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Let M be an ℵ 0 -categorical structure and assume that M has no algebraicity and has weak elimination of imaginaries. Generalizing classical theorems of de Finetti and Ryll-Nardzewski, we show that any ergodic, Aut(M)-invariant measure on [0, 1] M is a product measure. We also investigate the action of Aut(M) on the compact space LO(M) of linear orders on M. If we assume moreover that the action Aut(M)

M is transitive, we prove that the action Aut(M) LO(M) either has a fixed point or is uniquely ergodic.

Introduction

In recent years, the study of dynamical systems of automorphism groups of homogeneous structures has become an important topic at the intersection of dynamics, combinatorics, probability theory, and model theory and it has uncovered many interesting connections between these fields. Countable homogeneous structures are obtained as Fraïssé limits of a class of finite structures satisfying certain conditions (called a Fraïssé class) and there is a close correspondence between dynamical properties of the automorphism group of the limit structure and combinatorial properties of the class. Typical examples of Fraïssé classes are the class of finite graphs (the limit is the random graph), the class of finite triangle-free graphs, and the class of finite linear orders (here the limit is the countable, dense linear order without endpoints (Q, <)).

In this paper, we will be interested in the invariant probability measures on dynamical systems of the automorphism group Aut(M) of a homogeneous structure M. More precisely, we will consider two specific systems: products of the type Z M , where Z is a standard Borel space, and the compact space LO(M) of all linear orders on M.

Our study of invariant measures on product spaces of the type Z M is inspired by the classical de Finetti theorem. One formulation of this theorem is that the only ergodic measures on Z M invariant under the full symmetric group Sym(M) are product measures of the type λ M , where λ is some probability measure on Z. (Recall that a measure is ergodic if the only elements of the measure algebra fixed by the group are ∅ and the whole space.) In our first theorem, we obtain the same conclusion under a weaker hypothesis: that the measure is invariant under the much smaller group Aut(M), provided that the structure M satisfies certain model-theoretic conditions. We will say that a structure M is transitive if the action Aut(M) M is transitive.

Theorem 1.1. Let M be an ℵ 0 -categorical, transitive structure with no algebraicity that admits weak elimination of imaginaries and let G = Aut(M). Let Z be a standard Borel space and consider the natural action Aut(M) Z M . Then the only invariant, ergodic probability measures on Z M are product measures of the form λ M , where λ is a probability measure on Z.

We will discuss the model-theoretic hypotheses of the theorem in detail in the next section, where we give all relevant definitions. Here we only remark that they are all necessary (with the possible exception of ℵ 0 -categoricity) and that they are satisfied, for example, by the random graph, the homogeneous trianglefree graph, the dense linear order (Q, <), the universal, homogeneous partial order, and many other structures.

The ergodicity assumption in the theorem is not essential: one can obtain a description of all invariant measures using the ergodic decomposition theorem.

A different formulation of the theorem that does not involve the group and that would perhaps be more appealing to model theorists is the following. Let M satisfy the hypothesis of the theorem and let {ξ a : a ∈ M} be a family of random variables. Suppose that for all tuples ā, b ∈ M k that have the same type, we have that (ξ a 0 , . . . , ξ a k-1 ) and (ξ b 0 , . . . , ξ b k-1 ) have the same distribution. Then the family {ξ a : a ∈ M} is conditionally independent over the tail σ-field T. The tail σ-field is defined by

T = ξ a : a / ∈ F : F ⊆ M finite ,
where • denotes the generated σ-field. It turns out that under the hypothesis of Theorem 1.1, the invariant σ-field and the tail σ-field coincide.

In fact, Theorem 1.1 is a consequence of a rather more general independence result that applies to any measure-preserving action of Aut(M) for any ℵ 0 -categorical structure M (cf. Theorem 3.4). The proof is based on representation theory and the results of [T1].

The model-theoretic formulation also permits to use Fraïssé's theorem and apply Theorem 1.1 even in situations where there is no homogeneity or an obvious group present. For example, we can recover a theorem of Ryll-Nardzewski [RN], which is another well-known strengthening of de Finetti's theorem; cf. Corollary 3.7.

Theorem 1.1 was announced in the habilitation memoir of the second author [T2]. Later, some independent related work has been done by Ackerman [A] and Crane-Towsner [CT]. They consider a different class of homogeneous structures (with combinatorial assumptions on the amalgamation) and use completely different methods.

Next we consider Aut(M)-invariant probability measures on the compact space LO(M) of linear orders on M. The systematic study of these measures was initiated by Angel, Kechris, and Lyons in [AKL]. Their main motivation comes from abstract topological dynamics. If G is a topological group, a G-flow is a continuous action of G on a compact Hausdorff space. A flow is minimal if every orbit is dense. It turns out that for every group G, there is a universal minimal flow (UMF) that maps onto every minimal flow of the group. In many cases (for example if G is locally compact, non-compact), the universal minimal flow is a large, nonmetrizable space that does not admit a concrete description; however, for many automorphism groups of homogeneous structures M, the UMF of Aut(M) is metrizable and can be explicitly computed. Moreover, in most known examples, it is a subflow of the flow LO(M) of all linear orders on M. In these situations, classifying the invariant measures on LO(M) gives information about all minimal flows of the group as well as other properties of G that can be expressed dynamically. One such property is amenability: a topological group G is called amenable if every G-flow carries an invariant measure, or equivalently, if the UMF of G has an invariant measure. Another property that goes down to factors of the UMF is unique ergodicity: if the UMF is uniquely ergodic, then so is every other minimal flow of the group. (Recall that a flow is uniquely ergodic if it carries a unique invariant measure, which then must be ergodic.) This latter property is quite interesting and is not encountered in classical dynamics: for example, Weiss [W] has constructed, for every countable, infinite, discrete group, a minimal flow which is not uniquely ergodic and a similar construction was carried out in [JZ] for locally compact second countable groups.

Giving interesting examples of groups with this unique ergodicity property was one of the main motivations of [AKL]. They reduce the unique ergodicity problem to an equivalent question about finite structures (as is often done with Fraïssé limits) and then use techniques from probability theory to attack each specific case. It is interesting that their approach works in both directions, so if one manages to obtain an unique ergodicity results by other methods, this yields combinatorial information about the corresponding Fraïssé class. For example, if we denote by R the random graph, the unique ergodicity of the flow Aut(R) LO(R) is equivalent to the uniqueness of a consistent random ordering on the class of finite graphs (see [AKL] for more details). The work of Angel, Kechris, and Lyons was followed by several papers [PS, J], in which more unique ergodicity results of this type were proved; in particular, the automorphism groups of all homogeneous directed graphs from Cherlin's classification were treated in the those two articles.

