
HAL Id: hal-03176423
https://hal.science/hal-03176423

Submitted on 25 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SDN experimental on the PSU network
Piyawit Tantisarkhornkhet, Warodom Werapun, Béatrice Paillassa

To cite this version:
Piyawit Tantisarkhornkhet, Warodom Werapun, Béatrice Paillassa. SDN experimental on the PSU
network. International Symposium on Intelligent Signal Processing and Communication Systems
(ISPACS 2016), IEEE, Oct 2016, Phuket, Thailand. pp.1–6, �10.1109/ISPACS.2016.7824752�. �hal-
03176423�

https://hal.science/hal-03176423
https://hal.archives-ouvertes.fr

SDN Experimental on the PSU Network

Piyawit Tantisarkhornkhet, Warodom Werapun

Department of Computer Engineering,
Faculty of Engineering, Prince of Songkla University

Phuket, Thailand
Email: {5810120060@email.psu.ac.th,

warodom@coe.phuket.psu.ac.th}

Beatrice Paillassa

 University of Toulouse, IRIT Laboratory,
INP – ENSEEIHT
Toulouse, France

Email: beatrice.paillassa@enseeiht.fr

Abstract— The Prince of Songkla University (PSU) is the top

five universities of Thailand that still uses traditional networking.

Presently, there are Internet applications that are able to provide

dynamic, manageable, and adaptable features such as Software-

defined Networking (SDN). SDN is a recent concept of

programmable networks that divides the control plane and data

plane of all network devices. It can be programmed via an open

interface which is interesting to implement SDN because of their

various benefits such as centralized network provisioning, lower

operating costs etc. In this paper, we propose comparison

between traditional PSU network which is defined Static routing

(Static routing non-SDN) and SDN which are using

programmable algorithm such as Bellman-Ford SDN (BFSDN)

unicast, Dijkstra SDN (DSDN) on both unicast and multicast in

order to determine worthiness of migration from traditional

network to SDN. In part of topology emulator, we have

replicated topology by Mininet. Its performance is examined in

terms of throughput, latency, jitter, and packet loss.

Keywords—Software-defined networking; Unicast; Multicast;

OpenFlow; programmable networks; Dijkstra; Bellman-Ford;

I. INTRODUCTION

In a traditional network, it is built from different network
devices such as hubs, routers, and switches L2/L3 etc. with
various protocols implemented on them [1]. Many device types
lead to several configuring policies. It makes network
administration and performance tuning rather complex.
Moreover, the current Internet applications services are more
complicate. They are crucial because the Internet is able to
handle these new challenges.

Software Define Networking is a new emerging networking
approach under network programmable concept. It is an idea to
divide the control plane and data plane of all transmission
equipment that can be programmed via an open protocol such
as ForCES [2], OpenFlow [3], etc. It serves a network manager
to be centralized, manage and increase granular security. In a
commercial aspect, it allows to reduce operating costs, save
hardware and minimize capital expenditures [4]. However, all
devices must support SDN protocol likes OpenFlow.

In this paper, we simulate and compare traditional PSU
network, BFSDN unicast, DSDN both unicast and multicast in
order to explore the value of changing from traditional
networking to SDN.

The remainder of this paper is structured as follows. In the
next section, we present preliminaries on the work, such as
Software Defined Networking, Communications and Routing
algorithm, Mininet and PSU network topology. In Section III,
we illustrate the simulation results. Finally, this paper work is
summarized and future work is shown in Section IV.

II. PRELIMINARIES

A. Software Defined Networking

Software Defined Networking was developed to make
innovation convenient and enable facile programmatic control
of the network data-path. It isolates controller hardware from
forwarding hardware. The SDN structure enables the
combination of transmission equipment which is easy policy
management.

Fig. 1. Traditional network and Software-Defined Network

The SDN architectures, There are ForCES and OpenFlow.
They are the basic SDN standard of isolation between the
control and data planes. They standardize messages exchange
between the planes. In this paper, we focus on OpenFlow
architecture because it is popular than ForCES. SDN-
OpenFlow architecture composes of application layer, control
layer, and infrastructure layer.

