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Abstract 9 
 10 

In this research, two different diesel oil-based nanofluids were prepared and the influence of 11 

temperature and nanoparticle content were examined on viscosity, tribological, and 12 

physicochemical features of diesel oil. The kinematic viscosity of samples was experimentally 13 

evaluated based on standard ASTM D445. The greatest viscosity increment was diagnosed at 0.7 14 

wt.% and 100°C for both of the prepared nanofluids. The anti-friction behavior of the nanofluids 15 

was studied utilizing a pin-on-disc tribometer. The acquired outcomes revealed that ZnO and 16 

MoS2 nanoparticles (NPs) could promote the tribological characteristics of pure diesel oil. By 17 

analyzing the friction coefficient values and line roughness of the wear surface (Ra), an optimal 18 

concentration of ZnO and MoS2 nanoparticles (NPs) were found to be around 0.4 wt.% and 0.7 19 

wt.%, respectively. The friction factor and pumping power were also measured at diverse content 20 

of nanoparticles and flow rates showing that the pumping power was enhanced by the 21 

incorporation of nanoparticles.  22 

 23 
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Nomenclature                                                        1 

A       Cross section area (m
2
)                            2 

D       Pipe diameter (m)                                    3 

f         Friction factor 4 

Q       Flow rate (m
3
 s

-1
)                                         5 

t         Time (s)                                                     6 

u        Velocity (m s
-1

) 7 

V       Volume (m
3
) 8 

Re      Reynolds number 9 

L        Length (m) 10 

wt      Nanoparticle weight fraction (%) 11 

m       Mass (kg) 12 

T       Temperature (°C) 13 

d         Diameter (m) 14 

M       Molecular mass (kg mol
-1

) 15 

N        Avogadro number (mol
-1

) 16 

Greek letters 17 

         Kinematic viscosity (mm
2
 s

-1
) 18 

         Density (kg m
-3

) 19 

        Volume fraction (%) 20 

Subscripts 21 

th       Theoretical 22 

exp     Experimental 23 

bf       Base fluid 24 
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nf       Nanofluid 1 

np      Nanoparticle 2 

1. Introduction 3 
 4 
The term nanofluid refers to the stable distribution of low concentrations of nanoparticles 5 

(NPs) with sizes ranging from 1 to 100 nm in a liquid [1, 2]. Nanofluids have been widely used 6 

due to their greater thermal behaviors in comparison with the base fluid. Furthermore, having 7 

more substantial surface areas than micro-sized particles and letting more inconsiderable erosion 8 

in comparison with the traditional liquid-solid blends can be mentioned as the benefits of 9 

nanofluids [3-8]. This exceptional improvement in characteristics is associated with the size and 10 

shape of the NPs and their nature [9]. Several kinds of nanoparticles including metallic and 11 

nonmetallic, with various forms and dimensions, were utilized to prepare nanofluids, and some 12 

inspiring outcomes have been evidenced; however, the usage of nanoparticles may lead to 13 

accretion in viscosity of the nanofluids owing to their viscose nature [10-22]. Recently, ZnO NPs 14 

have attracted remarkable research attention owing to their capacity for advancing 15 

thermophysical qualities, tribological properties, and good dispersion traits [23-29]. MoS2 NPs 16 

have exhibited excellent anti-wear, mechanical, and thermophysical properties among various 17 

types of nanoparticles. Their lubricity characteristics associate with the inherent structure namely 18 

the vast space and weak Van der Waals forces that lead them to move easily on each other [30-19 

32]. 20 

Numerous comparisons have been performed to examine the anti-wear features and thermal 21 

performances of nano-MoS2 additive oil-based fluids. The outcomes confirmed that the 22 

tribological and thermal aspects of the prepared nanofluids are strikingly enhanced by adding 23 

nano-MoS2 particles to the utilized fluid [30, 33-35]. Dinesh et al. [36] scrutinized the 24 

tribological and thermophysical characteristics of engine oil comprising MWCNT and Zinc 25 

Oxide NPs. The outcomes demonstrated that MWCNT and Zinc Oxide NPs were able to 26 

advance the operational facets of the engine oil. Esfe et al. [37] analyzed the rheological 27 

attributes of engine oil utilizing MWCNT and ZnO NPs. The conclusions showed that the 28 

usability of the nano-additives in the engine oil can decrease the damages to motor sections in a 29 

cold start of the vehicle. The tribological properties of different base oils using ZnO and CuO 30 

