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Solving equations in pure double Boolean algebras

Philippe Balbiani

Institut de recherche en informatique de Toulouse

1 Introduction

Herrmann et al. [7] have generalized lattices of concepts to algebras of semiconcepts.

Operations between semiconcepts give rise to pure double Boolean algebras [9, 10].

Such algebraic structures can be seen as the union of two Boolean algebras, the inter-

section of which being a lattice of concepts. In this paper, we study word problems and

unification problems in several classes of pure double Boolean algebras.

2 Semiconcepts

Formal contexts are structures of the form IK = (G,M,∆) where G is a nonempty set

(with typical member noted g), M is a nonempty set (with typical member noted m)

and ∆ is a binary relation between G and M . The elements of G are called objects,

the elements of M are called attributes and the intended meaning of g∆m is: object g

possesses attribute m. For all X ⊆ G and for all Y ⊆ M , let X⊲ = {m ∈ M : for

all g ∈ G, if g ∈ X then g∆m} and Y ⊳ = {g ∈ G: for all m ∈ M , if m ∈ Y then

g∆m}. The claims in the next lemma follow directly from the definition of the maps

⊲ : X 7→ X⊲ and ⊳ : Y 7→ Y ⊳. See [3, 6] for details.

Lemma 1. Let X1, X2, X ⊆ G and Y1, Y2, Y ⊆ M .

1. The following conditions are equivalent: (a) X ⊆ Y ⊳, (b) X⊲ ⊇ Y .

2. If X1 ⊆ X2 then X⊲
1
⊇ X⊲

2
and if Y1 ⊇ Y2 then Y ⊳

1
⊆ Y ⊳

2
.

3. X ⊆ X⊲⊳ and Y ⊳⊲ ⊇ Y .

4. If there exists Y ′ ⊆ M such that X = Y ′
⊳

then X = X⊲⊳ and if there exists

X ′ ⊆ G such that X ′⊲ = Y then Y ⊳⊲ = Y .

Given X ⊆ G and Y ⊆ M , the pairs (X,X⊲) and (Y ⊳, Y ) are called semiconcepts of

IK. More precisely, pairs of the form (X,X⊲) are called left semiconcepts of IK and pairs

of the form (Y ⊳, Y ) are called right semiconcepts of IK. Remark that (∅,M) and (G, ∅)
are semiconcepts of IK. Let H(IK) = (H(IK), 0l, 0r, 1l, 1r,∼l,∼r,⊔l,⊔r,⊓l,⊓r) be

the algebraic structure of type (0, 0, 0, 0, 1, 1, 2, 2, 2, 2) defined by

– H(IK) is the set of all semiconcepts of IK,

– 0l = (∅,M),
– 0r = (M⊳,M),
– 1l = (G,G⊲),
– 1r = (G, ∅),
– ∼l (X,Y ) = (G \X, (G \X)⊲),



– ∼r (X,Y ) = ((M \ Y )⊳,M \ Y ),
– (X1, Y1) ⊔l (X2, Y2) = (X1 ∪X2, (X1 ∪X2)

⊲),
– (X1, Y1) ⊔r (X2, Y2) = ((Y1 ∩ Y2)

⊳, Y1 ∩ Y2),
– (X1, Y1) ⊓l (X2, Y2) = (X1 ∩X2, (X1 ∩X2)

⊲),
– (X1, Y1) ⊓r (X2, Y2) = ((Y1 ∪ Y2)

⊳, Y1 ∪ Y2).

Remark that if G,M are finite then H(IK) is finite too and moreover, | H(IK) |≤
2|G| + 2|M |. The set H(IK) can be ordered by the binary relation ⊑ defined by

– (X1, Y1) ⊑ (X2, Y2) iff X1 ⊆ X2 and Y1 ⊇ Y2.

Before formally introducing pure double Boolean algebras, we prove lemmas which

will put the above definitions into perspective.

Lemma 2. Let (X1, Y1), (X2, Y2) ∈ H(IK).

1. The following conditions are equivalent: (a) (X1, Y1) ⊑ (X2, Y2), (b) (X1, Y1) ⊓l

(X2, Y2) = (X1, Y1)⊓l(X1, Y1) and (X1, Y1)⊔r (X2, Y2) = (X2, Y2)⊔r (X2, Y2).
2. If (X1, Y1) is a left semiconcept then (X1, Y1) ⊑ (X2, Y2) iff (X1, Y1)⊓l (X2, Y2)

= (X1, Y1).
3. If (X2, Y2) is a right semiconcept then (X1, Y1) ⊑ (X2, Y2) iff (X1, Y1)⊔r(X2, Y2)

= (X2, Y2).

