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1. Introduction

The main goal of this chapter is to give a self-contained presentation of the equivalence
between two models: higher-order recursion schemes and collapsible pushdown au-
tomata. Roughly speaking, a recursion scheme is a finite typed term rewriting system
and a natural view of recursion schemes is to be considered generators for (possibly in-
finite) trees. Collapsible pushdown automata (CPDA) are an extension of deterministic
(higher-order) pushdown automata and they naturally induce labelled transition systems
(Lts). An Lts is merely a set of relations labelled by a finite alphabet, together with
a distinguished element called the root. Hence unfolding an Lts and contracting silent
transitions define an infinite tree. Applying this construction to CPDA defines a family
of trees that exactly coincides with the family of trees defined by higher-order recursion
schemes. This introduction tries to provide the necessary background and motivation
for these objects.

Recursive applicative program schemes. Historically, recursion schemes go back
to Nivat’s recursive applicative program schemes [47] that correspond to order-1
recursion schemes in our sense (also see related work by Garland and Luckham on
so-called monadic recursion schemes [30]). We refer the reader to [24] that, among
others things, contains a very detailed and rich history of the topic. For Nivat, a
recursive applicative program scheme is a finite system of equations, each of the form
Fi .x1; : : : ; xn/ D pi , where the xj are order-0 variables and pi is some order-0 term
over the nonterminals (the Fi ’s), terminals, and the variables x1; : : : ; xk . In Nivat’s
work, a program is a pair: a program scheme together with an interpretation over some
domain. An interpretation gives any terminal a function (of the correct rank) over the
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domain. Taking the least fixed point of the rewriting rules of a program scheme gives a
(possibly infinite) term over the terminal alphabet (known as the value of the program in
the free/Hebrand interpretation); applying the interpretation to this infinite term gives
the value of the program. Hence, the program scheme gives the uninterpreted syntax
tree of some functional program that is then fully specified owing to the interpretation.

Nivat also defined a notion of equivalence for program schemes: two schemes are
equivalent if and only if they compute the same function under every interpretation.
Later, Courcelle and Nivat [19] showed that two schemes are equivalent if and only
if they generate the same infinite term tree. This latter result clearly underscores
the importance of studying the trees generated by a scheme. Following the work
by Courcelle (see [16] and [17]), the equivalence problem for schemes is known
to be interreducible to the problem of decidability of language equivalence between
deterministic pushdown automata (DPDA). Research on the equivalence for program
schemes was halted until Sénizergues in [58] and [59] established the decidability
of DPDA equivalence, which therefore also solved the scheme equivalence problem.
Sénizegues’ proof was later simplified and improved by Stirling in [62] and [60]. For
more insight about this topic, we refer the reader to [61].

Extension of schemes to higher orders. A recursive function is said to be of higher-
order if it takes arguments that are themselves functions. In Nivat’s program scheme,
both the nonterminals and the variables have order-0. Therefore, they cannot be used
to model higher-order recursive programs. In the late 1970s, there was a substantial
effort in extending program schemes in order to capture higher-order recursion, see [35],
[20], [21], [27], and [28]. Note that evaluation, i.e., computing the value of a scheme
in some interpretation, has been a very active topic, in particular because different
evaluation policies, e.g., call by name (OI) or call by value (IO), lead to different
semantics, see [27], [28], and [22]. In a very influential paper [22], Damm introduced
order-n �-schemes and extended the previously mentioned result of Courcelle and
Nivat. Damm’s schemes mostly coincide with the safe fragment of recursion schemes
as we define them later in this chapter. Note that at that time there was no known model
of automata equi-expressive with Damm’s scheme; in particular, there was no known
reduction of the equivalence problem for schemes to a language equivalence problem
for (some model of) automata.

Later, Damm and Goerdt in [22] and [23] considered the word languages generated
by level-n �-schemes and they showed that they coincide with a hierarchy previously
defined by Maslov in [44] and [45]. To define his hierarchy Maslov introduced higher-
order pushdown automata (higher-order PDA). He also gave an equivalent definition
of the hierarchy in terms of higher-order indexed grammars. In particular, Maslov’s
hierarchy offers an attractive classification of the semi-decidable languages: orders 0, 1,
and 2 are, respectively, the regular, context-free, and indexed languages, though little is
known about languages at higher orders (see [34] for recent results on this topic). Later,
Engelfriet in [25], and [26] considered the characterisation of complexity classes by
higher-order pushdown automata. In particular, he showed that alternating pushdown
automata characterise deterministic iterated exponential time complexity classes.
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Higher-order recursion schemes as generators of infinite structures. Since the late
1990s there has been a strong interest in infinite structures admitting finite descriptions
(either internal, algebraic, logical or transformational), mainly motivated by applica-
tions to program verification. See [5] for an overview about this topic. The central
question is model-checking: given some presentation of a structure and some formula,
decide whether the formula holds. Of course, here decidability is a trade-off between
the richness of the structure and the expressivity of the logic.

Of special interest are tree-like structures. Higher-order PDA as a generating device
for (possibly infinite) labelled ranked trees were first studied by Knapik, Niwiński and
Urzyczyn [37]. As in the case of word languages, an infinite hierarchy of trees is
defined according to the order of the generating PDA; lower orders of the hierarchy
are well-known classes of trees: orders 0, 1, and 2 are respectively the regular [53],
algebraic [18], and hyperalgebraic trees [36]. Knapik et al. considered another method
of generating such trees, namely by higher-order (deterministic) recursion schemes that
satisfy the constraint of safety. A major result in their work is the equi-expressivity of
both methods as tree generators. In particular, it implies that the equivalence problem
for higher-order safe recursion schemes is interreducible to the problem of decidability
of language equivalence between deterministic higher-order PDA.

An alternative approach was developed by Caucal, who introduced [15] two infinite
hierarchies, one made of infinite trees and the other made of infinite graphs, defined by
means of two simple transformations: unfolding, which goes from graphs to trees, and
inverse rational mapping (or MSO-interpretation [14]), which goes from trees to graphs.
He showed that the tree hierarchy coincides with the trees generated by safe schemes.

However the fundamental question open since the early 1980s of finding a class of
automata that characterises the expressivity of higher-order recursion schemes was left
open. Indeed, the results of Damm and Goerdt, as well as those of Knapik et al. may
only be viewed as attempts to answer the question, as they have both had to impose
the same syntactic constraints on recursion schemes, called of derived types and safety,
respectively, in order to establish their results.

A partial answer was later obtained by Knapik, Niwiński, Urzyczyn, and Walukie-
wicz, who proved that order-2 homogeneously-typed (but not necessarily safe) recur-
sion schemes are equi-expressive with a variant class of order-2 pushdown automata
called panic automata [38].

Finally, Hague, Murawski, Ong, and Serre gave a complete answer to the question
in [32]. They introduced a new kind of higher-order pushdown automata, which
generalises pushdown automata with links [2], or equivalently panic automata, to all
finite orders, called collapsible pushdown automata (CPDA), in which every symbol
in the stack has a link to a (necessarily lower-ordered) stack situated somewhere below
it. A major result of their paper is that for every n > 0, order-n recursion schemes and
order-n CPDA are equi-expressive as generators of trees.

Decidability of monadic second order logic. This quest for finding an alternative
description of those trees generated by recursion schemes took place in parallel with
the study of the decidability of the model-checking problem for monadic second-order
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logic (MSO) and modal �-calculus (see [63], [3], [31], and [29] for background about
these logics and connections with finite automata and games). Decidability of the MSO
theories of trees generated by safe schemes was established by Knapik, Niwiński and
Urzyczyn [37] and then Caucal [15] proved a stronger decidability result that holds on
graphs as well. The decidability for order-2 unsafe schemes follows from [38] and
was obtained thanks to the equi-expressivity with panic automata. This result was
independently obtained in [2] with similar techniques.

In 2006, Ong showed the decidability of MSO for arbitrary recursion schemes [48],
and established that this problem is n-EXPTIME complete. This result was obtained
using tools from innocent game semantics (in the sense of Hyland and Ong [33]) and
does not rely on an equivalent automata model for generating trees.

Thanks to their equi-expressivity result, Hague et al. provided an alternative proof
of the MSO decidability for schemes. Indeed, thanks to the equi-expressivity between
schemes and CPDA together with the well-known connections between MSO model-
checking (for trees) and parity games, the model-checking problem for schemes is
interreducible to the problem of deciding the winner in a two-player perfect information
turn-based parity game played over the Lts (i.e., transition graph) associated with
a CPDA. They extended the techniques and results of Walukiewicz (for pushdown
games) [64], Cachat (for higher-order pushdown) [11] (also see [12] for a more precise
study on higher-order pushdown games) and the one from Knapik et al. [38]. These
techniques were later extended by Broadbent, Carayol, Ong, and Serre to establish
stronger results on schemes – in particular closure under MSO marking [8] – and later
by Carayol and Serre to prove that recursion schemes enjoy the effective MSO selection
property [13].

Some years later, following initial ideas by Aehlig [1], Kobayashi [40], and
Kobayashi and Ong [43] gave another proof of the decidability of MSO. The proof
consists of showing that one can associate, with any scheme and formula, a typing sys-
tem (based on intersection types) such that the scheme is typable in this system if and
only if the formula holds. Typability is then reduced to solving a parity game.

Using the �Y -calculus and Krivine Machines, Salvati and Walukiewicz proposed
an alternative approach for the decidability of MSO, as well as, a new proof for
the equivalence between schemes and CPDA, see [55], and [56]. In particular, the
translation from schemes to CPDA is very similar to the one that we present in this
chapter and was independently obtained by the authors in [13].

Recently, Parys established decidability of weak-MSO logic extended by the un-
bounding quantifier (WMSO+U), for schemes [52].

Verification of higher-order programs. Functional languages such as Haskell,
OCaML and Scala strongly encourage the use of higher-order functions. This repre-
sents a challenge for software verification, which usually does not model recursion
accurately, or models only first-order calls (e.g., SLAM [4] and Moped [57]). How-
ever higher-order recursion schemes offer a way of abstracting functional programs in



35. Higher-order recursion schemes and their automata models 1297

a manner that precisely models higher-order control-flow, and because of the �-calcu-
lus/MSO decidability results for them, it opened a very active line of research toward
the verification of higher-order programs.

Even reachability properties (subsumed by the �-calculus) are very useful in prac-
tice: indeed, as a simple example, the safety of incomplete pattern matching clauses
could be checked by asking whether the program can reach a state where a pattern
match failure occurs. More complex reachability properties can be expressed using a
finite automaton and could, for example, specify that the program respects a certain
discipline when accessing a particular resource (see [42] for a detailed overview of the
field). Despite even reachability being .n�1/-EXPTIME complete, recent research has
revealed that useful properties of HORS can be checked in practice.

Kobayashi’s TRecS [39] tool, which checks properties expressible by a determin-
istic trivial Büchi automaton (all states accepting), was the first to demonstrate model-
checking of schemes was possible in practice. It works by determining whether a HORS
is typable in an intersection type system characterising the property to be checked [42].
In a bid to improve scalability, a number of other algorithms have subsequently been de-
signed and implemented, such as Kobayashi’s GTRecS(2) [41] and Neatherway, Ram-
say, and Ong’s TravMC [46] tools, all based on intersection type inference.

Another approach, providing a fresh set of tools that contrast with previous in-
tersection type techniques, was developed by Broadbent, Carayol, Hague and Serre,
relying on an automata-theoretic perspective [9]. Their idea is to start from a recursion
scheme and to translate it to an equivalent CPDA, and then perform the verification on
the latter. In order to avoid state explosion, they used saturation methods (that were
well known to work successfully for pushdown systems [57]) together with an initial
forward analysis. This lead to the C-SHORe tool, which is the first model-checking tool
for the (direct) analysis of collapsible pushdown systems.

Since C-SHORe was released, two new tools were developed. Broadbent and
Kobayashi introduced HorSat (later subsumed by HorSat2), which is an application of
the saturation technique and initial forward analysis directly to intersection type analy-
sis of recursion schemes [10]. Secondly, Ramsay, Neatherway and Ong introduced
Preface [54], using a type-based abstraction-refinement algorithm that attempts to si-
multaneously prove and disprove the property of interest. Both HorSat2 and Preface
perform significantly better than previous tools.

Structure of this chapter. Higher-order recursion schemes are a very rich domain and
we had to make some choices for both the presentation and the content of this chapter.
We decided to devote a large part to the equi-expressivity result between recursion
schemes and collapsible pushdown automata. Indeed, it was a longstanding open
question in the field; it allowed providing an automata-based proof of the decidability of
MSO for recursion schemes; and it gives a tool to who wants to tackle the equivalence
problem for recursion schemes (which is interreducible to language equivalence for
deterministic CPDA). The presentation of the proof we give is novel and can be thought
as a simplification of the original proof in [32]. First, it introduces an alternative
definition of schemes called labelled recursion schemes by means of labelled transition
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systems. In these labelled transition systems, the domain is composed of the ground
terms built using the non-terminal of the scheme; the relations come from the rewriting
rules of the schemes and are labelled by terminals. Second, it presents a transformation
from a recursion scheme to a CPDA, which only uses basic automata techniques, and
does not appeal to objects from game semantics such as traversals. Nevertheless, it
is important to stress that, even if concepts like traversals are no longer present in our
proof, the key ideas come from [32] and the CPDA one derives from a scheme is the
same as the one defined in [32].