In the present paper, we adopt a different approach to the unique ergodicity problem on the space of linear orders, based on the generalization of de Finetti's theorem that we discussed above. It has the advantage of working under rather general model-theoretic assumptions (which are mostly necessary) and can also give information about the invariant measures even in the absence of unique ergodicity. Our main theorem is the following.

Theorem 1.2. Let M be a transitive, ℵ 0 -categorical structure with no algebraicity that admits weak elimination of imaginaries. Consider the action G LO(M). Then exactly one of the following holds:

(i) The action G LO(M) has a fixed point (i.e., there is a definable linear order on M); (ii) The action G LO(M) is uniquely ergodic.

Theorem 1.2 recovers almost all known results about unique ergodicity of LO(M). More specifically, it applies to the following structures:

• the random graph, the K n -free homogeneous graphs, various homogeneous hypergraphs, and the universal homogeneous tournament [AKL]; • the generic directed graphs obtained by omitting a (possibly infinite) set of tournaments or a fixed, finite, discrete graph [PS]. The class of structures satisfying the hypothesis of Theorem 1.2 is quite a bit richer than the examples above. We should mention, however, that it does not cover all cases where unique ergodicity of the space of linear orders is known. The exception is the rational Urysohn space U 0 : it was proved in [AKL] that the action Iso(U 0 )

LO(U 0 ) is uniquely ergodic but U 0 is not ℵ 0 -categorical (as it has infinitely many 2-types). It also does not apply directly to prove unique ergodicity for proper subflows of LO, for example for the automorphism group of the countable-dimensional vector space over a finite field.

We also have an interesting corollary of Theorem 1.2 concerning amenability.

Corollary 1.3. Suppose that M satisfies the assumptions of Theorem 1.2 and let G = Aut(M). If the action G LO(M) is not minimal and has no fixed points, then G is not amenable.

Corollary 1.3 applies for example to the automorphism groups of the universal homogeneous partial order and the circular directed graphs S(n) for n ≥ 2, recovering results of Kechris-Sokić [KS] and Zucker [Z], respectively.

Corollary 1.3 also has an interesting purely combinatorial consequence of which we do not know a combinatorial proof. Recall that a Fraïssé class F (or its Fraïssé limit) has the Hrushovski property if partial automorphisms of elements of F extend to full automorphisms of superstructures in F. It has the ordering property if for every A ∈ F, there exists B ∈ F such that for any two linear orders < and < on A and B respectively, there is an embedding of (A, <) into (B, < ). The Hrushovski and the ordering properties are important in the theory of homogeneous structures and in structural Ramsey theory but are not a priori related. We refer the reader to [KR] and [NR] for more details about them.

Corollary 1.4. Suppose that the homogeneous structure M satisfies the assumptions of Theorem 1.2. If M has the Hrushovski property, then it has the ordering property.

The paper is organized as follows. In Section 2, we recall some prerequisites from model theory, mostly about imaginaries and M eq . While using standard model-theoretic terminology, we give all definitions and proofs in the language of permutation groups in the hope of making the paper more accessible to nonlogicians. In Section 3, we recall some facts from representation theory and prove Theorem 1.1. Section 4 is devoted to the proof of Theorem 1.2 and its corollaries. Finally, in Section 5, we briefly discuss some examples and possible extensions of Theorem 1.2.
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Preliminaries from model theory

We start by recalling some basic definitions. A signature L is a collection of relation symbols {R i } and function symbols {F j }, each equipped with a natural number called its arity. An L-structure is a set M together with interpretations for the symbols in L: each relation symbol R i of arity n i is interpreted as an n i -ary relation on M, that is, a subset of M n i , and each function symbol F j of arity n j is interpreted as a function M n j → M. Functions of arity 0 are called constants.

A substructure of M is a subset of M closed under the functions, equipped with the induced structure. The age of M is the collection of isomorphism classes of all finitely generated substructures of M. If ā is a tuple from M, we denote by ā the substructure of M generated by ā. If the signature contains only relation symbols (which will usually be the case for us), then a substructure of M is just a subset with the induced relations.

The automorphism group of M, Aut(M), is the set of all permutations of M that preserve all relations and functions. Aut(M) is naturally a topological group if equipped with the pointwise convergence topology (where M is taken to be

discrete). If M is countable, then Aut(M) is a Polish group. If G = Aut(M)
and A ⊆ M is a finite subset, we will denote by G A the pointwise stabilizer of A in G. A basis at the identity of G is given by the subgroups {G A : A ⊆ M is finite}. A topological group which admits a basis at the identity consisting of open subgroups is called non-archimedean.

The type of a tuple ā ∈ M k , denoted by tp ā, is the isomorphism type of the substructure a i : i < k (with the a i named). Thus two tuples ā and b have the same type (notation: ā ≡ b) if the map a i → b i extends to an isomorphism ā → b . A k-type is simply the type of some tuple ā ∈ M k . The structure M is called homogeneous if for every two tuples ā and b with ā ≡ b, there exists g ∈ Aut(M) such that g • ā = b. We will say that M is transitive if there is only one 1-type, i.e., G acts transitively on M.

What we call type is usually called quantifier-free type in the model-theoretic literature. However, for homogeneous structures, which is our main interest here, the two notions coincide.

An age is a countable family of (isomorphism types of) finitely generated Lstructures that is hereditary (i.e., closed under substructures) and directed (i.e., for any two structures in the class, there is another structure in the class in which they both embed). If M is a given countable structure, its age is the collection of finitely generated structures that embed into it. If M is homogeneous, then its age has another special property called amalgamation. An age with amalgamation is called a Fraïssé class. Fraïssé's theorem states that conversely, any Fraïssé class is the age of a unique countable, homogeneous structure, called its Fraïssé limit. Thus in order to define a homogeneous structure, one needs only to specify its age; and, as already mentioned, combinatorial properties of the age are reflected in the dynamics of the automorphism group of the limit.