NPs as additives have been studied by Alves et al [38]. They reported that by adding 31 

nanoparticles to conventional oil, the anti-frictional features could be remarkably enhanced. A 32 
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more constant tribo-film had made on the worn surface, which was adequate for the further 1 

decreased friction. Cabaleiro et al. [39] assessed the thermal features of multiple TiO2 2 

nanofluids. They observed that the prepared nanofluids increased thermal conductivity in 3 

comparison with pure fluids. Probes of the lubricating, rheological, and thermal performances of 4 

ZnO NPs demonstrated that adding nano zinc oxide particles to the pure fluid can develop the 5 

mentioned traits [40-46]. Hu et al. [47] conducted a tribological comparison between three 6 

different types of MoS2 in various greases. The results explicated that any MoS2 enhanced the 7 

wear resistance of the three greases in most cases under the chosen measurement conditions. 8 

Zawawi et al. [48, 49] studied thermal conductivity and viscosity behaviors of three diverse 9 

mixtures of nanoparticles in the base lubricant (PAG composite nano-lubricants) at diverse 10 

nanoparticle volume levels and temperatures. They found that the usage of nanoparticles in the 11 

pure lubricant improved the thermophysical traits such as thermal conductivity and dynamic 12 

viscosity. Coelho et al. [50] analyzed the thermophysical qualities of CuO nanofluids. The results 13 

declared that both permittivity and electrical conductivity developed with the addition of nano-14 

CuO particles. Ding et al. [51] conducted a study for understanding the tribological features of 15 

silica NPs water-based lubricants. They published that the silica NPs can significantly improve 16 

the tribological performances when added to the base lubricant. Empirical research of the 17 

thermal characteristics of Al2O3/water nanofluid proved that adding Al2O3 NPs as an additive 18 

can substantially raise the thermal traits of the nanofluid [52-56]. Karimi et al. [57] estimated the 19 

thermal conductivity acts of NiFe2O4 nanofluids at diverse concentrations. They noticed that the 20 

thermal conductivity of the samples raised with the increasing temperature and content. Minea et 21 

al. [58] conducted a study to compare the thermophysical qualities of diverse nanofluids. The 22 

outcomes manifested that adding alumina to the ionic liquid can exceptionally enhance 23 

thermophysical properties. Research performed by Zhengfeng et al. [59] proved that the addition 24 

of three kinds of nano-montmorillonite as additives in the grease can enhance the lubricity 25 

attributes. Lou et al. [60] researched to examine the lubricity aspects of the Al2O3 oil-based 26 

nano-lubricants. The outcomes exposed that adding nano-Al2O3 particles to the pure oil can 27 

notably enhance tribological properties; moreover, the pure oil containing 0.1 wt.% nano-Al2O3 28 

particles had the lowest friction coefficient. Grecov et al. [61-66] investigated the effect of 29 

cellulose and liquid crystals as an additive on the tribological and rheological properties of both 30 

aqueous-based and oil-based lubricants. The results proved that the used additives had great 31 
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potential in friction reduction applications. Wu et al. [67] prepared MoS2 nanosheets decorated 1 

by zinc borate (ZB) NPs and applied them as additives to assess the anti-frictional behavior of 2 

lubricating oil, confirming that they can dramatically advance the tribological characteristics. 3 

Sanukrishna et al. [68] examined the impressions of nano-TiO2 particles (0.07~0.8% volume 4 

fractions) on rheological properties and thermal conductivity on PAG nano-lubricant at diverse 5 

temperatures, showing that the utilized nanoparticles can develop the examined properties. Sharif 6 

et al. [69] studied thermophysical behaviors of the Al2O3/polyalkylene glycol nano-lubricants at 7 

different content of additives and temperatures exhibiting that the measured quantities enhanced 8 

with utilizing the additives. Khairul et al. [70] studied the stability and thermal characteristics of 9 

different prepared nanofluids. They showed that the efficiency of the system developed with the 10 

usage of the nanoparticles. Jabbari et al.  [71] reviewed the thermophysical qualities of various 11 

nanofluids, confirmed that the thermophysical attributes of nanofluids increased with raising 12 

nanoparticle volume fraction. 13 

According to the conducted literature review, the preponderance of examinations in the 14 

aforementioned area announces a positive impact on the rheological, anti-friction, and thermal 15 

features of different types of additives. Based on the investigations in the field of nanofluids, 16 

comprehensive examinations have been carried out on nanofluids namely turbine meter oil, 17 

engine oil, grease, water-based nanofluids, and other nanofluids, while limited consideration has 18 