The article is organised as follows. § 2 introduces the main concepts (schemes and
CPDA) together with examples. Then in § 3 we give a transformation from CPDA to
schemes and in § 4 we provide the converse transformation. Finally, § 5 is devoted to
the notion of safety.

2. Preliminaries

2.1. Trees and terms. Let A be a finite alphabet. We let A� denote the set of finite
words over A, and we refer to a subset of A� as a language over A. A tree t with
directions in A (or simply a tree if A is clear from the context) is a non-empty prefix-
closed subset of A�. Elements of t are called nodes and " is called the root of t . For a
node u 2 t , the subtree of t rooted at u, denoted tu, is the tree ¹v 2 A� j u � v 2 tº. We
let Trees1.A/ denote the set of trees with directions in A.

A ranked alphabet A is an alphabet together with an arity function, %WA! N. The
terms built over a ranked alphabet A are those trees with directions

EA defD
[

f 2A

Ef; where Ef D
´
¹f1; : : : ; f%.f /º if %.f / > 0,

¹f º if %.f / D 0.

For a tree t 2 Trees1. EA/ to be a term, we require, for all nodes u, that the set
Au D ¹d 2 EA j ud 2 tº is empty if and only if u ends with some f 2 A (hence
%.f / D 0) and if Au is non-empty, then it is equal to some Ef for some f 2 A. We let
Terms.A/ denote the set of terms over A.

For c 2 A of arity 0, we let c denote the term ¹"; cº. For f 2 A of arity n > 0 and
for terms t1; : : : ; tn, we let f .t1; : : : ; tn/ denote the term ¹"º [S

i2Œ1;n�¹fiº � ti . These
notions are illustrated in Figure 1.

2.2. Labelled transition systems. A rooted labelled transition system is an edge-
labelled directed graph with a distinguished vertex, called the root. Formally, a rooted

labelled transition system L (Lts for short) is a tuple hD; r;†; . a�!/a2† i, where D is

a finite or countable set called the domain, r 2 D is a distinguished element called the

root, † is a finite set of labels, and for all a 2 †,
a�! � D � D is a binary relation

on D.
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f2f1

f2f1c

c

c

c

f

f

Figure 1. Two representations of the infinite
term f �2 ¹f1c; f1; "º D f .c; f .c; f .� � � ///
over the ranked alphabet ¹f; cº, assuming
that %.f / D 2 and %.c/ D 0

For any a 2 † and any pair .s; t/ 2 D2 we write s
a�! t to indicate that

.s; t/ 2 a�!, and we refer to it as an a-transition with source s and target t . For a

word w D a1 : : : an 2 †�, we define a binary relation
w�! on D by letting s

w�! t

(meaning that .s; t/ 2 w�!) if there exists a sequence s0; : : : ; sn of elements in D such

that s0 D s, sn D t , and for all i 2 Œ1; n�, si�1
ai�! si . These definitions are extended to

languages over † by taking, for all L � †�, the relation
L�! to be the union of all

w�!
for w 2 L.

When considering Lts associated with computational models, it is usual to allow
silent (or internal) transitions. The symbol for silent transitions is usually " but here, to
avoid confusion with the empty word, we will use � instead. Following [60], p. 31, we
forbid a vertex to be the source of both a silent transition and a non-silent transition.
Formally, an Lts with silent transitions is an Lts hD; r;†; . a�!/a2† i whose set of

labels contains a distinguished symbol, denoted � 2 † and such that for all s 2 D, if s
is the source of a �-transition, then s is not the source of any a-transition with a ¤ �.
We let †� denote the set † n ¹�º of non-silent transition labels. For all words w D
a1 : : : an 2 †��, we let

wH) denote the relation
Lw�!, where Lw

defD ��a1�� : : : ��an��

is the set of words over† obtained by inserting arbitrarily many occurrences of � in w.
An Lts (with silent transitions) is said to be deterministic if for all s; t1 and t2 inD

and all a in †, if s
a�! t1 and s

a�! t2, then t1 D t2.

Caveat 2.1. From now on, we always assume that the Lts we consider are determin-
istic.

We associate a tree with every Lts with silent transitions L, denoted Tree.L/, with
directions in†�, reflecting the possible behaviours of L starting from the root. For this
we let

Tree.L/
defD ¹w 2 †�� j 9s 2 D; r

wH) sº:
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As L is deterministic, Tree.L/ is obtained by unfolding the underlying graph of L from
its root and contracting all �-transitions. Figure 2 presents an Lts with silent transitions
together with its associated tree Tree.L/.

As illustrated in Figure 2, the tree Tree.L/ does not reflect the diverging behaviours
of L (i.e., the ability to perform an infinite sequence of silent transitions). For instance
in the Lts of Figure 2, the vertex s diverges, whereas the vertex t does not. A more
informative tree can be defined in which diverging behaviours are indicated by a ?-
child for some fresh symbol ?. This tree, denoted Tree?.L/, is defined by letting

Tree?.L/ defD Tree.L/ [ ¹w? 2 †��? j 8n > 0; r
w�n

H) sn for some snº:

?

?c c
c

a b

a b a b

r

s t

u a b a b

Figure 2. An Lts L with silent transitions of root r (on the left), the
tree Tree.L/ (in the centre) and the tree Tree?.L/ (on the right)

2.3. Higher-order recursion schemes. Recursion schemes are grammars for simply
typed terms, and they are often used to generate a possibly infinite term. Hence before
introducing recursion schemes, we start with some necessary definitions about simply
typed terms.

Also note that recursion schemes are not traditionally associated with an Lts. Hence
we start with the standard definition of recursion schemes as generators for infinite
terms, and then we provide an alternative definition based on Lts.

2.3.1. Simply typed terms. Types are generated by the grammar � WWD o j � ! � .
Every type � 6D o can be uniquely written as �1 ! .�2 ! � � � .�n ! o/ � � � / where
n > 0 and �1; : : : ; �n are types. The number n is the arity of the type and is denoted by
%.�/. To simplify the notation, we adopt the convention that the arrow is associative to
the right and we write �1 ! � � � ! �n ! o (or .�1; : : : ; �n; o/ to save space).

Intuitively, the base type o corresponds to base elements (such as int in ML).
An arrow type �1 ! �2 corresponds to a function taking an argument of type �1 and
returning an element of type �2. Even if there are no specific types for functions taking
more than one argument, those functions are represented in their curried form. Indeed,
a function taking two arguments of type o and returning a value of type o, in its curried
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form, has the type o! o! o D o! .o! o/; intuitively, the function only takes its
first argument and returns a function expecting the second argument and returning the
desired result.

The order measures the nesting of a type. Formally one defines ord.o/ D 0 and
ord.�1 ! �2/ D max.ord.�1/C1; ord.�2//. Alternatively for a type � D .�1; : : : ; �n; o/
of arity n > 0, the order of � is the maximum of the orders of the arguments plus one,
i.e., ord.�/ D 1Cmax¹ord.�i / j 1 6 i 6 nº.
Example 2.1. The type o ! .o ! .o ! o// has order 1 while ..o ! o/ ! o/ ! o

has order 3.

Let X be a set of typed symbols. For every symbol f 2 X , and every type � , we
write f W � to mean that f has type � . The set of applicative terms1 of type � generated
from X , denoted Terms� .X/, is defined by induction over the following rules. If f W � is
an element ofX then f 2 Terms� .X/; if s 2 Terms�1!�2.X/ and t 2 Terms�1.X/ then
the applicative term obtained by applying t to s, denoted st , belongs to Terms�2.X/. For
every applicative term t , and every type � , we write t W � to mean that t is an applicative
term of type � . By convention, the application is considered to be left-associative, and
thus we write t1t2t3 instead of .t1t2/t3 .

Example 2.2. Assuming that f and g are two function symbols of respective types
.o! o/! o! o and o! o and c is a constant symbol of type o, we have

gcW o; f gW o �! o; f gc D .f g/cW o; f .f g/cW o:
The set Subs.t/ of subterms of t is inductively defined by Subs.f /D¹f º for f 2X

and Subs.t1t2/ D Subs.t1/[ Subs.t2/[ ¹t1t2º. The subterms of the term f .f g/cW o in
Example 2.2 are f .f g/c; f ; f g; f .f g/; c and g. A less permissive notion is that of
argument subterms of t , denoted ASubs.t/, which only keep those subterms that appear
as an argument. The set ASubs.t/ is inductively defined by letting ASubs.t1t2/ D
ASubs.t1/ [ ASubs.t2/ [ ¹t2º and ASubs.f / D ¿ for f 2 X . In particular if
t D F t1 : : : tn, ASubs.t/ D Sn

iD1.ASubs.ti / [ ¹tiº/. The argument subterms of
f .f g/cW o are f g; c and g. In particular, for all terms t , one has jASubs.t/j < jt j.
Fact 1. Any applicative term t over X can be uniquely written as F t1 : : : tn where
F is a symbol in X of arity %.F / > n and ti are applicative terms for all i 2 Œ1; n�.
Moreover if F has type .�1; : : : ; �%.F /; 0/ 2 X , then for all i 2 Œ1; n�, ti has type �i and
t W .�nC1; : : : ; �%.F /; 0/.
Remark 2.2. In the following, we will simply write “term” instead of “applicative
term” and let Terms.X/ denote the set of applicative terms of ground type over X . It
should be clear from the context if we are referring to applicative terms over a typed
alphabet or terms over a ranked alphabet. Of course, a ranked alphabet A can be seen
as a typed alphabet by assigning the type

o �! � � � �! o �!„ ƒ‚ …
%.f /

o

1 Which should not be confused with terms over a ranked alphabet (cf. Remark 2.2).



1302 Arnaud Carayol and Olivier Serre

to every symbol f of A. In particular, every symbol in A has order 0 or 1. The finite
terms over A (seen as a ranked alphabet) are in bijection with the applicative ground
terms over A (seen as a typed alphabet).

2.3.2. Recursion schemes. For each type � , we assume an infinite set V� of variables
of type � , such that V�1 and V�2 are disjoint whenever �1 6D �2, and we write V for the
union of those sets V� as � ranges over types. We use letters x; y; ';  ; �; �; : : : to range
over variables.

A (deterministic) recursion scheme is a 5-tuple S D hA;N;R; Z;?i where

� A is a ranked alphabet of terminals and ? is a distinguished terminal symbol
of arity 0 (and hence of ground type) that does not appear in any production
rule,
� N is a finite set of typed non-terminals; we use upper-case letters F;G;H; : : :

to range over non-terminals,
� Z 2 N is a distinguished initial symbol of type o which does not appear in any

right-hand side of a production rule,
� R is a finite set of production rules, one for each non-terminalF W .�1; : : : ; �n; o/,

of the form
Fx1 : : : xn �! e

where the xi are distinct variables with xi W �i for i 2 Œ1; n� and e is a ground
term in Terms..An¹?º/[.N n¹Zº/[¹ x1; : : : ; xn º/. Note that the expressions
on both sides of the arrow are terms of ground type.

The order of a recursion scheme is defined to be the highest order of (the types of)
its non-terminals.

2.3.3. Rewriting system associated with a recursion scheme. A recursion scheme
S induces a rewriting relation, denoted !S, over Terms.A [ N/. Informally, !S

replaces any ground subterm F t1 : : : t%.F / starting with a non-terminal F by the right-
hand side of the production ruleFx1 : : : xn ! e in which the occurrences of the “formal
parameter” xi are replaced by the actual parameter ti for i 2 Œ1; %.F /�.

The term MŒt=x� obtained by replacing a variable xW � by a term t W � over A [ N
in a term M over A[N [ V is defined2 by induction on M by taking

.t1t2/Œt=x�D t1Œt=x�t2Œt=x�;
'Œt=x�D ' for ' 2 A[N [ V if ' ¤ x;
xŒt=x�D t:

The rewriting system!S is defined by induction using the following rules:

� Substitution: F t1 : : : tn !S e
�
t1
x1
; : : : ; tn

xn

�
where Fx1 : : : xn ! e is a produc-

tion rule of S;

� Context: if t !S t
0 then .st/!S .st

0/ and .ts/!S .t
0s/.

2 Note that t does not contain any variables and hence we do not need to worry about capture of
variables.
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Example 2.3. Consider S, the order-2 recursion scheme with the set of non-terminals
¹ZW o;H W .o; o/; F W ..o; o; o/; o/º, variables ¹zW o; 'W .o; o; o/º, terminals A D ¹f; aº of
arity 2 and 0 respectively, and the following rewrite rules:

Z �! f .Ha/.F f /;

Hz �!H.Hz/;

F ' �! 'a.F '/:

Figure 3 depicts the first rewriting steps of!S , starting from the initial symbol Z.
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H
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a

a

H

a

f

f

F

f

a

H

H

a

f

F

f

H

H

H

a

Figure 3

As illustrated above, the relation!S is confluent, i.e., for all ground terms t ,t1 and
t2, if t !�

S
t1 and t !�

S
t2 (here!�

S
denotes the transitive closure of!S), then there

exists t 0 such that t1 !�S t 0 and t2 !�S t 0. The proof of this statement is similar to proof
of the confluence of the lambda-calculus [6].

