Higher-order recursion schemes and their automata models

Arnaud Carayol, Olivier Serre

To cite this version:

Arnaud Carayol, Olivier Serre. Higher-order recursion schemes and their automata models. JeanÉric Pin. Handbook of Automata Theory, 2, European Mathematical Society, pp.1295-1341, 2021, 978-3-98547-006-8. hal-03176662

HAL Id: hal-03176662

https://hal.science/hal-03176662

Submitted on 23 Mar 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Higher-order recursion schemes and their automata models

Arnaud Carayol and Olivier Serre

Contents

1. Introduction 1293
2. Preliminaries 1298
3. From CPDA to recursion schemes 1314
4. From recursion schemes to collapsible pushdown automata 1320
5. Safe higher-order recursion schemes 1332
References 1334

1. Introduction

The main goal of this chapter is to give a self-contained presentation of the equivalence between two models: higher-order recursion schemes and collapsible pushdown automata. Roughly speaking, a recursion scheme is a finite typed term rewriting system and a natural view of recursion schemes is to be considered generators for (possibly infinite) trees. Collapsible pushdown automata (CPDA) are an extension of deterministic (higher-order) pushdown automata and they naturally induce labelled transition systems (Lts). An Lts is merely a set of relations labelled by a finite alphabet, together with a distinguished element called the root. Hence unfolding an Lts and contracting silent transitions define an infinite tree. Applying this construction to CPDA defines a family of trees that exactly coincides with the family of trees defined by higher-order recursion schemes. This introduction tries to provide the necessary background and motivation for these objects.

Recursive applicative program schemes. Historically, recursion schemes go back to Nivat's recursive applicative program schemes [47] that correspond to order-1 recursion schemes in our sense (also see related work by Garland and Luckham on so-called monadic recursion schemes [30]). We refer the reader to [24] that, among others things, contains a very detailed and rich history of the topic. For Nivat, a recursive applicative program scheme is a finite system of equations, each of the form $F_{i}\left(x_{1}, \ldots, x_{n}\right)=p_{i}$, where the x_{j} are order-0 variables and p_{i} is some order-0 term over the nonterminals (the F_{i} 's), terminals, and the variables x_{1}, \ldots, x_{k}. In Nivat's work, a program is a pair: a program scheme together with an interpretation over some domain. An interpretation gives any terminal a function (of the correct rank) over the
domain. Taking the least fixed point of the rewriting rules of a program scheme gives a (possibly infinite) term over the terminal alphabet (known as the value of the program in the free/Hebrand interpretation); applying the interpretation to this infinite term gives the value of the program. Hence, the program scheme gives the uninterpreted syntax tree of some functional program that is then fully specified owing to the interpretation.

Nivat also defined a notion of equivalence for program schemes: two schemes are equivalent if and only if they compute the same function under every interpretation. Later, Courcelle and Nivat [19] showed that two schemes are equivalent if and only if they generate the same infinite term tree. This latter result clearly underscores the importance of studying the trees generated by a scheme. Following the work by Courcelle (see [16] and [17]), the equivalence problem for schemes is known to be interreducible to the problem of decidability of language equivalence between deterministic pushdown automata (DPDA). Research on the equivalence for program schemes was halted until Sénizergues in [58] and [59] established the decidability of DPDA equivalence, which therefore also solved the scheme equivalence problem. Sénizegues' proof was later simplified and improved by Stirling in [62] and [60]. For more insight about this topic, we refer the reader to [61].

Extension of schemes to higher orders. A recursive function is said to be of higherorder if it takes arguments that are themselves functions. In Nivat's program scheme, both the nonterminals and the variables have order- 0 . Therefore, they cannot be used to model higher-order recursive programs. In the late 1970s, there was a substantial effort in extending program schemes in order to capture higher-order recursion, see [35], [20], [21], [27], and [28]. Note that evaluation, i.e., computing the value of a scheme in some interpretation, has been a very active topic, in particular because different evaluation policies, e.g., call by name (OI) or call by value (IO), lead to different semantics, see [27], [28], and [22]. In a very influential paper [22], Damm introduced order-n λ-schemes and extended the previously mentioned result of Courcelle and Nivat. Damm's schemes mostly coincide with the safe fragment of recursion schemes as we define them later in this chapter. Note that at that time there was no known model of automata equi-expressive with Damm's scheme; in particular, there was no known reduction of the equivalence problem for schemes to a language equivalence problem for (some model of) automata.

Later, Damm and Goerdt in [22] and [23] considered the word languages generated by level- $n \lambda$-schemes and they showed that they coincide with a hierarchy previously defined by Maslov in [44] and [45]. To define his hierarchy Maslov introduced higherorder pushdown automata (higher-order PDA). He also gave an equivalent definition of the hierarchy in terms of higher-order indexed grammars. In particular, Maslov's hierarchy offers an attractive classification of the semi-decidable languages: orders 0,1 , and 2 are, respectively, the regular, context-free, and indexed languages, though little is known about languages at higher orders (see [34] for recent results on this topic). Later, Engelfriet in [25], and [26] considered the characterisation of complexity classes by higher-order pushdown automata. In particular, he showed that alternating pushdown automata characterise deterministic iterated exponential time complexity classes.

Higher-order recursion schemes as generators of infinite structures. Since the late 1990s there has been a strong interest in infinite structures admitting finite descriptions (either internal, algebraic, logical or transformational), mainly motivated by applications to program verification. See [5] for an overview about this topic. The central question is model-checking: given some presentation of a structure and some formula, decide whether the formula holds. Of course, here decidability is a trade-off between the richness of the structure and the expressivity of the logic.

Of special interest are tree-like structures. Higher-order PDA as a generating device for (possibly infinite) labelled ranked trees were first studied by Knapik, Niwiński and Urzyczyn [37]. As in the case of word languages, an infinite hierarchy of trees is defined according to the order of the generating PDA; lower orders of the hierarchy are well-known classes of trees: orders 0,1 , and 2 are respectively the regular [53], algebraic [18], and hyperalgebraic trees [36]. Knapik et al. considered another method of generating such trees, namely by higher-order (deterministic) recursion schemes that satisfy the constraint of safety. A major result in their work is the equi-expressivity of both methods as tree generators. In particular, it implies that the equivalence problem for higher-order safe recursion schemes is interreducible to the problem of decidability of language equivalence between deterministic higher-order PDA.

An alternative approach was developed by Caucal, who introduced [15] two infinite hierarchies, one made of infinite trees and the other made of infinite graphs, defined by means of two simple transformations: unfolding, which goes from graphs to trees, and inverse rational mapping (or MSO-interpretation [14]), which goes from trees to graphs. He showed that the tree hierarchy coincides with the trees generated by safe schemes.

However the fundamental question open since the early 1980s of finding a class of automata that characterises the expressivity of higher-order recursion schemes was left open. Indeed, the results of Damm and Goerdt, as well as those of Knapik et al. may only be viewed as attempts to answer the question, as they have both had to impose the same syntactic constraints on recursion schemes, called of derived types and safety, respectively, in order to establish their results.

A partial answer was later obtained by Knapik, Niwiński, Urzyczyn, and Walukiewicz, who proved that order-2 homogeneously-typed (but not necessarily safe) recursion schemes are equi-expressive with a variant class of order-2 pushdown automata called panic automata [38].

Finally, Hague, Murawski, Ong, and Serre gave a complete answer to the question in [32]. They introduced a new kind of higher-order pushdown automata, which generalises pushdown automata with links [2], or equivalently panic automata, to all finite orders, called collapsible pushdown automata (CPDA), in which every symbol in the stack has a link to a (necessarily lower-ordered) stack situated somewhere below it. A major result of their paper is that for every $n \geqslant 0$, order- n recursion schemes and order- n CPDA are equi-expressive as generators of trees.

Decidability of monadic second order logic. This quest for finding an alternative description of those trees generated by recursion schemes took place in parallel with the study of the decidability of the model-checking problem for monadic second-order
logic (MSO) and modal μ-calculus (see [63], [3], [31], and [29] for background about these logics and connections with finite automata and games). Decidability of the MSO theories of trees generated by safe schemes was established by Knapik, Niwiński and Urzyczyn [37] and then Caucal [15] proved a stronger decidability result that holds on graphs as well. The decidability for order-2 unsafe schemes follows from [38] and was obtained thanks to the equi-expressivity with panic automata. This result was independently obtained in [2] with similar techniques.

In 2006, Ong showed the decidability of MSO for arbitrary recursion schemes [48], and established that this problem is n-EXPTIME complete. This result was obtained using tools from innocent game semantics (in the sense of Hyland and Ong [33]) and does not rely on an equivalent automata model for generating trees.

Thanks to their equi-expressivity result, Hague et al. provided an alternative proof of the MSO decidability for schemes. Indeed, thanks to the equi-expressivity between schemes and CPDA together with the well-known connections between MSO modelchecking (for trees) and parity games, the model-checking problem for schemes is interreducible to the problem of deciding the winner in a two-player perfect information turn-based parity game played over the Lts (i.e., transition graph) associated with a CPDA. They extended the techniques and results of Walukiewicz (for pushdown games) [64], Cachat (for higher-order pushdown) [11] (also see [12] for a more precise study on higher-order pushdown games) and the one from Knapik et al. [38]. These techniques were later extended by Broadbent, Carayol, Ong, and Serre to establish stronger results on schemes - in particular closure under MSO marking [8] - and later by Carayol and Serre to prove that recursion schemes enjoy the effective MSO selection property [13].

Some years later, following initial ideas by Aehlig [1], Kobayashi [40], and Kobayashi and Ong [43] gave another proof of the decidability of MSO. The proof consists of showing that one can associate, with any scheme and formula, a typing system (based on intersection types) such that the scheme is typable in this system if and only if the formula holds. Typability is then reduced to solving a parity game.

Using the λY-calculus and Krivine Machines, Salvati and Walukiewicz proposed an alternative approach for the decidability of MSO, as well as, a new proof for the equivalence between schemes and CPDA, see [55], and [56]. In particular, the translation from schemes to CPDA is very similar to the one that we present in this chapter and was independently obtained by the authors in [13].

Recently, Parys established decidability of weak-MSO logic extended by the unbounding quantifier (WMSO+U), for schemes [52].

Verification of higher-order programs. Functional languages such as Haskell, OCaML and Scala strongly encourage the use of higher-order functions. This represents a challenge for software verification, which usually does not model recursion accurately, or models only first-order calls (e.g., SLAM [4] and Moped [57]). However higher-order recursion schemes offer a way of abstracting functional programs in
a manner that precisely models higher-order control-flow, and because of the μ-calculus/MSO decidability results for them, it opened a very active line of research toward the verification of higher-order programs.

Even reachability properties (subsumed by the μ-calculus) are very useful in practice: indeed, as a simple example, the safety of incomplete pattern matching clauses could be checked by asking whether the program can reach a state where a pattern match failure occurs. More complex reachability properties can be expressed using a finite automaton and could, for example, specify that the program respects a certain discipline when accessing a particular resource (see [42] for a detailed overview of the field). Despite even reachability being ($n-1$)-EXPTIME complete, recent research has revealed that useful properties of HORS can be checked in practice.

Kobayashi's TRecS [39] tool, which checks properties expressible by a deterministic trivial Büchi automaton (all states accepting), was the first to demonstrate modelchecking of schemes was possible in practice. It works by determining whether a HORS is typable in an intersection type system characterising the property to be checked [42]. In a bid to improve scalability, a number of other algorithms have subsequently been designed and implemented, such as Kobayashi's GTRecS(2) [41] and Neatherway, Ramsay, and Ong's TravMC [46] tools, all based on intersection type inference.

Another approach, providing a fresh set of tools that contrast with previous intersection type techniques, was developed by Broadbent, Carayol, Hague and Serre, relying on an automata-theoretic perspective [9]. Their idea is to start from a recursion scheme and to translate it to an equivalent CPDA, and then perform the verification on the latter. In order to avoid state explosion, they used saturation methods (that were well known to work successfully for pushdown systems [57]) together with an initial forward analysis. This lead to the C-SHORe tool, which is the first model-checking tool for the (direct) analysis of collapsible pushdown systems.

Since C-SHORe was released, two new tools were developed. Broadbent and Kobayashi introduced HorSat (later subsumed by HorSat2), which is an application of the saturation technique and initial forward analysis directly to intersection type analysis of recursion schemes [10]. Secondly, Ramsay, Neatherway and Ong introduced Preface [54], using a type-based abstraction-refinement algorithm that attempts to simultaneously prove and disprove the property of interest. Both HorSat2 and Preface perform significantly better than previous tools.

Structure of this chapter. Higher-order recursion schemes are a very rich domain and we had to make some choices for both the presentation and the content of this chapter. We decided to devote a large part to the equi-expressivity result between recursion schemes and collapsible pushdown automata. Indeed, it was a longstanding open question in the field; it allowed providing an automata-based proof of the decidability of MSO for recursion schemes; and it gives a tool to who wants to tackle the equivalence problem for recursion schemes (which is interreducible to language equivalence for deterministic CPDA). The presentation of the proof we give is novel and can be thought as a simplification of the original proof in [32]. First, it introduces an alternative definition of schemes called labelled recursion schemes by means of labelled transition
systems. In these labelled transition systems, the domain is composed of the ground terms built using the non-terminal of the scheme; the relations come from the rewriting rules of the schemes and are labelled by terminals. Second, it presents a transformation from a recursion scheme to a CPDA, which only uses basic automata techniques, and does not appeal to objects from game semantics such as traversals. Nevertheless, it is important to stress that, even if concepts like traversals are no longer present in our proof, the key ideas come from [32] and the CPDA one derives from a scheme is the same as the one defined in [32].

The article is organised as follows. § 2 introduces the main concepts (schemes and CPDA) together with examples. Then in $\S 3$ we give a transformation from CPDA to schemes and in § 4 we provide the converse transformation. Finally, $\S 5$ is devoted to the notion of safety.

2. Preliminaries

2.1. Trees and terms. Let A be a finite alphabet. We let A^{*} denote the set of finite words over A, and we refer to a subset of A^{*} as a language over A. A tree t with directions in A (or simply a tree if A is clear from the context) is a non-empty prefixclosed subset of A^{*}. Elements of t are called nodes and ε is called the root of t. For a node $u \in t$, the subtree of t rooted at u, denoted t_{u}, is the tree $\left\{v \in A^{*} \mid u \cdot v \in t\right\}$. We let Trees ${ }^{\infty}(A)$ denote the set of trees with directions in A.

A ranked alphabet A is an alphabet together with an arity function, $\varrho: A \rightarrow \mathbb{N}$. The terms built over a ranked alphabet A are those trees with directions

$$
\vec{A} \stackrel{\text { def }}{=} \bigcup_{f \in A} \vec{f}, \quad \text { where } \vec{f}= \begin{cases}\left\{f_{1}, \ldots, f_{\varrho(f)}\right\} & \text { if } \varrho(f)>0 \\ \{f\} & \text { if } \varrho(f)=0\end{cases}
$$

For a tree $t \in \operatorname{Trees}^{\infty}(\vec{A})$ to be a term, we require, for all nodes u, that the set $A_{u}=\{d \in \vec{A} \mid u d \in t\}$ is empty if and only if u ends with some $f \in A$ (hence $\varrho(f)=0)$ and if A_{u} is non-empty, then it is equal to some \vec{f} for some $f \in A$. We let $\operatorname{Terms}(A)$ denote the set of terms over A.

For $c \in A$ of arity 0 , we let c denote the term $\{\varepsilon, c\}$. For $f \in A$ of arity $n>0$ and for terms t_{1}, \ldots, t_{n}, we let $f\left(t_{1}, \ldots, t_{n}\right)$ denote the term $\{\varepsilon\} \cup \bigcup_{i \in[1, n]}\left\{f_{i}\right\} \cdot t_{i}$. These notions are illustrated in Figure 1.
2.2. Labelled transition systems. A rooted labelled transition system is an edgelabelled directed graph with a distinguished vertex, called the root. Formally, a rooted labelled transition system \mathcal{L} (LTs for short) is a tuple $\left\langle D, r, \Sigma,(\xrightarrow{a})_{a \in \Sigma}\right\rangle$, where D is a finite or countable set called the domain, $r \in D$ is a distinguished element called the root, Σ is a finite set of labels, and for all $a \in \Sigma, \xrightarrow{a} \subseteq D \times D$ is a binary relation on D.

Figure 1. Two representations of the infinite term $f_{2}^{*}\left\{f_{1} c, f_{1}, \varepsilon\right\}=f(c, f(c, f(\cdots)))$ over the ranked alphabet $\{f, c\}$, assuming that $\varrho(f)=2$ and $\varrho(c)=0$

For any $a \in \Sigma$ and any pair $(s, t) \in D^{2}$ we write $s \xrightarrow{a} t$ to indicate that $(s, t) \in \xrightarrow{a}$, and we refer to it as an a-transition with source s and target t. For a word $w=a_{1} \ldots a_{n} \in \Sigma^{*}$, we define a binary relation \xrightarrow{w} on D by letting $s \xrightarrow{w} t$ (meaning that $(s, t) \in \xrightarrow{w}$) if there exists a sequence s_{0}, \ldots, s_{n} of elements in D such that $s_{0}=s, s_{n}=t$, and for all $i \in[1, n], s_{i-1} \xrightarrow{a_{i}} s_{i}$. These definitions are extended to languages over Σ by taking, for all $L \subseteq \Sigma^{*}$, the relation \xrightarrow{L} to be the union of all \xrightarrow{w} for $w \in L$.

When considering Lts associated with computational models, it is usual to allow silent (or internal) transitions. The symbol for silent transitions is usually ε but here, to avoid confusion with the empty word, we will use λ instead. Following [60], p. 31, we forbid a vertex to be the source of both a silent transition and a non-silent transition. Formally, an Lts with silent transitions is an LTs $\left\langle D, r, \Sigma,(\xrightarrow{a})_{a \in \Sigma}\right\rangle$ whose set of labels contains a distinguished symbol, denoted $\lambda \in \Sigma$ and such that for all $s \in D$, if s is the source of a λ-transition, then s is not the source of any a-transition with $a \neq \lambda$. We let Σ_{λ} denote the set $\Sigma \backslash\{\lambda\}$ of non-silent transition labels. For all words $w=$ $a_{1} \ldots a_{n} \in \Sigma_{\lambda}^{*}$, we let $\stackrel{w}{\Longrightarrow}$ denote the relation $\xrightarrow{L_{w}}$, where $L_{w} \stackrel{\text { def }}{=} \lambda^{*} a_{1} \lambda^{*} \ldots \lambda^{*} a_{n} \lambda^{*}$ is the set of words over Σ obtained by inserting arbitrarily many occurrences of λ in w.

An LTs (with silent transitions) is said to be deterministic if for all s, t_{1} and t_{2} in D and all a in Σ, if $s \xrightarrow{a} t_{1}$ and $s \xrightarrow{a} t_{2}$, then $t_{1}=t_{2}$.

Caveat 2.1. From now on, we always assume that the LTs we consider are deterministic.

We associate a tree with every Lts with silent transitions \mathcal{L}, denoted $\operatorname{Tree}(\mathcal{L})$, with directions in Σ_{λ}, reflecting the possible behaviours of \mathcal{L} starting from the root. For this we let

$$
\operatorname{Tree}(\mathcal{L}) \stackrel{\text { def }}{=}\left\{w \in \Sigma_{\lambda}^{*} \mid \exists s \in D, r \stackrel{w}{\Longrightarrow} s\right\} .
$$

As \mathcal{L} is deterministic, $\operatorname{Tree}(\mathcal{L})$ is obtained by unfolding the underlying graph of \mathcal{L} from its root and contracting all λ-transitions. Figure 2 presents an LTs with silent transitions together with its associated tree $\operatorname{Tree}(\mathcal{L})$.

As illustrated in Figure 2, the tree $\operatorname{Tree}(\mathcal{L})$ does not reflect the diverging behaviours of \mathcal{L} (i.e., the ability to perform an infinite sequence of silent transitions). For instance in the Lis of Figure 2, the vertex s diverges, whereas the vertex t does not. A more informative tree can be defined in which diverging behaviours are indicated by a \perp child for some fresh symbol \perp. This tree, denoted $\operatorname{Tree}^{\perp}(\mathcal{L})$, is defined by letting

$$
\operatorname{Tree}^{\perp}(\mathcal{L}) \stackrel{\text { def }}{=} \operatorname{Tree}(\mathcal{L}) \cup\left\{w \perp \in \Sigma_{\lambda}^{*} \perp \mid \forall n \geqslant 0, r \stackrel{w \lambda^{n}}{\Longrightarrow} s_{n} \text { for some } s_{n}\right\}
$$

Figure 2. An Lis \mathcal{L} with silent transitions of root r (on the left), the tree $\operatorname{Tree}(\mathcal{L})$ (in the centre) and the tree $\operatorname{Tree}^{\perp}(\mathcal{L})$ (on the right)
2.3. Higher-order recursion schemes. Recursion schemes are grammars for simply typed terms, and they are often used to generate a possibly infinite term. Hence before introducing recursion schemes, we start with some necessary definitions about simply typed terms.

Also note that recursion schemes are not traditionally associated with an Lrs. Hence we start with the standard definition of recursion schemes as generators for infinite terms, and then we provide an alternative definition based on Lts.
2.3.1. Simply typed terms. Types are generated by the grammar $\tau::=o \mid \tau \rightarrow \tau$. Every type $\tau \neq o$ can be uniquely written as $\tau_{1} \rightarrow\left(\tau_{2} \rightarrow \cdots\left(\tau_{n} \rightarrow o\right) \cdots\right)$ where $n \geqslant 0$ and $\tau_{1}, \ldots, \tau_{n}$ are types. The number n is the arity of the type and is denoted by $\varrho(\tau)$. To simplify the notation, we adopt the convention that the arrow is associative to the right and we write $\tau_{1} \rightarrow \cdots \rightarrow \tau_{n} \rightarrow o$ (or $\left(\tau_{1}, \ldots, \tau_{n}, o\right)$ to save space).

Intuitively, the base type o corresponds to base elements (such as int in ML). An arrow type $\tau_{1} \rightarrow \tau_{2}$ corresponds to a function taking an argument of type τ_{1} and returning an element of type τ_{2}. Even if there are no specific types for functions taking more than one argument, those functions are represented in their curried form. Indeed, a function taking two arguments of type o and returning a value of type o, in its curried
form, has the type $o \rightarrow o \rightarrow o=o \rightarrow(o \rightarrow o)$; intuitively, the function only takes its first argument and returns a function expecting the second argument and returning the desired result.

The order measures the nesting of a type. Formally one defines $\operatorname{ord}(o)=0$ and $\operatorname{ord}\left(\tau_{1} \rightarrow \tau_{2}\right)=\max \left(\operatorname{ord}\left(\tau_{1}\right)+1, \operatorname{ord}\left(\tau_{2}\right)\right)$. Alternatively for a type $\tau=\left(\tau_{1}, \ldots, \tau_{n}, o\right)$ of arity $n>0$, the order of τ is the maximum of the orders of the arguments plus one, i.e., $\operatorname{ord}(\tau)=1+\max \left\{\operatorname{ord}\left(\tau_{i}\right) \mid 1 \leqslant i \leqslant n\right\}$.