· Application layer or management layer is the top
layer. It consists of network operation tools and user
interfaces that management of the network via the
control layer by OpenFlow protocol.

· Control layer is the middle layer using for control all
devices in infrastructure layer via OpenFlow protocol.
SDN controller such as NOX/POX [5], Ryu [6],
Floodlight [7] etc.

· Infrastructure layer is the lowest layer. It includes
all devices in traffic forwarding that all devices must
support OpenFlow protocol.

Fig. 2. The SDN architecture

OpenFlow is a flow-based switch specification designed to
enable researchers to run experiments in live networks. It is
depended on a simple Ethernet flow switch which exposes a
standardized interface for adding and removing flow accesses.
OpenFlow protocol is an open protocol that is set between the
control plane device and the data plane device [8].

B. Communications

In this section, two types of communications as unicast and
multicast are reviewed. They have advantages and
disadvantages which are depended on situation of
communication.

1) Unicast

Unicast is a type of communication where data is sent from
one source to one destination. Unicast uses protocol of
transport layer such as Transmission Control Protocol (TCP)
and User Datagram Protocol (UDP), which are session-based
protocols. In this work, we use Dijkstra shortest path and
Bellman-Ford shortest path which are popular algorithms [9].

a) Dijkstra’s algorithm

The Dijkstra method is algorithm for finding the optimum
path between nodes in a directed graph is G= (V, E), denote:
V is the set of nodes and E is the set of edges. Dijkstra’s

algorithm shows in Fig 3, Primarily, distance at source

(dis[s]=0), distance at u (dis[u]=∞) when u≠s, and previous

distance at u (pre[u]=null).

Fig. 3. The Dijkstra’s Algorithm

In [10] Jehn-Ruey Jiang and team propose Extending
Dijkstra’s algorithm that adds the node weight analysis in their
algorithms.

a) Bellman-Ford’s algorithm

Bellman-Ford method is an algorithm to search for the
optimum path between nodes in a directed graph likes
Dijkstra’s algorithm. However, it is able to analyze negative
edge weights. It provides more features than Dijkstra
algorithm. In contrast, if Bellman-Ford is used over non-
negative weights, its performance is slower than Dijkstra. From
Fig. 4, shows Bellman-Ford’s algorithm which consists of
three main steps as initialize graph, Relaxation of edges and
checking negative cycle.

Fig. 4. Bellman-ford’s Algorithm

Bellman-ford’s Algorithm

Input: G, s

Output: d[V], p[V]

1) Initialize graph

1: for each v in V
2: dis[v] ← ∞
3: pre[v] ← null

2) Relaxation of edges

1: for i from 1 to IVI-1
2: for each [u,v] with ew in E
3: if dis[u]+ew < dis[v]
4: dis[v] ← dis[u]+ew
5: pre[v] ← u

3) Checking negative cycle

1: for each ew(u ,v) in E
2: if d[u]+ew < dis[v]
3: print “Negative cycle”

Dijkstra’s Algorithm

Input: G, s
Output: dis[V], pre[V]

1: for each v in G(V)
2: dis[v] ← ∞
3: pre[v] ← null
4: insert distance at u node into Q set
5: while (Q!=null)
6: u← Minimum_distance(Q)
7: for each v of u
8: if dis[v] > dis[u]+ew[u,v] then
9: dis[v]←dis[u]+ew[u,v]

10: pre[v]←dis[u]

Fig. 5. PSU network topology

1) Unicast

Multicast is the communication network ability of sending
IP packets to member groups. It can reduce transmission
overhead from an application to send copies of data to all
group members. An advantage over than unicast is to
minimize network traffic and optimize bandwidth where
multiple users are accessing the same live video source.

GroupFlow [11] is one SDN-driven approach to IP
multicast routing that has already been proposed. It is based
on CastFlow [12]. SDN controller of GroupFlow builds on the
POX framework. Routing protocol of GroupFlow is Protocol
Independent Multicast (PIM) which constructs shared trees
centered at a rendezvous-point (RP) router. The PIM, there are
two varieties as PIM dense mode and PIM sparse mode only
establishes routes to the designated router (DRs) reactively to
group joins.