2.3.4. Value tree of a recursion scheme. Informally the value tree of (or the tree gen-
erated by) a recursion scheme S, denoted ŒŒ S ��, is a (possibly infinite) term, constructed
from the terminals in A, that is obtained as the “limit” of the set of all terms that can
obtained by iterative rewriting from the initial symbol Z.
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The terminal symbol ?W o is used to formally restrict terms over A [ N to their
terminal symbols. We define a map .�/?WTerms.A [ N/ �! Terms.A/ that takes an
applicative term and replaces each non-terminal, together with its arguments, by ?W o.
We define .�/? inductively as follows, where a ranges over A-symbols, and F over
non-terminals in N :

a? D a;
F? D?;

.st/? D
´
? if s? D ?;
.s?t?/ otherwise.

Clearly if t 2 Terms.A [ N/ is of ground type then t? 2 Terms.A/ is of ground type
as well.

Terms built over A can be partially ordered by the approximation ordering 4
defined for all terms t and t 0 over A by t 4 t 0 if t \ . EA n ¹?º/� � t 0. In other terms, t 0

is obtained from t by substituting some occurrences of ? by arbitrary terms over A.
The set of terms over A together with 4 form a directed complete partial order,

meaning that any directed3 subset D of Terms.A/ admits a supremum, denoted supD.
Clearly if s !S t then s? 4 t?. The confluence of the relation!S implies that

the set ¹ t? j Z !�
S
t º is directed. Hence the value tree of (or the tree generated by) S

can be defined as its supremum,

ŒŒ S �� D sup¹ t? j Z !�S t º:
We write RecTreenA for the class of value trees ŒŒ S ��, where S ranges over order-n

recursion schemes.

Example 2.4. The value tree of the recursion scheme S of Example 2.3 is as in Figure 4.

f

f

f

f

f

a

a

a

a

?

D sup

? , f

??

, f

f

?a

?

, . . .

Figure 4

3 A set D is directed if D is not empty and for all x; y 2 D, there exists z 2 D such that x 4 z and
y 4 z)
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Remark 2.3. The relation !S is unrestricted, in the sense that any ground subterm
starting with a non-terminal can be rewritten. A more constrained rewriting policy
referred to as outermost-innermost (OI) only allows rewriting a ground non-terminal
subterm if it is not below any non-terminal symbols (i.e., it is outermost) [22]. The
corresponding rewriting relation is denoted !S;OI. Note that using !S;OI instead of
!S does not change the value tree of the scheme, i.e., sup¹ t? j Z !�

S
t º D sup¹ t? j

Z !�
S;OI t º.

Another rewriting policy referred to as innermost-outermost (IO) only allows
rewriting a ground non-terminal subterm if this subterm does not contain a ground non-
terminal as subterm (i.e., it is innermost) [22]. The corresponding rewriting relation
is denoted!S;IO. Note that using!S;IO instead of!S may change the value tree of
the scheme. Indeed, consider as an example the recursion scheme S0 obtained from the
scheme S in Example 2.3 by replacing its first production rule by the following two
rules:

Z �!K.Ha/.Ff /;

Kxy �! f xy:

Hence, we just added an intermediate non-terminal K , and one easily checks that
ŒŒ S �� D ŒŒ S0 ��. As the non-terminal H is not productive, following the IO policy, the
second production rule will never be used, and therefore sup¹ t? j Z !�

S0;IO t º D ?.

2.3.5. Labelled recursion schemes. A labelled recursion scheme is a recursion scheme
without terminal symbols but whose productions are labelled by a finite alphabet. This
slight variation in the definition allows us to associate a Lts with every labelled recur-
sion scheme.

A deterministic labelled recursion scheme is a 5-tuple S D h†;N;R; Z;?iwhere

� † is a finite set of labels and ? is a distinguished symbol in †,
� N is a finite set of typed non-terminals; we use upper-case letters F;G;H; : : :

to range over non-terminals,
� ZW o 2 N is a distinguished initial symbol which does not appear in any right-

hand side,
� R is a finite set of production rules of the form

Fx1 : : : xn
a�! e

where a 2 † n ¹?º, F W .�1; : : : ; �n; o/ 2 N , the xi are distinct variables, each
xi is of type �i , and e is a ground term over .N n ¹Zº/[ ¹ x1; : : : ; xn º.

In addition, we require that there is at most one production rule starting
with a given non-terminal and labelled by a given symbol.
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The Lts associated with S has the set of ground terms overN as domain, the initial

symbol Z as root, and, for all a 2 †, the relation
a�! is defined by

F t1 : : : t%.F /
a�! e

�
t1
x1
; : : : ;

t%.F /

x%.F /

�

if Fx1 : : : xn
a�! e is a production rule. The tree generated by a labelled recursion

scheme S, denoted Tree?.S/, is the tree Tree? of its associated Lts. To use labelled
recursion schemes to generate terms over a ranked alphabet A, it is enough to enforce
that for every non-terminal F 2 N :

� either there is a unique production starting with F which is labelled by �,
� or there is a unique production starting with F which is labelled by some

symbol c of arity 0 and whose right-hand side starts with a non-terminal that
comes with no production rule in the scheme,
� or there exists a symbol f 2 A with %.f / > 0 such that the set of labels of

production rules starting with F is exactly Ef .

Z

Nf

F

Nf

H

Na

F

Nf

H

Na

f2

f1

Nf

F

Nf

Na

H

H

Na

Na
f1

f2

X
a

Z Nf .H Na/ .F Nf / Na a
X

H z H .H z/ Nf x y f1
x

F ' ' Na .F '/ Nf x y f2
y

Figure 5. A labelled recursion scheme generating
the same term as the scheme of Example 2.3

Recursion schemes and labelled recursion schemes are equi-expressive for gener-
ating terms.

Theorem 2.4. The recursion schemes and the labelled recursion schemes generate the
same terms. Moreover the translations are linear and preserves order and arity.

Proof. Let S D hA;N;R; Z;?i be a recursion scheme. We define a labelled recursion
scheme S0 D h EA;N 0;R0; Z;?i generating the term ŒŒ S ��. For each terminal symbol
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f 2 A, we introduce a non-terminal symbol, denoted

Nf W o! � � � ! o!„ ƒ‚ …
%.f /

o:

The set of non-terminal symbols of S0 is N [ ¹ Nf j f 2 Aº [ ¹Xº, where X is assumed
to be a fresh non-terminal. With a term t over A [ N , we associate the term Nt over
N 0 obtained by replacing every occurrence of a terminal symbol f by its nonterminal
counterpart Nf . The production rules of S0 are as follows:

¹Fx1 : : : xn
��! Ne j Fx1 : : : xn �! e 2 Rº

[ ¹ Nf x1 : : : x%.f /
fi�! xi j f 2 A with %.f / > 0 and i 2 Œ1; %.f /�º

[ ¹ Nc c�! X j c 2 A with %.c/ D 0º:

Conversely, let A be ranked alphabet and let S D h EA;N;R; Z;?i be a labelled
recursion scheme respecting the syntactic restrictions mentioned above. We define a
recursion scheme S0 D hA;N;R0; Z;?i generating the same term as S. The set of
production rules of S0 are defined as follows:

� if Fx1 : : : xn
��! e belongs to R (in this case it is the only rule starting with

F ) then Fx1 : : : xn ! e belongs to R0;
� if, for some c of arity 0, Fx1 : : : xn

c�! e belongs to R (in this case it is the
only rule starting with F and e starts with a non-terminal that has no rule in R)
then Fx1 : : : xn ! c belongs to R0;

� if, for some f 2 A of arity %.f / > 0, Fx1 : : : xn
fi�! ei belongs to R for all

1 6 i 6 %.f /, then Fx1 : : : xn ! f e1 : : : e%.f / belongs to R0.

2.3.6. Examples of trees defined by labelled recursion schemes. In this section,
we provide some examples of trees defined by labelled recursion schemes. Given a
languageL over†, we let Pref.L/ denote the tree in Trees1.†/ containing all prefixes
of words in L.

The tree Pref.¹anbn j n > 0º/. Let us start with the tree T0 corresponding to the
deterministic context-free language Pref.¹anbn j n > 0º/. As is the case for all
prefix-closed deterministic context-free languages (see [16] and [17] or Theorem 4.8
at order 1), T0 is generated by an order-1 scheme S0.

Z
a�!HX; Hx

a�!H.Bx/;

Bx
b�! x; Hx

b�! x;

with Z;X W o and H;BW o! o. The tree generated by S0 is given in Figure 6.
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Z H X

X

H .B X/

B X

X

H .B .B X//

B .B X/

B X

X

� � �a a

b

a

b

b

b

b

b

a

Figure 6

The tree Pref.¹anbncn j n > 0/. Using order-2 schemes, it is possible to go
beyond deterministic context-free languages and define, for instance the tree T1 D
Pref.¹anbncn j n > 0º/. Consider the order-2 scheme S1 given by

Z
a�! F I.KCI/; F ' 

a�! F .KB'/.KC /;

Bx
b�! x; F ' 

b�!  .'X/;

Cx
c�! x; K' x

��! '. .x//;

Ix
��! x:

with

� Z;X W o,
� B;C; I W o! o,
� F W ..o! o/; .o! o/; o/, and
� KW ..o! o/; .o! o/; o; o/.

Intuitively, the non-terminal K plays the role of the composition of functions of

type o! o (i.e., for any terms F1; F2W o! o and t W o, KF1F2t
��! F1.F2t/). For any

term GW o! o, we defineGn for all n > 0 by takingG0 D I and GnC1 D KGGn. For

any ground term t , Gnt behaves as G.: : : .G„ ƒ‚ …
n

.I t// : : : / and, in particular BnX
bn

H) X .

For all n > 0, we have

Z
an

�! FBn�1C n
b�! C n.Bn�1X/

bn�1cn

HHHH) X:

The tree Pref.¹ancb2n

j n > 0º/. Following the same ideas as for S1, the tree

Texp D Pref.¹ancb2n j n > 0º/:
is define by the order-2 scheme Sexp given below:

Z
��! FB; F'

a�! F .D'/; D'x
��! '.'x/;

Bx
b�! x; F '

c�! 'X;
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with

Z;X W o; BW o �! o; DW .o �! o; o; o/; F W .o �! o; o/:

If we let DnB denote the term of type o! o defined by

D0B D B and DnC1B D D.DnB/

for n > 0, we have

Z
an

H) FDnB:

As, intuitively,D doubles its argument,DnB behaves likeB2
n

for n > 0. In particular,
DnBX reduces by b2

n
to X .

For all n > 0,

Z
an

H) FDnB
c�! DnBX

b2n

H) X:

The trees corresponding to the tower of exponentials of height k. At order kC1 >
1, we can define the tree Texpk

D Pref.¹ancbexpk.n/ j n > 0º/where we let exp0.n/ D n
and expkC1.n/ D 2expk.n/ for k > 0. We illustrate the idea by giving an order-3 scheme

generating Texp2
D Pref.¹ancb22n

j n > 0º/,

Z
��! FD1; F 

a�! F .D2 /; D2 'x
��! . . '//x;

Bx
b�! x; F '

c�! 'BX D1 x
��!  . x/;

with

Z;X W o; BW o �! o; F W ..o �! o; o; o/; o/;

D1W .o �! o; o; o/; D2W ..o �! o; o; o/; o �! o; o; o/:

If we let Dn
2D1 denote the term of type .o! o; o; o/ defined by

D0
2D1 D D1

and

DnC1
2 D1 D D2Dn

2D1 for n > 0,

then

Z
an

H) FDn
2D1:

As D2 intuitively double its argument with each application, Dn
2D1 behaves as D2n

1

and hence D2n

1 B behaves as B2
2n

.
For all n > 0,

Z
an

H) FDn
2D1

c�! Dn
2D1BX

b22n

H) X:
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The tree of the Urzyczyn language. All schemes presented in this section satisfy a
syntactic restriction, called the safety condition, that will be discussed in the last section
of this chapter. Paweł Urzyczyn conjectured that (a slight variation) of the tree described
below, though generated by a order-2 scheme, could not be generated by any order-2
scheme satisfying the safety condition. This conjecture was proved by Paweł Parys
in [49].

The tree TU has directions in ¹.; /; ?º. A word over ¹.; /º is well bracketed if it has
as many opening brackets as closing brackets and if, for every prefix, the number of
opening brackets is greater than the number of closing brackets.

The language U is defined as the set of words of the form w?n where w is a prefix
of a well-bracketed word and n is equal to jwj� jujC1, where u is the longest suffix of
w that is well bracketed. In other words, n equals 1 ifw is well bracketed, and otherwise
it is equal to the index of the last unmatched opening bracket plus one.