Example 2.1. The type $o \rightarrow(o \rightarrow(o \rightarrow o))$ has order 1 while $((o \rightarrow o) \rightarrow o) \rightarrow o$ has order 3.

Let X be a set of typed symbols. For every symbol $f \in X$, and every type τ, we write $f: \tau$ to mean that f has type τ. The set of applicative terms ${ }^{1}$ of type τ generated from X, denoted $\operatorname{Terms}_{\tau}(X)$, is defined by induction over the following rules. If $f: \tau$ is an element of X then $f \in \operatorname{Terms}_{\tau}(X)$; if $s \in \operatorname{Terms}_{\tau_{1} \rightarrow \tau_{2}}(X)$ and $t \in \operatorname{Terms}_{\tau_{1}}(X)$ then the applicative term obtained by applying t to s, denoted $s t$, belongs to $\operatorname{Terms}_{\tau_{2}}(X)$. For every applicative term t, and every type τ, we write $t: \tau$ to mean that t is an applicative term of type τ. By convention, the application is considered to be left-associative, and thus we write $t_{1} t_{2} t_{3}$ instead of $\left(t_{1} t_{2}\right) t_{3}$.
Example 2.2. Assuming that f and g are two function symbols of respective types $(\mathrm{o} \rightarrow \mathrm{o}) \rightarrow \mathrm{o} \rightarrow \mathrm{o}$ and $\mathrm{o} \rightarrow \mathrm{o}$ and c is a constant symbol of type o , we have

$$
g c: \mathrm{o}, \quad f g: \mathrm{o} \longrightarrow \mathrm{o}, \quad f g c=(f g) c: \mathrm{o}, \quad f(f g) c: \mathrm{o} .
$$

The set $\operatorname{Subs}(t)$ of subterms of t is inductively defined by $\operatorname{Subs}(f)=\{f\}$ for $f \in X$ and $\operatorname{Subs}\left(t_{1} t_{2}\right)=\operatorname{Subs}\left(t_{1}\right) \cup \operatorname{Subs}\left(t_{2}\right) \cup\left\{t_{1} t_{2}\right\}$. The subterms of the term $f(f g) c$: o in Example 2.2 are $f(f g) c, f, f g, f(f g), c$ and g. A less permissive notion is that of argument subterms of t, denoted $\operatorname{ASubs}(t)$, which only keep those subterms that appear as an argument. The set $\operatorname{ASubs}(t)$ is inductively defined by letting $\operatorname{ASubs}\left(t_{1} t_{2}\right)=$ $\operatorname{ASubs}\left(t_{1}\right) \cup \operatorname{ASubs}\left(t_{2}\right) \cup\left\{t_{2}\right\}$ and $\operatorname{ASubs}(f)=\varnothing$ for $f \in X$. In particular if $t=F t_{1} \ldots t_{n}, \operatorname{ASubs}(t)=\bigcup_{i=1}^{n}\left(\operatorname{ASubs}\left(t_{i}\right) \cup\left\{t_{i}\right\}\right)$. The argument subterms of $f(f g) c$: o are $f g, c$ and g. In particular, for all terms t, one has $|\operatorname{ASubs}(t)|<|t|$.
Fact 1. Any applicative term t over X can be uniquely written as $F t_{1} \ldots t_{n}$ where F is a symbol in X of arity $\varrho(F) \geqslant n$ and t_{i} are applicative terms for all $i \in[1, n]$. Moreover if F has type $\left(\tau_{1}, \ldots, \tau_{\varrho(F)}, 0\right) \in X$, then for all $i \in[1, n], t_{i}$ has type τ_{i} and $t:\left(\tau_{n+1}, \ldots, \tau_{\varrho(F)}, 0\right)$.
Remark 2.2. In the following, we will simply write "term" instead of "applicative term" and let Terms (X) denote the set of applicative terms of ground type over X. It should be clear from the context if we are referring to applicative terms over a typed alphabet or terms over a ranked alphabet. Of course, a ranked alphabet A can be seen as a typed alphabet by assigning the type

[^0]to every symbol f of A. In particular, every symbol in A has order 0 or 1 . The finite terms over A (seen as a ranked alphabet) are in bijection with the applicative ground terms over A (seen as a typed alphabet).
2.3.2. Recursion schemes. For each type τ, we assume an infinite set V_{τ} of variables of type τ, such that $V_{\tau_{1}}$ and $V_{\tau_{2}}$ are disjoint whenever $\tau_{1} \neq \tau_{2}$, and we write V for the union of those sets V_{τ} as τ ranges over types. We use letters $x, y, \varphi, \psi, \chi, \xi, \ldots$ to range over variables.

A (deterministic) recursion scheme is a 5-tuple $\mathcal{S}=\langle A, N, \mathcal{R}, Z, \perp\rangle$ where

- A is a ranked alphabet of terminals and \perp is a distinguished terminal symbol of arity 0 (and hence of ground type) that does not appear in any production rule,
- N is a finite set of typed non-terminals; we use upper-case letters F, G, H, \ldots to range over non-terminals,
- $Z \in N$ is a distinguished initial symbol of type o which does not appear in any right-hand side of a production rule,
- \mathcal{R} is a finite set of production rules, one for each non-terminal $F:\left(\tau_{1}, \ldots, \tau_{n}, o\right)$, of the form

$$
F x_{1} \ldots x_{n} \longrightarrow e
$$

where the x_{i} are distinct variables with $x_{i}: \tau_{i}$ for $i \in[1, n]$ and e is a ground term in Terms $\left((A \backslash\{\perp\}) \cup(N \backslash\{Z\}) \cup\left\{x_{1}, \ldots, x_{n}\right\}\right)$. Note that the expressions on both sides of the arrow are terms of ground type.
The order of a recursion scheme is defined to be the highest order of (the types of) its non-terminals.
2.3.3. Rewriting system associated with a recursion scheme. A recursion scheme \mathcal{S} induces a rewriting relation, denoted \rightarrow_{s}, over $\operatorname{Terms}(A \cup N)$. Informally, \rightarrow_{s} replaces any ground subterm $F t_{1} \ldots t_{\varrho(F)}$ starting with a non-terminal F by the righthand side of the production rule $F x_{1} \ldots x_{n} \rightarrow e$ in which the occurrences of the "formal parameter" x_{i} are replaced by the actual parameter t_{i} for $i \in[1, \varrho(F)]$.

The term $M[t / x]$ obtained by replacing a variable $x: \tau$ by a term $t: \tau$ over $A \cup N$ in a term M over $A \cup N \cup V$ is defined ${ }^{2}$ by induction on M by taking

$$
\begin{array}{rlr}
\left(t_{1} t_{2}\right)[t / x] & =t_{1}[t / x] t_{2}[t / x], \\
\varphi[t / x] & =\varphi \quad \text { for } \varphi \in A \cup N \cup V \text { if } \varphi \neq x, \\
x[t / x] & =t .
\end{array}
$$

The rewriting system \rightarrow_{s} is defined by induction using the following rules:

- Substitution: $F t_{1} \ldots t_{n} \rightarrow_{s} e\left[\frac{t_{1}}{x_{1}}, \ldots, \frac{t_{n}}{x_{n}}\right]$ where $F x_{1} \ldots x_{n} \rightarrow e$ is a production rule of \mathcal{S};
- Context: if $t \rightarrow_{s} t^{\prime}$ then $(s t) \rightarrow_{s}\left(s t^{\prime}\right)$ and $(t s) \rightarrow_{s}\left(t^{\prime} s\right)$.

[^1]Example 2.3. Consider \mathcal{S}, the order-2 recursion scheme with the set of non-terminals $\{Z: o, H:(o, o), F:((o, o, o), o)\}$, variables $\{z: o, \varphi:(o, o, o)\}$, terminals $A=\{f, a\}$ of arity 2 and 0 respectively, and the following rewrite rules:

$$
\begin{aligned}
Z & \longrightarrow f(H a)(F f), \\
H z & \longrightarrow H(H z), \\
F \varphi & \longrightarrow \varphi a(F \varphi) .
\end{aligned}
$$

Figure 3 depicts the first rewriting steps of \rightarrow_{S}, starting from the initial symbol Z.

Figure 3
As illustrated above, the relation \rightarrow_{s} is confluent, i.e., for all ground terms t, t_{1} and t_{2}, if $t \rightarrow{ }_{\mathrm{S}}^{*} t_{1}$ and $t \rightarrow{ }_{\mathrm{S}}^{*} t_{2}$ (here $\rightarrow_{\mathrm{S}}^{*}$ denotes the transitive closure of $\rightarrow \mathrm{s}$), then there exists t^{\prime} such that $t_{1} \rightarrow{ }_{S}^{*} t^{\prime}$ and $t_{2} \rightarrow{ }_{S}^{*} t^{\prime}$. The proof of this statement is similar to proof of the confluence of the lambda-calculus [6].
2.3.4. Value tree of a recursion scheme. Informally the value tree of (or the tree generated by) a recursion scheme \mathcal{S}, denoted $\llbracket \mathcal{S} \rrbracket$, is a (possibly infinite) term, constructed from the terminals in A, that is obtained as the "limit" of the set of all terms that can obtained by iterative rewriting from the initial symbol Z.

The terminal symbol \perp : o is used to formally restrict terms over $A \cup N$ to their terminal symbols. We define a map $(\cdot)^{\perp}: \operatorname{Terms}(A \cup N) \longrightarrow \operatorname{Terms}(A)$ that takes an applicative term and replaces each non-terminal, together with its arguments, by \perp : o. We define $(\cdot)^{\perp}$ inductively as follows, where a ranges over A-symbols, and F over non-terminals in N :

$$
\begin{aligned}
a^{\perp} & =a \\
F^{\perp} & =\perp \\
(s t)^{\perp} & = \begin{cases}\perp & \text { if } s^{\perp}=\perp \\
\left(s^{\perp} t^{\perp}\right) & \text { otherwise } .\end{cases}
\end{aligned}
$$

Clearly if $t \in \operatorname{Terms}(A \cup N)$ is of ground type then $t^{\perp} \in \operatorname{Terms}(A)$ is of ground type as well.

Terms built over A can be partially ordered by the approximation ordering \preccurlyeq defined for all terms t and t^{\prime} over A by $t \preccurlyeq t^{\prime}$ if $t \cap(\vec{A} \backslash\{\perp\})^{*} \subseteq t^{\prime}$. In other terms, t^{\prime} is obtained from t by substituting some occurrences of \perp by arbitrary terms over A.

The set of terms over A together with \preccurlyeq form a directed complete partial order, meaning that any directed ${ }^{3}$ subset D of $\operatorname{Terms}(A)$ admits a supremum, denoted sup D.

Clearly if $s \rightarrow_{s} t$ then $s^{\perp} \preccurlyeq t^{\perp}$. The confluence of the relation \rightarrow_{s} implies that the set $\left\{t^{\perp} \mid Z \rightarrow{ }_{S}^{*} t\right\}$ is directed. Hence the value tree of (or the tree generated by) \mathcal{S} can be defined as its supremum,

$$
\llbracket \mathcal{S} \rrbracket=\sup \left\{t^{\perp} \mid Z \rightarrow_{\mathcal{S}}^{*} t\right\} .
$$

We write RecTree $_{n} A$ for the class of value trees $\llbracket \mathcal{S} \rrbracket$, where \mathcal{S} ranges over order- n recursion schemes.

Example 2.4. The value tree of the recursion scheme \mathcal{S} of Example 2.3 is as in Figure 4.

Figure 4

[^2]Remark 2.3. The relation \rightarrow_{s} is unrestricted, in the sense that any ground subterm starting with a non-terminal can be rewritten. A more constrained rewriting policy referred to as outermost-innermost (OI) only allows rewriting a ground non-terminal subterm if it is not below any non-terminal symbols (i.e., it is outermost) [22]. The corresponding rewriting relation is denoted $\rightarrow_{s, \text { OI }}$. Note that using $\rightarrow_{s, \text { oI }}$ instead of \rightarrow_{s} does not change the value tree of the scheme, i.e., $\sup \left\{t^{\perp} \mid Z \rightarrow_{s}^{*} t\right\}=\sup \left\{t^{\perp} \mid\right.$ $\left.Z \rightarrow_{\text {s, OI }}^{*} t\right\}$.

Another rewriting policy referred to as innermost-outermost (IO) only allows rewriting a ground non-terminal subterm if this subterm does not contain a ground nonterminal as subterm (i.e., it is innermost) [22]. The corresponding rewriting relation is denoted $\rightarrow_{s, \text { IO }}$. Note that using $\rightarrow_{s, \text { IO }}$ instead of \rightarrow_{s} may change the value tree of the scheme. Indeed, consider as an example the recursion scheme \mathcal{S}^{\prime} obtained from the scheme \mathcal{S} in Example 2.3 by replacing its first production rule by the following two rules:

$$
\begin{aligned}
Z & \longrightarrow K(H a)(F f), \\
K x y & \longrightarrow f x y .
\end{aligned}
$$

Hence, we just added an intermediate non-terminal K, and one easily checks that $\llbracket \mathcal{S} \rrbracket=\llbracket \mathcal{S}^{\prime} \rrbracket$. As the non-terminal H is not productive, following the IO policy, the second production rule will never be used, and therefore $\sup \left\{t^{\perp} \mid Z \rightarrow{ }_{\delta^{\prime}, \mathrm{IO}}^{*} t\right\}=\perp$.
2.3.5. Labelled recursion schemes. A labelled recursion scheme is a recursion scheme without terminal symbols but whose productions are labelled by a finite alphabet. This slight variation in the definition allows us to associate a Lts with every labelled recursion scheme.

A deterministic labelled recursion scheme is a 5-tuple $\mathcal{S}=\langle\Sigma, N, \mathcal{R}, Z, \perp\rangle$ where

- Σ is a finite set of labels and \perp is a distinguished symbol in Σ,
- N is a finite set of typed non-terminals; we use upper-case letters F, G, H, \ldots to range over non-terminals,
- $Z: \mathrm{o} \in N$ is a distinguished initial symbol which does not appear in any righthand side,
- \mathcal{R} is a finite set of production rules of the form

$$
F x_{1} \ldots x_{n} \xrightarrow{a} e
$$

where $a \in \Sigma \backslash\{\perp\}, F:\left(\tau_{1}, \ldots, \tau_{n}, o\right) \in N$, the x_{i} are distinct variables, each x_{i} is of type τ_{i}, and e is a ground term over $(N \backslash\{Z\}) \cup\left\{x_{1}, \ldots, x_{n}\right\}$.

In addition, we require that there is at most one production rule starting with a given non-terminal and labelled by a given symbol.

The Lis associated with \mathcal{S} has the set of ground terms over N as domain, the initial symbol Z as root, and, for all $a \in \Sigma$, the relation \xrightarrow{a} is defined by

$$
F t_{1} \ldots t_{\varrho(F)} \xrightarrow{a} e\left[\frac{t_{1}}{x_{1}}, \ldots, \frac{t_{\varrho(F)}}{x_{\varrho(F)}}\right]
$$

if $F x_{1} \ldots x_{n} \xrightarrow{a} e$ is a production rule. The tree generated by a labelled recursion scheme \mathcal{S}, denoted Tree ${ }^{\perp}(\mathcal{S})$, is the tree Tree ${ }^{\perp}$ of its associated Lrs. To use labelled recursion schemes to generate terms over a ranked alphabet A, it is enough to enforce that for every non-terminal $F \in N$:

- either there is a unique production starting with F which is labelled by λ,
- or there is a unique production starting with F which is labelled by some symbol c of arity 0 and whose right-hand side starts with a non-terminal that comes with no production rule in the scheme,
- or there exists a symbol $f \in A$ with $\varrho(f)>0$ such that the set of labels of production rules starting with F is exactly \vec{f}.

Figure 5. A labelled recursion scheme generating the same term as the scheme of Example 2.3

Recursion schemes and labelled recursion schemes are equi-expressive for generating terms.

Theorem 2.4. The recursion schemes and the labelled recursion schemes generate the same terms. Moreover the translations are linear and preserves order and arity.

Proof. Let $\mathcal{S}=\langle A, N, \mathcal{R}, Z, \perp\rangle$ be a recursion scheme. We define a labelled recursion scheme $\mathcal{S}^{\prime}=\left\langle\vec{A}, N^{\prime}, \mathcal{R}^{\prime}, Z, \perp\right\rangle$ generating the term $\llbracket \mathcal{S} \rrbracket$. For each terminal symbol
$f \in A$, we introduce a non-terminal symbol, denoted

$$
\bar{f}: \underbrace{o \rightarrow \cdots \rightarrow o \rightarrow}_{\varrho(f)} o .
$$

The set of non-terminal symbols of \mathcal{S}^{\prime} is $N \cup\{\bar{f} \mid f \in A\} \cup\{X\}$, where X is assumed to be a fresh non-terminal. With a term t over $A \cup N$, we associate the term \bar{t} over N^{\prime} obtained by replacing every occurrence of a terminal symbol f by its nonterminal counterpart \bar{f}. The production rules of \mathcal{S}^{\prime} are as follows:

$$
\begin{aligned}
& \left\{F x_{1} \ldots x_{n} \xrightarrow{\lambda} \bar{e} \mid F x_{1} \ldots x_{n} \longrightarrow e \in \mathcal{R}\right\} \\
& \quad \cup\left\{\bar{f} x_{1} \ldots x_{\varrho(f)} \xrightarrow{f_{i}} x_{i} \mid f \in A \text { with } \varrho(f)>0 \text { and } i \in[1, \varrho(f)]\right\} \\
& \quad \cup\{\bar{c} \xrightarrow{c} X \mid c \in A \text { with } \varrho(c)=0\} .
\end{aligned}
$$

Conversely, let A be ranked alphabet and let $\mathcal{S}=\langle\vec{A}, N, \mathcal{R}, Z, \perp\rangle$ be a labelled recursion scheme respecting the syntactic restrictions mentioned above. We define a recursion scheme $\mathcal{S}^{\prime}=\left\langle A, N, \mathcal{R}^{\prime}, Z, \perp\right\rangle$ generating the same term as \mathcal{S}. The set of production rules of \mathcal{S}^{\prime} are defined as follows:

- if $F x_{1} \ldots x_{n} \xrightarrow{\lambda} e$ belongs to \mathcal{R} (in this case it is the only rule starting with $F)$ then $F x_{1} \ldots x_{n} \rightarrow e$ belongs to \mathcal{R}^{\prime};
- if, for some c of arity $0, F x_{1} \ldots x_{n} \xrightarrow{c} e$ belongs to \mathcal{R} (in this case it is the only rule starting with F and e starts with a non-terminal that has no rule in \mathcal{R}) then $F x_{1} \ldots x_{n} \rightarrow c$ belongs to \mathcal{R}^{\prime};
- if, for some $f \in A$ of arity $\varrho(f)>0, F x_{1} \ldots x_{n} \xrightarrow{f_{i}} e_{i}$ belongs to \mathcal{R} for all $1 \leqslant i \leqslant \varrho(f)$, then $F x_{1} \ldots x_{n} \rightarrow f e_{1} \ldots e_{\varrho(f)}$ belongs to \mathcal{R}^{\prime}.
2.3.6. Examples of trees defined by labelled recursion schemes. In this section, we provide some examples of trees defined by labelled recursion schemes. Given a language L over Σ, we let $\operatorname{Pref}(L)$ denote the tree in $\operatorname{Trees}^{\infty}(\Sigma)$ containing all prefixes of words in L.

The tree $\operatorname{Pref}\left(\left\{\boldsymbol{a}^{\boldsymbol{n}} \boldsymbol{b}^{\boldsymbol{n}} \mid \boldsymbol{n} \geqslant \mathbf{0}\right\}\right)$. Let us start with the tree T_{0} corresponding to the deterministic context-free language $\operatorname{Pref}\left(\left\{a^{n} b^{n} \mid n \geqslant 0\right\}\right)$. As is the case for all prefix-closed deterministic context-free languages (see [16] and [17] or Theorem 4.8 at order 1), T_{0} is generated by an order- 1 scheme \mathcal{S}_{0}.

$$
\begin{aligned}
Z \xrightarrow{a} H X, & H x \xrightarrow{a} H(B x), \\
B x \xrightarrow{b} x, & H x \xrightarrow{b} x,
\end{aligned}
$$

with $Z, X: o$ and $H, B: o \rightarrow o$. The tree generated by \mathcal{S}_{0} is given in Figure 6.

Figure 6
The tree $\operatorname{Pref}\left(\left\{\boldsymbol{a}^{\boldsymbol{n}} \boldsymbol{b}^{\boldsymbol{n}} \boldsymbol{c}^{\boldsymbol{n}} \mid \boldsymbol{n} \geqslant 0\right)\right.$. Using order-2 schemes, it is possible to go beyond deterministic context-free languages and define, for instance the tree $T_{1}=$ $\operatorname{Pref}\left(\left\{a^{n} b^{n} c^{n} \mid n \geqslant 0\right\}\right)$. Consider the order- 2 scheme \mathcal{S}_{1} given by

$$
\begin{array}{lr}
Z \xrightarrow{a} F I(K C I), & F \varphi \psi \xrightarrow{a} F(K B \varphi)(K C \psi), \\
B x \xrightarrow{b} x, & F \varphi \psi \xrightarrow{b} \psi(\varphi X), \\
C x \xrightarrow{c} x, & K \varphi \psi x \xrightarrow{\lambda} \varphi(\psi(x)), \\
I x \xrightarrow{\lambda} x . &
\end{array}
$$

with

- $Z, X: o$,
- B, C, $I: o \rightarrow o$,
- $F:((o \rightarrow o),(o \rightarrow o), o)$, and
- $K:((o \rightarrow o),(o \rightarrow o), o, o)$.