There is some difference between multicast non-SDN and
multicast SDN. Multicast SDN can add more membership
security to the network which is a normal problem in multicast
non-SDN. In SDN, a client joins a multicast group, its
membership is assumed to authenticate at a server to a
controller. GroupFlow (Fig. 6) adds more membership
security in IGMP JOIN phase. GroupFlow multicast model
uses Dijkstra's algorithm to compute a shortest path from the
multicast source to all multicast members in the network. Each
shortest path is added to multicast tree construction.

C. Tools

Mininet [13] is a topology emulator program that supports
SDN based on Linux kernel. It can create network virtual
devices as hosts, OpenFlow switches, legacy switches, routers,
links, and controllers. It is suitable for researching, testing,

and debugging etc. Mininet brings many scripts with user-
friendly GUI. In addition, BRITE [14] has been used to create
our tested topologies. It supports multiple generation models
and can be used as input topologies in Mininet. Although the
real network devices would have some cross-traffic, CPU and
bus architectures specific to each hardware component that
Mininet does not have, Mininet reveals the trend of
performance efficiently.

Fig. 6. IGMP Join of GroupFlow model

Fig. 7. PSU Topology on Mininet

D. PSU network topology

The Prince of Songkla University (PSU) uses traditional
network that is the extended star topology. This real existed
topology can be a representative of some organizations or
companies on a similar scale. Fig. 5 shows PSU topology [15],
it consists of different transmission node types such as router,
L2 switch, managed switch and unmanaged switch or hub.
Most bandwidth between L2 switches is 1 Gbps. We present
two previously described transmission types such as unicast
and multicast to test network performance since the PSU
network topology has various transmission types.

III. EXPERIMANTAL RESULTS

We set up POX [16] OpenFlow controller and PSU
topology in the Mininet while all switches are linked to the
controller. Fig. 7 shows a PSU network topology which is
simulated from Mininet. It provides most 1 Gbps links between
peripheral nodes to the central nodes [15]. For assess the
performance of the PSU networking used SDN and Static non-
SDN, we use Iperf [17] to test them such as throughput,
latency, jitter and packet loss. Experiments are conducted on a
single computer with CPU Intel ® core TM i7-4790 3.60 GHz
processor and DDR3 8 GB RAM.

TABLE I. SIMULATION SETTINGS

Parameter Value

Hosts 45

Nodes 49

Links 109

Test times 100 seconds

Controller POX 0.2.0 support OpenFlow 1.0

Test tools Mininet

In the simulation experiments, we measure the performance
for Static routing non-SDN and routing algorithm SDN. We
use Iperf to create TCP and UDP. We assign one server (circle)
and one client (square) because they have many paths such as
s10-s1-s3-s5, s10-s1-s6-s5 and s10-s1-s7-s6-s5 etc. Their
minimum bandwidth is 1 Gbps.

Fig 8 shows throughput of TCP. The results of Static
routing non-SDN, BFSDN unicast and DSDN unicast are
943.25 mbps, 954.50 mbps and 954.69 mbps, respectively.
DSDN unicast is slightly better than BFSDN unicast. Static
routing non-SDN has lowest throughput. Therefore, BFSDN
unicast and DSDN unicast manage bandwidth better than Static
routing non-SDN in TCP transmission.

Fig. 8. The average TCP throughput

Fig 9 shows latency of Static routing non-SDN, BFSDN
unicast and DSDN unicast by executing Ping command which
sends ICMP request messages. Their average latencies are
0.0907 ms, 0.3934 ms and 0.3785 ms respectively. Comparison
between algorithms related to SDN, BFSDN unicast latency is

larger than DSDN unicast latency, which is usually caused by
the depending inverse throughput. Static routing non-SDN has
the lowest latency. Both BFSDN unicast and DSDN unicast on
the SDN controller have to take the time calculating the route
and install suitable paths on OpenFlow switches. Therefore, the
data transfer increases and occurs between nodes in a specific
time period for SDN than traditional network.