The structures that will be especially important for us are the ℵ 0 -categorical ones. A structure is ℵ 0 -categorical if its first-order theory has a unique countable model up to isomorphism. Another characterization that will be crucial is given by the Ryll-Nardzewski theorem: M is ℵ 0 -categorical iff the diagonal action Aut(M)

M k has finitely many orbits for every k (a permutation group with this property is called oligomorphic). In particular, if L is a signature that contains only finitely many relational symbols of each arity and no functions, then every homogeneous L-structure is ℵ 0 -categorical. Conversely, if M is any ℵ 0 -categorical structure, one can render it homogeneous by expanding the signature to include all first-order formulas (this is another facet of the Ryll-Nardzewski theorem). As we never make assumptions about the signature, in what follows, we will tacitly assume that every ℵ 0 -categorical is rendered homogeneous by this procedure. If G is any closed subgroup of the full permutation group Sym(N) of some countable set N, one can convert N into a homogeneous structure with Aut(N) = G by naming, for every k, each G-orbit on N k by a k-ary relation symbol. If the action G N is oligomorphic, then the resulting structure will be ℵ 0 -categorical. For the rest of the paper, we will only consider ℵ 0 -categorical structures. In this setting, all model-theoretic information about M is captured by the actions Aut(M) M k . We refer the reader to Hodges [H] for more details on Fraïssé theory, ℵ 0 -categorical structures, and their automorphism groups.

Let M be ℵ 0 -categorical, G = Aut(M), and let A ⊆ M be finite. The algebraic closure of A (denoted acl (A)) is the union of all finite orbits of G A on M. We will say that M has no algebraicity if the algebraic closure is trivial, that is, acl(A) = A for all finite A ⊆ M. By Neumann's lemma [START_REF] Hodges | Model theory[END_REF]Lemma 4.2.1], having no algebraicity is equivalent to the following: for all finite A, B ⊆ M, there exists

g ∈ G such that g • A ∩ B = ∅.
An imaginary element of M is the equivalence class of a tuple ā ∈ M k for some G-invariant equivalence relation on M k . We denote by M eq the collection of all imaginaries. In symbols,

M eq = {M k /E : k ∈ N and E is a G-invariant equivalence relation on M k }.
It is clear that G also acts on M eq and, moreover, the action G M eq is locally oligomorphic, i.e., it is oligomorphic on any union of finitely many G-orbits (see, e.g., [START_REF] Tsankov | Unitary representations of oligomorphic groups[END_REF]Theorem 2.4]).

We can define for a finite A ⊆ M eq , acl eq A = {e ∈ M eq : G A • e is finite}.

Similarly, we can define the definable closure as

dcl eq A = {e ∈ M eq : G A • e = {e}}.
For arbitrary A ⊆ M eq , we define acl eq A to be the union of acl eq A for all finite A ⊆ A. Similarly for dcl eq . A subset A ⊆ M eq is algebraically closed if acl eq A = A.

In other words, A is algebraically closed if for all finite A ⊆ A, G A has only infinite orbits outside of A. We have the following basic properties of the algebraic closure.

Lemma 2.1. The following hold for an ℵ 0 -categorical M:

(i) For all A ⊆ M eq , acl eq A is algebraically closed;

(ii) If A, B ⊆ M eq are algebraically closed, then so is A ∩ B.

Proof. (i) A permutation group theoretic proof of this fact can be found for example in [START_REF] Evans | Free actions of free groups on countable structures and property (T)[END_REF]Lemma 2.4].

(ii) Suppose that e ∈ (acl eq C) \ (A ∩ B) for some finite

C ⊆ A ∩ B. Then there are finite A ⊆ A, B ⊆ B such that C = A ∩ B . Suppose for definiteness that e / ∈ A. As A is algebraically closed, G C • e ⊇ G A • e is infinite, contradiction.
M admits elimination of imaginaries if all imaginary elements are interdefinable with real tuples, that is, for every e ∈ M eq , there exists k ∈ N and a tuple ā ∈ M k such that e ∈ dcl eq ā and ā ∈ dcl eq e, or equivalently, G e = G ā. M admits weak elimination of imaginaries if for every imaginary element e ∈ M eq , there exists a real tuple ā ∈ M k such that e ∈ dcl eq ā and ā ∈ acl eq e. Equivalently, for every proper, open subgroup V < G, there exists k and a tuple ā

∈ M k such that G ā ≤ V and [V : G ā] < ∞.
The two hypothesis of no algebraicity and weak elimination of imaginaries combined give us a complete understanding of the acl eq operator.

Lemma 2.2. Suppose that M is ℵ 0 -categorical and that it has no algebraicity and admits weak elimination of imaginaries. Then for all A, B ⊆ M, we have that acl eq A ∩ acl eq B = dcl eq (A ∩ B).

Proof. The ⊇ inclusion being clear, we only check the other. We may assume that A and B are finite. Suppose that e = [ c] E ∈ acl eq A, where c ∈ M k and E is a G-invariant equivalence relation. We will show that if e / ∈ dcl eq ∅, then the tuple c is contained in A. Consider the group H = G A∪{e} . As G A • e is finite, H has finite index in G A , so it is open. By weak elimination of imaginaries, there exists a tuple ā such that

G ā ≤ H and [H : G ā] < ∞. In particular, [G A : G ā] < ∞.
By the no algebraicity assumption, ā must be contained in A, so, in particular, H = G A , i.e., G A fixes e. If c is not contained in A, then the orbit G A • c is infinite and is contained in [ c] E , which together with weak elimination of imaginaries implies that e ∈ dcl eq ∅, contradiction. Thus we conclude that c is contained in A. An analogous argument shows that c is also contained in B and hence, e ∈ dcl eq (A ∩ B).

Unitary representations and a generalization of de Finetti's theorem

Recall that a unitary representation of a topological group G is a continuous action on a complex Hilbert space H by unitary operators, or, equivalently, a continuous homomorphism from G to the unitary group of H. A representation G H is irreducible if H contains no non-trivial, G-invariant, closed subspaces. In the case where M is an ℵ 0 -categorical structure and G = Aut(M), the action G M eq gives rise to a representation G λ 2 (M eq ) given by

(λ(g) • f )(e) = f (g -1 e), where f ∈ 2 (M eq ), g ∈ G, e ∈ M eq .
It turns out that this representation captures all of the representation theory of G.

More precisely, it follows from the results of [T1] that the following holds. 

M such that G ā ≤ V. Define the G-invariant equivalence relation E on G • ā by (g 1 • ā) E (g 2 • ā) ⇐⇒ g 1 V = g 2 V and note that V = G [ ā] E . In particular, the quasi-regular representation 2 (G/V) is isomorphic to the subrepresentation 2 (G • [ ā] E ) of 2 (M eq ). On the other hand, 2 (G/V) ∼ = Ind G V (1 V ) ∼ = Ind G H (Ind H V (1 V )) ∼ = Ind G H (λ K )
, where λ K denotes the left-regular representation of K. As σ (being an irreducible representation of the finite group K) is a subrepresentation of λ K , the result follows.