Intuitively, the non-terminal K plays the role of the composition of functions of type $o \rightarrow o$ (i.e., for any terms $F_{1}, F_{2}: o \rightarrow o$ and $t: o, K F_{1} F_{2} t \xrightarrow{\lambda} F_{1}\left(F_{2} t\right)$). For any term $G: o \rightarrow o$, we define G^{n} for all $n \geqslant 0$ by taking $G^{0}=I$ and $G^{n+1}=K G G^{n}$. For
 For all $n \geqslant 0$, we have

$$
Z \xrightarrow{a^{n}} F B^{n-1} C^{n} \xrightarrow{b} C^{n}\left(B^{n-1} X\right) \xrightarrow{b^{n-1} c^{n}} X
$$

The tree $\operatorname{Pref}\left(\left\{\boldsymbol{a}^{\boldsymbol{n}} \boldsymbol{c} \boldsymbol{b}^{\mathbf{2}^{\boldsymbol{n}}} \mid \boldsymbol{n} \geqslant \mathbf{0}\right\}\right)$. Following the same ideas as for \mathcal{S}_{1}, the tree

$$
T_{\exp }=\operatorname{Pref}\left(\left\{a^{n} c b^{2^{n}} \mid n \geqslant 0\right\}\right) .
$$

is define by the order- 2 scheme $\mathcal{S}_{\text {exp }}$ given below:

$$
\begin{aligned}
Z \xrightarrow{\lambda} F B, & F \varphi \xrightarrow{a} F(D \varphi), \quad D \varphi x \xrightarrow{\lambda} \varphi(\varphi x), \\
B x \xrightarrow{b} x, & F \varphi \xrightarrow{c} \varphi X,
\end{aligned}
$$

with

$$
Z, X: o, \quad B: o \longrightarrow o, \quad D:(o \longrightarrow o, o, o), \quad F:(o \longrightarrow o, o)
$$

If we let $\underline{D^{n} B}$ denote the term of type $o \rightarrow o$ defined by

$$
\underline{D^{0} B}=B \quad \text { and } \quad \underline{D^{n+1} B}=D \underline{\left(D^{n} B\right)}
$$

for $n \geqslant 0$, we have

$$
Z \stackrel{a^{n}}{\Longrightarrow} F \underline{D^{n} B}
$$

As, intuitively, D doubles its argument, $\underline{D^{n} B}$ behaves like $B^{2^{n}}$ for $n \geqslant 0$. In particular, $\underline{D^{n} B} X$ reduces by $b^{2^{n}}$ to X.

For all $n \geqslant 0$,

$$
Z \stackrel{a^{n}}{\Longrightarrow} F \underline{D^{n} B} \xrightarrow{c} \underline{D^{n} B} X \stackrel{b^{2^{n}}}{\Longrightarrow} X
$$

The trees corresponding to the tower of exponentials of height \boldsymbol{k}. At order $k+1 \geqslant$ 1 , we can define the tree $T_{\exp _{k}}=\operatorname{Pref}\left(\left\{a^{n} c b^{\exp _{k}(n)} \mid n \geqslant 0\right\}\right)$ where we let $\exp _{0}(n)=n$ and $\exp _{k+1}(n)=2^{\exp _{k}(n)}$ for $k \geqslant 0$. We illustrate the idea by giving an order- 3 scheme generating $T_{\exp _{2}}=\operatorname{Pref}\left(\left\{a^{n} c b^{2^{2^{n}}} \mid n \geqslant 0\right\}\right)$,

$$
\begin{array}{lll}
Z \xrightarrow{\lambda} F D_{1}, & F \psi \xrightarrow{a} F\left(D_{2} \psi\right), & D_{2} \psi \varphi x \xrightarrow{\lambda}(\psi(\psi \varphi)) x, \\
B x \xrightarrow{b} x, & F \varphi \xrightarrow{c} \varphi B X & D_{1} \psi x \xrightarrow{\lambda} \psi(\psi x),
\end{array}
$$

with

$$
\begin{gathered}
Z, X: o, \quad B: o \longrightarrow o, \quad F:((o \longrightarrow o, o, o), o), \\
D_{1}:(o \longrightarrow o, o, o), \quad D_{2}:((o \longrightarrow o, o, o), o \longrightarrow o, o, o) .
\end{gathered}
$$

If we let $\underline{D_{2}^{n} D_{1}}$ denote the term of type $(o \rightarrow o, o, o)$ defined by

$$
\underline{D_{2}^{0} D_{1}}=D_{1}
$$

and

$$
\underline{D_{2}^{n+1} D_{1}}=D_{2} \underline{D_{2}^{n} D_{1}} \quad \text { for } n \geqslant 0
$$

then

$$
Z \stackrel{a^{n}}{\Rightarrow} F \underline{D_{2}^{n} D_{1}} .
$$

As D_{2} intuitively double its argument with each application, $D_{2}^{n} D_{1}$ behaves as $D_{1}^{2^{n}}$ and hence $D_{1}^{2^{n}} B$ behaves as $B^{2^{2^{n}}}$.

For all $n \geqslant 0$,

$$
Z \stackrel{a^{n}}{\Longrightarrow} F \underline{D_{2}^{n} D_{1}} \xrightarrow{c} \underline{D_{2}^{n} D_{1}} B X \stackrel{b^{2^{2^{n}}}}{\Longrightarrow} X
$$

The tree of the Urzyczyn language. All schemes presented in this section satisfy a syntactic restriction, called the safety condition, that will be discussed in the last section of this chapter. Paweł Urzyczyn conjectured that (a slight variation) of the tree described below, though generated by a order- 2 scheme, could not be generated by any order- 2 scheme satisfying the safety condition. This conjecture was proved by Paweł Parys in [49].

The tree T_{U} has directions in $\{(),, \star\}$. A word over $\{()$,$\} is well bracketed if it has$ as many opening brackets as closing brackets and if, for every prefix, the number of opening brackets is greater than the number of closing brackets.

The language U is defined as the set of words of the form $w \star^{n}$ where w is a prefix of a well-bracketed word and n is equal to $|w|-|u|+1$, where u is the longest suffix of w that is well bracketed. In other words, n equals 1 if w is well bracketed, and otherwise it is equal to the index of the last unmatched opening bracket plus one.

For instance, the words ()$(()) \star \star \star \star$ and ()()()\star belong to U. The tree T_{U} is simply $\operatorname{Pref}(U)$. The following scheme \mathcal{S}_{U} generates T_{U} :

$$
\begin{array}{ll}
Z \xrightarrow{\lambda} G(H X), & F \varphi x y \xrightarrow{(} F(F \varphi x) y(H y), \\
G z \xrightarrow{(} F G z(H z), & F \varphi x y \xrightarrow{\text {) }} \varphi(H y), \\
G z \xrightarrow{\star} X, & F \varphi x y \xrightarrow{\star} x, \\
H u \xrightarrow{\star}, &
\end{array}
$$

with $Z, X: o, G, H: o \rightarrow o$ and $F:(o \rightarrow o, o, o)$.
To better explain the inner workings of this scheme, let us introduce some syntactic sugar. With every integer, we associate a ground term by letting $\mathbf{0}=X$ and, for all $n \geqslant 0, \boldsymbol{n}+\mathbf{1}=H \boldsymbol{n}$. With every sequence $\left[\boldsymbol{n}_{\mathbf{1}} \cdots \boldsymbol{n}_{\ell}\right]$ of integers, we associate a term of type $o \rightarrow o$ by letting []$=G$ and $\left[\boldsymbol{n}_{\mathbf{1}} \cdots \boldsymbol{n}_{\ell} \boldsymbol{n}_{\ell+\mathbf{1}}\right]=F\left[\boldsymbol{n}_{\mathbf{1}} \cdots \boldsymbol{n}_{\ell}\right] \boldsymbol{n}_{\ell+\mathbf{1}}$. Finally we write $\left(\left[\boldsymbol{n}_{\mathbf{1}} \cdots \boldsymbol{n}_{\ell}\right], \boldsymbol{n}\right)$ to denote the ground term $\left[\boldsymbol{n}_{\mathbf{1}} \cdots \boldsymbol{n}_{\ell}\right] \boldsymbol{n}$.

The scheme can be revisited as follows:

$$
\begin{aligned}
& Z \xrightarrow{\lambda}([], \mathbf{1}), \quad([], n+\mathbf{1}) \xrightarrow{\star} \mathbf{0}, \quad\left(\left[n_{\mathbf{1}} \cdots n_{\ell}\right], n\right) \xrightarrow{\star} \boldsymbol{n}_{\ell}, \quad n+\mathbf{1} \xrightarrow{\star} n, \\
& \left(\left[n_{\mathbf{1}} \cdots n_{\ell}\right], n\right) \xrightarrow{\left(\left[n_{\mathbf{1}} \cdots n_{\ell} n\right], n+\mathbf{1}\right),} \\
& \left(\left[\boldsymbol{n}_{\mathbf{1}} \cdots n_{\ell}\right], n\right) \xrightarrow{)}\left(\left[n_{\mathbf{1}} \cdots n_{\ell-\mathbf{1}}\right], n+\mathbf{1}\right) .
\end{aligned}
$$

Let $w=w_{0} \cdots w_{|w|-1}$ be a prefix of a well-bracketed word. We have

$$
Z \stackrel{w}{\Longrightarrow}\left(\left[\boldsymbol{n}_{\mathbf{1}} \cdots \boldsymbol{n}_{\ell}\right],|\boldsymbol{w}|+\mathbf{1}\right),
$$

where $\left[n_{1} \cdots n_{\ell}\right]$ is the sequence (in increasing order) of those indices of unmatched opening brackets in w. In turn, $\left(\left[\boldsymbol{n}_{\mathbf{1}} \cdots \boldsymbol{n}_{\ell}\right],|\boldsymbol{w}|\right) \xrightarrow{\star} \boldsymbol{n}_{\ell} \xrightarrow{\star^{n} \ell} \mathbf{0}$. Hence, as expected, the number of \star symbols is equal to 1 if w is well bracketed (i.e., $\ell=0$), and otherwise it is equal to the index of the last unmatched opening bracket plus one.

2.4. Higher-order pushdown automata

2.4.1. Higher-order stack and their operations. Higher-order pushdown automata were introduced by Maslov [45] as a generalisation of pushdown automata. First, recall that a (order-1) pushdown automaton is a machine with a finite control together with an auxiliary storage given by a (order-1) stack whose symbols are taken from a finite alphabet. A higher-order pushdown automaton is defined in a similar way, except that it uses a higher-order stack as auxiliary storage. Intuitively, an order- n stack is a stack whose base symbols are order- $(n-1)$ stacks, with the convention that order-1 stacks are just stacks in the classical sense.

Fix a finite stack alphabet Γ and a distinguished bottom-of-stack symbol $\perp \notin \Gamma$. An order- 1 stack is a sequence $\perp, a_{1}, \ldots, a_{\ell} \in \perp \Gamma^{*}$ which is denoted $\left[\perp a_{1} \ldots a_{\ell}\right]_{1}$. An order-k stack (or a k-stack), for $k>1$, is a non-empty sequence s_{1}, \ldots, s_{ℓ} of order-$(k-1)$ stacks which is written $\left[s_{1} \ldots s_{\ell}\right]_{k}$. For convenience, we may sometimes see an element $a \in \Gamma$ as an order-0 stack, denoted $[a]_{0}$. We let Stacks ${ }_{k}$ denote the set of all order- k stacks and Stacks $=\bigcup_{k \geqslant 1}$ Stacks $_{k}$ the set of all higher-order stacks. The height of the stack s denoted $|s|$ is simply the length of the sequence. We denote by $\operatorname{ord}(s)$ the order of the stack s.

A substack of an order-1 stack $\left[\perp a_{1} \ldots a_{h}\right]_{1}$ is a stack of the form $\left[\perp a_{1} \ldots a_{h^{\prime}}\right]_{1}$ for some $0 \leqslant h^{\prime} \leqslant h$. A substack of an order- k stack $\left[s_{1} \cdots s_{h}\right]_{k}$, for $k>1$, is either a stack of the form $\left[s_{1} \cdots s_{h^{\prime}}\right]_{k}$ with $0<h^{\prime} \leqslant h$ or a stack of the form $\left[s_{1} \cdots s_{h^{\prime}} s^{\prime}\right]_{k}$ with $0 \leqslant h^{\prime} \leqslant h-1$ and s^{\prime} a substack of $s_{h^{\prime}+1}$. We denote by $s \sqsubseteq s^{\prime}$ the fact that s is a substack of s^{\prime}.

Example 2.5. The stack

$$
s=\left[\left[[\perp b a a c]_{1}[\perp b b]_{1}[\perp b c c]_{1}[\perp c b a]_{1}\right]_{2}\left[[\perp b a a]_{1}[\perp b c]_{1}[\perp b a b]_{1}\right]_{2}\right]_{3}
$$

is an order- 3 stack of height 2 .
In addition to the operations push ${ }_{1}^{a}$ and pop $_{1}$ that respectively pushes and pops a symbol in the topmost order-1 stack, one needs extra operations to deal with the higherorder stacks: the pop $_{k}$ operation removes the topmost order- k stack, while the push ${ }_{k}$ duplicates it.

For an order- n stack $s=\left[s_{1} \ldots s_{\ell}\right]_{n}$ and an order- k stack t with $0 \leqslant k<n$, we define $s+t$ as the order- n stack obtained by pushing t on top of s :

$$
s+t= \begin{cases}{\left[s_{1} \ldots s_{\ell} t\right]_{n}} & \text { if } k=n-1 \\ {\left[s_{1} \ldots\left(s_{\ell}+t\right)\right]_{n}} & \text { otherwise }\end{cases}
$$

We first define the (partial) operations pop_{i} and top p_{i} with $i \geqslant 1$: $\operatorname{top}_{i}(s)$ returns the top $(i-1)$-stack of s, and $\operatorname{pop}_{i}(s)$ returns s with its top $(i-1)$ stack removed. Formally, for an order- n stack $\left[s_{1} \ldots s_{\ell+1}\right]_{n}$ with $\ell \geqslant 0$

$$
\operatorname{top}_{i}\left(\left[s_{1} \ldots s_{\ell+1}\right]_{n}\right)= \begin{cases}s_{\ell+1} & \text { if } i=n \\ \operatorname{top}_{i}\left(s_{\ell+1}\right) & \text { if } i<n\end{cases}
$$

$$
\operatorname{pop}_{i}\left(\left[s_{1} \ldots s_{\ell+1}\right]_{n}\right)= \begin{cases}{\left[s_{1} \ldots s_{\ell}\right]_{n}} & \text { if } i=n \text { and } \ell \geqslant 1, \\ {\left[s_{1} \ldots s_{\ell} \operatorname{pop}_{i}\left(s_{\ell+1}\right)\right]_{n}} & \text { if } i<n .\end{cases}
$$

By abuse of notation, we let top $\operatorname{ord}(s)+1(s)=s$. Note that $\operatorname{pop}_{i}(s)$ is defined if and only if the height of $\operatorname{top}_{i+1}(s)$ is strictly greater than 1 . For example, $\operatorname{pop}_{2}\left(\left[[\perp a b]_{1}\right]_{2}\right)$ is undefined.

We introduce the operations push ${ }_{i}$ with $i \geqslant 2$ that duplicates the top $(i-1)$-stack of a given stack. More precisely, for an order- n stack s and for $2 \leqslant i \leqslant n$, we let $\operatorname{push}_{i}(s)=s++\operatorname{top}_{i}(s)$.

The last operation, push $_{1}^{a}$ pushes the symbol $a \in \Gamma$ on top of the top 1 -stack. More precisely, for an order- n stack s and for a symbol $a \in \Gamma$, we let $\operatorname{push}_{1}^{a}(s)=s+[a]_{0}$.

Example 2.6. Let s be the order-3 stack of Example 2.5. Then we have

$$
\begin{aligned}
\operatorname{top}_{3}(s) & =\left[[\perp b a a]_{1}[\perp b c]_{1}[\perp b a b]_{1}\right]_{2} \\
\operatorname{pop}_{3}(s) & =\left[\left[[\perp b a a c]_{1}[\perp b b]_{1}[\perp b c c]_{1}[\perp c b a]_{1}\right]_{2}\right]_{3} .
\end{aligned}
$$

Note that $\operatorname{pop}_{3}\left(\operatorname{pop}_{3}(s)\right)$ is undefined.
We also have that

$$
\begin{aligned}
& \operatorname{push}_{2}\left(\operatorname{pop}_{3}(s)\right)=\left[\left[[\perp b a a c]_{1}[\perp b b]_{1}[\perp b c c]_{1}[\perp c b a]_{1}[\perp c b a]_{1}\right]_{2}\right]_{3}, \\
& \operatorname{push}_{1}^{c}\left(\operatorname{pop}_{3}(s)\right)=\left[\left[[\perp b a a c]_{1}[\perp b b]_{1}[\perp b c c]_{1}[\perp c b a c]_{1}\right]_{2}\right]_{3} .
\end{aligned}
$$

2.4.2. Stacks with links and their operations. We define a richer structure of higherorder stacks where we allow links. Intuitively, a stack with links is a higher-order stack in which any symbol may have a link that points to an internal stack below it. This link may be used later to collapse part of the stack.

Order- n stacks with links are order- n stacks with a richer stack alphabet. Indeed, each symbol in the stack can be either an element $a \in \Gamma$ (i.e., not being the source of a link) or an element $(a, \ell, h) \in \Gamma \times\{2, \ldots, n\} \times \mathbb{N}$ (i.e., being the source of an ℓ-link pointing to the h-th $(\ell-1)$-stack inside the topmost ℓ-stack).

Formally, order- n stacks with links over the alphabet Γ are defined as order- n stacks ${ }^{4}$ over alphabet $\Gamma \cup \Gamma \times\{2, \ldots, n\} \times \mathbb{N}$.

Example 2.7. The stack s equals to

$$
\left[\left[[\perp b a a c]_{1}[\perp b b]_{1}[\perp b c(c, 2,2)]_{1}\right]_{2}\left[[\perp b a a]_{1}[\perp b c]_{1}[\perp b(a, 2,1)(b, 3,1)]_{1}\right]_{2}\right]_{3}
$$ is an order-3 stack with links.

To improve readability when displaying n-stacks in examples, we shall explicitly draw the links rather than using stacks symbols in $\Gamma \times\{2, \ldots, n\} \times \mathbb{N}$. For instance, we shall rather represent s as follows:

$$
\left[\left[[\perp b a a c]_{1}[\perp b b]_{1}[\perp b c c]_{1}\right]_{2}\left[[\perp b a a]_{1}[\perp b c]_{1}[\perp b a b]_{1}\right]_{2}\right]_{3}
$$

[^3]In addition to the previous operations pop $_{i}, \operatorname{push}_{i}$ and $\operatorname{push}_{1}^{a}$, we introduce two extra operations: one to create links, and the other to collapse the stack by following a link.

Link creation is made when pushing a new stack symbol, and the target of an ℓ-link is always the $(\ell-1)$-stack below the topmost one. Formally, we define $\operatorname{push}_{1}^{a, \ell}(s)=$ $\operatorname{push}_{1}^{(a, \ell, h)}$ where we let $h=\left|\operatorname{top}_{\ell}(s)\right|-1$ and require that $h>1$.

The collapse operation is defined only when the topmost symbol is the source of an ℓ-link, and results in truncating the topmost ℓ stack to only keep the component below the target of the link. Formally, if top ${ }_{1}(s)=(a, \ell, h)$ and $s=s^{\prime}+\left[t_{1} \ldots t_{k}\right]_{\ell}$ with $k>h$ we let collapse $(s)=s^{\prime}+\left[t_{1} \ldots t_{h}\right]_{\ell}$.

For any n, we let $\mathrm{Op}_{n}(\Gamma)$ denote the set of all operations over order- n stacks with links.

Example 2.8. Take the 3 -stack $s=\left[\left[[\perp a]_{1}\right]_{2}\left[[\perp]_{1}[\perp a]_{1}\right]_{2}\right]_{3}$. We have

$$
\begin{aligned}
\operatorname{push}_{1}^{b, 2}(s) & =\left[\left[[\perp a]_{1}\right]_{2}\left[[\perp]_{1}[\perp a b]_{1}\right]_{2}\right]_{3}, \\
\operatorname{collapse}\left(\operatorname{push}_{1}^{b, 2}(s)\right) & =\left[\left[[\perp a]_{1}\right]_{2}\left[[\perp]_{1}\right]_{2}\right]_{3} \\
\underbrace{\operatorname{push}_{1}^{c, 3}\left(\operatorname{push}_{1}^{b, 2}(s)\right)}_{\theta}, & =\left[\left[[\perp a]_{1}\right]_{2}\left[[\perp]_{1}[\perp a b c]_{1}\right]_{2}\right]_{3} .
\end{aligned}
$$

Then $\operatorname{push}_{2}(\theta)$ and $\operatorname{push}_{3}(\theta)$ are respectively

$$
\left[\left[[\perp a]_{1} 1_{2}\left[[\perp]_{1}[\perp a b c]_{1}[\perp a b c]_{1}\right]_{2}\right]_{3}\right.
$$

and

$$
\left[\left[[\perp a]_{1}\right]_{2}\left[[\perp]_{1}[\perp a b c]_{1}\right]_{2}\left[[\perp]_{1}[\perp a b c]_{1}\right]_{2}\right]_{3} .
$$

We have

$$
\operatorname{collapse}\left(\operatorname{push}_{2}(\theta)\right)=\operatorname{collapse}\left(\operatorname{push}_{3}(\theta)\right)=\operatorname{collapse}(\theta)=\left[\left[[\perp a]_{1}\right]_{2}\right]_{3} .
$$

2.4.3. Higher-order pushdown automata and collapsible automata. An order-n (deterministic) collapsible pushdown automaton (n-CPDA) is a 5-tuple $\mathcal{A}=\langle\Sigma, \Gamma, Q$, $\left.\delta, q_{0}\right\rangle$ where Σ is an input alphabet containing a distinguished symbol denoted λ, the set Γ is a stack alphabet, Q is a finite set of control states, $q_{0} \in Q$ is the initial state, and $\delta: Q \times \Gamma \times \Sigma \rightarrow Q \times \operatorname{Op}_{n}(\Gamma)$ is a (partial) transition function such that, for all $q \in Q$ and $\gamma \in \Gamma$, if $\delta(q, \gamma, \lambda)$ is defined then for all $a \neq \lambda$, the value $\delta(q, \gamma, a)$ is undefined, i.e., if some λ-transition can be taken, then no other transition is possible. We require δ to respect the convention that \perp cannot be pushed onto or popped from the stack.

In the special case where $\delta(q, \gamma, \lambda)$ is undefined for all $q \in Q$ and $\gamma \in \Gamma$, we refer to \mathcal{A} as a λ-free n-CPDA.

In the special case where collapse $\notin \delta(q, \gamma, a)$ for all $q \in Q, \gamma \in \Gamma$ and $a \in \Sigma$, \mathcal{A} is called a higher-order pushdown automaton.

Let $\mathcal{A}=\left\langle\Sigma, \Gamma, Q, \delta, q_{0}\right\rangle$ be an n-CPDA. A configuration of an n-CPDA is a pair of the form (q, s) where $q \in Q$ and s is an n-stack with link over Γ; we let $\operatorname{Config}(\mathcal{A})$ denote the set of configurations of \mathcal{A} and we call $\left(q_{0},\left[\left[\ldots[\perp]_{1} \ldots\right]_{n-1}\right]_{n}\right)$ the initial configuration. It is then natural to associate with \mathcal{A} a deterministic LTs denoted $\mathcal{L}_{\mathcal{A}}=\left\langle D, r, \Sigma,(\xrightarrow{a})_{a \in \Sigma}\right\rangle$ and defined as follows. We let D be the set of all configurations of \mathcal{A} and r be the initial one. Then, for all $a \in \Sigma$ and all $(q, s),\left(q^{\prime}, s^{\prime}\right) \in D$ we have $(q, s) \xrightarrow{a}\left(q^{\prime}, s^{\prime}\right)$ if and only if $\delta\left(q, \operatorname{top}_{1}(s), a\right)=\left(q^{\prime}, o p\right)$ and $s^{\prime}=o p(s)$.