been paid to the area of diesel oil. Consequently, in this article, the impact of ZnO and MoS2 NPs 19 

on viscosity, tribological, and physicochemical qualities were studied. It is worth stating that this 20 

work is a continuation of the previous one [72] to complete the characterization and demonstrate 21 

the potential of nano-lubricants considering different measurements. 22 

In the current investigation, diesel oil-based nanofluids were prepared using a two-step 23 

preparation technique with 0.1, 0.4, and 0.7 wt.% of ZnO and MoS2 NPs, and the impact of 24 

nanoparticle concentration on the viscosity, tribological, and physicochemical features of the 25 

nanofluids was analyzed. 26 

2. Experimental materials and methods 27 

2.1 Materials 28 

Zinc oxide (ZnO) and molybdenum disulfide (MoS2) as the precursor, SAE-40 monograde 29 

diesel engine oil as the core fluid, and Triton X-100 as the surfactant were procured from US 30 
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Research-Nanomaterials, Sigma-Aldrich, Pars oil co, and Samchun, respectively. Table 1 1 

presents the main features of the nanoparticles from the manufacturer data. Characteristics of the 2 

base fluid are shown in Table 2. SEM characterization (Zeiss, Germany) was performed for the 3 

analysis of ZnO and MoS2 NPs. The crystalline form of the used nanoparticles was examined 4 

using powder X-ray diffraction (XRD, PHILIPS-PW1730, Netherlands) with Cu-K  radiation (  5 

= 0.14056 nm) at room temperature. The XRD patterns were performed at room temperature 6 

ranging in          at a rate of 3° min
−1

. The Debye–Scherrer’s formula was applied to 7 

compute the crystallite size of the nanoparticles, based on the XRD schema [73]:  8 

   
     

       
                                                                                                                                                                               9 

(1) 10 

Where D, λ,  , and   are the particle size perpendicular to the regular line of plane, the 11 

wavelength of X-ray, the entire width at the half summit of the diffraction peak, and the Bragg 12 

angle of the peak. 13 

Table 1 Properties of the nanoparticles. 14 

Properties ZnO MoS2 

Color White Gray/Black 

Purity (%) 99.9 99 

Density (g/cm
3
) 5.6 5.06 

Size (nm) 30 90 

Table 2 Characteristics of the diesel oil. 15 

Base Fluid Physical properties Value 

Monograde diesel oil (SAE-40) 

Pour point, °C -17.8 

Flash point, °C 238 

Density, Kg/cm
3
 at 15 °C 0.893 

Kinematic viscosity, cSt at 40 °C 162.53 

Kinematic viscosity, cSt at 100 °C 14.62 

Viscosity Index (VI) 86.85 
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2.2 Preparation of nanofluids 1 

The nano-ZnO and nano-MoS2 particles were added to the diesel oil at 0.1, 0.4, and 0.7 2 

wt.%. The nanofluids were prepared at different concentrations from 0.02 wt.% to 0.8 wt.%; 3 

however, there were no conspicuous differences between the results for each test at the 4 

concentration below the 0.1 wt.%. The most significant reason for this phenomenon is the fact 5 

that because of the high viscosity of the base diesel oil, nanoparticles could not strikingly affect 6 

the investigated parameters at lower concentrations—that is— below the 0.1 wt.%. To possess 7 

satisfying dispersibility, Triton X-100 (mass proportion of 1 to 2 with nanoparticle) as the 8 

surfactant was poured into the nanofluid mixture. The required value of nanoparticles and 9 

surfactant were accurately balanced employing a precision electronic balance and mixed with the 10 

diesel oil. The suspension was mixed using a mechanical stirrer at 900 rpm for about 3 hours and 11 

was agitated with an ultrasonic agitator (Parsonic 2600s, Iran) for about 45 min to provide a 12 

stable nanofluid. The sonication operated at a frequency of 28 kHz and a nominal power of 70 W 13 

at room temperature. Multiple concentrations were prepared to study the influence of the 14 

nanoparticle content. 15 

2.3 Kinematic viscosity analysis 16 

The kinematic viscosity was assessed based on ASTM D445. The kinematic viscosity was 17 

assessed using an Opaque viscometer (Accuracy:  0.3%) at atmospheric pressure. The 18 

viscometer bath was employed to control the temperature. All analyses were conducted three 19 

times. Kinematic viscosity of the prepared nanofluids was discovered at 40°C – 100°C. 20 