If H is a Hilbert space, H 1 , H 2 , H 3 are subspaces with H 2 ⊆ H 1 ∩ H 3 , we write

H 1 ⊥ H 2 H 3 if H 1 H 2 ⊥ H 3 H 2 . If we let p 1 , p 2 , p 3 denote the corresponding orthogonal projections, this is equivalent to p 3 p 1 = p 2 p 1 .
If G H is a unitary representation of G and A ⊆ M eq , let (3.1)

H A = {ξ ∈ H : G A • ξ = ξ for some finite A ⊆ A}. It is clear that H A is a closed subspace of H.
Proposition 3.2. Let M be ℵ 0 -categorical and G = Aut(M). Let A and B be algebraically closed subsets of M eq . Then

H A ⊥ H A∩B H B .
Proof. As for any subset C ⊆ M eq , the projection p C onto H C commutes with direct sums and subrepresentations, by Fact 3.1, we can reduce to the case where H = 2 (M eq ) and π = λ. If ξ ∈ H, we view it as a function M eq → C and we let supp ξ = {e ∈ M eq : ξ(e) = 0}. The main observation is the following: if C ⊆ M eq is algebraically closed, then

H C = {ξ ∈ H : supp ξ ⊆ C}.
The ⊇ inclusion follows from the fact that vectors with finite support are dense.

For the other inclusion, as the subspace on the right-hand side is closed, it suffices to see that for all finite C ⊆ C and all ξ fixed by G C , supp ξ ⊆ C. Let e ∈ M eq be such that ξ(e) = 0. As ξ is fixed by G C , it must be constant on the orbit G C • e.

As ξ is in 2 , this implies that G C • e is finite, i.e., e ∈ acl eq C ⊆ C. Now it follows from the hypothesis and Lemma 2.1 that

H A H A∩B = {ξ ∈ H : supp ξ ⊆ A \ B} and 
H B H A∩B = {ξ ∈ H : supp ξ ⊆ B \ A},
whence the result.

Remark 3.3. A more model-theoretic treatment of similar ideas, using the formalism of semigroups of projections, can be found in [BIT].

Now consider a measure-preserving action G (X, µ), where (X, µ) is a probability space. As G is not locally compact, one has to take some care how this is defined. We denote by MALG(X, µ) the Boolean algebra of all measurable subsets of X with two such sets identified if their symmetric difference has measure 0. MALG(X, µ) is naturally a metric space with the distance between A and B given by µ(A B). We denote by Aut(X, µ) the group of all isometric automorphisms of MALG(X, µ), that is, the group of all automorphisms of the Boolean algebra that also preserve the measure. Aut(X, µ) is naturally a topological group if equipped with the pointwise convergence topology coming from its action on MALG(X, µ). If (X, µ) is standard (i.e., X is a standard Borel space and µ is a Borel probability measure), then Aut(X, µ) is a Polish group. For us, a measure-preserving action G (X, µ) will mean a continuous homomorphism G → Aut(X, µ), that is, G acts on measurable sets and measurable functions (up to measure 0) but not necessarily on points. It is easy to see that if X is standard and one has a jointly measurable action on points G X that preserves the measure µ, then this gives an action in our sense. The converse is also true for non-archimedean groups but this is less obvious (see [START_REF]Spatial and non-spatial actions of Polish groups, Ergodic Theory Dynam[END_REF]Theorem 2.3]) and we will not need it.

If F 1 , F 2 , G are σ-fields in a probability space, we will denote by F 1 ⊥ ⊥ G F 2 the fact that F 1 and F 2 are conditionally independent over G, i.e., E(ξ | F 2 G) = E(ξ | G) for every F 1 -measurable random variable ξ. If G is trivial, we will write simply F 1 ⊥ ⊥ F 2 and will say that F 1 and F 2 are independent. We will freely use the standard facts about conditional independence, as described, for example, in [K], and that go in model theory by the name of forking calculus.

If G = Aut(M) and a measure-preserving action G X is given, for A ⊆ M eq , we denote by F A the σ-field of measurable subsets of X generated by the G A -fixed subsets for all finite A ⊆ A. The following is the main result of this section.

Theorem 3.4. Let M be an ℵ 0 -categorical structure and let G = Aut(M). Let G (X, µ) be any measure-preserving action on a probability space. Then the following hold:

(i) For all algebraically closed A, B ⊆ M eq , we have that

F A ⊥ ⊥ F A∩B F B .
(ii) If M has no algebraicity and admits weak elimination of imaginaries, then for all A, B ⊆ M, we have that

F A ⊥ ⊥ F A∩B F B . Proof. (i) Consider the Koopman representation G π L 2 (X) given by (π(g) • f )(x) = f (g -1 • x), where f ∈ L 2 (X), g ∈ G, x ∈ X.
For C ⊆ M eq , we denote by L 2 (F C ) the subspace of L 2 (X) consisting of all F Cmeasurable functions. Observe that if we write H = L 2 (X), then L 2 (F C ) = H C (as defined in (3.1)). To show the required independence, it suffices to see that for all η A ∈ L 2 (F A ), we have that

E(η A | F B ) = E(η A | F A∩B )
(see, e.g., [START_REF] Kallenberg | Foundations of modern probability, Second, Probability and its Applications[END_REF]Proposition 5.6]). Recalling that the conditional expectation E(• | F C ) for functions in L 2 is just the projection operator onto H C , this follows directly from Proposition 3.2.

(ii) Denote A = acl eq A, B = acl eq B, C = dcl eq (A ∩ B). By Lemma 2.1, A and B are algebraically closed and by Lemma 2.2, we have that C = A ∩ B . Now (i) applied to A and B yields that F A ⊥ ⊥ F C F B . It only remains to observe that

F C = F A∩B and that F A ⊆ F A , F B ⊆ F B .
Theorem 3.4 has the following immediate corollary, which can be viewed as a generalization of the classical theorem of de Finetti.

Corollary 3.5. Let M be an ℵ 0 -categorical structure with no algebraicity that admits weak elimination of imaginaries and let G = Aut(M). Consider a family of random variables {ξ a : a ∈ M} whose joint distribution is invariant under G. Then these variables are conditionally independent over the G-invariant σ-field. If the G-invariant σ-field is trivial and M is transitive, then the ξ a are i.i.d. (independent, identically distributed).

Remark 3.6. Using the properties of independence and an inductive argument, it is possible to replace the no algebraicity and weak elimination of imaginaries assumption above with a slightly weaker one. Namely, we only need that acl eq A ∩ acl eq B = dcl eq ∅ for any disjoint A and B where B is a singleton, rather than for arbitrary A and B.