The tree generated by an n - $\operatorname{CPDA} \mathcal{A}$, denoted $\operatorname{Tree}^{\perp}(\mathcal{A})$, is the tree $\operatorname{Tree}^{\perp}\left(\mathcal{L}_{\mathcal{A}}\right)$ of its Lts.

3. From CPDA to recursion schemes

In this section, we argue that, for any $\operatorname{CPDA} \mathcal{A}$, one can construct a labelled recursion scheme (of the same order) that generates the same tree. For this, we first introduce a representation of stacks and configurations of \mathcal{A} by applicative terms. Then we define a labelled recursion scheme \mathcal{S} and finally we show that the Lts associated with \mathcal{S} is the same as the one associated with \mathcal{A}, which shows that \mathcal{S} and \mathcal{A} define the same tree.

For the rest of this section we fix an order- $n \operatorname{CPDA} \mathcal{A}=\left\langle\Sigma, \Gamma, Q, \delta, q_{1}\right\rangle$ and we let the state-set of \mathcal{A} be $Q=\left\{q_{1}, \ldots, q_{m}\right\}$ where $m \geqslant 1$. In order to treat in a uniform way those stack symbols that come with a link and those that do not, we will attach fake links, which we refer to as 1 -links (recall that so far all links were ℓ-links with $\ell>1$) to those symbols that have no link; moreover collapse (s) will be undefined for any stack s such that top ${ }_{1}(s)$ has a 1-link. In the following, we therefore write push ${ }_{1}^{a, 1}$ instead of push ${ }_{1}^{a}$.
3.1. Term representation of stacks and configurations. We start by defining some useful types. First we identify the base type o with a new type denoted \boldsymbol{n}. Inductively, for each $0 \leqslant k<n$ we define a type

$$
\boldsymbol{k}=(\boldsymbol{k}+\mathbf{1})^{m} \longrightarrow(\boldsymbol{k}+\mathbf{1})
$$

where, for types A and B, we write $A^{m} \rightarrow B$ as a shorthand for $\underbrace{A \rightarrow \cdots \rightarrow A}_{m} \rightarrow B$. In particular, for every $0 \leqslant k \leqslant n$,

$$
\boldsymbol{k}=(k+\mathbf{1})^{m} \longrightarrow(k+2)^{m} \longrightarrow \cdots \longrightarrow n^{m} \longrightarrow n
$$

We also introduce, for every $1 \leqslant k \leqslant n$ a non-terminal Void $_{k}$ of type \boldsymbol{k}.
Assume s is an order- n stack and p is a control state of \mathcal{A}. In the sequel, we will define, for every $0 \leqslant k \leqslant n$, a term $[|s|]_{k}^{p}$: \boldsymbol{k} that represents the behaviour of the top ${ }_{k}$ stack in s. To understand why $[|s|]_{k}^{p}$ is of type \boldsymbol{k} one can view an order- k stack as acting on order- $(k+1)$ stacks: for every order- $(k+1)$ stack we can build a new order$(k+1)$ stack by pushing an order- k stack on top of it. This behaviour corresponds to the type $(\boldsymbol{k}+\mathbf{1}) \rightarrow(\boldsymbol{k}+\mathbf{1})$. However, for technical reasons, when dealing with control
states and configurations, we need to work with m copies of each stack (one per control state). Hence we view a k-stack as mapping m copies of an order- $(k+1)$ stack to a single order- $(k+1)$ stack. This explains why \boldsymbol{k} is defined to be $(\boldsymbol{k}+\mathbf{1})^{m} \rightarrow(\boldsymbol{k}+\mathbf{1})$.

For every stack symbol a, every $1 \leqslant \ell \leqslant n$ and every state $p \in Q$, we introduce a non-terminal

$$
\mathcal{F}_{p}^{a, \ell}: \ell^{m} \longrightarrow \mathbf{1}^{m} \longrightarrow \cdots \longrightarrow \boldsymbol{n}^{m} \longrightarrow \boldsymbol{n}
$$

For every $0 \leqslant k \leqslant n$, every state p and every order- n stack s whose top ${ }_{1}$ symbol is some a with an ℓ-link, we define (inductively) the following term of order $\boldsymbol{k}=(\boldsymbol{k}+\mathbf{1})^{m} \rightarrow \cdots \rightarrow \boldsymbol{n}^{m} \rightarrow \boldsymbol{n}:$

$$
\begin{aligned}
{[|s|]_{k}^{p}=} & \mathcal{F}_{p}^{a, \ell}[|\operatorname{collapse}(s)|]_{\ell}^{q_{1} \ldots q_{m}} \\
& {\left[\left|\operatorname{pop}_{1}(s)\right|\right]_{1}^{q_{1} \ldots q_{m}}\left[\left|\operatorname{pop}_{2}(s)\right|\right]_{2}^{q_{1} \ldots q_{m}} \ldots\left[\left|\operatorname{pop}_{k}(s)\right|\right]_{k}^{q_{1} \ldots q_{m}} }
\end{aligned}
$$

where

- $[|t|]_{h}^{q_{1} \ldots q_{m}}$ is a shorthand for (the sequence), $[|t|]_{h}^{q_{1}}[|t|]_{h}^{q_{2}} \ldots[|t|]_{h}^{q_{m}}$,
- $\left[\left|\operatorname{pop}_{i}(s)\right|\right]_{i}^{q_{j}}=\operatorname{Void}_{i}$ for all $j \in[1, m]$ if $\operatorname{pop}_{i}(s)$ is undefined,
- [|collapse $(s) \mid]_{1}^{q_{j}}=\operatorname{Void}_{1}$ for all $j \in[1, m]$; note that it corresponds to the case where $\operatorname{top}_{1}(s)$ has a 1-link (i.e., a fake link); hence collapse (s) is undefined.
Note that the previous definition is well founded, as every stack in the definition of $[|s|]_{k}^{p}$ has fewer symbols than s. Intuitively, $[|s|]_{k}^{p}$ represents the top k-stack of the configuration (p, s), i.e., $\operatorname{top}_{(k+1)}(s)$.
Example 3.1. Consider the following order- 2 stack

$$
s=\left[[\perp a]_{1}[\perp b]_{1}[\perp b c]_{1}\right]_{2}
$$

and assume (for simplicity) that we have a unique control state p. Then one has

$$
\left.[|s|]_{2}^{p}=\mathcal{F}_{p}^{c, 1} \operatorname{Void}_{1}\left(\mathcal{F}_{p}^{b, 2} \zeta\left(\mathcal{F}_{p}^{\perp, 1} \operatorname{Void}_{1} \operatorname{Void}_{1}\right)\right)\left(\mathcal{F}_{p}^{b, 2} \zeta\left(\mathcal{F}_{p}^{\perp, 1} \operatorname{Void}_{1} \operatorname{Void}_{1}\right) \zeta\right)\right)
$$

where

$$
\zeta=\left[\left|\left[[\perp a]_{1}\right]_{2}\right|\right]_{2}^{p}=\mathcal{F}_{p}^{a, 1} \operatorname{Void}_{1}\left(\mathcal{F}_{p}^{\perp, 1} \operatorname{Void}_{1} \operatorname{Void}_{1}\right) \operatorname{Void}_{2}
$$

Let s and t be two order $-n$ stacks with links and let $k \geqslant 1$. We shall say that s and t are top_{k}-identical if and only if the following holds:

- s and t are top ${ }_{1}$-identical if and only s and t have the same top ${ }_{1}$ symbol with an ℓ-link (for some ℓ) and (if defined) collapse (s) and collapse (t) are top $_{\ell+1}$-identical;
- and for $k>1, s$ and t are top ${ }_{k}$-identical if and only for all $j \geqslant 0, \operatorname{pop}_{k-1}^{j}(s)$ is defined if and only if $\operatorname{pop}_{k-1}^{j}(t)$ is defined, and when defined, $\operatorname{pop}_{k-1}^{j}(s)$ and $\operatorname{pop}_{k-1}^{j}(t)$ are top ${ }_{(k-1)}$-identical.
Note that the previous definition is well founded, as it always refer to stacks with fewer symbols than s or t.

Lemma 3.1. Let s and t be order-n stacks with links, and let $k \geqslant 0$. If s and t are $\operatorname{top}_{(k+1)}$-identical then $[|s|]_{k}^{p}=[|t|]_{k}^{p}$ for every state p.
Proof. The proof is by induction on the maximal size (i.e., the number of stack symbols) of s and t, and once the maximal size is fixed we reason by induction on k.

The base case of s and t containing only the bottom-of-stack symbol is trivial. Hence assume that the property is established for any pair of stacks with less than N symbols for some $N>0$, and consider two stacks s and t whose maximal size is $N+1$. Assume that s and t are $\operatorname{top}_{(k+1)}$-identical for some $k \geqslant 0$.

If s and t are top p_{1}-identical, then, by definition, we have that $\operatorname{top}_{1}(s)=(a, \ell, k)$ and $\operatorname{top}_{1}(t)=\left(a, \ell, k^{\prime}\right)$ for some $a \in \Gamma, 1 \leqslant e \leqslant n$ and $k, k^{\prime} \in \mathbb{N}$, and that (when defined) collapse (s) and collapse (t) are top ${ }_{\ell+1}$-identical. As collapse (s) and collapse (t) are both of size $\leqslant N$, we have, by induction hypothesis, that $[|\operatorname{collapse}(s)|]_{\ell}^{q_{1} \ldots q_{m}}=$ $[\mid \text { collapse }(t) \mid]_{\ell}^{q_{1} \ldots q_{m}}$. Thus it immediately follows that $[|s|]_{0}^{p}=[|t|]_{0}^{p}$.

We now consider some $k \geqslant 0$ and assume that the property is established for any $h \leqslant k$. We consider the case $(k+1)$ and thus assume that s and t are top ${ }_{(k+2)}$-identical: in particular $\operatorname{pop}_{(h-1)}(s)$ and $\operatorname{pop}_{(h-1)}(t)$ are also top h_{h}-identical for any $h \leqslant(k+1)$, and by induction hypothesis, we have, for any $h \leqslant k$ and any state q, that $[|s|]_{h}^{q}=[|t|]_{h}^{q}$. By definition, we also have that $\operatorname{top}_{1}(s)=(a, \ell, k)$ and $\operatorname{top}_{1}(t)=\left(a, \ell, k^{\prime}\right)$ for some $a \in \Gamma, 1 \leqslant e \leqslant n$ and $k, k^{\prime} \in \mathbb{N}$, and that (when defined) collapse(s) and collapse(t) are top $(\ell+1)$-identical. As collapse (s) and collapse (t) are both of size $\leqslant N$, we have, by induction hypothesis, that $[|\operatorname{collapse}(s)|]_{\ell}^{q_{1} \ldots q_{m}}=[|\operatorname{collapse}(t)|]_{\ell}^{q_{1} \ldots q_{m}}$.

We let $j_{s}=j_{t}$ be the maximal j such that $\operatorname{pop}_{(k+1)}^{j}(s)$ (equiv. $\left.\operatorname{pop}_{(k+1)}^{j}(t)\right)$ is defined. By definition

$$
[|s|]_{(k+1)}^{p}=\mathcal{F}_{p}^{a, \ell}[|\operatorname{collapse}(s)|]_{\ell}^{q_{1} \ldots q_{m}}\left[\left|\operatorname{pop}_{1}(s)\right|\right]_{1}^{q_{1} \ldots q_{m}} \ldots\left[\left|\operatorname{pop}_{(k+1)}(s)\right|\right]_{(k+1)}^{q_{1} \ldots q_{m}},
$$

and

$$
[|t|]_{(k+1)}^{p}=\mathcal{F}_{p}^{a, \ell}[|\operatorname{collapse}(t)|]_{\ell}^{q_{1} \ldots q_{m}}\left[\left|\operatorname{pop}_{1}(t)\right|\right]_{1}^{q_{1} \ldots q_{m}} \ldots\left[\left|\operatorname{pop}_{(k+1)}(t)\right|\right]_{(k+1)}^{q_{1} \ldots q_{m}} .
$$

Now if $j_{s}=0$, we have

$$
\left[\left|\operatorname{pop}_{(k+1)}(s)\right|\right]_{(k+1)}^{q_{1} \ldots q_{m}}=\left[\left|\operatorname{pop}_{(k+1)}(t)\right|\right]_{1}^{q_{1} \ldots q_{m}}=\operatorname{Void}_{(k+1)} \ldots \operatorname{Void}_{(k+1)}
$$

and thus $[|s|]_{(k+1)}^{p}=[|t|]_{(k+1)}^{p}$. If $j_{s}>0$, we note that $j_{\operatorname{pop}_{(k+1)}(s)}=j_{\operatorname{pop}_{(k+1)}(t)}=$ $j_{s}-1$ and $\operatorname{pop}_{(k+1)}(s)$ and recall that $\operatorname{pop}_{(k+1)}(t)$ are $\operatorname{top}_{(k+2)}$-identical. Thus, by induction on j_{s}, we have $\left[\left|\operatorname{pop}_{(k+1)}(s)\right|\right]_{(k+1)}^{q}=\left[\left|\operatorname{pop}_{(k+1)}(t)\right|\right]_{(k+1)}^{q}$ for any state q, and we conclude that $[|s|]_{(k+1)}^{p}=[|t|]_{(k+1)}^{p}$.
3.2. The labelled recursion scheme associated with \mathcal{A}. We let $\mathcal{S}=\langle\Sigma, N, \mathcal{R}, Z, \perp\rangle$ where

$$
N=\left\{\mathcal{F}_{p}^{a, \ell} \mid p \in Q, a \in \Gamma, \text { and } 1 \leqslant \ell \leqslant n\right\} \cup\left\{\operatorname{Void}_{k} \mid 0 \leqslant k \leqslant n\right\}
$$

The set of productions \mathcal{R} contains the production

$$
Z \xrightarrow[s]{\lambda}\left[\left|\left[\ldots[\perp]_{1} \ldots\right]_{n}\right|\right]_{n}^{q_{1}}
$$

and the production

$$
\mathcal{F}_{p}^{a, \ell} \bar{\Phi} \overline{\Psi_{1}} \ldots \overline{\Psi_{n}} \underset{s}{a} \Xi_{q, o p}
$$

if $\delta(p, a, a)=(q, o p)$ and the term $\Xi_{q, o p}$ is equal to

- $\mathcal{F}_{q}^{a^{\prime}, \ell^{\prime}} \overline{\Psi_{\ell^{\prime}}}\left\langle\mathcal{F}_{\star}^{a, \ell} \bar{\Phi} \overline{\Psi_{1}}\right\rangle \overline{\Psi_{2}} \ldots \overline{\Psi_{n}}$ if $o p=\operatorname{push}_{1}^{a^{\prime}, \ell^{\prime}}$ for $\ell^{\prime}>1$,
- $\mathcal{F}_{q}^{a^{\prime}, 1} \operatorname{Void}_{1}^{m}\left\langle\mathcal{F}_{\star}^{a, \ell} \bar{\Phi} \overline{\Psi_{1}}\right\rangle \overline{\Psi_{2}} \ldots \overline{\Psi_{n}}$ if $o p=\operatorname{push}_{1}^{a^{\prime}, 1}$,
- $\mathcal{F}_{q}^{a, \ell} \bar{\Phi} \overline{\Psi_{1}} \ldots \overline{\Psi_{(k-1)}}\left\langle\mathcal{F}_{\star}^{a, \ell} \bar{\Phi} \overline{\Psi_{1}} \ldots \overline{\Psi_{k}}\right\rangle \overline{\Psi_{(k+1)}} \ldots \overline{\Psi_{n}}$ if $o p=\operatorname{push}_{k}$,
- $\Psi_{k, q} \overline{\Psi_{k-1}} \ldots \overline{\Psi_{n}}$ if $o p=\operatorname{pop}_{k}$,
- $\Phi_{q} \overline{\Psi_{\ell-1}} \ldots \overline{\Psi_{n}}$ if $o p=$ collapse and $\ell>1$,
where $\left\langle\mathcal{F}_{\star}^{a, \ell} \bar{\Phi} \overline{\Psi_{1}} \ldots \overline{\Psi_{k}}\right\rangle$ as a shorthand for the sequence

$$
\mathcal{F}_{q_{1}}^{a, \ell} \bar{\Phi} \overline{\Psi_{1}} \ldots \overline{\Psi_{k}} \mathcal{F}_{q_{2}}^{a, \ell} \bar{\Phi} \overline{\Psi_{1}} \ldots \overline{\Psi_{k}} \ldots \mathcal{F}_{q_{m}}^{a, \ell} \bar{\Phi} \overline{\Psi_{1}} \ldots \overline{\Psi_{k}}
$$

and $\operatorname{Void}_{1}^{m}$ is a a shorthand for $\underbrace{\operatorname{Void}_{1} \ldots \operatorname{Void}_{1}}_{m}$.
3.3. Correctness of the representation. The following proposition relates the LTs defined by \mathcal{A} with the one defined by \mathcal{S}.

Proposition 3.2. Let (p, s) be a configuration of \mathcal{A} and let $a \in \Sigma$. Then

$$
(p, s) \underset{\mathcal{A}}{a}(q, t) \Longleftrightarrow[|s|]_{n}^{p} \underset{s}{a}[|t|]_{n}^{q}
$$

Proof. Let a be the top symbol in s and let $0 \leqslant \ell \leqslant n$ be such that a has an $(\ell+1)$ link. By definition, the head non-terminal symbol of $[|s|]_{n}^{p}$ is $\mathcal{F}_{p}^{a, \ell}$.

Remark that $\delta(p, a, a)$ is defined, i.e., there exists some (q, t) with $(p, s) \underset{\mathcal{A}}{a}(q, t)$, if and only if there is some term ζ such that $[|s|]_{n}^{p} \xrightarrow[s]{a} \zeta$. Hence it suffices to show, when $\delta(p, a, a)=(q, o p)$ is defined, that $\zeta=[|o p(s)|]_{n}^{q}$, and for this we do a case analysis.

First, we let

$$
[|s|]_{n}^{p}=\mathcal{F}_{p}^{a, \ell} C^{q_{1}} \ldots C^{q_{m}} T_{1}^{q_{1}} \ldots T_{1}^{q_{m}} \ldots T_{n}^{q_{1}} \ldots T_{n}^{q_{m}}
$$

where $C^{q_{i}}=[|\operatorname{collapse}(s)|]_{\ell}^{q_{i}}: \ell$ and $T_{k}^{q_{i}}=\left[\left|\operatorname{pop}_{k}(s)\right|\right]_{k}^{q_{i}}: \boldsymbol{k}$ for every $1 \leqslant i \leqslant m$ and every $1 \leqslant k \leqslant n$.

Then we distinguish the five possible cases for $o p$.

- Assume that $o p=\operatorname{push}_{1}^{a^{\prime}, \ell^{\prime}}$, with $\ell^{\prime}>1$. Then, by definition

$$
\begin{aligned}
& {\left[\left|\operatorname{push}_{1}^{a^{\prime}, \ell^{\prime}}(s)\right|\right]_{n}^{q}=\mathcal{F}_{q}^{a^{\prime}, \ell^{\prime}}\left[\left|\operatorname{collapse}\left(\operatorname{push}_{1}^{a^{\prime}, \ell^{\prime}}(s)\right)\right|\right]_{\ell^{\prime}}^{q_{1} \ldots q_{m}}} \\
& \quad\left[\left|\operatorname{pop}_{1}\left(\operatorname{push}_{1}^{a^{\prime}, \ell^{\prime}}(s)\right)\right|\right]_{1}^{q_{1} \ldots q_{m}} \ldots\left[\left|\operatorname{pop}_{n}\left(\operatorname{push}_{1}^{a^{\prime}, \ell^{\prime}}(s)\right)\right|\right]_{n}^{q_{1} \ldots q_{m}} .
\end{aligned}
$$

For every $j>1$, one has $\operatorname{pop}_{j}\left(\operatorname{push}_{1}^{a^{\prime}, \ell^{\prime}}(s)\right)=\operatorname{pop}_{j}(s)$, and therefore

$$
\left[\left|\operatorname{pop}_{j}\left(\operatorname{push}_{1}^{a^{\prime}, \ell^{\prime}}(s)\right)\right|\right]_{j}^{q_{1} \ldots q_{m}}=T_{j}^{q_{1}} \ldots T_{j}^{q_{m}}
$$

One has collapse(push $\left.h_{1}^{a^{\prime}, \ell^{\prime}}(s)\right)=\operatorname{pop}_{\ell^{\prime}}(s)$, and therefore

$$
\left[\mid \operatorname{collapse}\left(\operatorname{push}_{1}^{a^{\prime}, \ell^{\prime}}(s)\right)\right]_{\ell^{\prime}}^{q_{1} \ldots q_{m}}=T_{\ell^{\prime}}^{q_{1}} \ldots T_{\ell^{\prime}}^{q_{m}}
$$

Finally, we have that $\operatorname{pop}_{1}\left(\operatorname{push}_{1}^{a^{\prime}, \ell^{\prime}}(s)\right)=s$, and therefore

$$
\left[\mid \operatorname{pop}_{1}\left(\operatorname{push}_{1}^{a^{\prime}, \ell^{\prime}}(s)\right)\right]_{1}^{q_{i}}=\mathcal{F}_{q_{i}}^{a, \ell} C^{q_{1}} \ldots C^{q_{m}} T_{1}^{q_{1}} \ldots T_{1}^{q_{m}}
$$

Hence, it follows that

$$
\begin{aligned}
{\left[\left|\operatorname{push}_{1}^{a^{\prime}, \ell^{\prime}}(s)\right|\right]_{n}^{q}=\mathcal{F}_{q}^{a^{\prime}, \ell^{\prime}} T_{\ell^{\prime}}^{q_{1}} \ldots T_{\ell^{\prime}}^{q_{m}} } \\
\mathcal{F}_{q_{1}}^{a, \ell} C^{q_{1}} \ldots C^{q_{m}} T_{1}^{q_{1}} \ldots T_{1}^{q_{m}} \ldots \\
\mathcal{F}_{q_{m}}^{a, \ell} C^{q_{1}} \ldots C^{q_{m}} T_{1}^{q_{1}} \ldots T_{1}^{q_{m}} \\
T_{2}^{q_{1}} \ldots T_{2}^{q_{m}} \ldots T_{n}^{q_{1}} \ldots T_{n}^{q_{m}} .
\end{aligned}
$$

On the other hand, it follows syntactically from the definition of \mathcal{S} that the right hand side of the previous expression is the term ζ such that $[|s|]_{n}^{p} \underset{\mathcal{S}}{a} \zeta$.