2.4 Tribological analysis 21 

The tribological features of the produced nanofluids at various concentrations were assessed 22 

and compared to the base diesel oil using a pin-on-disc tribometer based on the ASTM G99. The 23 

tribological experiments were carried out at 25℃ with a sliding velocity of 150 rpm and a weight 24 

of 75 N. The analyses were carried out under various loading bars varying from 20 N to 75 N; 25 

however, because of the high viscosity of diesel oil, lower loading bars could not affect, and 26 

significant change was not seen in the recorder COF values. Thus, 75 N was considered as the 27 

loading bar. The sliding length was 1000 m. The material of the pins was hardened bearing steel 28 

(AISI 52100). The diameter and length of the pins were 5 mm and 50 mm, respectively. Before 29 

the tribological examination, the pin and disc were purified utilizing acetone. The normal force 30 

was applied applying load rings. The specimen is rotated at a selected speed. The rotation of the 31 
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sample and the sample holder were controlled by the motor. The examinations were done using 1 

the prepared nanofluids, and outcomes were compared with the pure diesel fluid. The friction 2 

coefficient values were reported; furthermore, the surface roughness Ra was measured. All tests 3 

were replicated at least three times, and the average value of each was determined.  4 

2.5 Friction factor determination 5 

The friction factor and the pressure drop of nano-lubricants in a copper tube were measured 6 

using an experimental setup described as follows. The system consisted of a pump to transport 7 

the working fluids at different velocities, a fluid tank, valves, pressure gauges, and a flow meter. 8 

Fig. 1 exhibits the schematic of the system. 9 

 10 

Fig. 1. Design of the laboratory device. 11 

3. Data and uncertainty analysis 12 

The theoretical friction factor (f) for laminar flow and Reynolds number are obtained as [74, 13 

75]:  14 

   
  

  
                                                                                                                                                                                 15 

(2)   16 
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                                                                                                                                                                               1 

(3) 2 

where  ,  ,   and are the diameter of the pipe as a specific length, velocity, and kinematic 3 

viscosity, and    is Reynolds number. Velocity and flow rate circumscribed by Eqs. (4) and (5), 4 

sequentially [76]. 5 

   
 

 
                                                                                                                                                                                   6 

(4) 7 

   
 

 
                                                                                                                                                                                  8 

(5)                                                                                                                                                          9 

where  ,  ,  ,   and are time, volume, the cross-section area of the pipe, and flow rate. 10 

Theoretical (    ) pressure difference was defined by Eq. (6) [77]. 11 

      
 

 
 
   

 
                                                                                                                                                             12 

(6) 13 

L and   are the pipe length and density of the fluid. 14 

The pumping power was determined by utilizing Eq. (7). 15 

                                                                                                                                                                             16 

(7) 17 

Considering the devices employed in this research have various precision and the parameters 18 

were estimated with these tools possess errors, it is essential to examine the impact of analysis 19 

error on these outcomes. If P is a function of empirical variables such as x1, x2, x3, …, xn, the 20 

subsequent formula is applied to assess the determination error of the parameter xi [78]: 21 

     
  

 

  

   
                                                                                                                                                                   22 

(8) 23 

where xi is the assessable quantity and     is the determination error. The highest error of 24 

parameter P is determined by merging the error of per parameter xi utilizing the subsequent 25 

formula: 26 
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(9) 28 
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As stated earlier, the Reynolds number is determined as    
  

 
, and the generated error 1 

from the Reynolds number is proved as follows: 2 

                                                                                                                         3 

(10)             4 

Given that    
 

 
,    is computed as follows:  5 

        
 
                                                                                                                        6 

(11) 7 

Additionally, the generated error by the volumetric flow rate is determined as    
 

 
 that is 8 

defined by Eq. (12). 9 

                                                                                                                                 10 

(12) 11 

The error of the friction factor ascertainment is similar to the error correlated with the 12 

Reynolds number. 13 

                                                                                                                                             14 

(13) 15 

Hence, the highest friction factor error in the analyses reached 1.1%. 16 

Errors for all measured parameters are calculated as follows: 17 

The mass of base fluid:                                                                    
  

     

    
                                                     18 

The mass of nanoparticle:                                                                        
  

     

   
         19 

The nanoparticle weight fraction:                                   

      

  
 
           20 

The temperature:                                                                                              
    

  
         21 

The kinematic viscosity:                                                                                 
    

