eV that
corresponds to a Fermi velocity vF = 9.1 × 105 m/s. Other
analytical expressions from the literature are also calculated
and compared.

For the ab initio calculation, we start from the ground
state calculations by using DFT as implemented in QUAN-
TUM ESPRESSO [52,53]. Then the ab initio polarizability of
graphene is calculated on top of the ground state band struc-
ture by using the Berkerely GW package [54,55]. We adapt the
norm-conserving pseudopotential generated by the Martins-
Troullier approach [56] with the Perdew-Burke-Ernzerhof
(PBE) exchange-correlation functional in the generalized gra-
dient approximation (GGA) [57]. A plane-wave basis set
with 60 Ry energy cutoff is used to expand the Kohn-Sham
wave functions. We sample the first Brillouin zone by a
300 × 300 × 1 Monkhorst-Pack [58] grid. The Fermi-Dirac
smearing with 0.002 Ry smearing width is adopted to treat the
partial occupancies for graphene. The in-plane lattice constant

FIG. 2. Comparison of real (�1) and imaginary (�2) polariz-
ability of graphene in different wave vectors. Results of Wunsch
and Falkovsky are calculated from the analytical formula given in
Refs. [19,24], respectively.

are a1 = a2 = √
3a0 = 2.46 Å. To avoid interactions from the

neighboring lattice in the z direction, a large lattice constant
of a3 = 18 Å is set to the z direction of the unit cell.

A. Wave vector

We first consider the spatial dispersion of polarizability
of graphene. In Fig. 2, we show the calculated polarizability
of graphene obtained from different methods with different
wave vectors. The frequency is fixed at 0.3 eV and the chem-
ical potential μ = 0.1 eV. Firstly, let us consider the real
part polarizability of graphene as shown in Fig. 2(a). As we
can see, when q < 108 m−1, the deviation of results from
different methods gradually vanish. This agree to the fact
that graphene is a Dirac material and all formulas obtained
from the Dirac model reduce to the long-wave formula when
vF q << ω. Moreover, because the frequency h̄ω is not sig-
nificantly greater than 2μ, the intraband transitions dominate
at small wave vectors so that the Drude polarizability agree
well with others. At large wave vectors, models with only in-
traband transitions, i.e., Drude, Svintsov, and Lindhard, failed
to describe the spatial nonlocality of transport properties of
graphene. In particular, the Drude polarizability grows as a
positive parabola which presents an unreal screening effect.
However, when q < 5 × 108 m−1, the Drude polarizability
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agree well with that of the Lindhard model. This suggests
that one can safely use the Drude model to calculate the
intraband contributions in near-field heat transfer when wave
vector is less than 300 times of ω/c where c is the speed
of light. Both Lindhard and Svintsov polarizability saturate
when q > 2 × 109 m−1 that implies the intraband transitions
are negligible for transition with very large wave vectors.

Results calculated from Falkovsky’s formula and the long-
wave formula show a very similar character and they start to
deviate from other models when q > 4 × 108 m−1. This is be-
cause both of them are based on the long-wave approximation
that is not supposed to be valid when wave vectors are large.
On the other hand, the tight-binding results agree well with the
ab initio results except for a global shift. This shift originates
from the deviation of tight-binding band structure from the
ab initio calculations at large wave vectors. Moreover, the
Dirac model produces the same result as the tight-binding
model when q < 5 × 109 m−1. This implies that the linear
dispersion of the Dirac-cone band structure extends up to 3 eV.
Besides, polarizability calculated from the Wunsch’s formula
coincides exactly with those of the tight-binding (and Dirac)
model when q < 2 × 109 m−1.

Secondly, unlike the real part of polarizability defines the
screening of an electromagnetic wave in a medium, the imag-
inary part is responsible for the absorption of radiation and
is proportional to the damping of oscillations. In Fig. 2(b),
similar to the real part, models based on the long-wavelength
approximation (Drude, long-wave, and Falkovsky) are only
valid when q < 108 m−1 and they are monotonically decreas-
ing with the increase of wave vectors. The tight-binding,
Dirac, and Wunsch model give almost identical values at all
q values and they are very close to ab initio results. Strong
damping peaks are shown at q ∼ 5 × 108 m−1, which is ex-
actly the resonance of h̄vF q to the frequency h̄ω = 0.3 eV.
Interestingly, all models with spatial dispersion get a conver-
gent vanishing value when q > 109 m−1 that indicates a weak
absorption at large wave vectors.

