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Abstract

The aim of this short note is to give an elementary proof of linear
convergence of the Sinkhorn algorithm for the entropic regularization
of multi-marginal optimal transport. The proof simply relies on: i)
the fact that Sinkhorn iterates are bounded, ii) strong convexity of
the exponential on bounded intervals and iii) the convergence analysis
of the coordinate descent (Gauss-Seidel) method of Beck and Tetru-
ashvili [1].
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1 Introduction

Eventhough the Sinkhorn algorithm1 is more than 50 years old [16], it has
attracted a considerable attention in the last years. It is now at the heart of
efficient solvers for the entropic regularization of optimal transport problems,
a field on which Cuturi’s paper [6] had a tremendous impact (see Cuturi and
Doucet [5], Cuturi and Peyré [13], Benamou et al. [2]...). The Sinkhorn
algorithm remains fascinating by its simplicity and its connections with the
Schrödinger bridge problem first addressed by Schrödinger in [15] and large
deviations theory, see Dawson and Gärtner [7], Föllmer [9], Léonard [12, 11].

∗CEREMADE, Université Paris Dauphine, PSL and INRIA-Paris, MOKAPLAN,
carlier@ceremade.dauphine.fr

1also known as iterative proportional fitting procedure (IPFP) in the probability and
statistics literature, see Rüschendorf, [14] and the references therein.
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The linear convergence of the Sinhkorn algorithm for two marginals is
well-known. A very elegant proof consists in using a celebrated theorem of
Birkhoff to show that the Sinkhorn algorithm consists in iterating a contrac-
tion for the Hilbert projective metric, see Franklin and Lorenz [10], and more
recently, Chen, Georgiou and Pavon, [4].

To the best of our knowledge, the elegant Hilbert metric proof does not
carry over to the multi-marginal case for which an annoying N − 1 factor
(N being the number of marginals) appears in the Lipschitz constant for the
Hilbert metric. Convergence of the multi-marginal Sinkhorn algorithm was
recently obtained by Di Marino and Gerolin [8] and the well-posedness (ex-
istence, uniqueness and smooth dependence on the data) of the Schrödinger
system (see (2.3) below) was addressed by completely different arguments
(local and global inversion theorems) by the author and Laborde in [3]. In
the analysis of [8], a key ingredient is that Sinkhorn iterates are coordinate
descent updates for a convex minimization problem (dual to an entropy min-
imization subject to multi-marginal constraints), see the definition of F in
(2.4) below. In this note, we slightly improve the results of Di Marino and
Gerolin, by showing linear convergence. The proof relies on the convergence
analysis of the coordinate descent method of Beck and Tetruashvili [1] which
can easily be used here, since Sinkhorn iterates are bounded in L∞ so remain
in a set where the functional F is uniformly convex.

2 Multi-marginal Sinkhorn algorithm

We are given an integer N ≥ 2, N probability spaces (Xi,Fi, mi), i =
1, . . . , N and set

X :=

N∏

i=1

Xi,F :=

N⊗

i=1

Fi, m :=

N⊗

i=1

mi. (2.1)

Given i ∈ {1, . . . , N}, we will denote by X−i :=
∏N

j 6=iXj, m−i :=
⊗N

j 6=imj

and will always identify X to Xi×X−i i.e. will denote x = (x1, . . . , xN ) ∈ X

as x = (xi, x−i). The set of measures on (X,F) having m1, . . . , mN as
marginals will be denoted Π(m1, . . . , mN). Given p ∈ [1,∞] and (ϕ1, . . . , ϕN) ∈∏N

i=1 L
p(Xi,Fi, mi) we will use the notations

⊕N
i=1ϕi : (x1, . . . , xN ) ∈ X 7→

N∑

i=1

ϕi(xi),
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and

⊗N
i=1ϕi : (x1, . . . , xN) ∈ X 7→

N∏

i=1

ϕi(xi).

Given a cost c ∈ L∞(X,F , m), we set

‖c‖∞ := ‖c‖L∞(X,F ,m). (2.2)

The associated Gibbs kernel is

K := e−c,

so that e−‖c‖∞ ≤ K ≤ e‖c‖∞ , m-almost everywhere. We look for potentials
ϕ = (ϕ1, . . . , ϕN) ∈

∏N

i=1 L
∞(Xi,Fi, mi) such that the measure

Qϕ := Ke⊕
N
i=1

ϕim

belongs to Π(m1, . . . , mN ) i.e. solve the Schrödinger system:

eϕi(xi)

∫

X−i

e−c(x1,...,xN )+
∑

j 6=i ϕj(xj)dm−i(x−i) = 1, (2.3)

for every i and mi-a.e. xi. The system (2.3) is well-known to be the Euler-
Lagrange optimality condition for the convex minimization problem

inf
ϕ∈

∏N
i=1

L∞(Xi,Fi,mi)
F (ϕ) := −

N∑

i=1

∫

Xi

ϕidmi +

∫

X

dQϕ (2.4)

and if ϕ solves (2.3), the measure Qϕ solves the multi-marginal entropy min-
imization:

inf
Q∈Π(m1,...,mN )

H(Q|e−cm).