  
         22 

4. Results and discussion 23 

4.1 Materials: characterization 24 

The SEM pictures of the nano-ZnO and nano-MoS2 particles are displayed in Fig. 2. Based 25 

on the SEM pictures, the nano-ZnO and nano-MoS2 particles have a nearly spherical form and 26 

platelet-like shape with an average diameter of 30 nm and 90 nm, respectively. The XRD 27 
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patterns of the nano-ZnO and nano-MoS2 particles are displayed in Fig. 3. The XRD pattern of 1 

the ZnO NPs shows peaks at 2  = 31.88, 34.58, 36.43, 47.73, 56.73, 62.93, 66.83, 68.03, and 2 

69.13, which can be classified to the (100), (002), (101), (102), (110), (103), (200), (112) and 3 

(201) planes of ZnO. All diffraction peaks were in arrangement with the diffraction data of the 4 

standard card (JCPDS card number 36-1451) [79]. The XRD pattern of the MoS2 NPs displays 5 

diffraction peaks at 2  = 14.63, 29.18, 32.88, 39.73, 44.38, 50.13, 60.48 and 70.23 matching to 6 

the (002), (004), (100), (103), (104), (105), (112), and (200) crystal planes of the MoS2 structure 7 

according to the source data of JCPDS card number 37-1492 [80]. No impurity peaks were 8 

identified. The crystallite sizes of ZnO and MoS2 calculated according to the principal peak 9 

breadth in the XRD schema by Eq. (1) were 14.2 nm and 32.6 nm, respectively. The 10 

nanoparticles are presented with an agglomeration of several crystals; thus, in most cases, the 11 

average diameter of nanoparticles is higher than the crystallite size. Comparing the average 12 

diameter and crystallite size of nanoparticles, it can be concluded that ZnO NPs are more 13 

agglomerated.  14 
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 1 

Fig. 2. SEM images of (a) ZnO NPs, (b) MoS2 NPs. 2 
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 1 

Fig. 3. XRD patterns of (a) ZnO NPs, (b) MoS2 NPs. 2 

4.2 Viscosity 3 

Fig. 4. depicts the impact of the ZnO and MoS2 NPs concentration and temperature on the 4 

kinematic viscosity of the diesel oil, at 40°C – 100°C. According to Fig. 4, it can be seen that the 5 

kinematic viscosity of all specimens including ZnO and MoS2 NPs, has increased concerning the 6 

pure diesel oil. The increase was more substantial at greater concentrations because of the 7 

agglomeration of the increase in nanoparticles. While the temperature rises, the kinematic 8 

viscosity of all specimens was reduced since the intermolecular strengths are weakened by 9 

increasing the temperature. At each measured temperature, ZnO nanofluids showed higher 10 

viscosity values than diesel oil comprising nano-MoS2 particles since the ZnO nanofluids are 11 
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more stable and the nano-ZnO particles are more coherent compared to the MoS2 nanofluids. 1 

The maximum viscosity increment was obtained at 0.7 wt.% and 100 °C for both prepared 2 

nanofluids. Considering the results, it can be concluded that the ZnO nanofluids were more 3 

resistant to move in comparison with the MoS2 diesel oil-based nanofluids. 4 

 5 

Fig. 4. Variation of kinematic viscosity of diesel oil containing ZnO and MoS2 NPs at different 6 

concentrations with temperature. 7 

One of the commonly utilized formulas for evaluating the relation between the viscosity and 8 

temperature of the manufacturing oils is Walther function, which is characterized by Eq. (14) 9 

[81]: 10 

                                                                                                                                    11 

(14) 12 

Where  ,  , and T are the kinematic viscosity (mm
2
/s), 0.7 for the kinematic viscosity greater 13 

than 2 mm
2
/s, the temperature (K), and b and n attribute to fixed parameters that are specified 14 
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based on the oil sort. The parameters b and n obtained from Eq. (14) for different concentrations 1 

of the ZnO and MoS2 NPs are gathered in Table 3. According to the    values, it can be asserted 2 

that the aforementioned model can properly determine the changes in the kinematic viscosity of 3 

the ZnO and MoS2 NPs with temperature in the studied range. 4 

Table 3 Parameters acquired from the fitting of alteration in kinematic viscosity with temperature 5 

using the Walther function. 6 

Concentration (wt.%) b n    

0 9.23 3.56 0.99 

0.1 ZnO 9.07 3.49 0.99 

0.4 ZnO 9.02 3.47 0.99 

0.7 ZnO 8.99 3.46 0.99 

0.1 MoS2 9.08 3.50 0.99 

0.4 MoS2 9.04 3.48 0.99 

0.7 MoS2 9.02 3.47 0.99 

 7 

Einstein proposed the dependency of viscosity on the volume portion of the nanoparticles. 8 