- Assume that $o p=\operatorname{push}_{1}^{a^{\prime}, 1}$. Then, by definition

$$
\begin{aligned}
& {\left[\left|\operatorname{push}_{1}^{a^{\prime}, 1}(s)\right|\right]_{n}^{q}=\mathcal{F}_{q}^{a^{\prime}, 1} \operatorname{Void}_{1} \ldots \operatorname{Void}_{1}} \\
& \quad\left[\left|\operatorname{pop}_{1}\left(\operatorname{push}_{1}^{a^{\prime}, 1}(s)\right)\right|\right]_{1}^{q_{1} \ldots q_{m}} \ldots \\
& \quad\left[\left|\operatorname{pop}_{n}\left(\operatorname{push}_{1}^{a^{\prime}, 1}(s)\right)\right|\right]_{n}^{q_{1} \ldots q_{m}} .
\end{aligned}
$$

For every $j>1$, one has $\operatorname{pop}_{j}\left(\operatorname{push}_{1}^{a^{\prime}, 1}(s)\right)=\operatorname{pop}_{j}(s)$, and therefore

$$
\left[\left|\operatorname{pop}_{j}\left(\operatorname{push}_{1}^{a^{\prime}, \ell^{\prime}}(s)\right)\right|\right]_{j}^{q_{1} \ldots q_{m}}=T_{j}^{q_{1}} \ldots T_{j}^{q_{m}} .
$$

Finally, we have that $\operatorname{pop}_{1}\left(\operatorname{push}_{1}^{a^{\prime}, 1}(s)\right)=s$, and therefore

$$
\left[\left|\operatorname{pop}_{1}\left(\operatorname{push}_{1}^{a^{\prime}, 1}(s)\right)\right|\right]_{1}^{q_{i}}=\mathcal{F}_{q_{i}}^{a, \ell} C^{q_{1}} \ldots C^{q_{m}} T_{1}^{q_{1}} \ldots T_{1}^{q_{m}}
$$

Hence, it follows that

$$
\begin{aligned}
{\left[\left|\operatorname{push}_{1}^{a^{\prime}, \ell^{\prime}}(s)\right|\right]_{n}^{q}=\mathcal{F}_{q}^{a^{\prime}, \ell^{\prime}} \operatorname{Void}_{1} \ldots \operatorname{Void}_{1} } \\
\mathcal{F}_{q_{1}}^{a, \ell} C^{q_{1}} \ldots C^{q_{m}} T_{1}^{q_{1}} \ldots T_{1}^{q_{m}} \ldots \\
\mathcal{F}_{q_{m}}^{a, \ell} C^{q_{1}} \ldots C^{q_{m}} T_{1}^{q_{1}} \ldots T_{1}^{q_{m}} \\
T_{2}^{q_{1}} \ldots T_{2}^{q_{m}} \ldots T_{n}^{q_{1}} \ldots T_{n}^{q_{m}}
\end{aligned}
$$

On the other hand, it follows syntactically from the definition of \mathcal{S} that the right hand side of the previous expression is the term ζ such that $[|S|]_{n}^{p} \underset{s}{a} \zeta$.

- Assume that $o p=\operatorname{push}_{k}$. Then, by definition,

$$
\begin{aligned}
{\left[\left|\operatorname{push}_{k}(s)\right|\right]_{n}^{q}=} & \mathcal{F}_{q}^{a, \ell}\left[\left|\operatorname{collapse}\left(\operatorname{push}_{k}(s)\right)\right|\right]_{\ell}^{q_{1} \ldots q_{m}} \\
& {\left[\left|\operatorname{pop}_{1}\left(\operatorname{push}_{k}(s)\right)\right|\right]_{1}^{q_{1} \ldots q_{m}} \ldots\left[\left|\operatorname{pop}_{n}\left(\operatorname{push}_{k}(s)\right)\right|\right]_{n}^{q_{1} \ldots q_{m}} . }
\end{aligned}
$$

Note that we used the fact that the top ${ }_{1}$ element in $\operatorname{push}_{k}(s)$ is a a and has an $(\ell+1)$-link. Now, note that for every $j>k$, one has $\operatorname{pop}_{j}\left(\operatorname{push}_{k}(s)\right)=$ $\operatorname{pop}_{j}(s)$, and therefore

$$
\left[\left|\operatorname{pop}_{j}\left(\operatorname{push}_{k}(s)\right)\right|\right]_{j}^{q_{1} \ldots q_{m}}=T_{j}^{q_{1}} \ldots T_{j}^{q_{m}}
$$

Also, $\operatorname{pop}_{k}\left(\operatorname{push}_{k}(s)\right)=s$, and therefore, for every $1 \leqslant i \leqslant m$,

$$
\left[\mid \operatorname{pop}_{k}\left(\operatorname{push}_{k}(s)\right)\right]_{k}^{q_{i}}=\mathcal{F}_{q_{i}}^{a, \ell} C^{q_{1}} \ldots C^{q_{m}} T_{1}^{q_{1}} \ldots T_{1}^{q_{m}} \ldots T_{k}^{q_{1}} \ldots T_{k}^{q_{m}}
$$

Now, for $j<k, \operatorname{pop}_{j}\left(\operatorname{push}_{k}(s)\right)$ and $\operatorname{pop}_{j}(s)$ are top ${ }_{j+1}$-identical and, thanks to Lemma 3.1, we have that $\left[\left|\operatorname{pop}_{j}\left(\operatorname{push}_{k}(s)\right)\right|\right]_{j}^{q_{i}}=[|s|]_{j}^{q_{i}}=T_{j}^{q_{i}}$.

If $\ell=1$, then both collapse (s) and collapse $\left(\operatorname{push}_{k}(s)\right)$ are undefined, hence we have $\left[\mid\right.$ collapse $\left.\left(\operatorname{push}_{k}(s)\right)\right|_{\ell} ^{q_{i}}=\operatorname{Void}_{1}=C^{q_{i}}$.

If $1<\ell \leqslant k$, then collapse $\left(\operatorname{push}_{k}(s)\right)$ and s are top ${ }_{\ell+1}$-identical and, thanks to Lemma 3.1, $\left[\left|\operatorname{collapse}\left(\operatorname{push}_{k}(s)\right)\right|\right]_{\ell}^{q_{i}}=[|\operatorname{collapse}(s)|]_{\ell}^{q_{i}}=C^{q_{i}}$.

If $\ell>k$, then $\operatorname{collapse}(s)=\operatorname{collapse}\left(\operatorname{push}_{k}(s)\right)$ hence

$$
\left[\left|\operatorname{collapse}\left(\operatorname{push}_{k}(s)\right)\right|\right]_{\ell}^{q_{i}}=C^{q_{i}}
$$

Therefore, it follows that

$$
\begin{gathered}
{\left[\left|\operatorname{push}_{k}(s)\right|\right]_{n}^{q}=\mathcal{F}_{q}^{a, \ell} C^{q_{1}} \ldots C^{q_{m}} T_{1}^{q_{1}} \ldots T_{1}^{q_{m}} \ldots T_{(k-1)}^{q_{1}} \ldots T_{(k-1)}^{q_{m}}} \\
\mathcal{F}_{q_{1}}^{a, \ell} C^{q_{1}} \ldots C^{q_{m}} T_{1}^{q_{1}} \ldots T_{1}^{q_{m}} \ldots T_{k}^{q_{1}} \ldots T_{k}^{q_{m}} \ldots \\
\mathcal{F}_{q_{m}}^{a, \ell} C^{q_{1}} \ldots C^{q_{m}} T_{1}^{q_{1}} \ldots T_{1}^{q_{m}} \ldots T_{k}^{q_{1}} \ldots T_{k}^{q_{m}} \\
T_{(k+1)}^{q_{1}} \ldots T_{(k+1)}^{q_{m}} \ldots T_{n}^{q_{1}} \ldots T_{n}^{q_{m}} .
\end{gathered}
$$

On the other hand, it follows syntactically from the definition of \mathcal{S} that the right hand side of the previous expression is the term ζ such that $[|s|]_{n}^{p} \underset{\mathcal{s}}{a} \zeta$.

- Assume that $o p=\operatorname{pop}_{k}$. Then, by definition

$$
\begin{aligned}
& {\left[\left|\operatorname{pop}_{k}(s)\right|\right]_{n}^{q}=\mathcal{F}_{q}^{a^{\prime}, \ell^{\prime}}\left[\left|\operatorname{collapse}\left(\operatorname{pop}_{k}(s)\right)\right|\right]_{\ell}^{q_{1} \ldots q_{m}} } \\
& {\left[\left|\operatorname{pop}_{1}\left(\operatorname{pop}_{k}(s)\right)\right|\right]_{1}^{q_{1} \ldots q_{m}} \ldots\left[\left|\operatorname{pop}_{n}\left(\operatorname{pop}_{k}(s)\right)\right|\right]_{n}^{q_{1} \ldots q_{m}} }
\end{aligned}
$$

where the top ${ }_{1}$ element in $\operatorname{pop}_{k}(s)$ is a a^{\prime} and has an $\left(\ell^{\prime}+1\right)$-link. Equivalently,

$$
\begin{aligned}
{\left[\left|\operatorname{pop}_{k}(s)\right|\right]_{n}^{q}=} & {\left[\left|\operatorname{pop}_{k}(s)\right|\right]_{k}^{q} } \\
& {\left[\left|\operatorname{pop}_{(k+1)}\left(\operatorname{pop}_{k}(s)\right)\right|\right]_{(k+1)}^{q_{1} \ldots q_{m}} \ldots\left[\left|\operatorname{pop}_{n}\left(\operatorname{pop}_{k}(s)\right)\right|\right]_{n}^{q_{1} \ldots q_{m}} . }
\end{aligned}
$$

For every $j>k$, one has $\operatorname{pop}_{j}\left(\operatorname{pop}_{k}(s)\right)=\operatorname{pop}_{j}(s)$, and therefore, we have $\left[\left|\operatorname{pop}_{j}\left(\operatorname{pop}_{k}(s)\right)\right|\right]_{j}^{q_{1} \ldots q_{m}}=T_{j}^{q_{1}} \ldots T_{j}^{q_{m}}$. Moreover, by definition we have that $T_{k}^{q}=\left[\left|\operatorname{pop}_{k}(s)\right|\right]_{k}^{q}$. Hence, it follows that

$$
\left[\left|\operatorname{pop}_{k}(s)\right|\right]_{n}^{q}=T_{k}^{q} T_{k+1}^{q_{1}} \ldots T_{k+1}^{q_{m}} \ldots T_{n}^{q_{1}} \ldots T_{n}^{q_{m}}
$$

On the other hand, it follows syntactically from the definition of \mathcal{S} that the right hand side of the previous expression is the term ζ such that $[|S|]_{n}^{p} \underset{s}{a} \zeta$.

- Assume that $o p=$ collapse. Then, by definition

$$
\begin{gathered}
{[|\operatorname{collapse}(s)|]_{n}^{q}=\mathcal{F}_{q}^{a^{\prime}, \ell^{\prime}}[|\operatorname{collapse}(\operatorname{collapse}(s))|]_{\ell}^{q_{1} \ldots q_{m}}} \\
{\left[\left|\operatorname{pop}_{1}(\operatorname{collapse}(s))\right|\right]_{1}^{q_{1} \ldots q_{m}} \ldots} \\
{\left[\left|\operatorname{pop}_{n}(\operatorname{collapse}(s))\right|\right]_{n}^{q_{1} \ldots q_{m}}}
\end{gathered}
$$

where the top ${ }_{1}$ element in collapse (s) is a^{\prime} and has an $\left(\ell^{\prime}+1\right)$-link. Equivalently,

$$
\begin{aligned}
& {[|\operatorname{collapse}(s)|]_{n}^{q}=[|\operatorname{collapse}(s)|]_{\ell}^{q}} \\
& {\left[\left|\operatorname{pop}_{(\ell+1)}^{q}(\operatorname{collapse}(s))\right|\right]_{(k+1)}^{q_{1} \ldots q_{m}} \cdots} \\
& {\left[\left|\operatorname{pop}_{n}(\operatorname{collapse}(s))\right|\right]_{n}^{q_{1} \ldots q_{m}} .}
\end{aligned}
$$

For every $j>e$, one has $\operatorname{pop}_{j}(\operatorname{collapse}(s))=\operatorname{pop}_{j}(s)$, and therefore we have $\left[\left|\operatorname{pop}_{j}(\operatorname{collapse}(s))\right|\right]_{j}^{q_{1} \ldots q_{m}}=T_{j}^{q_{1}} \ldots T_{j}^{q_{m}}$. Moreover, by definition we have that $C^{q}=[|\operatorname{collapse}(s)|]_{\ell}^{q}$.

On the other hand, it follows syntactically from the definition of \mathcal{S} that the right-hand side of the previous expression is the term ζ such that $[|s|]_{n}^{p} \underset{\mathrm{~s}}{a} \zeta$.

Corollary 3.3. The Lts defined by \mathcal{A} is isomorphic to the one defined by \mathcal{S}. In particular, \mathcal{A} and S generate the same tree.

Proof. Immediate from Proposition 3.2.

4. From recursion schemes to collapsible pushdown automata

In this section, we construct, for any labelled recursion scheme \mathcal{S}, a collapsible pushdown automaton \mathcal{A} of the same order defining the same tree as \mathcal{S} - i.e., $\operatorname{Tree}^{\perp}(\mathcal{S})=$ $\operatorname{Tree}^{\perp}(\mathcal{A})$. Recall that a silent production rule is a production rule labelled by λ. To simplify the presentation we assume that \mathcal{S} does not contain any such production rule. If \mathcal{S} were to contain silent transitions, we would treat the symbol λ as any other symbol ${ }^{5}$ in Σ. For the rest of this section, we fix a labelled recursion scheme $\langle\Sigma, N, \mathcal{R}, Z, \perp\rangle$ of order $n \geqslant 1$ without silent transitions.

[^4]The automaton \mathcal{A} has a distinguished state, denoted q_{\star}, and we associate a ground term over N denoted by $\llbracket s \rrbracket$ with a configuration of the form $\left(q_{\star}, s\right)$. Other configurations correspond to internal steps of the simulation and are only the source of silent transitions. To show that the two Lts define the same trees, we will establish that, for any reachable configuration of the form $\left(q_{\star}, s\right)$ and for any $a \in \Sigma$, the following holds:

- if $\left(q_{\star}, s\right) \xrightarrow[\mathcal{A}]{a \lambda^{*}}\left(q_{\star}, s^{\prime}\right)$ then $\llbracket s \rrbracket \xrightarrow[s]{a} \llbracket s^{\prime} \rrbracket ;$
- if $\llbracket s \rrbracket \underset{s}{a} t$ then $\left(q_{\star}, s\right) \xrightarrow[\mathcal{A}]{\stackrel{a \lambda^{*}}{\longrightarrow}}\left(q_{\star}, s^{\prime}\right)$ and $\llbracket s^{\prime} \rrbracket=t$.

Hence, the main ingredient of the construction is the partial mapping $\llbracket \cdot \rrbracket$ associating a ground term over N with an order- n stack. The main difficulty is to guarantee that any rewriting rule of \mathcal{S} applicable to the encoded term $\llbracket s \rrbracket$ can be simulated by applying a sequence of stack operations to s. In $\S 4.1$, we present the mapping $\llbracket \cdot \rrbracket$ together with its basic properties; in $\S 4.2$, we give the definition of \mathcal{A} and prove the desired properties.

To simplify the presentation, we assume, without loss of generality, that all productions starting with a non-terminal A have the same left-hand side (i.e., they use the same variables in the same order) and that two productions starting with different nonterminals do not share any variables. Hence a variable $x \in V$ appears in a unique left-hand side $A x_{1} \ldots, x_{\varrho(A)}$ and we denote by $\operatorname{rk}(x)$ the index of x in the sequence $x_{1} \ldots x_{\varrho(A)}$ (i.e., $x=x_{\mathrm{rk}(x)}$).
Example 4.1. Throughout the whole section, we will illustrate definitions and constructions using the order-2 scheme \mathcal{S}_{U} generating the tree T_{U} presented at the end of \S 2.3.6 as a running example. We recall its definition below:

$$
\begin{array}{ll}
Z \xrightarrow{\lambda} G(H X), & F \varphi x y \xrightarrow{(} F(F \varphi x) y(H y), \\
G z \xrightarrow{(} F G z(H z), & F \varphi x y \xrightarrow{\prime} \varphi(H y), \\
G z \xrightarrow{*} X, & F \varphi x y \xrightarrow{\star} x, \\
H u \xrightarrow{\star} u, &
\end{array}
$$

with $Z, X: o, G, H: o \rightarrow o$, and $F:(o \rightarrow o, o, o)$. We have $\operatorname{rk}(\varphi)=\operatorname{rk}(z)=\operatorname{rk}(u)=1$, $\operatorname{rk}(x)=2$ and $\operatorname{rk}(y)=3$.
4.1. Stacks representing terms. The stack alphabet Γ consists of the initial symbol and of the right-hand sides of the production rules in \mathcal{R} and their argument subterms (cf. § 2.3.1), i.e.,

$$
\begin{gathered}
\Gamma \stackrel{\text { def }}{=}\{Z\} \cup \bigcup\{e\} \cup \operatorname{ASubs}(e) . \\
F x_{1} \ldots x_{e(x)} \rightarrow e
\end{gathered}
$$

Example 4.2. For the scheme \mathcal{S}_{U}, one gets the following stack alphabet:

$$
\begin{aligned}
\Gamma= & \{Z, G(H X), H X, X, F(F \varphi x) y(H y), F \varphi x, H y, F G z(H z), \\
& G, H z, \varphi(H y)\} \cup\{x, y, z, u, \varphi\} .
\end{aligned}
$$

Notation 4.1. For $\varphi \in V \cup N$, a φ-stack designates a stack whose top symbol starts with φ. By extension, a stack s is said to be an N-stack (resp., a V-stack) if it is a φ-stack for some $\varphi \in N$ (resp., $\varphi \in V$).

In order to represent a term in $\operatorname{Terms}(N)$, a stack over Γ must be well formed, i.e., it must satisfy syntactic conditions given in the following definition.
Definition 4.2 (well-formed stack). A non-empty stack of order- n over Γ is well formed if every non-empty substack r of s satisfies the following two conditions:

- if top $p_{1}(r)$ is not equal to Z then $\operatorname{pop}_{1}(r)$ is an A-stack for some $A \in N$ and top $1_{1}(r)$ belongs to an A-production rule,
- if top $_{1}(r)$ is of type τ of order $k>0$ then top $_{1}(r)$ is the source of an $(n-k+1)$ link and collapse (r) is a φ-stack for some variable $\varphi \in V$ of type τ.
We let WStacks denote the set of all well-formed stacks.
Example 4.3. For the scheme \mathcal{S}_{U}, the order-2 stacks in Figure 7 are well formed.

$$
\begin{gathered}
\varphi(H y) \\
F(F \varphi x) y(H y) \\
F G z(H z) \\
G(H X) \\
Z
\end{gathered}
$$

Figure 7

Notation 4.3. We write $s:: t$ for $s \in$ WStacks and $t \in \Gamma$ to mean that if t belongs to the r.h.s. of a production starting with $A \in N$ then s is an A-stack. In particular, if $s \in$ WStacks then $\operatorname{pop}_{1}(s)::$ top $_{1}(s)$. We let CStacks denote the set of such $s:: t$, and define the size of an element $s:: t$ as the pair $(|s|,|t|)$, where $|s|$ denotes the number of stack symbols in s and $|t|$ the length of the term t. When comparing sizes, we use the standard lexicographic (total) order over $\mathbb{N} \times \mathbb{N}$.

In Definition 4.5, we will associate a ground term over N with any well-formed stack s that we refer to as the value of s. To define this value, we first associate, with any element $s:: t$ in CStacks, a value denoted $\llbracket s:: t \rrbracket$. This value is a term over N of the same type as t. Intuitively, it is obtained by replacing the variables appearing in the term t by values encoded in the stack s, and one should therefore understand $\llbracket s:: t \rrbracket$ as the value of the term t in the context (or environment) of s.

For all $\varphi \in V \cup N$, all $k \in[1, \varrho(\varphi)]$ and all φ-stack $s \in$ WStacks, we define an element of CStacks, denoted $\operatorname{Arg}_{k}(s)$, representing the k-th argument of the term represented by s. More precisely if the top symbol of s is $\varphi t_{1} \ldots t_{\ell}$, we take

$$
\begin{cases}\operatorname{Arg}_{k}(s)=\operatorname{pop}_{1}(s):: t_{k} & \text { if } k \leqslant \ell \\ \operatorname{Arg}_{k}(s)=\operatorname{Arg}_{k-\ell}(\operatorname{collapse}(s)) & \text { otherwise }\end{cases}
$$

Definition 4.4. For all $s:: t \in$ CStacks, we take

$$
\begin{cases}\llbracket s:: t_{1} t_{2} \rrbracket=\llbracket s:: t_{1} \rrbracket \llbracket s:: t_{2} \rrbracket & \text { if } t_{1}, t_{2} \in \Gamma, \\ \llbracket s:: A \rrbracket=A & \text { if } A \in N, \\ \llbracket s:: x \rrbracket=\llbracket \operatorname{Arg}_{\operatorname{rk}(x)}(s) \rrbracket & \text { if } x \in V .\end{cases}
$$

Let us provide some intuition regarding the definition of $\llbracket s:: t \rrbracket$. Unsurprisingly, $\llbracket s:: t \rrbracket$ is defined by structural induction on t, and the induction cases for the application and the non-terminal symbols are straightforward.

It remains to consider the case where t is a variable x appearing in the $\operatorname{rk}(x)$-th position in the left-hand side $A x_{1} \ldots x_{\varrho(A)}$. As $s:: t \in$ CStacks, top $_{1}(s)$ is of the form $A t_{1} \ldots t_{\ell}$ for some $\ell \leqslant \varrho(A)$. Note that ℓ is not necessarily equal to $\varrho(A)$, meaning that some arguments of A might be missing. There are now two cases - corresponding to the two cases in the definition of $\operatorname{Arg}_{k}(s)$ - depending on whether x references one of the t_{i} 's (i.e., $\operatorname{rk}(x) \leqslant \ell$) or one of the missing arguments (i.e., $\operatorname{rk}(x)>\ell$).

- If $\operatorname{rk}(x) \leqslant \ell$ then the term associated with x in s is equal to the term associated with $t_{\mathrm{rk}(x)}$ in $\operatorname{pop}_{1}(s)$, i.e., $\llbracket s:: x \rrbracket=\llbracket \operatorname{pop}_{1}(s):: t_{\mathrm{rk}}(x) \rrbracket$.
- If $\mathrm{rk}(x)>\ell$ then the term $\llbracket s:: x \rrbracket$ is obtained by following the link attached to top $p_{1}(s)$. Recall that, as s is a well-formed stack and top $p_{1}(s)$ is not of ground type (as $\ell<\varrho(A)$), there exists a link attached to top $p_{1}(s)$. Moreover, collapse (s), the stack obtained by following the link, has a top-symbol of the form $\varphi t_{1}^{\prime} \ldots t_{m}^{\prime}$ for some $\varphi \in V$ and $m \geqslant 0$. Intuitively, t_{i}^{\prime} corresponds to the $(\ell+i)$-th argument of A. If $\operatorname{rk}(x)$ belongs to $[\ell+1, \ell+m]$, then the term $\llbracket s:: x \rrbracket$ is defined to be the term $\llbracket \operatorname{pop}_{1}(\operatorname{collapse}(s)):: t_{\operatorname{rk}(x)-\ell}^{\prime} \rrbracket$. If $\operatorname{rk}(x)$ is greater than $\ell+m$ then the link attached to the top symbol of collapse (s) is followed and the process is reiterated. As the size of the stack strictly decreases at each step, this process terminates.
Now, if s is a well-formed φ-stack, its value is obtained by applying the value of all its $\varrho(\varphi)$ arguments to the value of φ in the context of $\operatorname{pop}_{1}(s)$. This leads to the following formal definition.