Let us observe that whenever λ1, . . . , λN are constants which sum to 0, then

F (ϕ1 + λ1, . . . , ϕN + λN) = F (ϕ1, . . . , ϕN)

so that one can impose the N − 1 normalizing constraints:
∫

X1

ϕ1dm1 = . . . =

∫

XN−1

ϕN−1dmN−1 = 0. (2.5)

Denoting by Lp
⋄(Xi,Fi, mi) the space of zero-mean Lp potentials:

Lp
⋄(Xi,Fi, mi) := {ϕi ∈ Lp(Xi,Fi, mi) :

∫

Xi

ϕidmi = 0}
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we thus consider

inf
ϕ∈E

F (ϕ) where E :=
N−1∏

i=1

L∞
⋄ (Xi,Fi, mi)× L∞(XN ,FN , mN). (2.6)

The Sinkhorn algorithm is nothing but block coordinate descent for the min-
imization of F over E. Starting from ϕ0 ∈ E, the updates of the Sinkhorn
algorithm, consists, given ϕt = (ϕt

1, . . . , ϕ
t
N) ∈ E, in:

ϕt+1
1 := argminϕ1∈L∞

⋄ (X1,F1,m1) F (ϕ1, ϕ
t
2, . . . , ϕ

t
2) (2.7)

i.e.

ϕt+1
1 (x1) := − log

( ∫

X−1

e
∑N

j=2
ϕt
j(xj)K(x1, x−1)dm−1(x−1)

)
+ λt

1, ∀x1 ∈ X1

(2.8)
where

λt
1 =

∫

X1

(
log

(∫

X−1

e⊕
N
j=2

ϕt
jK(x1, x−1)dm−1(x−1)

))
dm1(x1). (2.9)

Then, for i = 2, . . . , N − 1,

ϕt+1
i := argminϕi∈L∞

⋄ (Xi,Fi,mi)
F (ϕt+1

1 , . . . , ϕt+1
i−1, ϕi, ϕ

t
i+1, . . . , ϕ

t
N) (2.10)

i.e.

ϕt+1
i (xi) := − log

(∫

X−i

e⊕
i−1

j=1
ϕt+1

j ⊕N
j=i+1

ϕt
jK(xi, x−i)dm−i(x−i)

)
+λt

i, ∀xi ∈ Xi

(2.11)
where

λt
i =

∫

Xi

(
log

( ∫

X−i

e⊕
i−1

j=1
ϕt+1

j ⊕N
j=i+1

ϕt
jK(xi, x−i)dm−i(x−i)

))
dmi(xi).

(2.12)
Finally, for i = N ,

ϕt+1
N := argminϕN∈L∞(XN ,FN ,mN ) F (ϕt+1

1 , . . . , ϕt+1
N−1, . . . , ϕN) (2.13)

i.e.

ϕt+1
N (xN ) := − log

(∫

X−N

e⊕
N−1

j=1
ϕt+1

j K(xN , x−N)dm−N (x−N)
)
, ∀xN ∈ XN .

(2.14)
The convergence of the Sinkhorn iterates to a solution of (2.3) (hence a
minimizer of (2.4)) was established by Di Marino and Gerolin [8]. The aim
of the next paragraph is to slightly improve this result by showing that this
convergence is linear.

4



3 Linear convergence

Thanks to the normalization (2.5), arguing as in [8], we have uniform bounds
on the Sinkhorn iterates:

Lemma 3.1. For every t ≥ 1, the Sinkhorn iterates ϕt satisfy the bounds:

‖ϕt
i‖L∞(Xi,Fi,mi) ≤ 2‖c‖∞, i = 1, . . . , N − 1, (3.1)

‖ϕt
N‖L∞(XN ,FN ,mN ) ≤ (2N − 1)‖c‖∞. (3.2)

Proof. Since for mi ⊗mi-a.e. (xi, yi) and m−i-a.e. x−i ∈ X−i, one has

c(yi, x−i) ≥ c(xi, x−i)− 2‖c‖∞

we deduce from (2.8) and (2.11) that for i = 1, . . . , N − 1, ϕt
i(xi)− ϕt

i(yi) ≤
2‖c‖∞, using the fact that ϕt

i ∈ L∞
⋄ (Xi,Fi, mi) and integrating the previous

inequality, we immediately deduce (3.1). Once we have these bounds on ϕt
i,

for i = 1, . . . , N − 1, using (2.14), together with e−‖c‖∞ ≤ K ≤ e‖c‖∞ , we
deduce (3.2).