Einstein assumed that the particles were in very dilute suspensions, namely solid spheres without 9 

interactions, and the improvement in the shear makes the rotary movement of the particles; thus, 10 

raises the dispersal viscosity. The Einstein formula, which can be utilized for suspensions having 11 

a particle volume portion below 0.01 (      ) is depicted as follows [82]: 12 

                                                                                                                                                               13 

(15) 14 

  
 
 

 
 
  

 
 

 
 
  

  
 

 
 
  

                                                                                                                                                           15 

(16) 16 

where  ,  ,  , and,   are viscosity, the volume fraction of nanoparticles, mass, and density. 17 
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Many equations have been proposed to calculate the relative viscosity (   
   

   
) using the 1 

volume portion of nanoparticles which are noted in Table 4. In equations, the diameter of the 2 

molecule of base fluid (  ) was defined by Eq. (17). 3 

       
  

   
 
   

                                                                                                                                                       4 

(17) 5 

Where  ,  , and    are the molecular mass of the diesel oil, Avogadro number, and the 6 

mass density of diesel oil calculated at temperature        K.    is the diameter of the 7 

nanoparticles. 8 

 The calculated values of the relative viscosity applying various models at different volume 9 

fractions of MoS2 nanofluids are listed in Table 5. The alteration of the relative viscosity for 10 

MoS2 nanofluids using different models and also the comparison between these models with the 11 

experimental data are presented in Fig. 5. As can be noticed in these figures, the theoretical 12 

models could not foretell the relative viscosity-mass fraction of the nanoparticles relation since 13 

these models did not ponder the size, shape, sort of the nanoparticles, sort of base fluids, and 14 

agglomeration of the nanoparticles, as well as temperature, while above-mentioned factors have 15 

a significant impression on the viscosity of nanofluids. As it is shown, the Einstein model 16 

unpredicted viscosity and this model was only developed for sphere nanoparticles. Numerous 17 

studies have also asserted similar conclusions considering different nanofluids, in which 18 

empirical results are not agreeable with the considered models [83-86]. 19 

Table 4 Classic equations to calculate the relative viscosity. 20 

Author  Equation 

Corcione [87]    

   
 

 

        
  

  
 

    

     

  

Sharma [88]    

   
    

 

   
 
    

   
   

  
 
      

   
  

   
 
      

  



17 

 

Table 5 Relative viscosity of MoS2 nanofluids at diverse volume fractions. 1 

Nanoparticle MoS2 

Weight fraction (wt.%) 0.1 0.4 0.7 
 

Volume fraction ( %) 0.018 0.071 0.126 
 

Relative viscosity 

Einstein 1.00045 1.00178 1.00315 
 

Corcione 1.00034 1.00138 1.0025 
 

Sharma 0.98299 0.98305 0.98311 
 

 2 

Fig. 5. Relative viscosity as a function of volume fraction for MoS2 nanofluids. 3 

4.3 Friction characteristics 4 

Figs. 6 and 7 illustrate the recorded friction coefficients (COFs) vs time for the base sample, 5 

ZnO, and MoS2 diesel oil-based nanofluids with various contents (0.1   0.7 wt.%) at rotating 6 

speed of 150 rpm and applied load of 75 N. The mean values of the COFs are also shown in Fig. 7 

8. The performance of diesel oil without and with nanoparticles was assessed. The outcomes 8 

reveal that all the samples lead to an initial short running-in period and the COF stabilizes almost 9 

300 seconds after the starting of the tribological analysis. Other researchers [89-91] also noticed 10 

similar conclusions concerning different nanofluids proving that the continuance of the run-in 11 

phase is reliant on various factors of the contact surfaces such as geometrical, chemical, and 12 

physical; moreover, the capacity of the lubricating fluid to produce a proper tribo-film. It is 13 
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determined that the average COFs of the nanofluids diminished with the content ranging from 1 

