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Introduction

Eventhough the Sinkhorn algorithm 1 is more than 50 years old [START_REF] Sinkhorn | Diagonal equivalence to matrices with prescribed row and column sums[END_REF], it has attracted a considerable attention in the last years. It is now at the heart of efficient solvers for the entropic regularization of optimal transport problems, a field on which Cuturi's paper [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF] had a tremendous impact (see Cuturi and Doucet [START_REF] Cuturi | Fast computation of Wasserstein barycenters[END_REF], Cuturi and Peyré [START_REF] Peyré | Computational optimal transport: With applications to data science[END_REF], Benamou et al. [START_REF] Benamou | Iterative Bregman projections for regularized transportation problems[END_REF]...). The Sinkhorn algorithm remains fascinating by its simplicity and its connections with the Schrödinger bridge problem first addressed by Schrödinger in [START_REF] Schrödinger | Sur la théorie relativiste de l'électron et l'interprétation de la mécanique quantique[END_REF] and large deviations theory, see Dawson and Gärtner [7], Föllmer [START_REF] Föllmer | Random fields and diffusion processes[END_REF], Léonard [START_REF] Léonard | From the Schrödinger problem to the Monge-Kantorovich problem[END_REF][START_REF] Léonard | A survey of the Schrödinger problem and some of its connections with optimal transport[END_REF].

The linear convergence of the Sinhkorn algorithm for two marginals is well-known. A very elegant proof consists in using a celebrated theorem of Birkhoff to show that the Sinkhorn algorithm consists in iterating a contraction for the Hilbert projective metric, see Franklin and Lorenz [START_REF] Franklin | On the scaling of multidimensional matrices[END_REF], and more recently, Chen, Georgiou and Pavon, [4].

To the best of our knowledge, the elegant Hilbert metric proof does not carry over to the multi-marginal case for which an annoying N -1 factor (N being the number of marginals) appears in the Lipschitz constant for the Hilbert metric. Convergence of the multi-marginal Sinkhorn algorithm was recently obtained by Di Marino and Gerolin [START_REF] Di | An optimal transport approach for the Schrödinger bridge problem and convergence of Sinkhorn algorithm[END_REF] and the well-posedness (existence, uniqueness and smooth dependence on the data) of the Schrödinger system (see (2.3) below) was addressed by completely different arguments (local and global inversion theorems) by the author and Laborde in [START_REF] Carlier | A differential approach to the multi-marginal Schrödinger system[END_REF]. In the analysis of [START_REF] Di | An optimal transport approach for the Schrödinger bridge problem and convergence of Sinkhorn algorithm[END_REF], a key ingredient is that Sinkhorn iterates are coordinate descent updates for a convex minimization problem (dual to an entropy minimization subject to multi-marginal constraints), see the definition of F in (2.4) below. In this note, we slightly improve the results of Di Marino and Gerolin, by showing linear convergence. The proof relies on the convergence analysis of the coordinate descent method of Beck and Tetruashvili [START_REF] Beck | On the convergence of block coordinate descent type methods[END_REF] which can easily be used here, since Sinkhorn iterates are bounded in L ∞ so remain in a set where the functional F is uniformly convex.

Multi-marginal Sinkhorn algorithm

We are given an integer N ≥ 2, N probability spaces (X i , F i , m i ), i = 1, . . . , N and set

X := N i=1 X i , F := N i=1 F i , m := N i=1 m i . (2.1) 
Given i ∈ {1, . . . , N}, we will denote by X -i := N j =i X j , m -i := N j =i m j and will always identify X to X i × X -i i.e. will denote x = (x 1 , . . . , x N ) ∈ X as x = (x i , x -i ). The set of measures on (X, F ) having m 1 , . . . , m N as marginals will be denoted Π(m 1 , . . . , m N ). Given p ∈ [1, ∞] and (ϕ 1 , . . . , ϕ N ) ∈ N i=1 L p (X i , F i , m i ) we will use the notations

⊕ N i=1 ϕ i : (x 1 , . . . , x N ) ∈ X → N i=1 ϕ i (x i ), and 
⊗ N i=1 ϕ i : (x 1 , . . . , x N ) ∈ X → N i=1 ϕ i (x i ).
Given a cost c ∈ L ∞ (X, F , m), we set

c ∞ := c L ∞ (X,F ,m) . (2.2)
The associated Gibbs kernel is

K := e -c ,
so that e -c ∞ ≤ K ≤ e c ∞ , m-almost everywhere. We look for potentials