An action G

(X, µ) is called ergodic if the G-invariant σ-field is trivial. Thus in the case of ergodic actions, one obtains genuine independence in Corollary 3.5.

Another interesting remark is that by virtue of Fraïssé's theorem, Corollary 3.5 can be applied even in situations in which there is no obvious group around. This is best illustrated by the following example, which is a well-known theorem of Ryll-Nardzewski [RN]. If ξ = (ξ 0 , . . . , ξ n-1 ) and η = (η 0 , . . . , η n-1 ) are tuples of random variables, we use the notation ξ ≡ η to signify that ξ and η have the same distribution.

Corollary 3.7 (Ryll-Nardzewski). Let µ be a Borel probability measure on R N and denote by ξ i : R N → R the projection on the i-th coordinate. Suppose that for all i 0 < • • • < i k-1 , we have that (ξ i 0 , . . . , ξ i k-1 ) ≡ (ξ 0 , . . . , ξ k-1 ). Denote by φ : R N → R N the one-sided shift defined by φ(x 0 , x 1 , . . .) = (x 1 , x 2 , . . .) and suppose moreover that µ is φ-ergodic. Then µ is a product measure. Proof. Here the relevant structure is (N, <) which has no automorphisms. Its age is the class of finite linear orders. This age amalgamates and its Fraïssé limit is the countable dense linear order without endpoints (Q, <), which satisfies the hypothesis of Corollary 3.5. Consider the random variables (ξ a : a ∈ Q) whose distribution is defined by

(ξ a 0 , . . . , ξ a k-1 ) ≡ (ξ 0 , . . . , ξ k-1 ) for all a 0 < • • • < a k-1 .
In order to apply Corollary 3.5 and conclude, we only need to check that the Aut(Q)-invariant σ-field is trivial. Suppose that S is an Aut(Q)-invariant event. Let F n be the σ-field generated by ξ 0 , . . . , ξ n-1 . Then, by invariance, for every , there exists n and an F n -measurable event S with P(S S ) < . This shows that S is measurable with respect to the original σ-field n F n . As φ extends to an automorphism of Q, we obtain that φ -1 (S) = S and we are done.

Invariant measures on the space of linear orderings

In this section, we fix a homogeneous, ℵ 0 -categorical structure M with no algebraicity that admits weak elimination of imaginaries and we let G = Aut(M).

We denote by LO(M) the space of all linear orders on M, that is

LO(M) = {x ∈ 2 M×M : x is a linear order}.
LO(M) is a closed subset of 2 M×M and thus a compact space. If x ∈ LO(M), we will use the more traditional infix notation a < x b instead of (a, b) ∈ x. Sym(M) (and, in particular, G) acts naturally on LO(M) as follows:

a < g•x b ⇐⇒ g -1 • a < x g -1 • b.
Our goal is to study the G-invariant measures on LO(M). There is always at least one such measure µ u which is, in fact, invariant under all of Sym(M). It is defined by

µ u (a 0 < x • • • < x a k-1 ) = 1/k! for all distinct a 0 , . . . , a k-1 ∈ M.
Here and below, we use the usual notation from probability theory and write

a 0 < x • • • < x a k-1 for the event {x ∈ LO(M) : a 0 < x • • • < x a k-1 }.
We will call µ u the uniform measure. Glasner and Weiss [START_REF] Glasner | Minimal actions of the group S(Z) of permutations of the integers[END_REF] have shown that it is the only measure invariant under the whole symmetric group. (The proof is simple: the way the tuple (a 0 , . . . , a k-1 ) is ordered gives a partition of LO(M) into k! pieces and for every two elements of this partition, there is an element of Sym(M) that sends one to the other, so they must all have the same measure.)

Our main theorem is the following.

Theorem 4.1. Let M be a transitive, ℵ 0 -categorical structure with no algebraicity that admits weak elimination of imaginaries. Consider the action G LO(M). Then exactly one of the following holds:

(i) The action G LO(M) has a fixed point (i.e., there is a definable linear order on M); (ii) µ u is the unique G-invariant measure on LO(M).

We describe a method to construct the uniform measure on LO(M) that will help illustrate our strategy for the proof. Let The group G acts naturally on [0, 1] M , Ω is a G-invariant set, and the map π is G-equivariant. Thus any G-invariant measure on Ω gives rise, via π, to a Ginvariant measure on LO(M). In view of Corollary 3.5, the only G-invariant, ergodic measures on [0, 1] M are of the form λ M , where λ is a measure on [0

Ω = {z ∈ [0, 1] M : z(a)
, 1]. It is clear that (λ M )(Ω) = 1 iff λ is non-atomic and in that case, π * (λ M ) = µ u (this is true because λ M is Sym(M)
-invariant and as we noted above, µ u is the only Sym(M)-invariant measure on LO(M)). What we aim to show below is that if M does not admit a G-invariant linear order, then the map π is invertible almost everywhere for any G-invariant, ergodic measure on LO(M).

Let µ be an ergodic, G-invariant measure on LO(M). We will use probabilistic notation: we will denote by < x (or only by < if there is no danger of confusion) a random element of LO(M) chosen according to µ, by P the probability of events and by E the expectation. If A is an event, we denote by 1 A its characteristic function. For every a ∈ M, we denote by F a the σ-field fixed by G a .

For every 2-type τ and every a ∈ M, we define a random variable η τ a by

η τ a = P(c < a | F a )
, where tp(ac) = τ.

The definition above does not depend on c but only on τ. Indeed, if c ∈ M is another element with tp ac = τ, and ζ τ a = P(c < a | F a ), then for every ξ ∈ L 2 (F a ), invariance implies that ξ, 1 c<a = ξ, 1 c <a , so η τ a = ζ τ a a.s. Lemma 4.2. The random variables (η τ a ) a∈M are i.i.d. Proof. This is a direct consequence of Corollary 3.5.

The following is a basic fact about conditional expectation that we will need.

Lemma 4.3. Let X ≥ 0 be an integrable random variable, A be an event and F be a σ-field. Suppose that X > 0 on A. Then E(X | F) > 0 on A.