For instance, the words ./...// ? ? ? ? and ./././? belong to U . The tree TU is
simply Pref.U /. The following scheme SU generates TU :

Z
��! G.HX/; F 'xy

.�! F .F'x/y.Hy/;

Gz
.�! FGz.Hz/; F 'xy

/�! '.Hy/;

Gz
?�! X; F 'xy

?�! x;

Hu
?�!;

with Z;X W o, G;H W o! o and F W .o! o; o; o/.
To better explain the inner workings of this scheme, let us introduce some syntactic

sugar. With every integer, we associate a ground term by letting 0 D X and, for all
n > 0, nC 1 D Hn. With every sequence Œn1 � � �n`� of integers, we associate a term
of type o ! o by letting Œ � D G and Œn1 � � �n`n`C1� D F Œn1 � � �n`�n`C1. Finally we
write .Œn1 � � �n`�;n/ to denote the ground term Œn1 � � �n`�n.

The scheme can be revisited as follows:

Z
��! .Œ �; 1/; .Œ �;nC 1/

?�! 0; .Œn1 � � �n`�;n/
?�! n`; nC 1

?�! n;

.Œn1 � � �n`�;n/
.�! .Œn1 � � �n`n�;nC 1/;

.Œn1 � � �n`�;n/
/�! .Œn1 � � �n`�1�;nC 1/:

Let w D w0 � � �wjw j�1 be a prefix of a well-bracketed word. We have

Z
wH) .Œn1 � � �n`�; jwj C 1/;

where Œn1 � � �n`� is the sequence (in increasing order) of those indices of unmatched

opening brackets in w. In turn, .Œn1 � � �n`�; jwj/
?�! n`

?n`�! 0. Hence, as expected, the
number of ? symbols is equal to 1 if w is well bracketed (i.e., ` D 0), and otherwise it
is equal to the index of the last unmatched opening bracket plus one.
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2.4. Higher-order pushdown automata

2.4.1. Higher-order stack and their operations. Higher-order pushdown automata
were introduced by Maslov [45] as a generalisation of pushdown automata. First, recall
that a (order-1) pushdown automaton is a machine with a finite control together with
an auxiliary storage given by a (order-1) stack whose symbols are taken from a finite
alphabet. A higher-order pushdown automaton is defined in a similar way, except that
it uses a higher-order stack as auxiliary storage. Intuitively, an order-n stack is a stack
whose base symbols are order-.n � 1/ stacks, with the convention that order-1 stacks
are just stacks in the classical sense.

Fix a finite stack alphabet � and a distinguished bottom-of-stack symbol ? 62 � .
An order-1 stack is a sequence ?; a1; : : : ; a` 2 ?�� which is denoted [?a1 : : : a`]1.
An order-k stack (or a k-stack), for k > 1, is a non-empty sequence s1; : : : ; s` of order-
.k � 1/ stacks which is written [s1 : : : s`]k . For convenience, we may sometimes see
an element a 2 � as an order-0 stack, denoted [a]0. We let Stacksk denote the set of
all order-k stacks and Stacks D S

k>1 Stacksk the set of all higher-order stacks. The
height of the stack s denoted jsj is simply the length of the sequence. We denote by
ord.s/ the order of the stack s.

A substack of an order-1 stack [?a1 : : : ah]1 is a stack of the form [?a1 : : : ah0]1
for some 0 6 h0 6 h. A substack of an order-k stack [s1 � � � sh]k , for k > 1, is either a
stack of the form [s1 � � � sh0]k with 0<h0 6 h or a stack of the form [s1 � � � sh0s0]k with
0 6 h0 6 h � 1 and s0 a substack of sh0C1. We denote by s v s0 the fact that s is a
substack of s0.

Example 2.5. The stack

s D [[[?baac]1[?bb]1[?bcc]1[?cba]1]2[[?baa]1[?bc]1[?bab]1]2]3

is an order-3 stack of height 2.

In addition to the operations pusha1 and pop1 that respectively pushes and pops a
symbol in the topmost order-1 stack, one needs extra operations to deal with the higher-
order stacks: the popk operation removes the topmost order-k stack, while the pushk
duplicates it.

For an order-n stack s D [s1 : : : s`]n and an order-k stack t with 0 6 k < n, we
define s CCt as the order-n stack obtained by pushing t on top of s:

s CCt D
´
[s1 : : : s`t]n if k D n � 1,

[s1 : : : .s` CCt/]n otherwise.

We first define the (partial) operations popi and topi with i > 1: topi .s/ returns the
top .i �1/-stack of s, and popi .s/ returns s with its top .i �1/stack removed. Formally,
for an order-n stack [s1 : : : s`C1]n with ` > 0

topi .[s1 : : : s`C1]n/ D
´
s`C1 if i D n;
topi .s`C1/ if i < n;
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popi .[s1 : : : s`C1]n/ D
´
[s1 : : : s`]n if i D n and ` > 1;

[s1 : : : s` popi .s`C1/]n if i < n:

By abuse of notation, we let topord.s/C1.s/ D s. Note that popi .s/ is defined if and
only if the height of topiC1.s/ is strictly greater than 1. For example, pop2.[[?ab]1]2/
is undefined.

We introduce the operations pushi with i > 2 that duplicates the top .i � 1/-stack
of a given stack. More precisely, for an order-n stack s and for 2 6 i 6 n, we let
pushi .s/ D s CCtopi .s/.

The last operation, pusha1 pushes the symbol a 2 � on top of the top 1-stack. More
precisely, for an order-n stack s and for a symbol a 2 � , we let pusha1.s/ D s CC[a]0.
Example 2.6. Let s be the order-3 stack of Example 2.5. Then we have

top3.s/ D [[?baa]1[?bc]1[?bab]1]2;
pop3.s/ D [[[?baac]1[?bb]1[?bcc]1[?cba]1]2]3:

Note that pop3.pop3.s// is undefined.
We also have that

push2.pop3.s//D [[[?baac]1[?bb]1[?bcc]1[?cba]1[?cba]1]2]3;
pushc1.pop3.s//D [[[?baac]1[?bb]1[?bcc]1[?cbac]1]2]3:

2.4.2. Stacks with links and their operations. We define a richer structure of higher-
order stacks where we allow links. Intuitively, a stack with links is a higher-order stack
in which any symbol may have a link that points to an internal stack below it. This link
may be used later to collapse part of the stack.

Order-n stacks with links are order-n stacks with a richer stack alphabet. Indeed,
each symbol in the stack can be either an element a 2 � (i.e., not being the source of
a link) or an element .a; `; h/ 2 � � ¹2; : : : ; nº �N (i.e., being the source of an `-link
pointing to the h-th .` � 1/-stack inside the topmost `-stack).

Formally, order-n stacks with links over the alphabet � are defined as order-n
stacks4 over alphabet � [ � � ¹2; : : : ; nº �N.

Example 2.7. The stack s equals to

[[[?baac]1[?bb]1[?bc.c; 2; 2/]1]2[[?baa]1[?bc]1[?b.a; 2; 1/.b; 3; 1/]1]2]3
is an order-3 stack with links.

To improve readability when displaying n-stacks in examples, we shall explicitly
draw the links rather than using stacks symbols in � � ¹2; : : : ; nº �N. For instance, we
shall rather represent s as follows:

[[[?baac]1[?bb]1[?bcc]1]2[[?baa]1[?bc]1[?bab]1]2]3
4 Note that we therefore slightly generalise our previous definition, as we implicitly use an infinite stack

alphabet, but this does not introduce any technical change in the definition.
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In addition to the previous operations popi , pushi and pusha1 , we introduce two
extra operations: one to create links, and the other to collapse the stack by following a
link.

Link creation is made when pushing a new stack symbol, and the target of an `-link
is always the .` � 1/-stack below the topmost one. Formally, we define pusha;`1 .s/ D
push

.a;`;h/
1 where we let h D jtop`.s/j � 1 and require that h > 1.
The collapse operation is defined only when the topmost symbol is the source of an

`-link, and results in truncating the topmost ` stack to only keep the component below
the target of the link. Formally, if top1.s/ D .a; `; h/ and s D s0 CCŒt1 : : : tk�` with
k > h we let collapse.s/ D s0 CCŒt1 : : : th�`.

For any n, we let Opn.�/ denote the set of all operations over order-n stacks with
links.

Example 2.8. Take the 3-stack s D [[[?a]1]2 [[?]1[?a]1]2]3. We have

pushb;21 .s/D [[[?a]1]2 [[?]1[?ab]1]2]3;
collapse.pushb;21 .s//D [[[?a]1]2 [[?]1]2]3

pushc;31 .pushb;21 .s//„ ƒ‚ …
�

;D [[[?a]1]2 [[?]1[?abc]1]2]3:

Then push2.�/ and push3.�/ are respectively

[[[?a]1]2 [[?]1[?abc]1[?abc]1]2]3
and

[[[?a]1]2 [[?]1[?abc]1]2 [[?]1[?abc]1]2]3:
We have

collapse.push2.�// D collapse.push3.�// D collapse.�/ D [[[?a]1]2]3:
2.4.3. Higher-order pushdown automata and collapsible automata. An order-n
(deterministic) collapsible pushdown automaton (n-CPDA) is a 5-tuple A D h†;�;Q;
ı; q0 i where † is an input alphabet containing a distinguished symbol denoted �, the
set � is a stack alphabet,Q is a finite set of control states, q0 2 Q is the initial state, and
ıWQ � � �†! Q � Opn.�/ is a (partial) transition function such that, for all q 2 Q
and 
 2 � , if ı.q; 
; �/ is defined then for all a ¤ �, the value ı.q; 
; a/ is undefined,
i.e., if some �-transition can be taken, then no other transition is possible. We require
ı to respect the convention that ? cannot be pushed onto or popped from the stack.

In the special case where ı.q; 
; �/ is undefined for all q 2 Q and 
 2 � , we refer
to A as a �-free n-CPDA.

In the special case where collapse … ı.q; 
; a/ for all q 2 Q, 
 2 � and a 2 †,
A is called a higher-order pushdown automaton.
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Let A D h†;�;Q; ı; q0 i be an n-CPDA. A configuration of an n-CPDA is a
pair of the form .q; s/ where q 2 Q and s is an n-stack with link over �; we let
Config.A/ denote the set of configurations of A and we call .q0; ŒŒ: : : Œ?�1 : : : �n�1�n/
the initial configuration. It is then natural to associate with A a deterministic Lts

denoted LA D hD; r;†; .
a�!/a2† i and defined as follows. We let D be the set

of all configurations of A and r be the initial one. Then, for all a 2 † and all

.q; s/; .q0; s0/ 2 D we have .q; s/
a�! .q0; s0/ if and only if ı.q; top1.s/; a/ D .q0; op/

and s0 D op.s/.
The tree generated by an n-CPDA A, denoted Tree?.A/, is the tree Tree?.LA/ of

its Lts.

3. From CPDA to recursion schemes

In this section, we argue that, for any CPDA A, one can construct a labelled recursion
scheme (of the same order) that generates the same tree. For this, we first introduce a
representation of stacks and configurations of A by applicative terms. Then we define
a labelled recursion scheme S and finally we show that the Lts associated with S is the
same as the one associated with A, which shows that S and A define the same tree.

For the rest of this section we fix an order-n CPDA A D h†;�;Q; ı; q1 i and we
let the state-set of A be Q D ¹q1; : : : ; qmº where m > 1. In order to treat in a uniform
way those stack symbols that come with a link and those that do not, we will attach fake
links, which we refer to as 1-links (recall that so far all links were `-links with ` > 1) to
those symbols that have no link; moreover collapse.s/ will be undefined for any stack
s such that top1.s/ has a 1-link. In the following, we therefore write pusha;11 instead of
pusha1.

3.1. Term representation of stacks and configurations. We start by defining some
useful types. First we identify the base type o with a new type denoted n. Inductively,
for each 0 6 k < n we define a type

k D .kC 1/m �! .kC 1/

where, for types A and B , we write Am ! B as a shorthand for A! � � � ! A„ ƒ‚ …
m

! B .

In particular, for every 0 6 k 6 n,

k D .kC 1/m �! .kC 2/m �! � � � �! nm �! n:

We also introduce, for every 1 6 k 6 n a non-terminal Voidk of type k.
Assume s is an order-n stack and p is a control state of A. In the sequel, we will

define, for every 0 6 k 6 n, a term Œjsj�p
k
Wk that represents the behaviour of the topk

stack in s. To understand why Œjsj�p
k

is of type k one can view an order-k stack as
acting on order-.kC 1/ stacks: for every order-.kC 1/ stack we can build a new order-
.kC1/ stack by pushing an order-k stack on top of it. This behaviour corresponds to the
type .kC 1/ ! .kC 1/. However, for technical reasons, when dealing with control
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states and configurations, we need to work withm copies of each stack (one per control
state). Hence we view a k-stack as mapping m copies of an order-.k C 1/ stack to a
single order-.k C 1/ stack. This explains why k is defined to be .kC 1/m ! .kC 1/.