Definition 4.5. The term associated with a well-formed φ-stack $s \in$ WStacks with $\varphi \in N \cup V$ is

$$
\llbracket s \rrbracket \stackrel{\text { def }}{=} \llbracket \operatorname{pop}_{1}(s):: \varphi \rrbracket \llbracket \operatorname{Arg}_{1}(s) \rrbracket \ldots \llbracket \operatorname{Arg}_{\varrho(\varphi)}(s) \rrbracket .
$$

Fact 2. Let s be a well-formed φ-stack. If $\operatorname{top}_{1}(s)$: o then

$$
\llbracket s \rrbracket=\llbracket \operatorname{pop}_{1}(s):: \operatorname{top}_{1}(s) \rrbracket .
$$

If top $_{1}(s): \tau_{1} \rightarrow \cdots \rightarrow \tau_{\ell} \rightarrow$ o then

$$
\llbracket s \rrbracket=\llbracket \operatorname{pop}_{1}(s):: \operatorname{top}_{1}(s) \rrbracket \llbracket \operatorname{Arg}_{1}(\operatorname{collapse}(s)) \rrbracket \ldots \llbracket \operatorname{Arg}_{\ell}(\operatorname{collapse}(s)) \rrbracket .
$$

Proof. The first case (i.e., to $p_{1}(s): o$) is immediate. Assume that top $p_{1}(s)$ is equal to $\varphi t_{1} \ldots t_{n}$ with $\varphi \in N \cup V$ of type $\tau_{1} \rightarrow \cdots \rightarrow \tau_{\varrho(\varphi)} \rightarrow 0$ and $t_{i} \in \Gamma$ of type τ_{i}, for all $i \in[1, n]$. Note that $\ell=\varrho(\varphi)-n$. We have

$$
\begin{aligned}
\llbracket s \rrbracket & \stackrel{\text { def }}{=} \underbrace{\llbracket \ldots \operatorname{Arg}_{n}(s) \rrbracket}_{\llbracket \operatorname{pop}_{1}(s):: \varphi \rrbracket \llbracket \operatorname{Arg}_{1}(s):: \varphi t_{1} \ldots t_{n} \rrbracket} \mathbb{\operatorname { A r g }} \cos _{n+1}(s) \rrbracket \ldots \llbracket \operatorname{Arg}_{\varrho(\varphi)}(s) \rrbracket \\
& =\llbracket \operatorname{pop}_{1}(s):: \operatorname{top}_{1}(s) \rrbracket \llbracket \operatorname{Arg}_{1}(\operatorname{collapse}(s)) \rrbracket \ldots \llbracket \operatorname{Arg}_{\ell}(\operatorname{collapse}(s)) \rrbracket .
\end{aligned}
$$

Example 4.4. Let us consider the well-formed stacks s_{1}, s_{2}, and s_{3} presented in Example 4.3. In the representation in Figure 8, the association between variables and their "values" are made explicit by the red arrows.

The following lemma states the basic properties of the encoding $\llbracket \cdot \rrbracket$ and $\operatorname{Arg}_{k}(\cdot)$.

Lemma 4.1. We have the following properties:

1. for all φ-stacks $s \in$ WStacks with $\varphi \in V \cup N$ of type $\tau_{1} \rightarrow \cdots \rightarrow \tau_{\varrho(\varphi)} \rightarrow \mathrm{o}$ and for all $k \in[1, \varrho(\varphi)]$, the stack $\operatorname{Arg}_{k}(s)$ is equal to some $r:: t \in$ CStacks with t of type τ_{k};
2. for all $s:: t \in \operatorname{CStacks}$ with $t: \tau \in \Gamma$, the term $\llbracket s:: t \rrbracket$ belongs to $\operatorname{Terms}_{\tau}(N)$;
3. for all $s \in$ WStacks, the term $\llbracket s \rrbracket$ belongs to $\operatorname{Terms}(N)$.

Proof. We start proving the first point and then use it to obtain the second one. Combining them, we finally prove the last point.

1. We proceed by induction on the size of $s \in$ WStacks. The base case considers the stack $\left[\ldots[\perp Z]_{1} \ldots\right]_{n}$. As $\varrho(Z)=0$, there is nothing to prove.

Fix some stack s and assume that the property holds for all stacks smaller than $s \in$ WStacks. Let $\varphi t_{1} \ldots t_{\ell}: \tau$ be the top symbol of s with $\varphi \in N \cup V$ and $t_{i} \in \Gamma$ for all $i \in[1, \ell]$. If φ is of type $\tau_{1} \rightarrow \cdots \rightarrow \tau_{\varrho(\varphi)} \rightarrow \mathrm{o}$ then for all $i \in[1, \ell], t_{i}$ is of type τ_{i} and τ is the type $\tau_{\ell+1} \rightarrow \cdots \rightarrow \tau_{\varrho(\varphi)} \rightarrow 0$.

If $k \leqslant \ell$, then $\operatorname{Arg}_{k}(s) \stackrel{\text { def }}{=} \operatorname{pop}_{1}(s):: t_{k}$ and there is nothing to prove. If $\varrho(\varphi) \geqslant k>\ell$, then $\operatorname{Arg}_{k}(s) \stackrel{\text { def }}{=} \operatorname{Arg}_{k-\ell}($ collapse $(s))$. To conclude the result by induction, the only thing we have to prove is that $\operatorname{Arg}_{k-\ell}$ (collapse (s)) is well defined. As $\operatorname{ord}(\tau)>0$, we have by definition of WStacks that collapse(s) is well defined and that its top symbol starts with a symbol ψ of type τ. As \mid collapse $(s)|<|s|$ and as $\varrho(\psi)=\varrho(\varphi)-\ell \geqslant k-\ell \geqslant 1$, we have by the

Figure 8
induction hypothesis that $\operatorname{Arg}_{k-\ell}$ (collapse(s)) is well defined and is equal to some $r:: t \in$ CStacks with $t \in \Gamma$ of type $\tau_{k-\ell+\ell}=\tau_{k}$.
2. We proceed by induction on the size of $s:: t$. The base case deals with the stack $\left[\ldots[\perp]_{1} \ldots\right]_{n}:: Z$. As $\llbracket[]_{n}:: Z \rrbracket \stackrel{\text { def }}{=} Z$, the property holds.

Assume that the property holds for all elements of CStacks smaller than some $s:: t \in$ CStacks with $t: \tau$. Let us show that $\llbracket s:: t \rrbracket$ is of type τ. The case where $t \in N$ is trivial. The one where $t=t_{1} t_{2}$ is immediate by induction, as both $\llbracket s:: t_{2} \rrbracket$ and $\llbracket s:: t_{1} \rrbracket$ have a size smaller than $\llbracket s:: t \rrbracket$. The last case is when t is a variable $x \in V$. Assume that the variable x appears in an A-production for some $A: \tau=\tau_{1} \rightarrow \cdots \rightarrow \tau_{\varrho(A)} \rightarrow \mathrm{o}$ in N. In particular, the variable x is of type $\tau_{\mathrm{rk}(x)}$. We have $\llbracket s:: x \rrbracket \stackrel{\text { def }}{=} \llbracket \operatorname{Arg}_{\mathrm{rk}(x)}(s) \rrbracket$. By definition of CStacks, s is an A-stack and using point (1), $\operatorname{Arg}_{\operatorname{rk}(x)}(s)$ is equal to $r:: t^{\prime}$ with $r \in$ Stacks and $t^{\prime}: \tau_{\operatorname{rk}(x)} \in \Gamma$. Thus $\llbracket s:: x \rrbracket=\llbracket r:: t^{\prime} \rrbracket$ for some r smaller than s, and using the induction hypothesis, one concludes that $\llbracket s:: x \rrbracket$ is a term in $\operatorname{Terms}_{\tau_{\mathrm{rk}(x)}}(N)$.
3. Let $s \in$ WStacks whose top symbol starts with $\varphi: \tau=\tau_{1} \rightarrow \cdots \rightarrow \tau_{\varrho(\varphi)} \rightarrow 0$. Clearly $\operatorname{pop}_{1}(s):: \varphi$ belongs to CStacks and by point (2), $\llbracket \operatorname{pop}_{1}(s):: \varphi \rrbracket$ is of type τ. Points (1) and (2) imply that, $\llbracket \operatorname{Arg}_{k}(s) \rrbracket$ is of type τ_{k}, for all $k \in[1, \varrho(\varphi)]$. Hence, from Definition 4.5 it directly follows that $\llbracket s \rrbracket$ is of type o.

We conclude with two fundamental properties of $\operatorname{Arg}_{k}(\cdot)$ that will allow us to simulate the rewriting of the scheme using sta ck operations and finite memory.

The first property is that the arguments represented by a well-formed stack are not modified when performing a push $_{k}$ operation. More precisely, for all φ-stacks $s \in$ WStacks with $\varphi \in N \cup V$, we have $\llbracket \operatorname{Arg}_{\ell}\left(\operatorname{push}_{k}(s)\right) \rrbracket=\llbracket \operatorname{Arg}_{\ell}(s) \rrbracket$ for all $\ell \in[1, \varrho(\varphi)]$ and all $k \in[2, m]$. This follows (by letting $r=\operatorname{top}_{k}(s)$) from the following slightly more general result.

Lemma 4.2. Let $k \in[2, m]$ and let $s=s^{\prime}+\operatorname{top}_{k}(s) \in \mathrm{WStacks}$. For all non-empty φ-stacks $r \sqsubseteq \operatorname{top}_{k}(s)$, we have $\llbracket \operatorname{Arg} \ell\left(s^{\prime}+r\right) \rrbracket=\llbracket \operatorname{Arg}(s+r) \rrbracket$ for all $\ell \in[1, \varrho(\varphi)]$.

Proof. We show, by induction on the size of r, that $s+r$ and $s^{\prime}+r$ are well formed and $\llbracket \operatorname{Arg}_{\ell}\left(s^{\prime}+r\right) \rrbracket=\llbracket \operatorname{Arg}_{\ell}(s+r) \rrbracket$ for all $\ell \in[1, \varrho(\varphi)]$, where $\varphi \in N \cup V$ denotes the head symbol of top ${ }_{1}(r)$.

The base case (which considers $\left[\ldots[\perp Z]_{1} \ldots\right]_{k}$) is immediate. Assume that the property holds for all substacks of $\operatorname{top}_{k}(s)$ smaller than some φ-stack $r \sqsubseteq \operatorname{top}_{k}(s)$. We will show that it holds for r.

The key observation is that $\operatorname{top}_{2}(s+r)=\operatorname{top}_{2}\left(s^{\prime}+r\right)$ and either

$$
\operatorname{collapse}(s+r)=\operatorname{collapse}(s+r)
$$

if the link attached to topmost symbol of r is order greater than k, or

$$
\operatorname{collapse}(s+r)=s+\operatorname{collapse}(r) \text { and collapse }\left(s^{\prime}+r\right)=s^{\prime}++\operatorname{collapse}(r)
$$

otherwise.
As $s^{\prime}+r r$ is a substack of s (which is well formed), $s^{\prime}+r r$ is well formed as well. To prove that $s++r$ is well formed, we need to show that every non-empty substack of $s++r$ satisfies the two properties expressed in Definition 4.2. The case of a proper substack immediately follows the induction hypothesis. We can deduce that $s+r r$ satisfies these two properties from the above observations. Indeed the first property only depends on the top most order-1 stack $\left(\operatorname{and~top}_{2}(s+r)=\operatorname{top}_{2}\left(s^{\prime}+r\right)\right)$ and the second property follows from the fact that top $(s+r)=t o p_{1}\left(s^{\prime}+r\right)$ and top $1_{1}(\operatorname{collapse}(s+r))=$ top $_{1}\left(\operatorname{collapse}\left(s^{\prime}+r\right)\right)$.

Assume that the top symbol of r is equal to $\varphi t_{1} \ldots t_{n}$. Let $\ell \in[1, \varrho(\varphi)]$ and let us show that $\llbracket \operatorname{Arg}_{\ell}(s+r) \rrbracket=\llbracket \operatorname{Arg}_{\ell}\left(s^{\prime}+r\right) \rrbracket$.

If $\ell \leqslant n$, then $\llbracket \operatorname{Arg}_{\ell}(s+r) \rrbracket=\llbracket s+\operatorname{pop}_{1}(r):: t_{\ell} \rrbracket=\llbracket s^{\prime}+\operatorname{pop}_{1}(r):: t_{\ell} \rrbracket$. By the induction hypothesis, we have that $\llbracket s+r^{\prime}:: t \rrbracket=\llbracket s^{\prime}+r^{\prime}:: t \rrbracket$ for any proper substack r^{\prime} of r, and in particular for $r^{\prime}=\operatorname{pop}_{1}(r)$.

If $\ell>n$ then $\llbracket \operatorname{Arg}_{\ell}(s+r) \rrbracket$ is equal to both $\llbracket \operatorname{Arg}_{\ell-n}(\operatorname{collapse}(s+r)) \rrbracket$ and $\llbracket \operatorname{Arg}_{\ell-n}(\operatorname{collapse}(s+r)) \rrbracket$. From the above observation, we either have that the stack collapse $(s+r)$ is equal to collapse $\left(s^{\prime}+r\right)$ and the equality trivially holds, or we have collapse $(s+r)=s+\operatorname{collapse}(r)$ and collapse $\left(s^{\prime}+r\right)=s^{\prime}+\operatorname{collapse}(r)$ in which case the equality follows by the induction hypothesis as \mid collapse $(r)|<|r|$.

The next property will later been use to prove that any rewriting step can be simulated by a finite number of transitions in the automaton.
Lemma 4.3. Let s be a φ-stack in WStacks for some $\varphi: \tau_{1} \rightarrow \cdots \rightarrow \tau_{\rho(\varphi)} \rightarrow \mathrm{o}$ in $V \cup N$ and let $\ell \in[1, \varrho(\varphi)]$ with τ_{ℓ} of order $k>0$. If $\operatorname{Arg}_{\ell}(s)$ is equal to $r:: t \in$ CStacks with t starting with $\psi \in N \cup V$ then

$$
\operatorname{pop}_{n-k+1}(s)=\operatorname{pop}_{n-k+1}(r) \quad \text { and } \quad\left|\operatorname{top}_{n-k+1}(s)\right|>\left|\operatorname{top}_{n-k+1}(r)\right| .
$$

Proof. We proceed by induction of the size of s. The base case, which considers the stack $\left[\ldots[\perp Z]_{1} \ldots\right]_{n}$, is immediate as $\varrho(Z)=0$.

Assume that the property holds for all stacks in WStacks smaller than some stack $s \in$ WStacks. Let $\varphi t_{1} \cdots t_{m}$ be the top symbol of s with $\varphi: \tau_{1} \rightarrow \cdots \rightarrow \tau_{\varrho(\varphi)} \rightarrow \mathrm{o}$ in $V \cup N$ and $m \in[0, \varrho(\varphi)]$. Let $\ell \in[1, \varrho(\varphi)]$ and let k be the order of τ_{ℓ}. Assume that $\operatorname{Arg}_{\ell}(s)=r:: t$.

If $\ell \leqslant m$, then $\operatorname{Arg}_{\ell}(s)=\operatorname{pop}_{1} s:: t_{\ell}$. In particular, r is equal to $\operatorname{pop}_{1}(s)$ and the property holds because $\operatorname{pop}_{n-k+1}(r)=\operatorname{pop}_{n-k+1}\left(\operatorname{pop}_{1}(s)\right)=\operatorname{pop}_{n-k+1}(s)$ as $n-k+1 \geqslant 2$ (indeed $k<n$ by definition of n).

If $\ell>m, \operatorname{Arg}_{\ell}(s)=\operatorname{Arg}_{\ell-m}(\operatorname{collapse}(s))$. By the induction hypothesis, we have

$$
\operatorname{pop}_{n-k+1}(\operatorname{collapse}(s))=\operatorname{pop}_{n-k+1}(r)
$$

To conclude the result, it is enough to show that $\operatorname{pop}_{n-k+1}(\operatorname{collapse}(s))=\operatorname{pop}_{n-k+1}(s)$. Let k^{\prime} be the order of top (s). As top $p_{1}(s)=\varphi t_{1} \ldots t_{m}$ is of type $\tau_{m+1} \rightarrow \cdots \rightarrow$ $\tau_{\varrho(\varphi)} \rightarrow \mathrm{o}$, we have $k^{\prime}>k$. By definition of well-formed stacks, the order of the link attached to top symbol is equal to $n-k^{\prime}+1$. In particular, $\operatorname{pop}_{n-k+1}(\operatorname{collapse}(s))=$ $\operatorname{pop}_{n-k+1}(s)$.
4.2. Simulating the Lis of \mathcal{S} on stacks. As an intermediate step, we define an Lts \mathcal{M} over well-formed stacks and we prove that it generates the same tree as \mathcal{S} (i.e., $\left.\operatorname{Tree}^{\perp}(\mathcal{M})=\operatorname{Tree}^{\perp}(\mathcal{S})\right)$. From \mathcal{M}, a CPDA generating $\operatorname{Tree}^{\perp}(\mathcal{M})$ is then easily defined.

We let $\mathcal{M}=\left\langle\right.$ WStacks, $\left.[\ldots[\perp Z] \ldots]_{n}, \Sigma,(\underset{\mathcal{M}}{a})_{a \in \Sigma}\right\rangle$ and define the transitions as follows:

$$
\begin{cases}s \xrightarrow[\mathcal{M}]{a} \operatorname{push}_{1}^{t}(s) & \begin{array}{l}
\text { if } s \text { is an } A \text {-stack with } A \in N \\
\text { and } A x_{1} \ldots x_{\varrho(A)} \xrightarrow{a} t \in \mathcal{R},
\end{array} \\
s \xrightarrow[\mathcal{M}]{\lambda} \operatorname{push}_{1}^{t}(r) & \begin{array}{l}
\text { if } s \text { is a } \varphi \text {-stack with } \varphi: \mathrm{o} \in V \\
\text { and } \operatorname{Arg}_{\mathrm{rk}(\varphi)}\left(\operatorname{pop}_{1}(s)\right)=r:: t,
\end{array} \\
s \xrightarrow[\mathcal{M}]{\lambda} \operatorname{push}_{1}^{t, n-k+1}(r) & \begin{array}{l}
\text { if } s \text { is a } \varphi \text {-stack with } \varphi: \tau \in V \text { of order } k>0 \\
\text { and } \operatorname{Arg}_{\text {rk }(\varphi)}\left(\operatorname{pop}_{1}\left(\operatorname{push}_{n-k+1}(s)\right)\right)=r:: t .
\end{array}\end{cases}
$$

Example 4.5. In the Figure 9, we illustrate the definition of \mathcal{M} on the scheme \mathcal{S}_{U}.

The first line of the definition of $\underset{\mathcal{M}}{\longrightarrow}$ corresponds to the case of an N-stack. To simulate the application of a production rule $A x_{1} \ldots x_{n} \xrightarrow{a} e$ on the term encoded by an A-stack s, we simply push the right-hand side e of the production on top of s. The correctness of this rule directly follows from the definition of $\llbracket \cdot \rrbracket$ (cf. Lemma 4.4 below). Doing so, a term starting with a variable may be pushed on top of the stack, e.g., when applying the production rule $F \varphi x y \xrightarrow{\text {) }} \varphi(H y)$. Indeed, we need to retrieve the value of the head variable in order to simulate the next transition of \mathcal{S} : the second and third lines of the definition are normalisation rules that aim at replacing the variable at the head of the top of the stack (in Example 4.5φ) by its definition (hence not changing the value of the associated term). By iterative application, we eventually end up with an N-stack encoding the same term and we can apply again the first rule.

The following lemma states the soundness of the first line of the definition of $\underset{\mathcal{M}}{\longrightarrow}$.
Lemma 4.4. Let s be an N-stack in WStacks and $a \in \Sigma$.

$$
\begin{cases}\exists t \in \operatorname{Terms}(N), \llbracket s \rrbracket \stackrel{a}{\longrightarrow} t & \Longrightarrow \exists s^{\prime} \in \text { WStacks, } s \stackrel{a}{\mathcal{M}} s^{\prime} \text { and } \llbracket s^{\prime} \rrbracket=t, \\ \exists s^{\prime} \in \text { WStacks, } s \xrightarrow[\mathcal{M}]{a} s^{\prime} & \Longrightarrow \llbracket s \rrbracket \xrightarrow{a} \llbracket s^{\prime} \rrbracket .\end{cases}
$$

Proof. Let $s \in$ WStacks be an A-stack for some $A \in N$ and let $a \in \Sigma$. By definition of $\llbracket s \rrbracket, \llbracket s \rrbracket$ is equal to $A \llbracket \operatorname{Arg}_{1}(s) \rrbracket \ldots \llbracket \operatorname{Arg}_{\varrho(A)}(s) \rrbracket$.

Assume that $\llbracket s \rrbracket \xrightarrow{a} t$ for some $t \in \operatorname{Terms}(N)$. By definition of \xrightarrow{a}, there exists a production $A x_{1} \ldots x_{\varrho(A)} \xrightarrow{a} t^{\prime}$ in \mathcal{R} such that t is equal to

$$
t^{\prime}\left[x_{1} / \llbracket \operatorname{Arg}_{1}(s) \rrbracket, \ldots, x_{\varrho(A)} / \llbracket \operatorname{Arg}_{\varrho(A)}(s) \rrbracket\right]
$$

By definition of $\underset{\mathcal{M}}{a}$, we have $s \underset{\mathcal{M}}{a} \operatorname{push}_{1}^{t^{\prime}}(s)$ hence we only need to note that the term $\llbracket \operatorname{push}_{1}^{t^{\prime}}(s) \rrbracket$ is equal to $t^{\prime}\left[x_{1} / \llbracket \operatorname{Arg}_{1}(s) \rrbracket, \ldots, x_{\varrho(A)} / \llbracket \operatorname{Arg}_{\varrho(A)}(s) \rrbracket\right]$. Indeed, as t^{\prime} is of ground type, $\llbracket \operatorname{push}_{1}^{t^{\prime}}(s) \rrbracket$ is equal to $\llbracket s:: t^{\prime} \rrbracket$ which is by definition equal to $t^{\prime}\left[x_{1} / \llbracket \operatorname{Arg}_{1}(s) \rrbracket, \ldots, x_{\varrho(A)} / \llbracket \operatorname{Arg}_{\varrho(A)}(s) \rrbracket\right]$.