Now that we have uniform, bounds on ϕt, we can take advantage of
the strong convexity and Lipschitz continuity of the exponential function on
bounded intervals, to use the analysis of Beck and Tetruashvili [1]. Indeed,
given M > 0, one obviously has, ∀(a, b) ∈ [−M,M ]2:

eb − ea − ea(b− a) ≥
e−M

2
(b− a)2, |eb − ea| ≤ eM |b− a|. (3.3)

Lemma 3.2. Defining
ν = e−(4N−2)‖c‖∞ , (3.4)

one has

F (ϕt)− F (ϕt+1) ≥
ν

2

N∑

i=1

‖ϕt
i − ϕt+1

i ‖2L2(Xi,Fi,mi)
. (3.5)

Proof. Define

ϕ̃t
i := (ϕt+1

1 , . . . , ϕt+1
i , ϕt

i+1, . . . , ϕ
t
N), i = 1, . . . , N − 1, ϕ̃t

N := ϕt+1, (3.6)

and write in a telescopic fashion

F (ϕt)− F (ϕt+1) = F (ϕt)− F (ϕ̃t
1) +

N−1∑

i=1

(F (ϕ̃t
i)− F (ϕ̃t

i+1)).
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Using successively, the first basic inequality in (3.3), (2.8), the fact that
ϕt
1−ϕt+1

1 has zero mean against m1, and the bounds from lemma 3.1, we get

F (ϕt)− F (ϕ̃t
1) =

∫

X

(eϕ
t
1(x1) − eϕ

t+1

1
(x1))

N∏

j=2

eϕ
t
j(xj)e−c(x)dm(x)

≥

∫

X

(ϕt
1(x1)− ϕt+1

1 (x1))e
ϕt+1

1
(x1)

N∏

j=2

eϕ
t
j(xj)e−c(x)dm(x)

+
e−2‖c‖∞

2

∫

X

(ϕt
1(x1)− ϕt+1

1 (x1))
2

N∏

j=2

eϕ
t
j(xj)e−c(x)dm(x)

≥ eλ
t
1

∫

X1

(ϕt
1(x1)− ϕt+1

1 (x1))dm1(x1)

+
e−(4N−2)‖c‖∞

2

∫

X1

(ϕt
1(x1)− ϕt+1

1 (x1))
2dm1(x1)

=
e−(4N−2)‖c‖∞

2

∫

X1

(ϕt
1 − ϕt+1

1 )2dm1.

Similarly, for i = 1, . . . , N − 1, we have

F (ϕ̃t
i)− F (ϕ̃t

i+1) ≥
e−(4N−2)‖c‖∞

2

∫

Xi+1

(ϕt
i+1 − ϕt+1

i+1)
2dmi+1

which shows (3.5).

Since F is bounded from below on E, the left-hand side of (3.5) converges
to 0. Note also that since ϕt and ϕt+1 belong to E, one has the identity

‖ ⊕N
i=1 (ϕ

t+1 − ϕt)‖2L2(X,F ,m) =

N∑

i=1

‖ϕt
i − ϕt+1

i ‖2L2(Xi,Fi,mi)
(3.7)

and we deduce from (3.5)

lim
t→+∞

‖ ⊕N
i=1 (ϕ

t+1 − ϕt)‖2L2(X,F ,m) = 0. (3.8)

Together with the uniform bounds from lemma 3.1, we deduce that ϕt
i−ϕt+1

i

as well as eϕ
t
i − eϕ

t+1

i converge strongly to 0 in Lp(mi) = Lp(Xi,Fi, mi) for
every p ∈ [1,+∞).
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Theorem 3.3. The sequence of Sinkhorn iterates ϕt converges strongly in
Lp
⋄(X1,F1, m1) × . . . × Lp

⋄(XN−1,FN−1, mN−1) × Lp(XN ,FN , mN) for every
p ∈ [1,+∞), to the unique solution ϕ of (2.6). Moreover, there holds

F (ϕt)− F (ϕ) ≤
(
1−

e−(16N−8)‖c‖∞

N

)t

(F (ϕ0)− F (ϕ)). (3.9)