For every stack symbol a, every 1 6 ` 6 n and every state p 2 Q, we introduce a
non-terminal

Fa;`p W `m �! 1m �! � � � �! nm �! n

For every 0 6 k 6 n, every state p and every order-n stack s whose top1
symbol is some a with an `-link, we define (inductively) the following term of order
k D .kC 1/m ! � � � ! nm ! n:

Œjsj�p
k
D Fa;`p Œjcollapse.s/j�q1:::qm

`

Œjpop1.s/j�q1:::qm

1 Œjpop2.s/j�q1:::qm

2 : : : Œjpopk.s/j�q1:::qm

k

where

� Œjt j�q1 :::qm

h
is a shorthand for (the sequence), Œjt j�q1

h
Œjt j�q2

h
: : : Œjt j�qm

h
,

� Œjpopi .s/j�
qj

i D Voidi for all j 2 Œ1;m� if popi .s/ is undefined,
� Œjcollapse.s/j�qj

1 D Void1 for all j 2 Œ1;m�; note that it corresponds to the case
where top1.s/ has a 1-link (i.e., a fake link); hence collapse.s/ is undefined.

Note that the previous definition is well founded, as every stack in the definition
of Œjsj�p

k
has fewer symbols than s. Intuitively, Œjsj�p

k
represents the top k-stack of the

configuration .p; s/, i.e., top.kC1/.s/.

Example 3.1. Consider the following order-2 stack

s D [[?a]1[?b]1[?bc]1]2
and assume (for simplicity) that we have a unique control state p. Then one has

Œjsj�p2 D Fc;1p Void1.F
b;2
p �.F?;1p Void1Void1//.F

b;2
p �.F?;1p Void1Void1/�//;

where
� D Œj[[?a]1]2j�p2 D Fa;1p Void1.F

?;1
p Void1Void1/Void2:

Let s and t be two order-n stacks with links and let k > 1. We shall say that s and
t are topk-identical if and only if the following holds:

� s and t are top1-identical if and only s and t have the same top1 symbol
with an `-link (for some `) and (if defined) collapse.s/ and collapse.t/ are
top`C1-identical;
� and for k > 1, s and t are topk-identical if and only for all j > 0, pop

j

k�1.s/ is

defined if and only if pop
j

k�1.t/ is defined, and when defined, pop
j

k�1.s/ and

pop
j

k�1.t/ are top.k�1/-identical.

Note that the previous definition is well founded, as it always refer to stacks with
fewer symbols than s or t .
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Lemma 3.1. Let s and t be order-n stacks with links, and let k > 0. If s and t are
top.kC1/-identical then Œjsj�p

k
D Œjt j�p

k
for every state p.

Proof. The proof is by induction on the maximal size (i.e., the number of stack symbols)
of s and t , and once the maximal size is fixed we reason by induction on k.

The base case of s and t containing only the bottom-of-stack symbol is trivial.
Hence assume that the property is established for any pair of stacks with less than N
symbols for someN > 0, and consider two stacks s and t whose maximal size isN C1.
Assume that s and t are top.kC1/-identical for some k > 0.

If s and t are top1-identical, then, by definition, we have that top1.s/ D .a; `; k/ and
top1.t/ D .a; `; k0/ for some a 2 � , 1 6 e 6 n and k; k0 2 N, and that (when defined)
collapse.s/ and collapse.t/ are top`C1-identical. As collapse.s/ and collapse.t/ are
both of size 6 N , we have, by induction hypothesis, that Œjcollapse.s/j�q1:::qm

`
D

Œjcollapse.t/j�q1:::qm

`
. Thus it immediately follows that Œjsj�p0 D Œjt j�p0 .

We now consider some k > 0 and assume that the property is established for any
h 6 k. We consider the case .kC1/ and thus assume that s and t are top.kC2/-identical:
in particular pop.h�1/.s/ and pop.h�1/.t/ are also toph-identical for any h 6 .k C 1/,
and by induction hypothesis, we have, for any h 6 k and any state q, that Œjsj�q

h
D Œjt j�q

h
.

By definition, we also have that top1.s/ D .a; `; k/ and top1.t/ D .a; `; k0/ for some
a 2 � , 1 6 e 6 n and k; k0 2 N, and that (when defined) collapse.s/ and collapse.t/
are top.`C1/-identical. As collapse.s/ and collapse.t/ are both of size 6 N , we have,
by induction hypothesis, that Œjcollapse.s/j�q1:::qm

`
D Œjcollapse.t/j�q1:::qm

`
.

We let js D jt be the maximal j such that pop
j

.kC1/.s/ (equiv. pop
j

.kC1/.t/) is
defined. By definition

Œjsj�p
.kC1/ D Fa;`p Œjcollapse.s/j�q1:::qm

`
Œjpop1.s/j�q1:::qm

1 : : : Œjpop.kC1/.s/j�q1:::qm

.kC1/ ;

and

Œjt j�p
.kC1/ D Fa;`p Œjcollapse.t/j�q1:::qm

`
Œjpop1.t/j�q1:::qm

1 : : : Œjpop.kC1/.t/j�q1:::qm

.kC1/ :

Now if js D 0, we have

Œjpop.kC1/.s/j�q1:::qm

.kC1/ D Œjpop.kC1/.t/j�q1:::qm

1 D Void.kC1/ : : :Void.kC1/;

and thus Œjsj�p
.kC1/ D Œjt j�p

.kC1/. If js > 0, we note that jpop.kC1/.s/
D jpop.kC1/.t/

D
js � 1 and pop.kC1/.s/ and recall that pop.kC1/.t/ are top.kC2/-identical. Thus, by
induction on js , we have Œjpop.kC1/.s/j�q.kC1/ D Œjpop.kC1/.t/j�q.kC1/ for any state q,

and we conclude that Œjsj�p
.kC1/ D Œjt j�

p

.kC1/.

3.2. The labelled recursion scheme associated with A. We let S D h†;N;R; Z;?i
where

N D ¹Fa;`p j p 2 Q; a 2 �; and 1 6 ` 6 nº [ ¹Voidk j 0 6 k 6 nº:
The set of productions R contains the production

Z
��!
S
Œj[ : : : [?]1 : : : ]nj�q1

n
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and the production

Fa;`p
x̂‰1 : : : ‰n

a�!
S
„q;op

if ı.p; a; a/ D .q; op/ and the term „q;op is equal to

� F
a0;`0
q ‰`0hFa;`? x̂‰1i‰2 : : : ‰n if op D pusha

0;`0
1 for `0 > 1,

� F
a0;1
q Voidm1 hFa;`? x̂‰1i‰2 : : : ‰n if op D pusha

0;1
1 ,

� F
a;`
q
x̂‰1 : : : ‰.k�1/hFa;`? x̂‰1 : : : ‰ki‰.kC1/ : : : ‰n if op D pushk ,

� ‰k;q‰k�1 : : : ‰n if op D popk ,
� ˆq‰`�1 : : : ‰n if op D collapse and ` > 1,

where hFa;`? x̂‰1 : : : ‰ki as a shorthand for the sequence

Fa;`q1
x̂‰1 : : : ‰kFa;`q2

x̂‰1 : : : ‰k : : :Fa;`qm
x̂‰1 : : : ‰k

and Voidm1 is a a shorthand for Void1 : : :Void1„ ƒ‚ …
m

.

3.3. Correctness of the representation. The following proposition relates the Lts

defined by A with the one defined by S.

Proposition 3.2. Let .p; s/ be a configuration of A and let a 2 †. Then

.p; s/
a�!
A
.q; t/ () Œjsj�pn

a�!
S
Œjt j�qn

Proof. Let a be the top symbol in s and let 0 6 ` 6 n be such that a has an .`C1/ link.
By definition, the head non-terminal symbol of Œjsj�pn is Fa;`p .

Remark that ı.p; a; a/ is defined, i.e., there exists some .q; t/with .p; s/
a�!
A

.q; t/,

if and only if there is some term � such that Œjsj�pn
a�!
S
�. Hence it suffices to show, when

ı.p; a; a/ D .q; op/ is defined, that � D Œjop.s/j�qn, and for this we do a case analysis.
First, we let

Œjsj�pn D Fa;`p C q1 : : : C qmT
q1

1 : : : T
qm

1 : : : T q1
n : : : T qm

n

where C qi D Œjcollapse.s/j�qi

`
W ` and T qi

k
D Œjpopk.s/j�qi

k
Wk for every 1 6 i 6 m and

every 1 6 k 6 n.
Then we distinguish the five possible cases for op.

� Assume that op D pusha
0;`0
1 , with `0 > 1. Then, by definition

Œjpusha
0;`0
1 .s/j�qn D Fa

0;`0
q Œjcollapse.pusha

0;`0
1 .s//j�q1:::qm

`0

Œjpop1.pusha
0;`0
1 .s//j�q1:::qm

1 : : : Œjpopn.pusha
0;`0
1 .s//j�q1:::qm

n :

For every j > 1, one has popj .pusha
0;`0
1 .s// D popj .s/, and therefore

Œjpopj .pusha
0;`0
1 .s//j�q1:::qm

j D T q1

j : : : T
qm

j :
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One has collapse.pusha
0;`0
1 .s// D pop`0.s/, and therefore

Œjcollapse.pusha
0;`0
1 .s//j�q1:::qm

`0 D T q1

`0 : : : T
qm

`0 :

Finally, we have that pop1.pusha
0;`0
1 .s// D s, and therefore

Œjpop1.pusha
0;`0
1 .s//j�qi

1 D Fa;`qi
C q1 : : : C qmT

q1

1 : : : T
qm

1 :

Hence, it follows that

Œjpusha
0;`0
1 .s/j�qn D Fa

0;`0
q T

q1

`0 : : : T
qm

`0

Fa;`q1
C q1 : : : C qmT

q1

1 : : : T
qm

1 : : :

Fa;`qm
C q1 : : : C qmT

q1

1 : : : T
qm

1

T
q1

2 : : : T
qm

2 : : : T q1
n : : : T qm

n :

On the other hand, it follows syntactically from the definition of S that the

right hand side of the previous expression is the term � such that Œjsj�pn
a�!
S
�.

� Assume that op D pusha
0;1
1 . Then, by definition

Œjpusha
0;1
1 .s/j�qn D Fa

0;1
q Void1 : : :Void1

Œjpop1.pusha
0;1
1 .s//j�q1:::qm

1 : : :

Œjpopn.pusha
0;1
1 .s//j�q1:::qm

n :

For every j > 1, one has popj .pusha
0;1
1 .s// D popj .s/, and therefore

Œjpopj .pusha
0;`0
1 .s//j�q1:::qm

j D T q1

j : : : T
qm

j :

Finally, we have that pop1.pusha
0;1
1 .s// D s, and therefore

Œjpop1.pusha
0;1
1 .s//j�qi

1 D Fa;`qi
C q1 : : : C qmT

q1

1 : : : T
qm

1 :

Hence, it follows that

Œjpusha
0;`0
1 .s/j�qn D Fa

0;`0
q Void1 : : :Void1

Fa;`q1
C q1 : : : C qmT

q1

1 : : : T
qm

1 : : :

Fa;`qm
C q1 : : : C qmT

q1

1 : : : T
qm

1

T
q1

2 : : : T
qm

2 : : : T q1
n : : : T qm

n :

On the other hand, it follows syntactically from the definition of S that the

right hand side of the previous expression is the term � such that Œjsj�pn
a�!
S
�.

� Assume that op D pushk . Then, by definition,

Œjpushk.s/j�qn D Fa;`q Œjcollapse.pushk.s//j�q1:::qm

`

Œjpop1.pushk.s//j�q1:::qm

1 : : : Œjpopn.pushk.s//j�q1:::qm
n :
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Note that we used the fact that the top1 element in pushk.s/ is a a and has
an .` C 1/-link. Now, note that for every j > k, one has popj .pushk.s// D
popj .s/, and therefore

Œjpopj .pushk.s//j�q1:::qm

j D T q1

j : : : T
qm

j :

Also, popk.pushk.s// D s, and therefore, for every 1 6 i 6 m,

Œjpopk.pushk.s//j�qi

k
D Fa;`qi

C q1 : : : C qmT
q1

1 : : : T
qm

1 : : : T
q1

k
: : : T

qm

k
:

Now, for j < k, popj .pushk.s// and popj .s/ are topjC1-identical and,
thanks to Lemma 3.1, we have that Œjpopj .pushk.s//j�qi

j D Œjsj�
qi

j D T
qi

j .
If ` D 1, then both collapse.s/ and collapse.pushk.s// are undefined,

hence we have Œjcollapse.pushk.s//j�qi

`
D Void1 D C qi .

If 1 < ` 6 k, then collapse.pushk.s// and s are top`C1-identical and,
thanks to Lemma 3.1, Œjcollapse.pushk.s//j�qi

`
D Œjcollapse.s/j�qi

`
D C qi .