Fig. 9. The average latency

Their initial latency values are 0.9227 ms, 32.8987 ms and
31.7150 ms respectively. When we calculate average latency
without an initial value as shown in Fig. 10, their average
latency will be 0.0823 ms, 0.0651 ms and 0.0620 ms. Static
routing non-SDN has worse latency than others. The initial
latency values of SDN affects to average latency. In addition,
we examine interval time that SDN has average latency lower
than Static routing non-SDN by changing the experiment time
from 100 seconds to 2000 seconds. The average latency of
DSDN unicast and BFSDN unicast are lower than Static
routing non-SDN at 990 seconds and 1619 seconds
respectively. However, we do not include them in the figure
since it would make the data impossible to read. Therefore,
SDN is greater than Static routing non-SDN in several
performance metrics on the long term used.

Fig. 10. Average Latency without an initial value

The result of UDP transmission as shown in Fig 11-13,
each bandwidth requirement (x-axis) takes 100 seconds for
experiment time. Static routing non-SDN, BFSDN unicast,
DSDN unicast and Dijkstra multicast SDN (GroupFlow) have
been tested for throughput of UDP as shown in Fig 11. All

routing are fully well performed until BFSDN unicast began
down and stable at 750 mbps, DSDN unicast began down and
stable at 800 mbps and Static routing non-SDN and
GroupFlow began down and stable at 850 mbps.

Fig. 11. The UDP throughput

Main factors of jitter and packet loss are depended on
bandwidth congestion. At the maximum bandwidth, BFSDN
unicast, DSDN unicast and GroupFlow (SDN-related) have
high jitter as shown in Fig. 12. Average jitter algorithm are
ranked as follow as BFSDN unicast, DSDN unicast and
GroupFlow. Static routing non-SDN has the lowest jitter.
Therefore, Static routing non-SDN stably runs at fully
bandwidth congestion.

Fig. 12. The UDP jitter

Packet loss is measured to verify the performance of
different bandwidth such as jitter. However, it has another
factor, called the quality of the network device installation, that
affected to the packet loss rate as shown in Fig. 13. The
simulation results illustrate that the order of packet loss rate are
DSDN unicast, BFSDN unicast, GroupFlow and Static routing
non-SDN respectively. Static routing non-SDN slightly swings
and has the lowest average packet loss compared with other
routing algorithms. BFSDN unicast, DSDN unicast and
GroupFlow have the packet loss rate lightly different. They
begin to swing a value at 450 mbps and increasing
continuously. At high bandwidth usage, we can see different
packet loss rate between SDN and Static routing non-SDN
obviously since transmission of SDN requires controlled
messages by connected switches (a sender side) to a centralize
controller while Static routing non-SDN has a control plane

inside a device. Therefore, Static routing non-SDN has an
advantage on packet loss for fully bandwidth usage because
SDN has more network installation steps due to the separating
of the control plane and data plane. However, SDN packet loss
percentage is fallen in medium category of phone quality
standard [18] which is still adequate.

Fig. 13. Packet loss rate

IV. CONCLUSSION AND FUTURE WORK

The Software Defined Network is an efficiency
programmable network which has more advantages than
traditional network such as SDN handles data from a centralize
controller, SDN allows reducing deployment configuration,
SDN reduces the amount of spending required on infrastructure
etc. Thus, SDN is an interesting network system that
determines worthiness of migration traditional network.

In this paper, we use POX to implement BFSDN unicast,
DSDN unicast, and using GroupFlow multicast model to
compare performance analysis with Static routing non-SDN in
terms of throughput, latency, jitter, and packet loss under the
PSU network topology simulation. Not only SDN benefits
previously stated above but also the experiment results show
that DSDN unicast and BFSDN unicast have more
outperformed than Static routing non-SDN in term of TCP
throughput. DSDN and BFSDN unicast have latency lower
than Static routing non-SDN when transmission time is over
than 990 seconds and 1619 seconds respectively.