Now, assume that $s \xrightarrow[\mathcal{M}]{a} s^{\prime}$ for some $s^{\prime} \in$ WStacks. By definition of $\xrightarrow[\mathcal{M}]{a}$, there exists a production $A x_{1} \ldots x_{\varrho(A)} \xrightarrow{a} t^{\prime} \in \mathcal{R}$ such that $s^{\prime}=\operatorname{push}_{1}^{t^{\prime}}(s)$. As s is an A-stack, we have $\llbracket s \rrbracket=A \llbracket \operatorname{Arg}_{1}(s) \rrbracket \ldots \llbracket \operatorname{Arg}_{\varrho(A)}(s) \rrbracket$. Furthermore $\llbracket s^{\prime} \rrbracket$ is equal to $t^{\prime}\left[x_{1} / \operatorname{Arg}_{1}(s), \ldots, x_{\varrho(A)} / \operatorname{Arg}_{\varrho(A)}(s)\right]$. Hence by definition of $\xrightarrow{a} \llbracket s \rrbracket \xrightarrow{a} \llbracket s^{\prime} \rrbracket$.

The next lemma states the soundness of the second and third lines of the definition of \mathcal{M}. It also permits concluding that there are no infinite paths labelled by λ in \mathcal{M}.
Lemma 4.5. We have the following properties:

1. let $s \in$ WStacks be a φ-stack with $\varphi \in V$ and $s^{\prime} \in$ WStacks be a ψ-stack with $\psi \in V \cup N$. If $s \xrightarrow[\mathcal{M}]{\lambda} s^{\prime}$ then $\operatorname{ord}(\varphi) \leqslant \operatorname{ord}(\psi)$ and $\llbracket s \rrbracket=\llbracket s^{\prime} \rrbracket$ with $\left|\operatorname{top}_{n-\operatorname{ord}(\varphi)+1}(s)\right|>\left|\operatorname{top}_{n-\operatorname{ord}(\varphi)+1}\left(s^{\prime}\right)\right| ;$
2. for all stack $s \in$ WStacks there exists a unique N-stack $s^{\prime} \in$ WStacks such that $s \xrightarrow[\mathcal{M}]{\lambda^{*}} s^{\prime}$.

Proof. 1. Let φ be a variable in V and let s be a φ-stack in WStacks.We distinguish two cases depending on the order of the φ.

Assume that φ is of ground type and that $\operatorname{Arg}_{\mathrm{rk}(\varphi)}\left(\operatorname{pop}_{1}(s)\right)$ is some $r:: t \in$ CStacks.

We have by definition of \mathcal{M} that $s \xrightarrow[\mathcal{M}]{\lambda} s^{\prime}=\operatorname{push}_{1}^{t}(r)$. To show that $\llbracket s \rrbracket$ is equal to $\llbracket s^{\prime} \rrbracket$, we simply unfold the definitions.

$$
\begin{gathered}
\llbracket s \rrbracket \stackrel{\text { def }}{=} \llbracket \operatorname{pop}_{1}(s):: \varphi \rrbracket \stackrel{\text { def }}{=} \llbracket \operatorname{Arg}_{\text {rk }(\varphi)}\left(\operatorname{pop}_{1}(s)\right) \rrbracket \\
\quad \stackrel{\text { def }}{=} \llbracket r:: t \rrbracket \stackrel{\text { Def. } 4.5}{=} \llbracket \operatorname{push}_{1}^{t}(r) \rrbracket \stackrel{\text { def }}{=} \llbracket s^{\prime} \rrbracket .
\end{gathered}
$$

Assume that $s^{\prime}=\operatorname{push}_{1}^{t}(r)$ is a ψ-stack for some $\psi \in N \cup V$. We have $\operatorname{ord}(\psi) \geqslant$ $\operatorname{ord}(\varphi)=0$. As $\left|\operatorname{Arg}_{k}\left(\operatorname{pop}_{1}(s)\right)\right| \leqslant|s|-2$, we have that $\left|\operatorname{top}_{n+1}(s)=s\right|>$ $\left|\operatorname{top}_{n+1}\left(s^{\prime}\right)=s^{\prime}\right|$.

Assume that φ is of type $\tau=\tau_{1} \rightarrow \cdots \rightarrow \tau_{\varrho(\varphi)} \rightarrow$ o of order $k>0$. Assume that $\operatorname{Arg}_{\operatorname{rk}(\varphi)}\left(\operatorname{pop}_{1}\left(\operatorname{push}_{n-k+1}(s)\right)\right)$ is equal to $r:: t \in$ CStacks. First recall that, from Lemma 4.1, we have that $t: \tau$. We have by definition that $s \underset{\mathcal{M}}{\longrightarrow} s^{\prime}=\operatorname{push}_{1}^{t, n-k+1}(r)$. Let us show that $\llbracket s \rrbracket=\llbracket s^{\prime} \rrbracket$. Using Fact 2, we have that

$$
\begin{aligned}
\llbracket s^{\prime} \rrbracket & =\underbrace{\llbracket \operatorname{pop}_{1}\left(s^{\prime}\right):: \operatorname{top}_{1}\left(s^{\prime}\right) \rrbracket}_{=\llbracket \operatorname{pop}_{1}(s):: \varphi \rrbracket(1)} \underbrace{\llbracket \operatorname{Arg}_{1}\left(\operatorname{collapse}\left(s^{\prime}\right)\right) \rrbracket}_{=\llbracket \operatorname{Arg}_{1}(s) \rrbracket(2)} \cdots \underbrace{\llbracket \operatorname{Arg}_{\varrho(\varphi)}\left(\operatorname{collapse}\left(s^{\prime}\right)\right) \rrbracket}_{=\llbracket \operatorname{Arg}_{\varrho(\varphi)}(s) \rrbracket(2)} \\
& =\llbracket \operatorname{pop}_{1}(s):: \varphi \rrbracket \llbracket \operatorname{Arg}_{1}(s) \rrbracket \ldots \llbracket \operatorname{Arg}_{\varrho(\varphi)}(s) \rrbracket=\llbracket s \rrbracket .
\end{aligned}
$$

The equalities denoted (1) and (2) are proven below:

$$
\begin{gather*}
\llbracket \operatorname{pop}_{1}\left(s^{\prime}\right):: \operatorname{top}_{1}\left(s^{\prime}\right) \rrbracket \stackrel{\text { def }}{=} \llbracket r:: t \rrbracket=\llbracket \operatorname{Arg}_{\mathrm{rk}(\varphi)}\left(\operatorname{pop}_{1}\left(\operatorname{push}_{n-k+1}(s)\right)\right) \rrbracket \tag{1}\\
\stackrel{\text { Lemma }}{=} \frac{4.2}{=} \operatorname{Arg}_{\mathrm{rk}(\varphi)}\left(\operatorname{pop}_{1}(s)\right) \rrbracket=\llbracket \operatorname{pop}_{1}(s):: \varphi \rrbracket
\end{gather*}
$$

and for all $i \in[1, \varrho(\varphi)]$,

$$
\begin{align*}
\llbracket \operatorname{Arg}_{i}\left(\operatorname{collapse}\left(s^{\prime}\right)\right) \rrbracket & =\llbracket \operatorname{Arg}_{i}\left(\operatorname{collapse}\left(\operatorname{push}_{1}^{t, n-k+1}(r)\right)\right) \rrbracket \\
& =\llbracket \operatorname{Arg}_{i}\left(\operatorname{pop}_{n-k+1}(r)\right) \rrbracket \\
\operatorname{Lemma} & =4 \operatorname{Arg}_{i}\left(\operatorname{pop}_{n-k+1}\left(\operatorname{pop}_{1}\left(\operatorname{push}_{n-k+1}(s)\right)\right)\right) \rrbracket \tag{2}\\
& =\llbracket \operatorname{Arg}_{i}(s) \rrbracket .
\end{align*}
$$

As both φ and t have type τ, and as t is of the form $\psi t_{1} \ldots t_{\ell}$ for some $\ell \geqslant 0$, it directly follows that $\operatorname{ord}(\varphi) \leqslant \operatorname{ord}(\psi)$.

The inequality $\left|\operatorname{top}_{n-\operatorname{ord}(\varphi)+1}(s)\right|>\left|\operatorname{top}_{n-\operatorname{ord}(\varphi)+1}\left(s^{\prime}\right)\right|$ follows from Lemma 4.3.
2. Assume, to get a contradiction, that there exists an infinite sequence $\left(s_{i}\right)_{i \geqslant 0}$ of stacks in WStacks such that for all $i \geqslant 0, s_{i} \xrightarrow[\mathcal{M}]{\lambda} s_{i+1}$. For all $i \geqslant 0$, we let t_{i} denote the top symbol of s_{i} and φ_{i} the head symbol of t_{i}. According to (1), the order of the φ_{i} increases and hence is ultimately constant. Let j and k be such that, for all $i \geqslant j$, $\operatorname{ord}\left(\varphi_{i}\right)$ is equal to k. Using (1), the size of the $\operatorname{top}_{n-k+1}\left(s_{i}\right)$ is strictly decreasing starting from j, which provides the contradiction.

From Lemmas 4.4 and 4.5, \mathcal{M} and \mathcal{S} generate the same trees.
Proposition 4.6. $\operatorname{Tree}^{\perp}(\mathcal{S})=\operatorname{Tree}^{\perp}(\mathcal{M})$.
Proof. By definition of \mathcal{M}, only well-formed N-stacks can be the source of non-silent transitions. Let s be a well-formed N-stack. If $\llbracket s \rrbracket \underset{s}{a} t$ for some $a \in \Sigma$, then the N-stack s^{\prime} such that $s \xrightarrow[\mathcal{M}]{a \lambda^{*}} s^{\prime}$ is such that $\llbracket s^{\prime} \rrbracket=t$. Conversely if $s \xrightarrow[\mathcal{M}]{a \lambda^{*}} s^{\prime}$ for some N-stack s^{\prime}, then $\llbracket s \rrbracket \xrightarrow[s]{a} \llbracket s^{\prime} \rrbracket$.

From \mathcal{M} we now define an n-CPDA $\mathcal{A}=\left\langle\Sigma, \Gamma, Q, \delta, q_{0}\right\rangle$ generating the same tree as \mathcal{M}. The set of states Q is equal to $\left\{q_{0}, q_{1}, \ldots, q_{\varrho(\mathcal{S})}, q_{*}, q_{V}\right\}$ where $\varrho(\mathcal{S})$ denotes the maximal arity appearing in \mathcal{S}. Intuitively, the initial state q_{0} is only used to go from $\left(q_{0},\left[\cdots[\perp]_{1} \cdots\right]_{n}\right)$ to $\left(q_{*},\left[\cdots[\perp Z]_{1} \cdots\right]_{n}\right)$; the state q_{*} is used to mark N-stacks; for $k \in[1, \varrho(\mathcal{S})]$, the state q_{k} is used to the compute $\operatorname{Arg}_{k}(\cdots)$. The state q_{V} is used to signal stacks that appear in the derivation of system \mathcal{M} that are V-stacks. The transitions are given below.

- $\delta\left(q_{0}, \perp, \lambda\right)=\left(q_{*}, \operatorname{push}_{1}^{Z}\right)$.
- If t starts with $F \in N$ and $F x_{1} \ldots x_{\varrho(F)} \xrightarrow{a} e \in \mathcal{R}$:
$-\delta\left(q_{*}, t, a\right)=\left(q_{*}\right.$, push $\left._{1}^{e}\right)$ if e starts with a symbol in N,
$-\delta\left(q_{*}, t, a\right)=\left(q_{a}\right.$, push $\left._{1}^{e}\right)$ if e starts with a variable.
- If t is a term of the form $\varphi t_{1} \ldots t_{\ell}$ for some $\varphi \in V$:
$-\delta\left(q_{V}, t, \lambda\right)=\left(q_{\mathrm{rk}(\varphi)}, \operatorname{pop}_{1}\right)$ if φ is an order- 0 variable,
$-\delta\left(q_{V}, t, \lambda\right)=\left(q_{\mathrm{rk}(\varphi)}, \operatorname{push}_{n-k+1} ; \operatorname{pop}_{1}\right)$ if φ is a variable of order $k>0$.
- If t is a term of the form $\varphi t_{1} \ldots t_{\ell}$ for some $\varphi \in V \cup N$:
$-\delta\left(q_{k}, t, \lambda\right)=\left(q_{\mathrm{rk}\left(t_{k}\right)}, \operatorname{pop}_{1} ; \operatorname{push}_{1}^{t_{k}}\right)$ if $k \leqslant \ell$ and $t_{k}: o$,
$-\delta\left(q_{k}, t, \lambda\right)=\left(q_{\mathrm{rk}\left(t_{k}\right)}\right.$, pop $\left._{1} ; \operatorname{push}_{1}^{t_{k}, n-h+1}\right)$ if $k \leqslant \ell$ and t_{k} has order $h>0$,
$-\delta\left(q_{k}, t, \lambda\right)=\left(q_{k-\ell}\right.$, collapse $)$ if $k>\ell$.
where, for all $t \in \Gamma, q_{\mathrm{rk}(t)}$ designates the state $q_{\mathrm{rk}(x)}$ if t starts with a variable x and q_{*} otherwise, and $o p_{1} ; o p_{2}$ means applying $o p_{1}$ followed by $o p_{2}$. An equivalent CPDA using only one operation per transition may be obtained by adding intermediary states.

Remark 4.7. The previously given CPDA uses several operations per transition. An equivalent CPDA using only one operation per transition may be obtained by adding intermediary states.

Theorem 4.8. For every labelled recursion scheme \mathcal{S} of order-n, there is an $n-C P D A$ \mathcal{A} that generates the same tree. Moreover, the number of states in \mathcal{A} is linear in the maximal arity appearing in \mathcal{S}, and its alphabet is of size linear in the one of \mathcal{S}.

Proof (sktech). Let s be a well-formed stack. We denote by $\langle\langle s\rangle\rangle$ the configuration of \mathcal{A} defined by $\langle\langle s\rangle\rangle=\left(q_{*}, s\right)$ if s is an N-stack and $\langle\langle s\rangle\rangle=\left(q_{\mathrm{rk}(x)}, s\right)$ if s is a V-stack whose topmost symbol starts with a variable x.

Clearly for any well-formed N-stack $s, s \xrightarrow[\mathcal{M}]{a} s^{\prime}$ if and only if $\langle\langle s\rangle\rangle \xrightarrow[\mathcal{A}]{a}\left\langle\left\langle s^{\prime}\right\rangle\right\rangle$.
For any V-stack s, if $s \xrightarrow[\mathcal{M}]{\vec{\lambda}} s^{\prime}$ then $\langle\langle s\rangle\rangle \xrightarrow[\mathcal{A}]{\lambda^{*}}\left\langle\left\langle s^{\prime}\right\rangle\right\rangle$ as intuitively $\underset{\mathcal{A}}{\longrightarrow}$ combines the definition of both $\underset{\mathcal{M}}{\longrightarrow}$ and $\operatorname{Arg}_{k}(\cdot)$. Conversely, for all V-stacks, if $s \xrightarrow[\mathcal{M}]{\lambda} s^{\prime}$ and $\langle\langle s\rangle\rangle \underset{\mathcal{A}}{\vec{\lambda}}\left\langle\left\langle s_{2}\right\rangle\right\rangle$ then $\left\langle\left\langle s_{2}\right\rangle\right\rangle \xrightarrow[\mathcal{A}]{\lambda^{*}}\left\langle\left\langle s^{\prime}\right\rangle\right\rangle$.

5. Safe higher-order recursion schemes

In this last section, we consider a syntactic subfamily of recursion schemes called safe recursion schemes. The safety constraint was introduced in [36], but was already implicit in the work of Damm [22] (also see [24], p. 44, for a detailed presentation). This restriction constrains the way variables are used to form argument subterms of the rules' right-hand sides.

Definition 5.1 ([36]). A recursion scheme is safe if none of its right-hand sides contains an argument-subterm of order k containing a variable of order strictly less than k.

Other than the scheme \mathcal{S}_{U} generating the tree of the Urzyczyn language, all examples we gave are safe schemes. The scheme \mathcal{S}_{U} is not safe, as the production

$$
F \varphi x \xrightarrow{(} F(F \varphi x) y(H y)
$$

contains in its right-hand side the argument subterm $F \varphi x: 0 \rightarrow$ o of order-1, which contains the variable x : o of order-0. Urzyczyn conjectured that (a slight variation) of the tree T_{U} generated by \mathcal{S}_{U}, though generated by a order-2 scheme, could not be generated by any safe scheme. This conjecture was recently proved by Parys in [49] and [50].

Remark 5.1. In [36], the notion of safety is only defined for homogeneous schemes. A type is said to be homogeneous if it is either ground or equal to $\tau_{1} \rightarrow \cdots \rightarrow \tau_{n} \rightarrow 0$ where the τ_{i} 's are homogeneous and $\operatorname{ord}\left(\tau_{1}\right) \geqslant \cdots \geqslant \operatorname{ord}\left(\tau_{n}\right)$. By extension, a scheme is homogeneous if all its non-terminal symbols have homogeneous types. For instance, $(\mathrm{o} \rightarrow \mathrm{o}) \rightarrow \mathrm{o} \rightarrow \mathrm{o}$ is an homogeneous type whereas $\mathrm{o} \rightarrow(\mathrm{o} \rightarrow \mathrm{o}) \rightarrow \mathrm{o}$ is not. In Proposition 5.5 , we will see that dropping the homogeneity constraint in the definition of safety does not change the family of generated trees.
5.1. Safety and the Translation from Schemes to CPDA. In [36] and [37], the motivation for considering the safety constraint was that safe schemes can be translated into a subfamily of the collapsible automata, namely higher-order pushdown automata. Recall that an order- k pushdown automaton is an order- k CPDA that does not use the collapse operation (hence, links are useless).

Theorem 5.2 below shows that the translation of recursion schemes into collapsible automata presented in $\S 4$, when applied to a safe scheme, yields an automaton in which links are not really needed. Obviously the automaton performs the collapse operations but whenever it is applied to an order- k link, its target is the $(k-1)$-stack below the top ($k-1$)-stack. Hence any collapse operation can safely be replaced by a pop ${ }_{k}$ operation. This notion is captured by the notion of link-free CPDA.
Definition 5.2. A CPDA is link-free if for every configuration (p, s) reachable from the initial configuration and for every transition $\delta\left(p, \operatorname{top}_{1}(s), a\right)=(q$, collapse $)$, we have collapse $(s)=\operatorname{pop}_{\ell}(s)$, where ℓ is the order of the link attached to top (s).

Theorem 5.2. The translation of $\S 4$ applied to a safe recursion scheme yields a linkfree collapsible automaton.

We get the following corollary extending a previous result from [36], by dropping the homogeneity assumption.

Corollary 5.3. Order-k safe schemes and order-k pushdown automata generate the same trees.
5.2. Damm's view of safety. The safety constraint may seem unnatural and purely $a d$ $h o c$. Inspired by the constraint of derived types of Damm, we introduce a more natural constraint, Damm safety, which leads to the same family of trees [22].

Damm safety syntactically restricts the use of partial application: in any argument subterm of a right-hand side, if one argument of some order- k is provided, then all arguments of order- k must also be provided. For instance if $f: 0 \rightarrow 0, c: 0$ and $\varphi:(\mathrm{o} \rightarrow \mathrm{o}) \rightarrow(\mathrm{o} \rightarrow \mathrm{o}) \rightarrow \mathrm{o} \rightarrow \mathrm{o} \rightarrow \mathrm{o}$, the terms $\varphi, \varphi f f$ and $\varphi f f c c$ can appear as argument subterms in a Damm-safe scheme, but φf and $\varphi f f c$ are forbidden.
Definition 5.3 ([22]). A recursion scheme is Damm safe if it is homogeneous and all argument-subterms appearing in a right hand-side are of the form $\varphi t_{1} \ldots t_{k}$ with $\varphi: \tau_{1} \rightarrow \cdots \rightarrow \tau_{n} \rightarrow \mathrm{o}$ and either $k \in\{0, n\}$ or ord $\left(\tau_{k}\right)>\operatorname{ord}\left(\tau_{k+1}\right)$.
Remark 5.4. The second constraint in the definition of Damm safety can be reformulated as follows: all argument subterms of an argument subterm of order- k appearing in a right-hand side have at least order- k.

Using Remark 5.4, it is easy to see that Damm-safety implies the safety constraint. However, the safety constraint, even when restricted to homogeneous schemes, is less restrictive than Damm safety. Consider, for instance, a variable x : o and non-terminals $G: \mathrm{o} \rightarrow \mathrm{o} \rightarrow \mathrm{o}$ and $C: \mathrm{o}$. Then $G x$ cannot appear as an argument-subterm in a safe scheme, but $G C$ can. As $G C$ does not satisfy the Damm-safety constraint, safety is syntactically more permissive than Damm-safety. However unsurprisingly, any safe
scheme can be transformed into an equivalent Damm-safe scheme of the same order. The transformation consists of converting the safe scheme into a higher-order pushdown automaton (Corollary 5.3) and then converting this automaton back to a scheme using the translation of [36]. In fact, this translation of higher-order pushdown automata into safe schemes produces Damm-safe schemes.

Proposition 5.5. Damm-safe schemes are safe and for every safe scheme, there exists a Damm-safe scheme of the same order generating the same tree.

This proposition in particular shows that any safe scheme can be transformed into an equivalent homogeneous one. Broadbent, using the translation from schemes into CPDA, showed that any scheme (possibly unsafe) can be converted into an equivalent one that is homogeneous [7]. Recently, Parys gave a new proof of this result by directly manipulating the scheme; he also provided another construction that preserves safety [51].

References

[1] K. Aehlig, A finite semantics of simply-typed lambda terms for infinite runs of automata. In Computer science logic (Z. Ésik, ed.). Proceedings of the $20^{\text {th }}$ International Workshop (CSL 2006), the $15^{\text {th }}$ Annual Conference of the EACSL, held in Szeged, September 25-29, 2006. Lecture Notes in Computer Science, 4207. Springer, Berlin, 2006, 104118. MR 2334418 Zbl 1225.68107 q.v. 1296
[2] K. Aehlig, J. de Miranda, and L. Ong, Safety is not a restriction at level 2 for string languages. In Foundations of software science and computation structures (V. Sassone, ed.). Proceedings of the $8^{\text {th }}$ international conference, FOSSACS 2005, held as part of the joint European conferences on theory and practice of software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005. Lecture Notes in Computer Science 3441, Springer, Berlin, 2005, 490-501. Zbl 1119.68102 q.v. 1295, 1296
[3] A. Arnold and D. Niwiński, Rudiments of μ-calculus. Studies in Logic and the Foundations of Mathematics, 146. North-Holland Publishing Co., Amsterdam, 2001. MR 1854973 Zbl 0968.03002 q.v. 1296
[4] T. Ball and S. K. Rajamani, The SLAM project: Debugging system software via static analysis. ACM SIGPLAN Notices 37 (2002), no. 1, 1-3. Proceedings of the $29^{\text {th }}$ ACM Symposium on Principles of Programming Language. q.v. 1296
[5] V. Bárány, E. Grädel, and S. Rubin, Automata-based presentations of infinite structures. In Finite and algorithmic model theory (J. Esparza, Ch. Michaux, and Ch. Steinhorn, eds.) London Mathematical Society Lecture Note Series, 379. Cambridge University Press, Cambridge, 2011, 1-76. MR 2856983 Zbl 1246.03056 q.v. 1295
[6] H. P. Barendregt, The lambda calculus. Its syntax and semantics. Revised edition. Studies in Logic and the Foundations of Mathematics, 103. North-Holland Publishing Co., Amsterdam, 1984. MR 0774952 Zbl 0551.03007 q.v. 1303
[7] C. Broadbent, On collapsible pushdown automata, their graphs and the power of links. Ph.D. thesis. Oxford University, Oxford, 2011. q.v. 1334
[8] Ch. Broadbent, A. Carayol, C.-H. L. Ong, and O. Serre, Recursion schemes and logical reflection. In $25^{\text {th }}$ Annual IEEE Symposium on Logic in Computer Science LICS 2010.