If ` > k, then collapse.s/ D collapse.pushk.s// hence

Œjcollapse.pushk.s//j�qi

`
D C qi :

Therefore, it follows that

Œjpushk.s/j�qn D Fa;`q C q1 : : : C qmT
q1

1 : : : T
qm

1 : : : T
q1

.k�1/ : : : T
qm

.k�1/
Fa;`q1

C q1 : : : C qmT
q1

1 : : : T
qm

1 : : : T
q1

k
: : : T

qm

k
: : :

Fa;`qm
C q1 : : : C qmT

q1

1 : : : T
qm

1 : : : T
q1

k
: : : T

qm

k

T
q1

.kC1/ : : : T
qm

.kC1/ : : : T
q1
n : : : T qm

n :

On the other hand, it follows syntactically from the definition of S that the

right hand side of the previous expression is the term � such that Œjsj�pn
a�!
S
�.

� Assume that op D popk . Then, by definition

Œjpopk.s/j�qn D Fa
0;`0
q Œjcollapse.popk.s//j�q1:::qm

`

Œjpop1.popk.s//j�q1:::qm

1 : : : Œjpopn.popk.s//j�q1:::qm
n

where the top1 element in popk.s/ is a a0 and has an .`0C1/-link. Equivalently,

Œjpopk.s/j�qn D Œjpopk.s/j�qk
Œjpop.kC1/.popk.s//j�q1:::qm

.kC1/ : : : Œjpopn.popk.s//j�q1:::qm
n :

For every j > k, one has popj .popk.s// D popj .s/, and therefore, we
have Œjpopj .popk.s//j�q1:::qm

j D T q1

j : : : T
qm

j . Moreover, by definition we have
that T q

k
D Œjpopk.s/j�qk . Hence, it follows that

Œjpopk.s/j�qn D T qk T
q1

kC1 : : : T
qm

kC1 : : : T
q1
n : : : T qm

n :
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On the other hand, it follows syntactically from the definition of S that the

right hand side of the previous expression is the term � such that Œjsj�pn
a�!
S
�.

� Assume that op D collapse. Then, by definition

Œjcollapse.s/j�qn D Fa
0;`0
q Œjcollapse.collapse.s//j�q1:::qm

`

Œjpop1.collapse.s//j�q1:::qm

1 : : :

Œjpopn.collapse.s//j�q1:::qm
n ;

where the top1 element in collapse.s/ is a0 and has an .`0 C 1/-link. Equiva-
lently,

Œjcollapse.s/j�qn D Œjcollapse.s/j�q
`

Œjpop.`C1/.collapse.s//j�q1:::qm

.kC1/ : : :

Œjpopn.collapse.s//j�q1:::qm
n :

For every j > e, one has popj .collapse.s// D popj .s/, and therefore we
have Œjpopj .collapse.s//j�q1:::qm

j D T
q1

j : : : T
qm

j . Moreover, by definition we
have that C q D Œjcollapse.s/j�q

`
.

On the other hand, it follows syntactically from the definition of S that the

right-hand side of the previous expression is the term � such that Œjsj�pn
a�!
S
�.

Corollary 3.3. The Lts defined by A is isomorphic to the one defined by S. In partic-
ular, A and S generate the same tree.

Proof. Immediate from Proposition 3.2.

4. From recursion schemes
to collapsible pushdown automata

In this section, we construct, for any labelled recursion scheme S, a collapsible push-
down automaton A of the same order defining the same tree as S – i.e., Tree?.S/ D
Tree?.A/. Recall that a silent production rule is a production rule labelled by �. To
simplify the presentation we assume that S does not contain any such production rule.
If S were to contain silent transitions, we would treat the symbol � as any other symbol5
in †. For the rest of this section, we fix a labelled recursion scheme h†;N;R; Z;?i
of order n > 1 without silent transitions.

5 Formally, one labels all silent production rules of S by a fresh symbol e to obtain a labelled scheme
S0 without silent transitions. The construction presented in this section produces an automaton A0 such
that Tree?.S0/ D Tree?.A0/. The automaton A obtained by replacing all e-labelled rules of A by � is
such that Tree?.S/ D Tree?.A/.
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The automaton A has a distinguished state, denoted q?, and we associate a ground
term over N denoted by ŒŒ s �� with a configuration of the form .q?; s/. Other configu-
rations correspond to internal steps of the simulation and are only the source of silent
transitions. To show that the two Lts define the same trees, we will establish that, for
any reachable configuration of the form .q?; s/ and for any a 2 †, the following holds:

� if .q?; s/
a��
�!
A

.q?; s
0/ then ŒŒ s ��

a�!
S
ŒŒ s0 ��;

� if ŒŒ s ��
a�!
S
t then .q?; s/

a��
�!
A
.q?; s

0/ and ŒŒ s0 �� D t .
Hence, the main ingredient of the construction is the partial mapping ŒŒ � �� associat-

ing a ground term overN with an order-n stack. The main difficulty is to guarantee that
any rewriting rule of S applicable to the encoded term ŒŒ s �� can be simulated by apply-
ing a sequence of stack operations to s. In § 4.1, we present the mapping ŒŒ � �� together
with its basic properties; in § 4.2, we give the definition of A and prove the desired
properties.

To simplify the presentation, we assume, without loss of generality, that all pro-
ductions starting with a non-terminal A have the same left-hand side (i.e., they use the
same variables in the same order) and that two productions starting with different non-
terminals do not share any variables. Hence a variable x 2 V appears in a unique
left-hand side Ax1 : : : ; x%.A/ and we denote by rk.x/ the index of x in the sequence
x1 : : : x%.A/ (i.e., x D xrk.x/).

Example 4.1. Throughout the whole section, we will illustrate definitions and con-
structions using the order-2 scheme SU generating the tree TU presented at the end
of § 2.3.6 as a running example. We recall its definition below:

Z
��!G.HX/; F 'xy

.�! F .F'x/y.Hy/;

Gz
.�! FGz.Hz/; F 'xy

/�! '.Hy/;

Gz
��!X; F'xy

?�! x;

Hu
?�! u;

with Z;X W o, G;H W o! o, and F W .o! o; o; o/. We have rk.'/ D rk.z/ D rk.u/ D 1,
rk.x/ D 2 and rk.y/ D 3.

4.1. Stacks representing terms. The stack alphabet � consists of the initial symbol
and of the right-hand sides of the production rules in R and their argument subterms
(cf. § 2.3.1), i.e.,

�
defD ¹Zº [

[

Fx1:::x%.x/

a!e

¹eº [ASubs.e/:

Example 4.2. For the scheme SU , one gets the following stack alphabet:

� D ¹Z;G.HX/;HX;X; F .F'x/y.Hy/; F 'x;Hy; FGz.Hz/;
G;Hz; '.Hy/º [ ¹x; y; z; u; 'º:
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Notation 4.1. For ' 2 V [ N , a '-stack designates a stack whose top symbol starts
with '. By extension, a stack s is said to be an N -stack (resp., a V -stack) if it is a
'-stack for some ' 2 N (resp., ' 2 V ).

In order to represent a term in Terms.N /, a stack over � must be well formed, i.e.,
it must satisfy syntactic conditions given in the following definition.

Definition 4.2 (well-formed stack). A non-empty stack of order-n over � is well
formed if every non-empty substack r of s satisfies the following two conditions:

� if top1.r/ is not equal to Z then pop1.r/ is an A-stack for some A 2 N and
top1.r/ belongs to an A-production rule,
� if top1.r/ is of type � of order k > 0 then top1.r/ is the source of an .n�kC1/-

link and collapse.r/ is a '-stack for some variable ' 2 V of type � .

We let WStacks denote the set of all well-formed stacks.

Example 4.3. For the scheme SU , the order-2 stacks in Figure 7 are well formed.

Z

G .H X/

F G z .H z/

F .F ' x/ y .H y/

' .H y/

s1

Z

G .H X/

F G z .H z/

F .F ' x/ y .H y/

' .H y/

Z

G .H X/

F G z .H z/

F ' x

s2

Z

G .H X/

F G z .H z/

F .F ' x/ y .H y/

' .H y/

Z

G .H X/

F G z .H z/

F ' x

F .F ' x/ y .H y/

y

s3

Figure 7

Notation 4.3. We write s WW t for s 2 WStacks and t 2 � to mean that if t belongs
to the r.h.s. of a production starting with A 2 N then s is an A-stack. In particular, if
s 2 WStacks then pop1.s/ WW top1.s/. We let CStacks denote the set of such s WW t , and
define the size of an element s WW t as the pair .jsj; jt j/, where jsj denotes the number of
stack symbols in s and jt j the length of the term t . When comparing sizes, we use the
standard lexicographic (total) order over N �N.
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In Definition 4.5, we will associate a ground term over N with any well-formed
stack s that we refer to as the value of s. To define this value, we first associate, with
any element s WW t in CStacks, a value denoted ŒŒ s WW t ��. This value is a term over N of
the same type as t . Intuitively, it is obtained by replacing the variables appearing in the
term t by values encoded in the stack s, and one should therefore understand ŒŒ s WW t ��
as the value of the term t in the context (or environment) of s.

For all ' 2 V [ N , all k 2 Œ1; %.'/� and all '-stack s 2 WStacks, we define
an element of CStacks, denoted Argk.s/, representing the k-th argument of the term
represented by s. More precisely if the top symbol of s is 't1 : : : t`, we take

´
Argk.s/ D pop1.s/ WW tk if k 6 `,

Argk.s/ D Argk�`.collapse.s// otherwise.

Definition 4.4. For all s WW t 2 CStacks, we take
8
<̂

:̂

ŒŒ s WW t1t2 �� D ŒŒ s WW t1 ��ŒŒ s WW t2 �� if t1; t2 2 �;
ŒŒ s WW A �� D A if A 2 N;
ŒŒ s WW x �� D ŒŒArgrk.x/.s/ �� if x 2 V:

Let us provide some intuition regarding the definition of ŒŒ s WW t ��. Unsurprisingly,
ŒŒ s WW t �� is defined by structural induction on t , and the induction cases for the application
and the non-terminal symbols are straightforward.

It remains to consider the case where t is a variable x appearing in the rk.x/-th
position in the left-hand side Ax1 : : : x%.A/. As s WW t 2 CStacks, top1.s/ is of the form
At1 : : : t` for some ` 6 %.A/. Note that ` is not necessarily equal to %.A/, meaning that
some arguments of A might be missing. There are now two cases – corresponding to
the two cases in the definition of Argk.s/ – depending on whether x references one of
the ti ’s (i.e., rk.x/ 6 `) or one of the missing arguments (i.e., rk.x/ > `).

� If rk.x/ 6 ` then the term associated with x in s is equal to the term associated
with trk.x/ in pop1.s/, i.e., ŒŒ s WW x �� D ŒŒ pop1.s/ WW trk.x/ ��.
� If rk.x/ > ` then the term ŒŒ s WW x �� is obtained by following the link attached

to top1.s/. Recall that, as s is a well-formed stack and top1.s/ is not of
ground type (as ` < %.A/), there exists a link attached to top1.s/. Moreover,
collapse.s/, the stack obtained by following the link, has a top-symbol of the
form 't 01 : : : t

0
m for some ' 2 V and m > 0. Intuitively, t 0i corresponds to the

.` C i/-th argument of A. If rk.x/ belongs to Œ` C 1; ` C m�, then the term
ŒŒ s WW x �� is defined to be the term ŒŒ pop1.collapse.s// WW t 0rk.x/�` ��. If rk.x/ is
greater than ` C m then the link attached to the top symbol of collapse.s/ is
followed and the process is reiterated. As the size of the stack strictly decreases
at each step, this process terminates.

Now, if s is a well-formed '-stack, its value is obtained by applying the value of
all its %.'/ arguments to the value of ' in the context of pop1.s/. This leads to the
following formal definition.
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Definition 4.5. The term associated with a well-formed '-stack s 2 WStacks with
' 2 N [ V is

ŒŒ s ��
defD ŒŒ pop1.s/ WW ' ��ŒŒArg1.s/ �� : : : ŒŒArg%.'/.s/ ��:

Fact 2. Let s be a well-formed '-stack. If top1.s/W o then

ŒŒ s �� D ŒŒ pop1.s/ WW top1.s/ ��:
If top1.s/W �1 ! � � � ! �` ! o then

ŒŒ s �� D ŒŒ pop1.s/ WW top1.s/ ��ŒŒArg1.collapse.s// �� : : : ŒŒArg`.collapse.s// ��:

Proof. The first case (i.e., top1.s/W o) is immediate. Assume that top1.s/ is equal to
't1 : : : tn with ' 2 N [ V of type �1 ! � � � ! �%.'/ ! o and ti 2 � of type �i , for all
i 2 Œ1; n�. Note that ` D %.'/ � n. We have

ŒŒ s ��
defD ŒŒ pop1.s/ WW ' ��ŒŒArg1.s/ �� : : : ŒŒArgn.s/ ��„ ƒ‚ …

ŒŒ pop1.s/WW't1:::tn ��

ŒŒArgnC1.s/ �� : : : ŒŒArg%.'/.s/ ��

D ŒŒ pop1.s/ WW top1.s/ ��ŒŒArg1.collapse.s// �� : : : ŒŒArg`.collapse.s// ��:

Example 4.4. Let us consider the well-formed stacks s1, s2, and s3 presented in
Example 4.3. In the representation in Figure 8, the association between variables and
their “values” are made explicit by the red arrows.