Lemma 3. The binary relation ⊑ is reflexive, antisymmetric and transitive on H(IK).

We shall say that an object g is sparse if ∆(g) 6= M and an attribute m is sparse if

∆−1(m) 6= G. IK is said to be sparse if for all g ∈ G, g is sparse and for all m ∈ M , m

is sparse. We shall say that a couple (g, g′) of objects is a cover if ∆(g) ∪∆(g′) = M

and a couple (m,m′) of attributes is a cover if ∆−1(m) ∪∆−1(m′) = G. A sparse IK

is said to be covered if for all g, g′, g′′ ∈ G, if (g′, g′′) is a cover then (g, g′) is a cover

or (g, g′′) is a cover and for all m,m′,m′′ ∈ M , if (m′,m′′) is a cover then (m,m′) is

a cover or (m,m′′) is a cover.

3 Pure double Boolean algebras

Let A = (A, 0l, 0r, 1l, 1r,∼l,∼r,⊔l,⊔r,⊓l,⊓r) be an algebraic structure of type

(0, 0, 1, 1, 2, 2, 2, 2). For all a ∈ A, let ⋆la =∼r∼l a and ⋆ra =∼l∼r a. A is said

to be concrete iff there exists a formal context IK = (G,M,∆) and an injective homo-

morphism from A to H(IK). We shall say that A is a pure double Boolean algebra if

for all a, b, c ∈ A, it satisfies the conditions 1–13, 16–28, 31 and 32 in Fig. 1. Now, we

can relate pure double Boolean algebras and concrete structures.

Proposition 1 ([7]). The following conditions are equivalent:

1. A is concrete.

2. A is a pure double Boolean algebra.

A is said to be s-concrete iff there exists a sparse formal context IK = (G,M,∆) and

an injective homomorphism from A to H(IK). We shall say that a pure double Boolean

algebra A is sparse if it satisfies the conditions 14 and 29 in Fig. 1.



Proposition 2. The following conditions are equivalent:

1. A is s-concrete.

2. A is a sparse pure double Boolean algebra.

Proof. Simple variant of the proof of Proposition 1.

A is said to be c-concrete iff there exists a covered sparse formal context IK = (G,M,

∆) and an injective homomorphism from A to H(IK). We shall say that a sparse pure

double Boolean algebra A is covered if it satisfies the conditions 15 and 30 in Fig. 1.

Proposition 3. The following conditions are equivalent:

1. A is c-concrete.

2. A is a covered sparse pure double Boolean algebra.

Proof. Simple variant of the proof of Proposition 1.

1. a ⊓l (b ⊓l c) = (a ⊓l b) ⊓l c,

2. a ⊓l b = b ⊓l a,

3. ∼l (a ⊓l a) =∼l a,

4. a ⊓l (b ⊓l b) = a ⊓l b,

5. a ⊓l (b ⊔l c) = (a ⊓l b) ⊔l (a ⊓l c),
6. a ⊓l (a ⊔l b) = a ⊓l a,

7. a ⊓l (a ⊔r b) = a ⊓l a,

8. ∼l (∼l a⊓l ∼l b) = a ⊔l b,

9. ∼l 0l = 1l,
10. ∼l 1r = 0l,
11. 1r ⊓l 1r = 1l,
12. a⊓l ∼l a = 0l,
13. ∼l∼l (a ⊓l b) = a ⊓l b,

14. 0l = 0r ,

15. ⋆l ⋆l a ⊓l ⋆la = ⋆la ⊓l 1l,

16. a ⊔r (b ⊔r c) = (a ⊔r b) ⊔r c,

17. a ⊔r b = b ⊔r a,

18. ∼r (a ⊔r a) =∼r a,

19. a ⊔r (b ⊔r b) = a ⊔r b,

20. a ⊔r (b ⊓r c) = (a ⊔r b) ⊓r (a ⊔r c),
21. a ⊔r (a ⊓r b) = a ⊔r a,

22. a ⊔r (a ⊓l b) = a ⊔r a,

23. ∼r (∼r a⊔r ∼r b) = a ⊓r b,

24. ∼r 1r = 0r ,

25. ∼r 0l = 1r ,

26. 0l ⊔r 0l = 0r ,

27. a⊔r ∼r a = 1r ,

28. ∼r∼r (a ⊔r b) = a ⊔r b,

29. 1r = 1l,
30. ⋆r ⋆r a ⊔r ⋆ra = ⋆ra ⊔r 0r ,

31. (a ⊓l a) ⊔r (a ⊓l a) = (a ⊔r a) ⊓l (a ⊔r a),
32. a ⊓l a = a or a ⊔r a = a.