Proof. Let Y = E(X | F). Suppose, towards a contradiction, that for some measurable C, C X > 0 but C Y = 0. In particular, C ⊆ {Y = 0}. As the set {Y = 0} is in F, we have:

0 < C X ≤ Y=0 X = Y=0 Y = 0, contradiction.
If τ is a 2-type and a ∈ M, we define

D τ (a) = {b ∈ M : tp ab = τ}.
The next lemma is the main tool that allows us to recover the order from the random variables (η τ a ) a∈M . Lemma 4.4. Let the type τ and a, b ∈ M be such that D τ (a)

∩ D τ (b) = ∅. Then almost surely, a < b =⇒ η τ a ≤ η τ b . Moreover, for any c ∈ D τ (a) ∩ D τ (b), we have that almost surely, a < c < b =⇒ η τ a < η τ b . Proof. It follows from Theorem 3.4 that for distinct a, b, c ∈ M, a < b, F b ⊥ ⊥ F a c < a, so (4.2) a < b ⊥ ⊥ F a F b c < a. Let c ∈ D τ (a) ∩ D τ (b). Using the fact that F a ⊥ ⊥ F b c < b (which follows from
Theorem 3.4), (4.2), and their variants obtained by exchanging a and b, we have:

E(1 a<b | F a F b )(η τ b -η τ a ) = E(1 a<b | F a F b ) P(c < b | F b ) -P(c < a | F a ) = E(1 a<b | F a F b ) E(1 c<b | F b F a ) -E(1 c<a | F a F b ) = E(1 a<b (1 c<b -1 c<a ) | F a F b ) ≥ 0. By Lemma 4.3, E(1 a<b | F a F b ) is a.
s. strictly positive on the event a < b. This implies that on a < b, we have that η τ a ≤ η τ b . The second assertion also follows from Lemma 4.3 because 1 a<b (1 c<b -1 c<a ) = 1 on the event a < c < b and hence, the last inequality is strict on that event.

We will also need a combinatorial fact about 2-types. For a 2-type τ and a, b ∈ M, we say that y 0 , y 1 , . . . , y 2n is an alternating τ-path (or just a τ-path for brevity) between a and b if y 0 = a, y 2n = b and tp(y 2i y 2i+1 ) = tp(y 2i+2 y 2i+1 ) = τ for all i = 0, . . . , n -1 and all of the nodes of the path are distinct. The interior of the path is the collection of all nodes except its endpoints. See Figure 1. Lemma 4.5. For all distinct a, b ∈ M and any 2-type τ, there is k ∈ N such that for any finite A ⊆ M, there is an alternating τ-path of length k from a to b whose interior avoids A. In particular, there are infinitely many τ-paths between a and b of length k with pairwise disjoint interiors.

Proof. Let us first prove that there is an alternating τ-path between a and b. Write c ∼ τ d if there is an alternating τ-path between c and d or c = d. We check that ∼ τ is an equivalence relation. Symmetry and reflexivity are clear from the definition. To check transitivity, consider a τ-path p 1 from c 0 to c 1 and a τ-path p 2 from c 1 to c 2 and suppose that c 0 = c 2 . The concatenation (y 0 , . . . , y 2n ) of p 1 and p 2 satisfies all the conditions of a τ-path except possibly that vertices are distinct. Suppose for example that y i = y j for some i = j. At least one of i and j is different from both 0 and 2n; suppose for definiteness that this is true for i. By the no algebraicity assumption, there is an element g ∈ G that fixes all points in p 1 ∪ p 2 \ {y i } and such that g • y i / ∈ p 1 ∪ p 2 . Now replace y i by g • y i . Thus we have reduced the number of coincidences in p 1 ∪ p 2 . We can repeat this procedure several times to finally conclude that there is a τ-path between c 0 and c 2 with distinct vertices.

By transitivity, there is c ∈ M such that tp ac = τ. By the no algebraicity assumption, the orbit G c • a is infinite, so the ∼ τ -class of a is infinite. By transitivity and weak elimination of imaginaries, it follows that the ∼ τ -class of a is all of M, so there is an alternating τ-path between a and b.

Now fix some alternating τ-path p between a and b and let k be the length of p. By the no algebraicity assumption, there is g ∈ G ab that moves p to a path whose interior is disjoint from A.

Denote by λ τ the distribution of η τ a ; this is a probability measure on [0, 1] and by Lemma 4.2, it does not depend on a.

Lemma 4.6. Suppose that the measure λ τ is non-atomic. Then for all a, b ∈ M, we have that, almost surely, a < b ⇐⇒ η τ a < η τ b . Proof. First, we suppose that D τ (a) ∩ D τ (b) = ∅. The contrapositive of the previous lemma gives us that in that case,

(4.3) η τ a < η τ b =⇒ a < b.
Next we consider the general case. Suppose that there exists an alternating τ-path y 0 , . . . , y 2n such that (4.4)

η τ y 0 < η τ y 2 < • • • < η τ y 2n .
Then for all i, D τ (y 2i ) ∩ D τ (y 2i+2 ) = ∅, so by the above observation, we obtain that a = y 0 < y 2 < • • • < y 2n = b. Now condition on η τ a , η τ b and suppose that η τ a < η τ b . As the η τ c are i.i.d. with non-atomic distribution, for a fixed τpath (y 0 , . . . , y 2n ) between a and b, (4.4) holds with positive probability that only depends on n. By Lemma 4.5, there exist infinitely many τ-paths of the same length between a and b with disjoint interiors and whether (4.4) holds for them are independent events with the same probability. Thus almost surely at least one of them happens and we conclude that (4.3) holds for all a, b. For the reverse implication, it suffices to notice that P(η τ a = η τ b ) = 0. Lemma 4.6 allows us to conclude in the case where λ τ is non-atomic.

Lemma 4.7. Suppose that for some type τ, the distribution λ τ is non-atomic. Then µ = µ u . Proof. Define ρ : LO(M) → [0, 1] M by ρ(x)(a) = η τ a (x) (ρ is defined µ-a.e.). By Lemma 4.6, π • ρ = id µ-a.e. (π is defined by (4.1)). By Lemma 4.2, ρ * µ = (λ τ ) M . Applying π to both sides, we obtain that

µ = π * ρ * µ = π * (λ τ ) M = µ u .
Now we are left with the case where the distribution λ τ has atoms for all 2types τ and we will eventually conclude that there is a G-invariant linear order on M.

From here on, as we will deal with several measures simultaneously, we will incorporate the measure in our notation. If µ is an ergodic measure on LO(M), τ is a 2-type, and p ∈ [0, 1] is an atom for the distribution λ τ , we define a new measure ν µ,τ,p on basic clopen sets by (4.5)

P ν µ,τ,p (a 0 < • • • < a k-1 ) = P µ (a 0 < • • • < a k-1 | η τ a 0 = • • • = η τ a k-1 = p)
, where a 0 , . . . , a k-1 are pairwise distinct elements of M. We note that as by Theorem 3.4,

a 0 < • • • < a k-1 , η a 0 , . . . , η a k-1 ⊥ ⊥ η b 0 , . . . , η b m-1
for any {b 0 , . . . , b m-1 } ∩ {a 0 , . . . , a k-1 }, we can condition additionally on η τ b 0 = • • • = η τ b m-1 = p on the right-hand side of (4.5) without changing the result. For the next lemma, we will need the following well-known general ergodicity criterion.