The following lemma states the basic properties of the encoding ŒŒ � �� and Argk. � /.
Lemma 4.1. We have the following properties:

1. for all '-stacks s 2 WStacks with ' 2 V [ N of type �1 ! � � � ! �%.'/ ! o
and for all k 2 Œ1; %.'/�, the stack Argk.s/ is equal to some r WW t 2 CStacks
with t of type �k;

2. for all s WW t 2 CStacks with t W � 2 � , the term ŒŒ s WW t �� belongs to Terms� .N /;
3. for all s 2WStacks, the term ŒŒ s �� belongs to Terms.N /.

Proof. We start proving the first point and then use it to obtain the second one. Com-
bining them, we finally prove the last point.

1. We proceed by induction on the size of s 2WStacks. The base case considers
the stack Œ: : : Œ?Z�1 : : : �n. As %.Z/ D 0, there is nothing to prove.

Fix some stack s and assume that the property holds for all stacks smaller
than s 2 WStacks. Let 't1 : : : t`W � be the top symbol of s with ' 2 N [ V
and ti 2 � for all i 2 Œ1; `�. If ' is of type �1 ! � � � ! �%.'/ ! o then for all
i 2 Œ1; `�, ti is of type �i and � is the type �`C1 ! � � � ! �%.'/ ! o.

If k 6 `, then Argk.s/
defD pop1.s/ WW tk and there is nothing to prove. If

%.'/ > k > `, then Argk.s/
defD Argk�`.collapse.s//. To conclude the result by

induction, the only thing we have to prove is that Argk�`.collapse.s// is well
defined. As ord.�/ > 0, we have by definition of WStacks that collapse.s/
is well defined and that its top symbol starts with a symbol  of type � . As
jcollapse.s/j < jsj and as %. / D %.'/ � ` > k � ` > 1, we have by the
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Z

G .H X/

F G z .H z/

F .F ' x/ y .H y/

' .H y/

s1

Z

G .H X/

F G z .H z/

F .F ' x/ y .H y/

' .H y/

Z

G .H X/

F G z .H z/

F ' x

s2

Z

G .H X/

F G z .H z/

F .F ' x/ y .H y/

' .H y/

Z

G .H X/

F G z .H z/

F ' x

F .F ' x/ y .H y/

y

s3

Figure 8

induction hypothesis that Argk�`.collapse.s// is well defined and is equal to
some r WW t 2 CStacks with t 2 � of type �k�`C` D �k .

2. We proceed by induction on the size of s WW t . The base case deals with the

stack Œ : : : Œ? �1 : : : �n WW Z. As ŒŒ Œ �n WW Z �� defD Z, the property holds.
Assume that the property holds for all elements of CStacks smaller than

some s WW t 2 CStacks with t W � . Let us show that ŒŒ s WW t �� is of type � . The
case where t 2 N is trivial. The one where t D t1t2 is immediate by induction,
as both ŒŒ s WW t2 �� and ŒŒ s WW t1 �� have a size smaller than ŒŒ s WW t ��. The last
case is when t is a variable x 2 V . Assume that the variable x appears in an
A-production for some AW � D �1 ! � � � ! �%.A/ ! o in N . In particular, the

variable x is of type �rk.x/. We have ŒŒ s WW x �� defD ŒŒArgrk.x/.s/ ��. By definition
of CStacks, s is an A-stack and using point .1/, Argrk.x/.s/ is equal to r WW t 0
with r 2 Stacks and t 0W �rk.x/ 2 � . Thus ŒŒ s WW x �� D ŒŒ r WW t 0 �� for some r
smaller than s, and using the induction hypothesis, one concludes that ŒŒ s WW x ��
is a term in Terms�rk.x/

.N /.
3. Let s 2WStacks whose top symbol starts with 'W � D �1 ! � � � ! �%.'/ ! o.

Clearly pop1.s/ WW ' belongs to CStacks and by point .2/, ŒŒ pop1.s/ WW ' ��
is of type � . Points .1/ and .2/ imply that, ŒŒArgk.s/ �� is of type �k , for all
k 2 Œ1; %.'/�. Hence, from Definition 4.5 it directly follows that ŒŒ s �� is of
type o.
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We conclude with two fundamental properties of Argk.�/ that will allow us to
simulate the rewriting of the scheme using sta ck operations and finite memory.

The first property is that the arguments represented by a well-formed stack are
not modified when performing a pushk operation. More precisely, for all '-stacks
s 2 WStacks with ' 2 N [ V , we have ŒŒArg`.pushk.s// �� D ŒŒArg`.s/ �� for all
` 2 Œ1; %.'/� and all k 2 Œ2;m�. This follows (by letting r D topk.s/) from the following
slightly more general result.

Lemma 4.2. Let k 2 Œ2;m� and let s D s0 CCtopk.s/ 2 WStacks. For all non-empty
'-stacks r v topk.s/, we have ŒŒArg`.s

0 CCr/ �� D ŒŒArg`.s CCr/ �� for all ` 2 Œ1; %.'/�.

Proof. We show, by induction on the size of r , that s CCr and s0 CCr are well formed
and ŒŒArg`.s

0CCr/ �� D ŒŒArg`.sCCr/ �� for all ` 2 Œ1; %.'/�, where ' 2 N [ V denotes
the head symbol of top1.r/.

The base case (which considers Œ: : : Œ?Z�1 : : : �k) is immediate. Assume that the
property holds for all substacks of topk.s/ smaller than some '-stack r v topk.s/. We
will show that it holds for r .

The key observation is that top2.s CCr/ D top2.s
0 CCr/ and either

collapse.s CCr/ D collapse.s CCr/

if the link attached to topmost symbol of r is order greater than k, or

collapse.s CCr/ D s CCcollapse.r/and collapse.s0 CCr/ D s0 CCcollapse.r/

otherwise.
As s0 CCr is a substack of s (which is well formed), s0 CCr is well formed as

well. To prove that s CCr is well formed, we need to show that every non-empty
substack of s CCr satisfies the two properties expressed in Definition 4.2. The case
of a proper substack immediately follows the induction hypothesis. We can deduce
that s CCr satisfies these two properties from the above observations. Indeed the first
property only depends on the top most order-1 stack (and top2.sCCr/ D top2.s

0CCr/)
and the second property follows from the fact that top1.s CCr/ D top1.s

0 CCr/ and
top1.collapse.s CCr// D top1.collapse.s0 CCr//.

Assume that the top symbol of r is equal to 't1 : : : tn. Let ` 2 Œ1; %.'/� and let us
show that ŒŒArg`.s CCr/ �� D ŒŒArg`.s

0 CCr/ ��.
If ` 6 n, then ŒŒArg`.s CCr/ �� D ŒŒ s CCpop1.r/ WW t` �� D ŒŒ s0 CCpop1.r/ WW t` ��. By

the induction hypothesis, we have that ŒŒ s CCr 0 WW t �� D ŒŒ s0 CCr 0 WW t �� for any proper
substack r 0 of r , and in particular for r 0 D pop1.r/.

If ` > n then ŒŒArg`.s CCr/ �� is equal to both ŒŒArg`�n.collapse.s CCr// �� and
ŒŒArg`�n.collapse.sCCr// ��. From the above observation, we either have that the stack
collapse.sCCr/ is equal to collapse.s0CCr/ and the equality trivially holds, or we have
collapse.sCCr/ D sCCcollapse.r/ and collapse.s0CCr/ D s0CCcollapse.r/ in which
case the equality follows by the induction hypothesis as j collapse.r/ j < j r j.
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The next property will later been use to prove that any rewriting step can be
simulated by a finite number of transitions in the automaton.

Lemma 4.3. Let s be a '-stack in WStacks for some 'W �1 ! � � � ! �%.'/ ! o in V [N
and let ` 2 Œ1; %.'/� with �` of order k > 0. If Arg`.s/ is equal to r WW t 2 CStacks with
t starting with  2 N [ V then

popn�kC1.s/ D popn�kC1.r/ and j topn�kC1.s/ j > j topn�kC1.r/ j:
Proof. We proceed by induction of the size of s. The base case, which considers the
stack Œ : : : Œ?Z �1 : : : �n, is immediate as %.Z/ D 0.

Assume that the property holds for all stacks in WStacks smaller than some stack
s 2 WStacks. Let 't1 � � � tm be the top symbol of s with 'W �1 ! � � � ! �%.'/ ! o in
V [ N and m 2 Œ0; %.'/�. Let ` 2 Œ1; %.'/� and let k be the order of �`. Assume that
Arg`.s/ D r WW t .

If ` 6 m, then Arg`.s/ D pop1s WW t`. In particular, r is equal to pop1.s/ and
the property holds because popn�kC1.r/ D popn�kC1.pop1.s// D popn�kC1.s/ as
n � k C 1 > 2 (indeed k < n by definition of n).

If ` > m, Arg`.s/ D Arg`�m.collapse.s//. By the induction hypothesis, we have

popn�kC1.collapse.s// D popn�kC1.r/:

To conclude the result, it is enough to show that popn�kC1.collapse.s// D popn�kC1.s/.
Let k0 be the order of top1.s/. As top1.s/ D 't1 : : : tm is of type �mC1 ! � � � !
�%.'/ ! o, we have k0 > k. By definition of well-formed stacks, the order of the link
attached to top symbol is equal to n � k0 C 1. In particular, popn�kC1.collapse.s// D
popn�kC1.s/.

4.2. Simulating the Lts of S on stacks. As an intermediate step, we define an Lts

M over well-formed stacks and we prove that it generates the same tree as S (i.e.,
Tree?.M/ D Tree?.S/). From M, a CPDA generating Tree?.M/ is then easily defined.

We let M D hWStacks; Œ: : : Œ?Z� : : : �n; †; .
a�!
M
/a2† i and define the transitions as

follows:

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

s
a�!
M

pusht1.s/ if s is an A-stack with A 2 N
and Ax1 : : : x%.A/

a�! t 2 R,

s
��!
M

pusht1.r/ if s is a '-stack with 'W o 2 V
and Argrk.'/.pop1.s// D r WW t ,

s
��!
M

pusht;n�kC11 .r/ if s is a '-stack with 'W � 2 V of order k > 0
and Argrk.'/.pop1.pushn�kC1.s/// D r WW t .

Example 4.5. In the Figure 9, we illustrate the definition of M on the scheme SU .
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The first line of the definition of �!
M

corresponds to the case of an N -stack. To

simulate the application of a production rule Ax1 : : : xn
a�! e on the term encoded

by an A-stack s, we simply push the right-hand side e of the production on top of s.
The correctness of this rule directly follows from the definition of ŒŒ � �� (cf. Lemma 4.4
below). Doing so, a term starting with a variable may be pushed on top of the stack, e.g.,

when applying the production rule F'xy
/�! '.Hy/. Indeed, we need to retrieve the

value of the head variable in order to simulate the next transition of S: the second and
third lines of the definition are normalisation rules that aim at replacing the variable at
the head of the top of the stack (in Example 4.5 ') by its definition (hence not changing
the value of the associated term). By iterative application, we eventually end up with
an N -stack encoding the same term and we can apply again the first rule.

The following lemma states the soundness of the first line of the definition of �!
M

.

Lemma 4.4. Let s be an N -stack in WStacks and a 2 †.8
<
:
9t 2 Terms.N /; ŒŒ s ��

a�! t H) 9s0 2WStacks; s
a�!
M

s0 and ŒŒ s0 �� D t;
9s0 2WStacks; s

a�!
M

s0 H) ŒŒ s ��
a�! ŒŒ s0 ��:

Proof. Let s 2WStacks be an A-stack for some A 2 N and let a 2 †. By definition of
ŒŒ s ��, ŒŒ s �� is equal to AŒŒArg1.s/ �� : : : ŒŒArg%.A/.s/ ��.

Assume that ŒŒ s ��
a�! t for some t 2 Terms.N /. By definition of

a�!, there exists

a production Ax1 : : : x%.A/
a�! t 0 in R such that t is equal to

t 0Œx1=ŒŒArg1.s/ ��; : : : ; x%.A/=ŒŒArg%.A/.s/ ���:

By definition of
a�!
M

, we have s
a�!
M

pusht
0
1 .s/ hence we only need to note that the

term ŒŒ pusht
0
1 .s/ �� is equal to t 0Œx1=ŒŒArg1.s/ ��; : : : ; x%.A/=ŒŒArg%.A/.s/ ���. Indeed, as t 0

is of ground type, ŒŒ pusht
0
1 .s/ �� is equal to ŒŒ s WW t 0 �� which is by definition equal to

t 0Œx1=ŒŒArg1.s/ ��; : : : ; x%.A/=ŒŒArg%.A/.s/ ���.

Now, assume that s
a�!
M

s0 for some s0 2 WStacks. By definition of
a�!
M

, there

exists a production Ax1 : : : x%.A/
a�! t 0 2 R such that s0 D pusht

0
1 .s/. As s is an

A-stack, we have ŒŒ s �� D AŒŒArg1.s/ �� : : : ŒŒArg%.A/.s/ ��. Furthermore ŒŒ s0 �� is equal to

t 0Œx1=Arg1.s/; : : : ; x%.A/=Arg%.A/.s/�. Hence by definition of
a�!, ŒŒ s ��

a�! ŒŒ s0 ��.