B. Frequency

Next, we discuss the dynamical screening properties
of graphene. We first consider the case when the long-
wavelength approximation is valid. It is shown in Fig. 2 that
when q < 108 m−1, the differences between each method are
not significant at small chemical potential and low temper-
ature. In Fig. 3, we show the polarizabilities of graphene
calculated from different methods with wave vector fixed at
q = 9.82 × 107 m−1 and chemical potential μ = 0.1 eV. As
shown, all methods produce very similar results. The inter-
band transitions make the calculated polarizabilities slightly
smaller than those results with only intraband transitions. The
Drude model is surprisingly good when compared with results
from ab initio calculations, which further supports its validity
at low frequencies. All Dirac-type models (Dirac, long-wave,
Falkovsky, and Wunsch) produce almost identical results and
consistent with that of the tight-binding model.

In Fig. 4, we compare polarizabilities of graphene ob-
tained from different methods with wave vector fixed at q =
2.95 × 109 m−1 and chemical potential μ = 0.1 eV. With
such a large wave vector, all models based on the long-wave

FIG. 3. Comparison of real (�1) and imaginary (�2) polarizabil-
ity of graphene in different frequencies with q = 9.82 × 107 m−1.
Results of Wunsch and Falkovsky are calculated from the analytical
formula given in Refs. [19,24], respectively.

approximation are not valid and we only compare results from
models with spatial dispersion. We also extend the frequency
window up to 10 eV to show the property of graphene polariz-
ability at high frequencies. As shown in Fig. 4, the magnitudes
of Lindhard and Svintsov polarizability are much smaller than
those from other models even in the low-frequency range. This
agrees with results as shown in Fig. 2 that intraband transitions
have little contributions at large wave vectors.

For models with interband transitions, strong peaks are
shown around ∼1.75 eV which resonant to the value of h̄vF q.
When frequencies are smaller than 3 eV, the results of tight-
binding, Dirac, as well as Wunsch’s model are consistent
with each other. However, when frequencies exceed 3 eV, two
prominent absorption peaks are shown in the imaginary part of
the ab initio polarizability at 4.2 and 4.8 eV. These two peaks
originate from transitions between the van Hove sigularities
around the M points of the Brillouin zone. All models with
Dirac dispersion fail to describe this character of polarizability

FIG. 4. Comparison of real (�1) and imaginary (�2) polarizabil-
ity of graphene in different frequencies with q = 2.95 × 109 m−1.
Results of Wunsch is calculated from the analytical formula given in
Ref. [19].
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FIG. 5. Comparison of real (�1) and imaginary (�2) polarizabil-
ity of graphene in different chemical potentials.

of graphene. This indicates that the linear energy dispersion of
π band in the Dirac model is not appropriate at high energies.
However, except for a global shift, the tight-binding model
successfully reproduces the main character of ab initio polar-
izability at high frequencies, agree to previously discussed.

C. Chemical potential

Besides the wave vector and frequency, effects from dop-
ing (chemical potential) and temperature can also play an
important role in screening effects of graphene. Figure 5
shows the calculated polarizability of graphene with differ-
ent chemical potentials. The wave vector is fixed at a small
value of 9.82 × 107 m−1 and the frequency is fixed at 0.3 eV.
The chemical potential dependence mainly originates from
the Fermi function as shown in Eq. (5). However, at zero
temperature, the Fermi function becomes a step function as
the case in ab initio method. In order to tune the chemical
potential in ab initio method, one need to introduce extra
charges in the ground state calculations and it is unstable with
large doping. So, in Fig. 5, we show the chemical potential
dependence of graphene polarizability obtained from other
models. As we can see, both real and imaginary parts of polar-
izability have a linear relation to the chemical potential when
μ � h̄ω. Results from the Dirac model coincide exactly with
that of the tight-binding model and they are asymptotically
approaching results from the Lindhard formula. This implies
that the intraband transitions dominate the screening effect at
large chemical potentials. This agrees with the fact that rich
electrical doping makes the electronic structure of graphene
close to the 2DEG.

On the other hand, when μ < h̄ω, the interband transitions
contribute and the value of real part polarizability gradually
decreases and saturates to a negative value at zero chemical
potentials. In this case, the intraband transitions vanish and
the screening effect is from the interband transitions so that
the system behaves as a dielectric material.