Proposition 4.8. Let G be a group and G (X, µ) be a measure-preserving action. Suppose that the collection {A ∈ MALG(X, µ) : ∃g ∈ G g • A ⊥ ⊥ A} is dense in MALG(X, µ). Then the action G X is ergodic.

Proof. Suppose that B is G-invariant. For every > 0, there exist A and g such that µ(A B) < and g

• A ⊥ ⊥ A. We have that 2(µ(A) -µ(A) 2 ) = µ(A g • A) ≤ µ(B g • B) + 2 = 2 .
Taking a limit as → 0 yields that µ(B)µ(B) 2 = 0, so that µ(B) = 0 or 1.

Lemma 4.9. Let µ be a G-invariant, ergodic measure on LO(M), τ be a 2-type, and p be an atom for λ τ . Then ν µ,τ,p extends to a G-invariant, ergodic measure on LO(M).

Proof. For brevity, write ν = ν µ,τ,p . To define ν on a general clopen set U, we represent it as a disjoint union of basic clopen sets and use (4.5). It follows from the remark after (4.5) that this is well-defined and gives rise to a finitely additive measure on the Boolean algebra of clopen subsets of LO(M). Now it follows from the Carathéodory extension theorem that ν extends to a Borel measure on LO(M). G-invariance of ν follows from (4.5) and the G-invariance of µ. Finally, ergodicity follows from Proposition 4.8, whose hypothesis is verified by virtue of Theorem 3.4 applied to µ.

Proof of Corollary 1.3. Let Z ⊆ LO(M) be any minimal subsystem. By the hypothesis, Z is not a point and it is a proper subset of LO(M). If G is amenable, then there must be a G-invariant measure supported on Z, which contradicts Theorem 4.1.

Proof of Corollary 1.4. By [START_REF] Kechris | Turbulence, amalgamation and generic automorphisms of homogeneous structures[END_REF]Proposition 6.4], the Hrushovski property implies that there are compact subgroups

K 0 ≤ K 1 ≤ • • • of G with n K n dense in G.
In particular, G is amenable.

If K ≤ G is any compact subgroup, then the orbits of K on M are finite. If M admits a G-invariant linear order, then the K-orbits must be trivial, so K is trivial. We conclude that there is no G-invariant linear order on M, so, by Corollary 1.3, the action G LO(M) must be minimal. This implies that M has the ordering property (see [START_REF] Van Thé | More on the Kechris-Pestov-Todorcevic correspondence: precompact expansions[END_REF]Theorem 4]).

5. Examples and other invariant measures 5.1. Examples. We briefly discuss some examples that show that the assumptions of Theorem 1.1 and Theorem 1.2 are mostly necessary. This section requires more familiarity with Fraïssé theory than the rest of the paper.

5.1.1. Transitivity. Let L be a language with two unary predicates P and Q and consider the age consisting of all L-structures for which P ∩ Q = ∅. Let M be its Fraïssé limit. Then one can randomly order M as follows. Let (ξ a : a ∈ M) be uniform, i.i.d. on [0, 1] and define an Aut(M)-invariant random order < on M by declaring all elements of P to be smaller than all elements of Q and a < b ⇐⇒ ξ a < ξ b if a and b both belong to P or to Q. This shows that the transitivity assumption in Theorem 1.2 is necessary. 5.1.2. No algebraicity. Let V be the countable-dimensional vector space over F 2 , the field with two elements. Let V * be its dual: the space of linear maps from V to F 2 . V * embeds as a subspace of F V 2 and, being a compact group, has a Haar measure which is invariant under the action of Aut(V). This gives an invariant, ergodic measure on F V 2 which is not a product measure and shows that one cannot omit the no algebraicity assumption in Theorem 1.1.

The same example also shows that this assumption cannot be omitted in Theorem 1.2. The universal minimal flow of Aut(V) is a proper subspace of LO(V) (see [START_REF] Kechris | Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups[END_REF]Theorem 8.2]) and it carries a (unique) invariant measure [START_REF] Angel | Random orderings and unique ergodicity of automorphism groups[END_REF]Section 10]. This measure can be obtained as a factor of the measure on F V 2 constructed above.

5.1.3. Weak elimination of imaginaries. In the presence of Aut(M)-invariant equivalence relations on M, it is easy to construct distributions for (ξ a : a ∈ M) for which the random variables are not independent. One can, for example, toss a coin for each equivalence class and set ξ a = 0 or 1 depending whether the coin toss for the class of a resulted in heads or tails.

In view of Remark 3.6, it is more interesting to ask whether the weak elimination of imaginaries assumption can be replaced just by requiring primitivity of the action Aut(M) M, that is, the absence of invariant equivalence relations on M. (This would also have the advantage of being much easier to check.) It turns out that the answer is negative, as the following example shows.

Let the signature L consist of two unary relations S 0 and S 1 and a binary relation R. We consider the class A of finite bipartite graphs viewed as L-structures, where the two parts of the graphs are labeled by S 0 and S 1 and R is the edge relation. We require moreover that the degree of every element of S 0 is 2. It is easy to check that this is an amalgamation class; let N be the Fraïssé limit. Denote M = {a ∈ N : S 0 (a)} and P = {a ∈ N : S 1 (a)}. The class A is not hereditary, so N is not fully homogeneous but we do have homogeneity for algebraically closed, finite substructures of N. A finite substructure A ⊆ N is algebraically closed iff for every a ∈ A ∩ M, the degree of a (calculated in A) is 2 (that is, A ∈ A).

Now consider M as a structure on its own (in a different signature) with relations given by the traces of all definable relations on N. As N is ℵ 0 -categorical, M is too. Using the homogeneity of N, it is easy to check that M has no algebraicity and that the action Aut(M) M is primitive. There is a homomorphism Aut(N) → Aut(M) given by the natural action of Aut(N) on M. As the elements of P can be recovered as imaginary elements of M, it turns out that this homomorphism is an isomorphism. With all of this in mind, it is easy to construct non-independent, Aut(M)-invariant distributions of random variables (ξ a : a ∈ M). For example, we can start with i. This also allows to construct non-uniform, invariant measures on LO(M): just define a random order < on M as usual by a < b ⇐⇒ ξ a < ξ b .