0.1 wt.% to 0.7 wt.%. Fig. 6 shows that the friction coefficient diminished when the content of 2 

nano-ZnO particles was under 0.4 wt.%. However, when the content exceeded 0.4 wt.%, the 3 

friction coefficient increased. On the other hand, Fig. 7 shows that the friction coefficient values 4 

decreased by adding MoS2 NPs. Based on Figs 6, 7, and 8, it can be understood that the COF 5 

values steadily decreased for MoS2 nanofluids while for the ZnO nanofluids decreased first and 6 

then, gradually increased. Considering Fig. 8, it can be concluded that MoS2 diesel oil-based 7 

nanofluids had a better anti-friction behavior compared to the ZnO nanofluids both in lower 8 

concentrations and higher concentrations. The lowest final COF in this research happened at a 9 

concentration of 0.7 wt.% MoS2 nanofluids and the optimal content for ZnO NPs was 0.4 wt.%. 10 

Shape, size, morphology, and the inherent attributes of the nanoparticles play a vital role to 11 

develop the lubrication qualities of the nanofluids. Nanoparticles with lower diameter act better 12 

in anti-friction purposes in comparison with the greater ones in diameter. Nonetheless, in this 13 

investigation, the most influential factor in enhancing the lubricity performance of the MoS2 14 

nanofluids is the intrinsic structural features of the nano-MoS2 particles which lead them to move 15 

easily on each other. Thus, the layers are located unitedly with low molecular forces and can 16 

readily move over each other. 17 



19 

 

 1 

Fig. 6. Friction coefficient (COF) of the ZnO nanofluids with various contents as a function of time. 2 
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 1 

Fig. 7. Friction coefficient (COF) of the MoS2 nanofluids with various contents as a function of time. 2 

 3 

Fig. 8. Average friction coefficient (COF) values of the nanofluids at various concentrations. 4 
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Fig. 9 presents the characterizations of the wear mark on the rubbing superficies equal to the 1 

sliding path. The assessed line roughness    values of the worn surfaces before and after the test 2 

at varying contents of ZnO and MoS2 nanofluids are tabulated in Table 6. Based on the 3 

computed surface roughness (  ), it can be discerned that the worn surfaces became smooth 4 

after the friction experiment due to the polishing impact of the diesel oil. Moreover, 5 

the roughness average of surfaces (  ) decreased with the addition of the nanoparticles to the 6 

diesel oil. Having considered the pure diesel oil, the reduction of the    values after the test was 7 

3.64%, 21.33%, and 11.14% for 0.1 wt.%, 0.4 wt.%, and 0.7 wt.% ZnO nanofluids, respectively. 8 

Whereas the reduction of the    values was 12.82%, 43.95%, and 60.75% for 0.1 wt.%, 0.4 9 

wt.%, and 0.7 wt.% MoS2 nanofluids. Hence, MoS2 nanofluids showed lower    values 10 

compared to those of ZnO nanofluids proving better anti-friction behavior of the MoS2 NPs. 11 

 12 
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 1 

 2 

Fig. 9. Profile curve of wear scar of (a) pure diesel oil, (b) 0.1 wt.% ZnO nanofluids, (c) 0.4 wt.% 3 

ZnO nanofluids, (d) 0.7 wt.% ZnO nanofluids, (e) 0.1 wt.% MoS2 nanofluids, (f) 0.4 wt.% MoS2 4 

nanofluids, (g) 0.7 wt.% MoS2 nanofluids. 5 
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Table 6 The measured surface roughness (  ) values of the worn surfaces before and after the test at 1 

different concentrations of ZnO and MoS2 nanofluids. 2 

Concentration (wt.%)    (before test)/µm    (after test)/µm    /µm 

0 (pure diesel oil) 6.922 5.136 1.786 

0.1 ZnO 6.971 5.120 1.851 

0.4 ZnO 5.942 3.775 2.167 

0.7 ZnO 6.395 4.410 1.985 

0.1 MoS2 4.601 2.586 2.015 

0.4 MoS2 5.016 2.445 2.571 

0.7 MoS2 5.279 2.413 2.866 

4.4 Friction factor  3 

The friction factor and the experimental pressure difference values were acquired using the 4 

devised laboratory at diverse flow rates for different nanofluids and the results were compared to 5 

the pure diesel oil. The variety of the friction factor at the measured flow rates, inlet velocity, 6 

Reynolds number, kinematic viscosity, the difference between the experimental and theoretical 7 

pressures at various content of nanoparticles are listed in Table 7. According to the data listed in 8 

Table 7, it can be concluded that the friction factor and Reynolds number had an opposite 9 

relation since the kinematic viscosity of the samples was increased by adding the nano-additives. 10 