ϕ = (ϕ 1 , . . . , ϕ N ) ∈ N i=1 L ∞ (X i , F i , m i ) such that the measure Q ϕ := Ke ⊕ N i=1 ϕ i m
belongs to Π(m 1 , . . . , m N ) i.e. solve the Schrödinger system:

e ϕ i (x i ) X -i e -c(x 1 ,...,x N )+ j =i ϕ j (x j ) dm -i (x -i ) = 1, (2.3) 
for every i and m i -a.e. x i . The system (2.3) is well-known to be the Euler-Lagrange optimality condition for the convex minimization problem

inf ϕ∈ N i=1 L ∞ (X i ,F i ,m i ) F (ϕ) := - N i=1 X i ϕ i dm i + X dQ ϕ (2.4)
and if ϕ solves (2.3), the measure Q ϕ solves the multi-marginal entropy minimization: inf

Q∈Π(m 1 ,...,m N ) H(Q|e -c m).
Let us observe that whenever λ 1 , . . . , λ N are constants which sum to 0, then

F (ϕ 1 + λ 1 , . . . , ϕ N + λ N ) = F (ϕ 1 , . . . , ϕ N )
so that one can impose the N -1 normalizing constraints:

X 1 ϕ 1 dm 1 = . . . = X N-1 ϕ N -1 dm N -1 = 0. (2.5)
Denoting by L p ⋄ (X i , F i , m i ) the space of zero-mean L p potentials:

L p ⋄ (X i , F i , m i ) := {ϕ i ∈ L p (X i , F i , m i ) : X i ϕ i dm i = 0} we thus consider inf ϕ∈E F (ϕ) where E := N -1 i=1 L ∞ ⋄ (X i , F i , m i ) × L ∞ (X N , F N , m N ). (2.6)
The Sinkhorn algorithm is nothing but block coordinate descent for the minimization of F over E. Starting from ϕ 0 ∈ E, the updates of the Sinkhorn algorithm, consists, given

ϕ t = (ϕ t 1 , . . . , ϕ t N ) ∈ E, in: ϕ t+1 1 := argmin ϕ 1 ∈L ∞ ⋄ (X 1 ,F 1 ,m 1 ) F (ϕ 1 , ϕ t 2 , . . . , ϕ t 2 ) (2.7)
i.e.

ϕ t+1 1 (x 1 ) := -log X -1 e N j=2 ϕ t j (x j ) K(x 1 , x -1 )dm -1 (x -1 ) + λ t 1 , ∀x 1 ∈ X 1 (2.8) where λ t 1 = X 1 log X -1 e ⊕ N j=2 ϕ t j K(x 1 , x -1 )dm -1 (x -1 ) dm 1 (x 1 ). (2.9) 
Then, for i = 2, . . . , N -1,

ϕ t+1 i := argmin ϕ i ∈L ∞ ⋄ (X i ,F i ,m i ) F (ϕ t+1 1 , . . . , ϕ t+1 i-1 , ϕ i , ϕ t i+1 , . . . , ϕ t N ) (2.10) 
i.e.

ϕ t+1 i (x i ) := -log X -i e ⊕ i-1 j=1 ϕ t+1 j ⊕ N j=i+1 ϕ t j K(x i , x -i )dm -i (x -i ) +λ t i , ∀x i ∈ X i (2.11
) where

λ t i = X i log X -i e ⊕ i-1 j=1 ϕ t+1 j ⊕ N j=i+1 ϕ t j K(x i , x -i )dm -i (x -i ) dm i (x i ).
(2.12) Finally, for i = N,

ϕ t+1 N := argmin ϕ N ∈L ∞ (X N ,F N ,m N ) F (ϕ t+1 1 , . . . , ϕ t+1 N -1 , . . . , ϕ N ) (2.13)
i.e.

ϕ t+1 N (x N ) := -log X -N e ⊕ N-1 j=1 ϕ t+1 j K(x N , x -N )dm -N (x -N ) , ∀x N ∈ X N .
(2.14) The convergence of the Sinkhorn iterates to a solution of (2.3) (hence a minimizer of (2.4)) was established by Di Marino and Gerolin [START_REF] Di | An optimal transport approach for the Schrödinger bridge problem and convergence of Sinkhorn algorithm[END_REF]. The aim of the next paragraph is to slightly improve this result by showing that this convergence is linear.

Linear convergence

Thanks to the normalization (2.5), arguing as in [START_REF] Di | An optimal transport approach for the Schrödinger bridge problem and convergence of Sinkhorn algorithm[END_REF], we have uniform bounds on the Sinkhorn iterates: Lemma 3.1. For every t ≥ 1, the Sinkhorn iterates ϕ t satisfy the bounds:

ϕ t i L ∞ (X i ,F i ,m i ) ≤ 2 c ∞ , i = 1, . . . , N -1, (3.1) 
ϕ t N L ∞ (X N ,F N ,m N ) ≤ (2N -1) c ∞ . (3.2)
Proof. Since for m i ⊗ m i -a.e. (x i , y i ) and m -i -a.e. x -i ∈ X -i , one has

c(y i , x -i ) ≥ c(x i , x -i ) -2 c ∞
we deduce from (2.8) and (2.11) that for i = 1, . . . , N -1,