ℵ 0 -categoricity. We do not know whether ℵ 0 -categoricity is necessary in either Theorem 1.1 or Theorem 1.2, although it is crucial for our proofs. In the absence of ℵ 0 -categoricity, however, the other assumptions may need tweaking as the correspondence between model theory and permutation groups breaks down.

5.2.

Other invariant measures on LO. One may ask, under the assumptions of Theorem 4.1, what other ergodic, invariant measures there are on LO(M) apart from the uniform measure and fixed points. A slight variation of the method we used to construct µ u yields the following. Let λ be a probability measure on [0, 1] and let S = {z ∈ [0, 1] : λ({z}) > 0} be the set of its atoms (it can be finite or countable). Let F ⊆ LO(M) be the set of G-fixed points (which, by Theorem 4.1, has to be non-empty if we want to construct anything interesting) and finally, let f : S → F be an arbitrary function. Note that ℵ 0 -categoricity of M implies that F is finite. Let π : [0, 1] M → LO(M) be defined (λ M -a.e.) by a < π(z) b ⇐⇒ z(a) < z(b) or z(a) = z(b) and a < f (z(a)) b .

Then π * (λ M ) is an invariant, ergodic measure on LO(M).

For many structures M, the methods we developed for the proof of Theorem 4.1 can be used to show that all ergodic, invariant measures on LO(M) can be obtained as above; however, in the presence of definable cuts, more complicated constructions are possible. We just give one example.

Consider the language L = {<, f }, where < is a binary relation and f is a unary function. Let A be the age consisting of all finite L-structures where < is interpreted as a linear order and f is an involution without fixed points. It is easy to check that A amalgamates; let N be its Fraïssé limit. As for every n, there are only finitely many structures in A of size n, N is ℵ 0 -categorical. Let M = {a ∈ N : f (a) < a} and M = {a ∈ N : f (a) > a}. It follows from homogeneity that M and M are the two orbits of the action Aut(N)

N. Now consider M as a structure on its own with relations defined as the traces of definable relations from N (that is, the relations a < b, f (a) < b, f (a) < f (b) for a, b ∈ M are definable in the structure M). From a permutation group perspective, we can consider the homomorphism π : Aut(N) → Sym(M) given by the natural action Aut(N)

M and then Aut(M) = π(Aut(N)). It follows from the homogeneity of N that M is transitive, ℵ 0 -categorical, and has no algebraicity.

(The algebraic closure operator in N is given by acl(A) = A ∪ f (A).) One can also verify weak elimination of imaginaries, for example using the criterion from [START_REF] Rideau | Imaginaries and invariant types in existentially closed valued differential fields[END_REF]Proposition 10.1].

We can construct an invariant measure on LO(M) as follows. Let (η a ) a∈M be a collection of i.i.d., Bernoulli, {0, 1}-valued random variables, where each of the two values is taken with probability 1/2, and define a random order ≺ on M by a ≺ b ⇐⇒ f η a (a) < f η b (b), where f 0 = id and f 1 = f . This random order is different from the ones considered above. 

Fact 3. 1 .

 1 Let M be an ℵ 0 -categorical structure and let G = Aut(M). Then every unitary representation of G is a sum of irreducible representations and every irreducible representation is isomorphic to a subrepresentation of λ. In particular, every representation of G is a subrepresentation of a direct sum of copies of λ. Proof. The first claim is part of the statement of [T1, Theorem 4.2]. For the second, it follows from [T1, Theorem 4.2] that every irreducible representation of G is an induced representation of the form Ind G H (σ), where H is an open subgroup of G and σ is an irreducible representation of H that factors through a finite quotient K = H/V of H. (We refer the reader to [T1] for the definition of induced representation and more details.) As V ≤ G is open, there exists a tuple ā from

  = z(b) for all a = b} and define the map π : Ω → LO(M) by (4.1) a < π(z) b ⇐⇒ z(a) < z(b) for a, b ∈ M.

Figure 1 .

 1 Figure 1. An alternating τ-path between a and b

  i.d. (η b : b ∈ P) uniform in [0, 1] and define ξ a = min{η b : b ∈ P, a R b}.
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If τ is a 2-type, say that a measure µ on LO(M) respects τ if for all a, b, c ∈ M such that tp ac = tp bc = τ and µ-a.e. x ∈ LO(M), c is not between a and b in the order < x .

Lemma 4.10. Let µ be a G-invariant, ergodic measure on LO(M), τ be a 2-type, and p be an atom for λ τ . Let ν = ν µ,τ,p . Then the following hold:

(i) ν respects τ;

(ii) If τ is a 2-type and µ respects τ , then ν respects τ .

Proof. (i) Let a, b, c ∈ M be such that tp ac = tp bc = τ. Using Lemma 4.4, we have that

We obtain similarly that P ν (b < c < a) = 0.

(ii) This is clear from the definition.

Lemma 4.11. Suppose that µ is a G-invariant, ergodic measure on LO(M) which respects all 2-types. Then µ is a Dirac measure.

Proof. We will prove that the order between two elements a, b ∈ M is almost surely determined by tp ab. More formally, we will show that for all a = b, we have that a.s.,

What the hypothesis gives us is that for all c, d, e ∈ M, a.s., 

which concludes the proof. Now we can complete the proof of the theorem.

Proof of Theorem 4.1. Let µ be a G-invariant, ergodic measure on LO(M). Enumerate all 2-types as τ 0 , . . . , τ n-1 . If λ τ 0 µ is non-atomic, then we can apply Lemma 4.7 and conclude that µ = µ u . Otherwise, we construct a sequence of invariant, ergodic measures µ 0 , . . . , µ n such that for all i < n, µ i respects τ 0 , . . . , τ i-1 and λ τ i µ i has an atom. Set µ 0 = µ and suppose that µ i is already constructed. Set µ i+1 = ν µ i ,τ i ,p i , where p i is some atom for λ τ i µ i . By Lemma 4.10, µ i+1 respects τ 0 , . . . , τ i . Moreover, λ τ i+1 µ i+1 must have an atom: otherwise, by Lemma 4.7, µ i+1 = µ u , which is not possible because µ u has full support and µ i+1 does not (as µ i+1 respects τ i ). Finally, apply Lemma 4.11 to conclude that µ n is a Dirac measure, which, by invariance, implies that the action G LO(M) has a fixed point. Thus we have proved that either µ u is the unique ergodic, invariant measure on LO(M) or there is a fixed point for the action. However, as convex combinations of ergodic measures are dense in the space of all invariant measures (see, e.g., [START_REF] Phelps | Lectures on Choquet's theorem[END_REF]Section 12]), this implies that in that case, µ u is indeed the unique invariant measure.