The next lemma states the soundness of the second and third lines of the definition
of M. It also permits concluding that there are no infinite paths labelled by � in M.

Lemma 4.5. We have the following properties:
1. let s 2 WStacks be a '-stack with ' 2 V and s0 2 WStacks be a  -stack

with  2 V [ N . If s
��!
M

s0 then ord.'/ 6 ord. / and ŒŒ s �� D ŒŒ s0 �� with

j topn�ord.'/C1.s/ j > j topn�ord.'/C1.s
0/ j;
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2. for all stack s 2 WStacks there exists a unique N -stack s0 2 WStacks such

that s
��
�!
M

s0.

Proof. 1. Let ' be a variable in V and let s be a '-stack in WStacks.We distinguish
two cases depending on the order of the '.

Assume that ' is of ground type and that Argrk.'/.pop1.s// is some r WW t 2
CStacks.

We have by definition of M that s
��!
M

s0 D pusht1.r/. To show that ŒŒ s �� is equal

to ŒŒ s0 ��, we simply unfold the definitions.

ŒŒ s ��
defD ŒŒ pop1.s/ WW ' ��

defD ŒŒArgrk.'/.pop1.s// ��

defD ŒŒ r WW t �� Def. 4.5D ŒŒ pusht1.r/ ��
defD ŒŒ s0 ��:

Assume that s0 D pusht1.r/ is a  -stack for some  2 N [ V . We have ord. / >
ord.'/ D 0. As jArgk.pop1.s// j 6 j s j � 2, we have that j topnC1.s/ D s j >
j topnC1.s

0/ D s0 j.
Assume that ' is of type � D �1 ! � � � ! �%.'/ ! o of order k > 0. Assume

that Argrk.'/.pop1.pushn�kC1.s/// is equal to r WW t 2 CStacks. First recall that, from

Lemma 4.1, we have that t W � . We have by definition that s �!
M

s0 D pusht;n�kC11 .r/.

Let us show that ŒŒ s �� D ŒŒ s0 ��. Using Fact 2, we have that

ŒŒ s0 ��D ŒŒ pop1.s
0/ WW top1.s0/ ��„ ƒ‚ …

DŒŒ pop1.s/WW' �� .1/

ŒŒArg1.collapse.s0// ��„ ƒ‚ …
DŒŒArg1.s/ �� .2/

� � � ŒŒArg%.'/.collapse.s0// ��
„ ƒ‚ …

DŒŒArg%.'/.s/ �� .2/

D ŒŒ pop1.s/ WW ' ��ŒŒArg1.s/ �� : : : ŒŒArg%.'/.s/ �� D ŒŒ s ��:

The equalities denoted .1/ and .2/ are proven below:

ŒŒ pop1.s
0/ WW top1.s0/ ��

defD ŒŒ r WW t �� D ŒŒArgrk.'/.pop1.pushn�kC1.s/// ��
Lemma 4.2D ŒŒArgrk.'/.pop1.s// �� D ŒŒ pop1.s/ WW ' ��

(1)

and for all i 2 Œ1; %.'/�,

ŒŒArgi .collapse.s0// ��D ŒŒArgi .collapse.pusht;n�kC11 .r/// ��

D ŒŒArgi .popn�kC1.r// ��
Lemma 4.3D ŒŒArgi .popn�kC1.pop1.pushn�kC1.s//// ��

D ŒŒArgi .s/ ��:

(2)

As both ' and t have type � , and as t is of the form  t1 : : : t` for some ` > 0, it
directly follows that ord.'/ 6 ord. /.

The inequality j topn�ord.'/C1.s/ j > j topn�ord.'/C1.s
0/ j follows from Lemma 4.3.
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2. Assume, to get a contradiction, that there exists an infinite sequence .si /i>0 of

stacks in WStacks such that for all i > 0, si
��!
M

siC1. For all i > 0, we let ti denote

the top symbol of si and 'i the head symbol of ti . According to (1), the order of the
'i increases and hence is ultimately constant. Let j and k be such that, for all i > j ,
ord.'i / is equal to k. Using (1), the size of the topn�kC1.si / is strictly decreasing
starting from j , which provides the contradiction.

From Lemmas 4.4 and 4.5, M and S generate the same trees.

Proposition 4.6. Tree?.S/ D Tree?.M/:

Proof. By definition of M, only well-formed N -stacks can be the source of non-silent

transitions. Let s be a well-formed N -stack. If ŒŒ s ��
a�!
S

t for some a 2 †, then the

N -stack s0 such that s
a��
�!
M

s0 is such that ŒŒ s0 �� D t . Conversely if s
a��
�!
M

s0 for some

N -stack s0, then ŒŒ s ��
a�!
S
ŒŒ s0 ��.

From M we now define an n-CPDA A D h†;�;Q; ı; q0 i generating the same tree
as M. The set of states Q is equal to ¹q0; q1; : : : ; q%.S/; q�; qV º where %.S/ denotes the
maximal arity appearing in S. Intuitively, the initial state q0 is only used to go from
.q0; Œ� � � Œ?�1 � � � �n/ to .q�; Œ� � � Œ?Z�1 � � � �n/; the state q� is used to mark N -stacks; for
k 2 Œ1; %.S/�, the state qk is used to the compute Argk.� � � /. The state qV is used to signal
stacks that appear in the derivation of system M that are V -stacks. The transitions are
given below.

� ı.q0;?; �/ D .q�; pushZ1 /.

� If t starts with F 2 N and Fx1 : : : x%.F /
a�! e 2 R:

– ı.q�; t; a/ D .q�; pushe1/ if e starts with a symbol in N ,
– ı.q�; t; a/ D .qa; pushe1/ if e starts with a variable.

� If t is a term of the form 't1 : : : t` for some ' 2 V :
– ı.qV ; t; �/ D .qrk.'/; pop1/ if ' is an order-0 variable,
– ı.qV ; t; �/ D .qrk.'/; pushn�kC1I pop1/ if ' is a variable of order k > 0.

� If t is a term of the form 't1 : : : t` for some ' 2 V [N :
– ı.qk; t; �/ D .qrk.tk/; pop1I push

tk
1 / if k 6 ` and tkW o,

– ı.qk; t; �/ D .qrk.tk/; pop1I push
tk ;n�hC1
1 / if k 6 ` and tk has order h > 0,

– ı.qk; t; �/ D .qk�`; collapse/ if k > `.

where, for all t 2 � , qrk.t/ designates the state qrk.x/ if t starts with a variable x and
q� otherwise, and op1I op2 means applying op1 followed by op2. An equivalent CPDA
using only one operation per transition may be obtained by adding intermediary states.

Remark 4.7. The previously given CPDA uses several operations per transition. An
equivalent CPDA using only one operation per transition may be obtained by adding
intermediary states.
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Theorem 4.8. For every labelled recursion scheme S of order-n, there is an n-CPDA
A that generates the same tree. Moreover, the number of states in A is linear in the
maximal arity appearing in S, and its alphabet is of size linear in the one of S.

Proof (sktech). Let s be a well-formed stack. We denote by hhsii the configuration of
A defined by hhsii D .q�; s/ if s is an N -stack and hhsii D .qrk.x/; s/ if s is a V -stack
whose topmost symbol starts with a variable x.

Clearly for any well-formed N -stack s, s
a�!
M

s0 if and only if hhsii a�!
A
hhs0ii.

For any V -stack s, if s
��!
M

s0 then hhsii ��
�!
A
hhs0ii as intuitively �!

A
combines

the definition of both �!
M

and Argk. � /. Conversely, for all V -stacks, if s
��!
M

s0 and

hhsii ��!
A
hhs2ii then hhs2ii

��
�!
A
hhs0ii.

5. Safe higher-order recursion schemes

In this last section, we consider a syntactic subfamily of recursion schemes called
safe recursion schemes. The safety constraint was introduced in [36], but was already
implicit in the work of Damm [22] (also see [24], p. 44, for a detailed presentation).
This restriction constrains the way variables are used to form argument subterms of the
rules’ right-hand sides.

Definition 5.1 ([36]). A recursion scheme is safe if none of its right-hand sides contains
an argument-subterm of order k containing a variable of order strictly less than k.

Other than the scheme SU generating the tree of the Urzyczyn language, all exam-
ples we gave are safe schemes. The scheme SU is not safe, as the production

F'x
.�! F.F'x/y.Hy/

contains in its right-hand side the argument subterm F'xW o ! o of order-1, which
contains the variable xW o of order-0. Urzyczyn conjectured that (a slight variation)
of the tree TU generated by SU , though generated by a order-2 scheme, could not be
generated by any safe scheme. This conjecture was recently proved by Parys in [49]
and [50].

Remark 5.1. In [36], the notion of safety is only defined for homogeneous schemes.
A type is said to be homogeneous if it is either ground or equal to �1 ! � � � ! �n ! o
where the �i ’s are homogeneous and ord.�1/ > � � � > ord.�n/. By extension, a scheme
is homogeneous if all its non-terminal symbols have homogeneous types. For instance,
.o ! o/ ! o ! o is an homogeneous type whereas o ! .o ! o/ ! o is not. In
Proposition 5.5, we will see that dropping the homogeneity constraint in the definition
of safety does not change the family of generated trees.
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5.1. Safety and the Translation from Schemes to CPDA. In [36] and [37], the
motivation for considering the safety constraint was that safe schemes can be translated
into a subfamily of the collapsible automata, namely higher-order pushdown automata.
Recall that an order-k pushdown automaton is an order-k CPDA that does not use the
collapse operation (hence, links are useless).

Theorem 5.2 below shows that the translation of recursion schemes into collapsible
automata presented in § 4, when applied to a safe scheme, yields an automaton in which
links are not really needed. Obviously the automaton performs the collapse operations
but whenever it is applied to an order-k link, its target is the .k�1/-stack below the top
.k�1/-stack. Hence any collapse operation can safely be replaced by a popk operation.
This notion is captured by the notion of link-free CPDA.

Definition 5.2. A CPDA is link-free if for every configuration .p; s/ reachable from
the initial configuration and for every transition ı.p; top1.s/; a/ D .q; collapse/, we
have collapse.s/ D pop`.s/, where ` is the order of the link attached to top1.s/.

Theorem 5.2. The translation of § 4 applied to a safe recursion scheme yields a link-
free collapsible automaton.

We get the following corollary extending a previous result from [36], by dropping
the homogeneity assumption.

Corollary 5.3. Order-k safe schemes and order-k pushdown automata generate the
same trees.

5.2. Damm’s view of safety. The safety constraint may seem unnatural and purely ad
hoc. Inspired by the constraint of derived types of Damm, we introduce a more natural
constraint, Damm safety, which leads to the same family of trees [22].

Damm safety syntactically restricts the use of partial application: in any argument
subterm of a right-hand side, if one argument of some order-k is provided, then all
arguments of order-k must also be provided. For instance if f W o ! o, cW o and
'W .o ! o/ ! .o ! o/ ! o ! o ! o, the terms ', 'ff and 'ffcc can appear
as argument subterms in a Damm-safe scheme, but 'f and 'ffc are forbidden.

Definition 5.3 ([22]). A recursion scheme is Damm safe if it is homogeneous and
all argument-subterms appearing in a right hand-side are of the form 't1 : : : tk with
'W �1 ! � � � ! �n ! o and either k 2 ¹0; nº or ord.�k/ > ord.�kC1/.

Remark 5.4. The second constraint in the definition of Damm safety can be reformu-
lated as follows: all argument subterms of an argument subterm of order-k appearing
in a right-hand side have at least order-k.

Using Remark 5.4, it is easy to see that Damm-safety implies the safety constraint.
However, the safety constraint, even when restricted to homogeneous schemes, is less
restrictive than Damm safety. Consider, for instance, a variable xW o and non-terminals
GW o ! o ! o and C W o. Then Gx cannot appear as an argument-subterm in a safe
scheme, but GC can. As GC does not satisfy the Damm-safety constraint, safety is
syntactically more permissive than Damm-safety. However unsurprisingly, any safe
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scheme can be transformed into an equivalent Damm-safe scheme of the same order.
The transformation consists of converting the safe scheme into a higher-order pushdown
automaton (Corollary 5.3) and then converting this automaton back to a scheme using
the translation of [36]. In fact, this translation of higher-order pushdown automata into
safe schemes produces Damm-safe schemes.

Proposition 5.5. Damm-safe schemes are safe and for every safe scheme, there exists
a Damm-safe scheme of the same order generating the same tree.

This proposition in particular shows that any safe scheme can be transformed into
an equivalent homogeneous one. Broadbent, using the translation from schemes into
CPDA, showed that any scheme (possibly unsafe) can be converted into an equivalent
one that is homogeneous [7]. Recently, Parys gave a new proof of this result by
directly manipulating the scheme; he also provided another construction that preserves
safety [51].
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