ϕ t i (x i ) -ϕ t i (y i ) ≤ 2 c ∞ , using the fact that ϕ t i ∈ L ∞ ⋄ (X i , F i , m i
) and integrating the previous inequality, we immediately deduce (3.1). Once we have these bounds on ϕ t i , for i = 1, . . . , N -1, using (2.14), together with e -c ∞ ≤ K ≤ e c ∞ , we deduce (3.2). Now that we have uniform, bounds on ϕ t , we can take advantage of the strong convexity and Lipschitz continuity of the exponential function on bounded intervals, to use the analysis of Beck and Tetruashvili [ 

F (ϕ t ) -F (ϕ t+1 ) ≥ ν 2 N i=1 ϕ t i -ϕ t+1 i 2 L 2 (X i ,F i ,m i ) . (3.5)
Proof. Define ϕ t i := (ϕ t+1 1 , . . . , ϕ t+1 i , ϕ t i+1 , . . . , ϕ t N ), i = 1, . . . , N -1, ϕ t N := ϕ t+1 , (3.6) and write in a telescopic fashion

F (ϕ t ) -F (ϕ t+1 ) = F (ϕ t ) -F ( ϕ t 1 ) + N -1 i=1 (F ( ϕ t i ) -F ( ϕ t i+1 )).
Using successively, the first basic inequality in (3.3), (2.8), the fact that ϕ t 1ϕ t+1 1 has zero mean against m 1 , and the bounds from lemma 3.1, we get

F (ϕ t ) -F ( ϕ t 1 ) = X (e ϕ t 1 (x 1 ) -e ϕ t+1 1 (x 1 ) ) N j=2 e ϕ t j (x j ) e -c(x) dm(x) ≥ X (ϕ t 1 (x 1 ) -ϕ t+1 1 (x 1 ))e ϕ t+1 1 (x 1 ) N j=2 e ϕ t j (x j ) e -c(x) dm(x) + e -2 c ∞ 2 X (ϕ t 1 (x 1 ) -ϕ t+1 1 (x 1 )) 2 N j=2 e ϕ t j (x j ) e -c(x) dm(x) ≥ e λ t 1 X 1 (ϕ t 1 (x 1 ) -ϕ t+1 1 (x 1 ))dm 1 (x 1 ) + e -(4N -2) c ∞ 2 X 1 (ϕ t 1 (x 1 ) -ϕ t+1 1 (x 1 )) 2 dm 1 (x 1 ) = e -(4N -2) c ∞ 2 X 1 (ϕ t 1 -ϕ t+1 1 ) 2 dm 1 .
Similarly, for i = 1, . . . , N -1, we have

F ( ϕ t i ) -F ( ϕ t i+1 ) ≥ e -(4N -2) c ∞ 2 X i+1 (ϕ t i+1 -ϕ t+1 i+1 ) 2 dm i+1
which shows (3.5).

Since F is bounded from below on E, the left-hand side of (3.5) converges to 0. Note also that since ϕ t and ϕ t+1 belong to E, one has the identity

⊕ N i=1 (ϕ t+1 -ϕ t ) 2 L 2 (X,F ,m) = N i=1 ϕ t i -ϕ t+1 i 2 L 2 (X i ,F i ,m i ) (3.7) 
and we deduce from (3.5)

lim t→+∞ ⊕ N i=1 (ϕ t+1 -ϕ t ) 2 L 2 (X,F ,m) = 0. (3.8) 
Together with the uniform bounds from lemma 3.1, we deduce that ϕ t iϕ t+1 i as well as e ϕ t ie ϕ t+1 i converge strongly to 0 in ), to the unique solution ϕ of (2.6). Moreover, there holds