Similar behaviors are shown for results from models with
the long-wave approximation. As shown, the Drude polariz-
ability is also linearly proportional to the chemical potential
but with a different slope from the Lindhard results. Because
only intraband transitions are considered, both the Drude

FIG. 6. Comparison of real (�1) and imaginary (�2) polarizabil-
ity of graphene in different temperatures.

and Lindhard model give a vanishing value at zero chemical
potential. Again, results from the long-wave formula asymp-
totically converge to the Drude polarizability when chemical
potential is large.

D. Temperature

At last, we discuss the effect of temperature. The ab initio
method calculates the ground state electronic structure at zero
temperature. As reported [48], the temperature dependence is
not significant for graphene polarizability when T < 300 K.
In Fig. 6, we show the calculated polarizability of graphene
with temperature ranges from 200 K to 5000 K. The chem-
ical potential was set to 0.1 eV with a fixed wave vector
q = 9.82 × 107 m−1 and frequency h̄ω = 0.3 eV. As seen, the
general feature of temperature dependence is very similar to
that of chemical potentials as shown in Fig. 6. For real part
polarizability, both Lindhard, Dirac, and the Tight-binding re-
sults show an approximately linear dependence with respect to
temperature. The Lindhard polarizability has a smaller slope
than that of Dirac and tight-binding results which implies that
temperature dependence of intraband transitions is not as sen-
sitive as that of the interband transitions. The imaginary part
polarizability, however, is nonmonotonic for results from the
Dirac and tight-binding model. It increasing with temperature
when T < 1800 K, and decreases at high temperatures that
agree to the previous report [59]. The overall temperature
dependence is not significant when T < 3000 K.

V. CONCLUSION

In this work, we discussed the dynamical polarizability
of graphene with four theoretical approaches. We derive the
general expression of polarizability from the linear response
Kubo formula. Different methods are distinguished by a pref-
actor that represents the band overlap of wave functions of
unperturbed Hamiltonian. We discussed the validity of each
method by comparing their results with different wave vector,
frequency, chemical potential, and temperature. At finite dop-
ing, the Lindhard formula for 2DEG describes the intraband
transitions of graphene and it reduces to the Drude formula
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when both wave vector and temperature go to zero. For
models with interband transitions, the tight-binding method
produces similar results as the ab initio calculation except
for a global shift that originates from the deviation of their
band structure at high energies. Moreover, the Dirac model
is equally good as the tight-binding method when energy is
smaller than 3 eV. At zero temperature, all theoretical models
reduce to a simple analytical long-wave formula in the long-
wavelength limit and its intraband term corresponds to the
Drude conductivity. The intraband transitions becomes dom-
inant at large electrical doping and all theoretical model give
asymptotic results with large chemical potential. The temper-
ature dependence of the real part polarizability of graphene

is approximately linear while a nonmonotonic temperature
dependence is shown for the imaginary part. Our results may
provide a solid reference for applications of the response and
screening properties of graphene and the methods can be
employed to other Dirac materials with appropriate theoretical
treatments.
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and M. Soljačić, Phys. Rev. B 85, 155422 (2012).

[50] F. J. García de Abajo, ACS Nano 7, 11409 (2013).
[51] J. D. Cox and F. J. García de Abajo, Nat. Commun. 5, 5725

(2014).
[52] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C.

Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo
et al., J. Phys.: Condens. Matter 21, 395502 (2009).

[53] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B.
Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M.
Cococcioni et al., J. Phys.: Condens. Matter 29, 465901 (2017).

[54] M. S. Hybertsen and S. G. Louie, Phys. Rev. B 34, 5390 (1986).
[55] J. Deslippe, G. Samsonidze, D. A. Strubbe, M. Jain, M. L.

Cohen, and S. G. Louie, Comput. Phys. Commun. 183, 1269
(2012).

[56] N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).
[57] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,

3865 (1996).
[58] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188

(1976).
[59] E. H. Hwang and S. Das Sarma, Phys. Rev. B 79, 165404

(2009).

125421-9

https://doi.org/10.1103/PhysRevB.85.155422
https://doi.org/10.1021/nn405367e
https://doi.org/10.1038/ncomms6725
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/1361-648X/aa8f79
https://doi.org/10.1103/PhysRevB.34.5390
https://doi.org/10.1016/j.cpc.2011.12.006
https://doi.org/10.1103/PhysRevB.43.1993
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1103/PhysRevB.79.165404