Fig. 1.

4 A first-order signature

Let Ω be the first-order signature consisting of the following function symbols together

with their arities: ⊥l (0), ⊥r (0), ⊤l (0), ⊤r (0), ¬l (1), ¬r (1), ∨l (2), ∨r (2), ∧l (2)

and ∧r (2). Let V AR be a countable set of variables (with typical members noted x, y,

etc). The set T (Ω, V AR) of all terms over Ω and V AR (with typical members noted

s, t, etc) is inductively defined as usual. We write s(x1, . . . , xn) to denote a term whose



variables form a subset of {x1, . . . , xn}. The result of the replacement of x1, . . . , xn

in their places in s with terms t1, . . . , tn will be noted s(t1, . . . , tn). A substitution is a

function σ assigning to each variable x a term σ(x). We shall say that a substitution σ

is ground if for all variables x, σ(x) is a variable-free term. For all terms s(x1, . . . , xn)
let σ(s) be s(σ(x1), . . . , σ(xn)). The composition σ ◦ τ of the substitutions σ and τ

assigns to each variable x the term τ(σ(x)).

5 Word problems

Let C be a class of pure double Boolean algebras. Now, for the word problem in C: given

terms s, t, decide whether C |= s = t.

Proposition 4. 1. The word problem in the class of all pure double Boolean algebras

is PSPACE-complete.

2. The word problem in the class of all sparse pure double Boolean algebras is

PSPACE-complete.

3. The word problem in the class of all covered sparse pure double Boolean algebras

is NP -complete.

Proof. (1) See the proofs of Propositions 45 and 51 in [2].

(2) and (3) Simple variants of the proof of Propositions 45 and 51 in [2].

6 Unification problems

Let C be a class of pure double Boolean algebras. Now, for the unification problem in

C: given a finite set Σ = {(s1, t1), . . . , (sntn)} of pairs of terms, decide whether there

exists a substitution σ such that C |= σ(s1) = σ(t1), . . ., C |= σ(sn) = σ(tn). In that

case, the substitution σ is called unifier of Σ. Remark that if a finite set of pairs of terms

possesses a unifier then it possesses a ground unifier. This follows from the fact that for

all unifiers σ of a finite set Σ of pairs of terms and for all ground substitutions τ , σ ◦ τ
is a ground unifier of Σ. There are two main questions about the unification problem.

Firstly, there is the question of its computability.

Proposition 5. 1. The unification problem in the class of all sparse pure double

Boolean algebras is NP -complete.

2. The unification problem in the class of all covered sparse pure double Boolean

algebras is NP -complete.

Proof. Firstly, remark that, in any class of sparse pure double Boolean algebras, every

variable-free term is equal either to 0l, or to 1r. Secondly, remark that, in any class

of sparse pure double Boolean algebras, the word problem is in P when restricted to

variable-free terms. Hence, in any class of sparse pure double Boolean algebras, the

unification problem is in NP . As for its NP -hardness, it follows from a reduction of

the satisfiability problem for Boolean formulas.

Secondly, there is the question of its type. See [1, 4, 5, 8] for details about unification

types.



Proposition 6. 1. The unification type in the class of all pure double Boolean alge-

bras is nullary.

2. The unification type in the class of all covered sparse pure double Boolean algebras

is unitary.

Proof. (1) Adapting the line of reasoning suggested by Jeřábek [8] in the case of modal

logic K, we prove that {(¬r¬lx ∨l x,¬r¬lx ∨l 0l)} has no minimal complete set of

unifiers in the class of all pure double Boolean algebras.

(2) Adapting the line of reasoning suggested by Baader and Ghilardi [1] or Dzik [4, 5]

in the case of modal logic S5, we prove that every finite set of pairs of terms has a most

general unifiers in the class of all covered sparse pure double Boolean algebras.

7 Conclusion

The decidability of the unification problem in the class of all pure double Boolean

algebras and the unification type in the class of all sparse pure double Boolean algebras

are still open.
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