Proof. The convergence of ϕt in every Lp was obtained by Di Marino and
Gerolin [8], we include a short proof for the sake of completeness. Setting
ati := eϕ

t
i , passing to a subsequence if necessary, we may assume the constants

λt
i in (2.9)-(2.11) converge and that ati, a

t+1
i converges weakly to some ai in

L2(mi). Hence, for every i, ⊗j<ia
t+1
j ⊗j>i a

t
j weakly converges in L2(m−i) to

⊗j<iaj ⊗j>i aj . By construction of the Sinkhorn iterates, eλ
t
i

at+1

i

is expressed

as a Hilbert-Schmidt hence compact integral functional of ⊗j<ia
t+1
j ⊗j>i a

t
j ,

hence 1
at+1

i

converges strongly in L2(mi). Since ati is uniformly bounded and

uniformly bounded away from 0, at+1
i converges strongly in L2(mi) as well

as in in Lp(mi) for any p ∈ [1,+∞) by the bounds from lemma 3.1. Us-
ing again that ati is uniformly bounded and uniformly bounded away from
0, ϕt

i also strongly converges in Lp(mi) to ϕi := eai and of course ϕ ∈ E.
Observing that, by construction, ⊗j≤ia

t+1
j ⊗j>i a

t
jKm admits eλ

t
imi as i-th

marginal for i = 1, . . . , N − 1 and mN as N -th marginal, one easily checks
that e⊕

N
i=1

ϕiKm = ⊗N
i=1aiKm admits m1, . . . , mN as marginals (and all the

constants λt
i, i = 1, . . . , N − 1, tend to 0). Thus ϕ solves the system (2.3)

hence minimizes F over E, but since F is strictly convex over E, this min-
imizer is unique and in fact the whole sequence ϕt strongly converges in Lp

to ϕ for every p ∈ [1,+∞).

Since ϕ satisfies the bounds of lemma 3.1, using (3.3) as we did in the
proof of lemma 3.2, we arrive at

F (ϕ)− F (ϕt) ≥

N∑

i=1

∫

Xi

∂iF (ϕt)(xi)(ϕi(xi)− ϕt
i(xi))dmi(xi)

+
ν

2

N∑

i=1

‖ϕi − ϕt
i‖

2
L2(mi)

where ν is the constant in (3.4) and

∂iF (ϕ)(xi) = −1 + eϕi(xi)

∫

X−i

e⊕j 6=iϕj(xj)e−c(xi,x−i)dm−i(x−i).
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Defining ϕ̃t
i by (3.6), by construction of the Sinkhorn iterates, for i = 1, . . . , N ,

we have ∫

Xi

∂iF (ϕ̃t
i)(ϕi − ϕt

i)dmi = 0

hence

F (ϕ)− F (ϕt) ≥

N∑

i=1

∫

Xi

(∂iF (ϕt)− ∂iF (ϕ̃t
i))(ϕi − ϕt

i)dmi

+
ν

2

N∑

i=1

‖ϕi − ϕt
i‖

2
L2(mi)

≥ −
1

2ν

N∑

i=1

‖∂iF (ϕt)− ∂iF (ϕ̃t
i)‖

2
L2(mi)

where we have used Young’s inequality in the last line. We thus have shown
that

F (ϕt)− F (ϕ) ≤
1

2ν

N∑

i=1

‖∂iF (ϕt)− ∂iF (ϕ̃t
i)‖

2
L2(mi)

. (3.10)

Using the second inequality in (3.3) together with the L∞ bounds on ϕt from
lemma 3.1 and Jensen’s inequality yield

(∂iF (ϕt)(xi)− ∂iF (ϕ̃t
i(xi))

2 ≤
1

ν2

∫

X−i

(⊕N
j=1ϕ

t
j −⊕N

j=1(ϕ̃
t
i)j)

2m−i

so that

‖∂iF (ϕt)− ∂iF (ϕ̃t
i)‖

2
L2(mi)

≤
1

ν2

N∑

j=1

‖ϕt
j − (ϕ̃t

i)j‖
2
L2(mj)

≤
1

ν2

N∑

j=1

‖ϕt
j − ϕt+1

j ‖2L2(mj)
,

together with (3.10), we thus obtain

F (ϕt)− F (ϕ) ≤
N

2ν3

N∑

i=1

‖ϕt
i − ϕt+1

i ‖2L2(mi)
. (3.11)

Finally, combining (3.11) with (3.5), we deduce

F (ϕt)−F (ϕ) ≤
N

ν4
(F (ϕt)−F (ϕt+1)) =

N

ν4
((F (ϕt)−F (ϕ))−(F (ϕt+1)−F (ϕ)))

from which the linear convergence in (3.9) readily follows.
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Remark 3.4. We also have linear convergence of ϕt to ϕ in L2 and every Lp,
p ∈ [1,+∞).

Acknowledgments: G.C. is grateful to the Agence Nationale de la
Recherche for its support through the project MAGA (ANR-16-CE40-0014).
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