Proceedings of the International Symposium held in Edinburgh, July 11-14, 2010. IEEE Computer Society, Los Alamitos, CA, 2010, 120-129. MR 2953901 IEEEXprore 5570928 q.v. 1296
[9] Ch. Broadbent, A. Carayol, M. Hague, and O. Serre, C-SHORe: a collapsible approach to higher-order verification. In Proceedings of the $18^{\text {th }}$ ACM SIGPLAN international conference on functional programming (G. Morrisett and T. Uustalu, eds.) ICFP '13. Held in Boston, MA, USA, September 25-27, 2013. Association for Computing Machinery (ACM), New York (N.Y.), 2013, 13-24. Zbl 1323.68364 q.v. 1297
[10] Ch. Broadbent and N. Kobayashi, Saturation-based model checking of higher-order recursion schemes. In Computer science logic 2013 (S. Ronchi Della Rocca, ed.). Papers from the $22^{\text {nd }}$ Annual Conference of the EACSL (CSL '13) held in Torino, September 2-5, 2013. LIPIcs. Leibniz International Proceedings in Informatics, 23. Schloss Dagstuhl. LeibnizZentrum für Informatik, Wadern, 2013, 129-148. MR 3111737 Zbl 1356.68141 q.v. 1297
[11] T. Cachat, Higher order pushdown automata, the Caucal hierarchy of graphs and parity games. In Automata, languages and programming (J. C. M. Baeten, J. K. Lenstra, J. Parrow, and G. J. Woeginger, eds.). Proceedings of the $30^{\text {th }}$ International Colloquium (ICALP 2003) held at the Technische Universiteit Eindhoven, Eindhoven, June 30-July 4, 2003. Lecture Notes in Computer Science, 2719. Springer-Verlag, Berlin, 2003, 556-569. MR 2080728 Zbl 1039.68063 q.v. 1296
[12] A. Carayol, A. Meyer, M. Hague, C.-H. L. Ong, and O. Serre, Winning regions of higherorder pushdown games. In $200823^{\text {rd }}$ Annual IEEE Symposium on Logic in Computer Science. Held in Pittsburgh, PA, June 24-27, 2008. IEEE Computer Society, Los Alamitos, CA, 2008, 19-204. IEEEXprore 4557911 q.v. 1296
[13] A. Carayol and O. Serre, Collapsible pushdown automata and labeled recursion schemes equivalence, safety and effective selection. In Proceedings of the 2012 27th Annual ACM/IEEE Symposium on Logic in Computer Science. Held at the University of Dubrovnik, Dubrovnik, June 25-28, 2012. IEEE Computer Society, Los Alamitos, CA, 2012, 165-174. MR 3050437 Zbl 1360.68543 IEEEXprore 6280435 q.v. 1296
[14] A. Carayol and S. Wöhrle, The Caucal hierarchy of infinite graphs in terms of logic and higher-order pushdown automata. In FST TCS 2003: Foundations of software technology and theoretical computer science (P. K. Pandya and J. Radhakrishnan, eds.). Proceedings of the $23^{\text {rd }}$ Conference held in Mumbai, December 15-17, 2003. Lecture Notes in Computer Science, 2914. Springer-Verlag, Berlin, 2003, 112-123. MR 2093642 Zbl 1205.03022 q.v. 1295
[15] D. Caucal, On infinite terms having a decidable monadic theory. In Mathematical foundations of computer science 2002 (K. Diks and W. Rytter, eds.). Papers from the $27^{\text {th }}$ International Symposium (MFCS 2002) held in Warsaw, August 26-30, 2002. Lecture Notes in Computer Science, 2420. Springer-Verlag, Berlin, 2002, 165-176. MR 2064455 Zbl 1014.68077 q.v. 1295, 1296
[16] B. Courcelle, A representation of trees by languages I. Theoret. Comput. Sci. 6 (1978), no. 3, 255-279. MR 0495225 Zbl 0377.68040 q.v. 1294, 1307
[17] B. Courcelle, A representation of trees by languages II. Theoret. Comput. Sci. 7 (1978), no. 1, 25-55. MR 0495226 Zbl 0428.68088 q.v. 1294, 1307
[18] B. Courcelle, The monadic second-order logic of graphs IX: machines and their behaviours. Theoret. Comput. Sci. 151 (1995), no. 1, 125-162. Topology and completion in semantics (Chartres, 1993). MR 1362151 Zbl 0872.03026 q.v. 1295
[19] B. Courcelle and M. Nivat, The algebraic semantics of recursive program schemes. In Mathematical foundations of computer science, 1978 (J. Winkowski, ed.) Proceediings of the $7^{\text {th }}$ Symposium, Zakopane, 1978. Lecture Notes in Computer Science, 64. SpringerVerlag, Berlin etc., 1978, 16-30. MR 0519827 Zbl 0384.68016 q.v. 1294
[20] W. Damm, Higher type program schemes and their tree languages. In Theoretical computer science (H. Tzschach, H. Waldschmidt, and H. K. Walter, eds.). $3^{\text {rd }}$ GI (Gesellschaft für Informatik) Conference. Fachtagung Theoretische Informatik held in Darmstadt, March 28-30, 1977. Lecture Notes in Computer Science, Vol. 48. Springer-Verlag, Berlin etc., 1977, 51-72. MR 0521202 Zbl 0358.68009 q.v. 1294
[21] W. Damm, Languages defined by higher type program schemes. In Automata, languages and programming (A. Salomaa and M. Steinby, eds.). Fourth Colloquium, held at the University of Turku, Turku, July 18-22, 1977. Lecture Notes in Computer Science, 52. Springer-Verlag, Berlin etc., 1977, 164-179. MR 0483620 Zbl 0356.68078 q.v. 1294
[22] W. Damm, The IO- and OI-hierarchies. Theoret. Comput. Sci. 20 (1982), no. 2, 95-207. MR 0666544 Zbl 0478.68012 q.v. 1294, 1305, 1332, 1333
[23] W. Damm and A. Goerdt, An automata-theoretical characterization of the OI-hierarchy. Inform. and Control 71 (1986), no. 1-2, 1-32. MR 0864744 Zbl 0628.68061 q.v. 1294
[24] J. de Miranda, Structures generated by higher-order grammars and the safety constraint. Ph.D. thesis. University of Oxford, Oxford, 2006. q.v. 1293, 1332
[25] J. Engelfriet, Iterated pushdown automata and complexity classes. In Proceedings of the $15^{\text {th }}$ Annual ACM Symposium on Theory of Computing (D. S. Johnson, R. Fagin, M. L. Fredman, D. Harel, R. M. Karp, N. A. Lynch, C. H. Papadimitriou, R. L. Rivest, W. L. Ruzzo, and J. I. Seiferas, eds.) STOC 1983. Held in Boston, MA, April 25-27, 1983. Association for Computing Machinery, New York, 1983, 365-373. q.v. 1294
[26] J. Engelfriet, Iterated stack automata and complexity classes. Inform. and Comput. 95 (1991), no. 1, 21-75. MR 1133778 Zbl 0758.68029 q.v. 1294
[27] J. Engelfriet and E. M. Schmidt, IO and OI. I. J. Comput. System Sci. 15 (1977), no. 3, 328-353. MR 0502290 Zbl 0366.68053 q.v. 1294
[28] J. Engelfriet and E. M. Schmidt, IO and OI. II. J. Comput. System Sci. 16 (1978), no. 1, 67-99. MR 0502291 Zbl 0371.68020 q.v. 1294
[29] J. Flum, E. Grädel, and T. Wilke (eds.), Logic and automata. History and perspectives. Texts in Logic and Games, 2. Amsterdam University Press, Amsterdam, 2008. MR 2549260 Zbl 1198.03006 q.v. 1296
[30] S. Garland and D. Luckham, Program schemes, recursion schemes and formal languages. J. Comput. System Sci. 7 (1973), 119-160. MR 0315930 Zbl 0277.68010 q.v. 1293
[31] E. Grädel, W. Thomas, and T. Wilke (eds.), Automata, logics, and infinite games. A guide to current research. Outcome of a Dagstuhl seminar, February 2001. Lecture Notes in Computer Science, 2500. Springer-Verlag, Berlin, 2002. MR 2070731 Zbl 1011.00037 q.v. 1296
[32] M. Hague, A. S. Murawski, C.-H. L. Ong, and O. Serre, Collapsible pushdown automata and recursion schemes. In $200823^{r d}$ Annual IEEE Symposium on Logic in Computer Science. Held in Pittsburgh, PA, 2008. IEEE Computer Society, Los Alamitos, CA, June 24-27, 2008, 452-461. IEEEXprore 4557934 q.v. 1295, 1297, 1298
[33] J. M. E. Hyland and C.-H. L. Ong, On Full Abstraction for PCF: I. Models, observables and the full abstraction problem. II. Dialogue games and innocent strategies. III. A fully abstract and universal game model. Inform. and Comput. 163 (2000), no. 2, 285-408. MR 1808886 Zbl 1006.68027 q.v. 1296
[34] K. Inaba and S. Maneth, The complexity of tree transducer output languages. In FSTTCS 2008: IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. (R. Hariharan, M. Mukund, and V. Vinay, eds.) LIPIcs. Leibniz International Proceedings in Informatics, 2. Schloss Dagstuhl. Leibniz-Zentrum für Informatik, Wadern, 2008, 244-255. MR 2874087 Zbl 1248.68205 q.v. 1294
[35] K. Indermark, Schemes with recursion on higher types. In Mathematical Foundations of Computer Science (A. W. Mazurkiewicz, ed.). Proceedings of the $5^{\text {th }}$ Symposium, 1976. Lecture Notes in Computer Science, 45. Springer-Verlag, Berlin etc., 1976. 352-358. Zbl 0337.68015 q.v. 1294
[36] T. Knapik, D. Niwiński, and P. Urzyczyn, Deciding monadic theories of hyperalgebraic trees. In Typed lambda calculi and applications. (S. Abramsky, ed.) Proceedings of the $5^{\text {th }}$ International Conference (TLCA 2001) held in Kraków, May 2-5, 2001. Samson Abramsky. Lecture Notes in Computer Science, 2044. Springer-Verlag, Berlin, 2001, 253-267. MR 1890277 Zbl 0981.03012 q.v. 1295, 1332, 1333, 1334
[37] T. Knapik, D. Niwiński, and P. Urzyczyn, Higher-order pushdown trees are easy. In Foundations of software science and computation structures (M. Nielsen and U. Engberg, eds.). Proceedings of the $5^{\text {th }}$ International Conference (FOSSACS 2002) held as part of the Joint European Conference on Theory and Practice of Software (ETAPS 2002) in Grenoble, April 10-12, 2002. Lecture Notes in Computer Science, 2303. Springer-Verlag, Berlin, 2002, 205-222. q.v. 1295, 1296, 1333
[38] T. Knapik, D. Niwiński, P. Urzyczyn, and I. Walukiewicz, Unsafe grammars and panic automata. In Automata, languages and programming (L. Caires, G. F. Italiano, L. Monteiro, C. Palamidessi, and M. Yung, eds.) Proceedings of the $32^{\text {nd }}$ International Colloquium (ICALP 2005) held in Lisbon, July 11-15, 2005. Lecture Notes in Computer Science, 3580. Springer-Verlag, Berlin, 2005, 1450-1461. MR 2184732 Zbl 1081.68054 q.v. 1295, 1296
[39] N. Kobayashi, Model-checking higher-order functions. In PPDP '09: Proceedings of the $11^{\text {th }}$ ACM SIGPLAN conference on Principles and practice of declarative programming (A. Porto and F. J. López-Fraguas, eds.). Association for Computing Machinery, New York, 2009, 25-36. q.v. 1297
[40] N. Kobayashi, Types and higher-order recursion schemes for verification of higher-order programs. In Proceedings of the $36^{\text {th }}$ annual ACM SIGPLAN-SIGACT symposium on principles of programming languages (Z. Shao and B. C. Pierce, eds.) POPL '09, Savannah, GA, January 18-24, 2009. Association for Computing Machinery, New York, 2009, 416-428. Zbl 1315.68099 q.v. 1296
[41] N. Kobayashi, A practical linear time algorithm for trivial automata model checking of higher-order recursion schemes. In Foundations of software science and computational structures (M. Hofmann, ed.). Proceedings of the $14^{\text {th }}$ International Conference (FOSSACS 2011) held as part of the Joint European Conferences on Theory and Practice of Software (ETAPS 2011) in Saarbrücken, March 26-April 3, 2011. Lecture Notes in Computer Science, 6604. Springer, Berlin etc., 2011, 260-274. MR 2813615 Zbl 1326.68187 q.v. 1297
[42] N. Kobayashi, Model checking higher-order programs. J. ACM 60 (2013), no. 3, Art. 20, 62 pp. MR 3078707 Zbl 1281.68157 q.v. 1297
[43] N. Kobayashi and C.-H. L. Ong, A type system equivalent to the modal mu-calculus model checking of higher-order recursion schemes. In $24^{\text {th }}$ Annual IEEE Symposium on Logic in Computer Science. Proceedings of the symposium (LICS 2009) held at UCLA, Los Angeles, CA, August 11-14, 2009. IEEE Computer Society, Los Alamitos, CA, 2009, 179-188. MR 2932382 IEEEXprore 5230581 q.v. 1296
[44] A. N. Maslov, Иерархия индексных языков произвольного уровня. Dokl. Akad. Nauk SSSR 217 (1974), 1013-1016. English translation, The hierarchy of indexed languages of an arbitrary level. Soviet Math. Dokl. 15 (1974), 1170-1174. MR 0366113 Zbl 0316.68042 q.v. 1294
[45] A. N. Maslov, Многоуровневые магазинные автоматы. Probl. Peredachi Inf. 12 (1976), no. 1, 55-62. English translation, Multilevel stack automata. Problems Inform. Transmission 12 (1976), no. 1, 38-42. q.v. 1294, 1311
[46] R. P. Neatherway, S. J. Ramsay, and C.-H. L. Ong, A traversal-based algorithm for higherorder model checking. ACM SIGPLAN Notices 47 (2012), no. 9, 353-364. Proceedings of the $17^{\text {th }}$ ACM SIGPLAN International Conference on Functional Programming. Zbl 1291.68264 q.v. 1297
[47] M. Nivat, Langages algébriques sur le magma libre et sémantique des schémas de programme. In Automata, languages and programming (M. Nivat, ed.). Proceedings of a symposium organized by Institut de Recherche d'Informatique et d'Automatique, July 3-7, 1972. North-Holland Publishing Co., Amsterdam and London, and American Elsevier Publishing Co., New York, 1973, 293-308. MR 0383813 Zbl 0279.68010 q.v. 1293
[48] C.-H. L. Ong, On model-checking trees generated by higher-order recursion schemes. $21^{\text {st }}$ Annual IEEE Symposium on Logic in Computer Science (LICS '06). Held in Seattle, WA, August 12-15, 2006. IEEE Computer Society, Los Alamitos, CA, 2006, 81-90. IEEEXprore 1691219 q.v. 1296
[49] P. Parys, Collapse operation increases expressive power of deterministic higher order pushdown automata. In $28^{\text {th }}$ International Symposium on Theoretical Aspects of Computer Science (T. Schwentick and Ch. Dürr, eds.). Proceedings of the symposium (STACS '11) held in Dortmund, March 10-12, 2011. LIPIcs. Leibniz International Proceedings in Informatics, 9. Schloss Dagstuhl. Leibniz-Zentrum für Informatik, Wadern, 2011, 603-614. MR 2853463 Zbl 1253.68206 q.v. 1310, 1332
[50] P. Parys, On the significance of the collapse operation. In Proceedings of the 2012 27 ${ }^{\text {th }}$ Annual ACM/IEEE Symposium on Logic in Computer Science. Held at the University of Dubrovnik, Dubrovnik, June 25-28, 2012. Held in Nairobi, August 25-28, 2020. IEEE Computer Society, Los Alamitos, CA, 2012, 521-530. MR 3050473 Zbl 1360.68569 IEEEXprore 9219832 q.v. 1332
[51] P. Parys, Homogeneity without loss of generality. In $3^{\text {rd }}$ International Conference on Formal Structures for Computation and Deduction (H. Kirchner, ed.). FSCD 2018, July 9-12, 2018, Oxford, United Kingdom. Leibniz International Proceedings in Informatics, 108. Schloss Dagstuhl. Leibniz-Zentrum für Informatik, Wadern, 2018, art. no. 27, 15 pp. MR 3829384 q.v. 1334
[52] P. Parys, Recursion schemes and the WMSO+U logic. In $35^{\text {th }}$ Symposium on Theoretical Aspects of Computer Science (R. Niedermeier and B. Vallée, eds.). STACS 2018, February 28-March 3, 2018, Caen, France. Selected papers. LIPIcs. Leibniz International Proceedings in Informatics, 96. Schloss Dagstuhl. Leibniz-Zentrum für Informatik, Wadern, 2018, art. no. 53, 16 pp. MR 3779334 Zbl 07228444 q.v. 1296
[53] M. Rabin, Decidability of second-order theories and automata on infinite trees. Trans. Amer. Math. Soc. 141 (1969), 1-35. MR 0246760 Zbl 0221.02031 q.v. 1295
[54] S. J. Ramsay, R. P. Neatherway, and C. L. Ong, A type-directed abstraction refinement approach to higher-order model checking. In POPL '14: Proceedings of the $41^{s t} A C M$ SIGPLAN-SIGACT Symposium on Principles of Programming Languages (S. Jagannathan
and P. Sewell, eds.) Association for Computing Machinery, New York, 2009, 61-72. q.v. 1297
[55] S. Salvati and I. Walukiewicz, Krivine machines and higher-order schemes. In Automata, languages and programming (L. Aceto, M. Henzinger, and J. Sgall, eds.). Part II. Proceedings of the $38^{\text {th }}$ International Colloquium (ICALP 2011) held in Zürich, July 4-8, 2011. Lecture Notes in Computer Science, 6756. Springer, Berlin etc., 2011, 162-173. MR 2852423 Zbl 1333.68111 q.v. 1296
[56] S. Salvati and I. Walukiewicz, Recursive schemes, Krivine machines, and collapsible pushdown automata (A. Finkel, J. Leroux, and I. Potapov, eds.). Proceedings of the $6^{\text {th }}$ International Workshop (RP 2012) held at the University of Bordeaux, Bordeaux, September 17-19, 2012. Lecture Notes in Computer Science, 7550. Springer, Berlin etc., 2012, 6-20. MR 3040103 Zbl 1310.68138 q.v. 1296
[57] S. Schwoon, Model-checking pushdown systems. Ph.D. thesis. Technische Universität München, Munich, 2002. q.v. 1296, 1297
[58] G. Sénizergues, The equivalence problem for deterministic pushdown automata is decidable. In Automata, languages and programming (P. Degano, R. Gorrieri, and A. MarchettiSpaccamela, eds.). Proceedings of the $24^{\text {th }}$ International Colloquium (ICALP '97) held in Bologna, July 7-11, 1997. Lecture Notes in Computer Science, 1256. Springer-Verlag, Berlin etc., 1997, 671-681. MR 1616225 Zbl 1401.68168 q.v. 1294
[59] G. Sénizergues, $L(A)=L(B)$? a simplified decidability proof. Theoret. Comput. Sci. 281 (2002), no. 1-2, 555-608. Selected papers in honour of Maurice Nivat. MR 1909588 Zbl 1050.68096 q.v. 1294
[60] C. Stirling, Decidability of bisimulation equivalence for pushdown processes. Technical Report EDI-INF-RR-0005. School of Informatics. University of Edinburgh, Edinburgh, 2000. q.v. 1294, 1299
[61] C. Stirling, Schema revisited. In Computer science logic (P. Clote and H. Schwichtenberg, eds.). Proceedings of the $14^{\text {th }}$ International Workshop (CSL 2000) held at the Annual Conference of the European Association for Computer Science Logic (EACSL) in Fischbachau, August 21-26, 2000. Lecture Notes in Computer Science, 1862. Springer-Verlag, Berlin etc., 2000, 126-138. MR 1859439 Zbl 0973.68531 q.v. 1294
[62] C. Stirling, Decidability of DPDA equivalence. Theoret. Comput. Sci. 255 (2001), no. 1-2, 1-31. MR 1819064 Zbl 0974.68056 q.v. 1294
[63] W. Thomas, Languages, automata, and logic. In Handbook of formal languages (G. Rozenberg and A. Salomaa, eds.). Vol. 3. Beyond words. Springer, Berlin etc., 1997, 389-455. MR 1470024 q.v. 1296
[64] I. Walukiewicz, Pushdown processes: games and model-checking. Inform. and Comput. 164 (2001), no. 2, 234-263. MR 1816150 Zbl 1003.68072 q.v. 1296

[^0]: ${ }^{1}$ Which should not be confused with terms over a ranked alphabet (cf. Remark 2.2).

[^1]: ${ }^{2}$ Note that t does not contain any variables and hence we do not need to worry about capture of variables.

[^2]: ${ }^{3}$ A set D is directed if D is not empty and for all $x, y \in D$, there exists $z \in D$ such that $x \preccurlyeq z$ and $y \preccurlyeq z$)

[^3]: ${ }^{4}$ Note that we therefore slightly generalise our previous definition, as we implicitly use an infinite stack alphabet, but this does not introduce any technical change in the definition.

[^4]: ${ }^{5}$ Formally, one labels all silent production rules of \mathcal{S} by a fresh symbol e to obtain a labelled scheme \mathcal{S}^{\prime} without silent transitions. The construction presented in this section produces an automaton \mathcal{A}^{\prime} such that $\operatorname{Tree}^{\perp}\left(\mathcal{S}^{\prime}\right)=\operatorname{Tree}{ }^{\perp}\left(\mathcal{A}^{\prime}\right)$. The automaton \mathcal{A} obtained by replacing all e-labelled rules of \mathcal{A} by λ is such that $\operatorname{Tree}^{\perp}(\mathcal{S})=\operatorname{Tree}^{\perp}(\mathcal{A})$.