At each flow rate, higher amounts of the friction factor were seen in comparison with the base 11 

fluid without nano-additives because by increasing the content of the nanoparticles, the 12 

kinematic viscosity of the nanofluids increased. By comparing the experimental and theoretical 13 

pressure values, it can be concluded that the laboratory had a proper performance. Based on the 14 

acquired outcomes, the pressure drops in the tube increased with the rising in the Reynolds 15 

number or inlet velocity. Recently, researchers have stated the identical trend for other 16 

nanofluids [31, 92]. The friction factor was raised in all contents of ZnO and MoS2 NPs with the 17 

highest increment of 8.2 % and 8.3% for ZnO and MoS2 nanofluids happening at 0.7 wt.% with 18 

the lowest inlet velocity. 19 

 20 
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Table 7 The difference of friction factor at diverse flow rates for different nanofluids. 1 

Concentration (wt.%)       (m
3
/s)   (m/s)          (m

2
/s)              Disparity (%) 

0 (pure diesel oil) 

1.022 0.161 6.18 234.065 10.36 14654.91 14130 3.58 

1.211 0.190 8.82 194.273 7.26 14302.62 13680 4.35 

3.614 0.568 29.67 172.341 2.16 38029.63 36150 4.94 

5.311 0.835 43.59 172.341 1.47 55932.20 52900 5.42 

0.1 ZnO 

1.022 0.161 5.90 245.058 10.84 15331.46 14980 2.29 

1.211 0.190 8.41 203.804 7.61 14989.75 14250 4.94 

3.614 0.568 28.24 181.016 2.27 39959.97 38710 3.13 

5.311 0.835 41.50 181.016 1.54 58586.32 55400 5.44 

0.4 ZnO 

1.022 0.161 5.85 247.333 10.95 15479.58 14600 5.68 

1.211 0.190 8.32 205.830 7.69 15140.03 14520 4.10 

3.614 0.568 27.96 182.889 2.29 40292.60 38350 4.82 

5.311 0.835 41.08 182.889 1.56 59318.58 57880 2.43 

0.7 ZnO 

1.022 0.161 5.71 253.322 11.21 15839.33 14830 6.37 

1.211 0.190 8.13 210.767 7.87 15486.79 14450 6.69 

3.614 0.568 27.31 187.248 2.34 41152.09 36505 11.29 

5.311 0.835 40.12 187.248 1.60 60809.62 57540 5.38 

0.1 MoS2 

1.022 0.161 5.95 243.190 10.76 15218.06 14725 3.24 

1.211 0.190 8.47 202.245 7.56 14891.01 14100 5.31 

3.614 0.568 28.46 179.629 2.25 39607.22 37970 4.13 

5.311 0.835 41.83 179.629 1.53 58204.90 56980 2.10 

0.4 MoS2 

1.022 0.161 5.87 246.436 10.91 15421.96 14750 4.36 

1.211 0.190 8.36 205.024 7.66 15079.92 14265 5.40 

3.614 0.568 28.07 182.141 2.28 40113.88 38985 2.81 

5.311 0.835 41.25 182.141 1.55 58934.26 57655 2.17 

0.7 MoS2 

1.022 0.161 5.70 253.585 11.22 15851.55 15150 4.43 

1.211 0.190 8.12 210.872 7.88 15504.60 15110 2.55 

3.614 0.568 27.30 187.278 2.34 41147.15 39880 3.08 

5.311 0.835 40.12 187.278 1.60 60802.32 58600 3.62 
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Fig. 10 exhibits the change of pumping power based on flow rates at various contents. 1 

Considering Fig. 10, it can be comprehended that the pumping power was enhanced by adding 2 

the nano-additives to the base fluid, as expected. The reason for this phenomenon is the fact that 3 

the pressure drops increased by increasing the flow rate, hence the increment in the pressure drop 4 

caused an augmentation in pumping power. 5 

 6 

Fig. 10. Change of pumping power as a function of flow rate at different concentrations. 7 
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foretells well the kinematic viscosity temperature relation. The selected theoretical 1 

models do not predict the relative viscosity enhancement with nanoparticle volume 2 

fraction. 3 

2. Having fewer COF values and lower the roughness average of surfaces (  ), it can be 4 

inferred that the ZnO and MoS2 nanofluids had more desirable tribological 5 

characteristics. The optimal content of ZnO and MoS2 NPs were 0.4 wt.% and 0.7 wt.%, 6 

respectively. 7 

3. Evaluating the effect of the nanoparticles content on friction factor at the measured flow 8 

rates and inlet velocities showed that the friction factor increased by adding the NPs to 9 

the base fluid. In addition, the pumping power was enhanced by the incorporation of 10 

nanoparticles.  11 
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