L p (m i ) = L p (X i , F i , m i ) for every p ∈ [1, +∞). Theorem 3.3. The sequence of Sinkhorn iterates ϕ t converges strongly in L p ⋄ (X 1 , F 1 , m 1 ) × . . . × L p ⋄ (X N -1 , F N -1 , m N -1 ) × L p (X N , F N , m N ) for every p ∈ [1, +∞
F (ϕ t ) -F (ϕ) ≤ 1 - e -(16N -8) c ∞ N t (F (ϕ 0 ) -F (ϕ)). (3.9) 
Proof. The convergence of ϕ t in every L p was obtained by Di Marino and Gerolin [START_REF] Di | An optimal transport approach for the Schrödinger bridge problem and convergence of Sinkhorn algorithm[END_REF], we include a short proof for the sake of completeness. Setting a t i := e ϕ t i , passing to a subsequence if necessary, we may assume the constants λ t i in (2.9)-(2.11) converge and that a t i , a t+1 i converges weakly to some a i in L 2 (m i ). Hence, for every i, ⊗ j<i a t+1 j ⊗ j>i a t j weakly converges in L 2 (m -i ) to ⊗ j<i a j ⊗ j>i a j . By construction of the Sinkhorn iterates, e λ t i a t+1 i is expressed as a Hilbert-Schmidt hence compact integral functional of ⊗ j<i a t+1 j ⊗ j>i a t j , hence 1 a t+1 i converges strongly in L 2 (m i ). Since a t i is uniformly bounded and uniformly bounded away from 0, a t+1 i converges strongly in L 2 (m i ) as well as in in L p (m i ) for any p ∈ [1, +∞) by the bounds from lemma 3.1. Using again that a t i is uniformly bounded and uniformly bounded away from 0, ϕ t i also strongly converges in L p (m i ) to ϕ i := e a i and of course ϕ ∈ E. Observing that, by construction, ⊗ j≤i a t+1 j ⊗ j>i a t j Km admits e λ t i m i as i-th marginal for i = 1, . . . , N -1 and m N as N-th marginal, one easily checks that e ⊕ N i=1 ϕ i Km = ⊗ N i=1 a i Km admits m 1 , . . . , m N as marginals (and all the constants λ t i , i = 1, . . . , N -1, tend to 0). Thus ϕ solves the system (2.3) hence minimizes F over E, but since F is strictly convex over E, this minimizer is unique and in fact the whole sequence ϕ t strongly converges in L p to ϕ for every p ∈ [1, +∞).

Since ϕ satisfies the bounds of lemma 3.1, using (3.3) as we did in the proof of lemma 3.2, we arrive at

F (ϕ) -F (ϕ t ) ≥ N i=1 X i ∂ i F (ϕ t )(x i )(ϕ i (x i ) -ϕ t i (x i ))dm i (x i ) + ν 2 N i=1 ϕ i -ϕ t i 2 L 2 (m i )
where ν is the constant in (3.4) and

∂ i F (ϕ)(x i ) = -1 + e ϕ i (x i ) X -i e ⊕ j =i ϕ j (x j ) e -c(x i ,x -i ) dm -i (x -i ).
Defining ϕ t i by (3.6), by construction of the Sinkhorn iterates, for i = 1, . . . , N, we have

X i ∂ i F ( ϕ t i )(ϕ i -ϕ t i )dm i = 0 hence F (ϕ) -F (ϕ t ) ≥ N i=1 X i (∂ i F (ϕ t ) -∂ i F ( ϕ t i ))(ϕ i -ϕ t i )dm i + ν 2 N i=1 ϕ i -ϕ t i 2 L 2 (m i ) ≥ - 1 2ν N i=1 ∂ i F (ϕ t ) -∂ i F ( ϕ t i ) 2 L 2 (m i )
where we have used Young's inequality in the last line. We thus have shown that

F (ϕ t ) -F (ϕ) ≤ 1 2ν N i=1 ∂ i F (ϕ t ) -∂ i F ( ϕ t i ) 2 L 2 (m i ) . (3.10) 
Using the second inequality in (3.3) together with the L ∞ bounds on ϕ t from lemma 3.1 and Jensen's inequality yield

(∂ i F (ϕ t )(x i ) -∂ i F ( ϕ t i (x i )) 2 ≤ 1 ν 2 
X -i (⊕ N j=1 ϕ t j -⊕ N j=1 ( ϕ t i ) j ) 2 m -i so that

∂ i F (ϕ t ) -∂ i F ( ϕ t i ) 2 L 2 (m i ) ≤ 1 ν 2 N j=1 ϕ t j -( ϕ t i ) j 2 L 2 (m j ) ≤ 1 ν 2 N j=1 ϕ t j -ϕ t+1 j 2 L 2 (m j ) ,
together with (3.10), we thus obtain 

F (ϕ t ) -F (ϕ) ≤ N 2ν 3 N i=1 ϕ t i -ϕ t+1

. 3 )

 3 1]. Indeed, given M > 0, one obviously has, ∀(a, b) ∈ [-M, M] 2 : e be ae a (ba) ≥ e -M 2 (ba) 2 , |e be a | ≤ e M |b -a|. (3Lemma 3.2. Defining ν = e -(4N -2) c ∞ ,(3.4)one has

i 2 L 2

 22 (m i ) .(3.11) Finally, combining (3.11) with (3.5), we deduceF (ϕ t )-F (ϕ) ≤ N ν 4 (F (ϕ t )-F (ϕ t+1 )) = N ν 4 ((F (ϕ t )-F (ϕ))-(F (ϕ t+1 )-F (ϕ))) from which the linear convergence in (3.9) readily follows.
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