Furthermore, we found that the quality decreases at high
bandwidth usage since packets are sent to a receiver while
controlled messages are required sending to a centralized
controller. Thus, SDN has more bandwidth congestion than
Static routing non-SDN at same bandwidth requirement.
However, SDN offers suitable quality of service requirements
such as chat, video streaming, video on demand, video over IP,
and video conferencing. The result of this research shows that
replacing a traditional network by SDN has benefits.
Moreover, we are able to develop various applications which
can be used to manage and control network effectively.
Eventually, the contribution of this paper is to examine the
benefits of migrating from traditional network to SDN-aware
network.

For the future work, we plan to conduct simulation
experiments for video streaming unicast and multicast
transmission over real topologies and build horizontal scaling
devices. We are going to simulate edge weights which may be
changed during the experimental run and measure overhead of
OpenFlow messages at a central controller.

ACKNOWLEDGMENT

This research has been supported by the Engineering Post-
Graduate Scholarship, Faculty of Engineering, Prince of
Songkla University, Thailand.

REFERENCES

[1] B. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T.
Turletti, “A survey of software-defined networking: Past, present, and
future of programmable networks,” Commun. Surv. Tutor. IEEE, vol.
16, no. 3, pp. 1617–1634, 2014.

[2] A. Doria, J. H. Salim, R. Haas, H. Khosravi, W. Wang, L. Dong, R.
Gopal, and J. Halpern, “Forwarding and control element separation

(ForCES) protocol specification,” 2010.
[3] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation

in campus networks,” ACM SIGCOMM Comput. Commun. Rev., vol.
38, no. 2, pp. 69–74, 2008.

[4] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S.
Azodolmolky, and S. Uhlig, “Software-defined networking: A
comprehensive survey,” Proc. IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[5] “noxrepo (NOX Repo),” GitHub. [Online]. Available:
https://github.com/noxrepo. [Accessed: 10-Jul-2016].

[6] “osrg/ryu,” GitHub. [Online]. Available: https://github.com/osrg/ryu.
[Accessed: 10-Jul-2016].

[7] “floodlight/floodlight,” GitHub. [Online]. Available:
https://github.com/floodlight/floodlight. [Accessed: 10-Jul-2016].

[8] S. Sezer, S. Scott-Hayward, P. K. Chouhan, B. Fraser, D. Lake, J.
Finnegan, N. Viljoen, M. Miller, and N. Rao, “Are we ready for SDN?
Implementation challenges for software-defined networks,” IEEE

Commun. Mag., vol. 51, no. 7, pp. 36–43, 2013.
[9] S. Upadhaya and G. Devi, “Characterization of QoS based routing

algorithms,” Int. J. Comput. Sci. Emerg. Technol., vol. 133, 2010.
[10] J.-R. Jiang, H.-W. Huang, J.-H. Liao, and S.-Y. Chen, “Extending

Dijkstra’s shortest path algorithm for software defined networking,” in
Network Operations and Management Symposium (APNOMS), 2014

16th Asia-Pacific, 2014, pp. 1–4.
[11] “alexcraig/GroupFlow,” GitHub. [Online]. Available:

https://github.com/alexcraig/GroupFlow. [Accessed: 10-Jul-2016].
[12] “caioviel/CastFlow,” GitHub. [Online]. Available:

https://github.com/caioviel/CastFlow. [Accessed: 10-Jul-2016].
[13] M. Team, Mininet: An instant virtual network on your laptop (or other

PC). 2012.
[14] “BRITE: Boston university Representative Internet Topology

gEnerator.” [Online]. Available: http://www.cs.bu.edu/brite/. [Accessed:

10-Jul-2016].
[15] “PSU Network Diagram.” [Online]. Available:

http://netserv.cc.psu.ac.th/images/phocadownload/blackbone/psunet.png
. [Accessed: 10-Jul-2016].

[16] “noxrepo/pox,” GitHub. [Online]. Available:
https://github.com/noxrepo/pox. [Accessed: 10-Jul-2016].

[17] “iPerf - The TCP, UDP and SCTP network bandwidth measurement
tool.” [Online]. Available: https://iperf.fr/. [Accessed: 10-Jul-2016].

[18] W. Sugeng, J. E. Istiyanto, K. Mustofa, and A. Ashari, “The Impact of
QoS Changes towards Network Performance,” Int. J. Comput. Netw.
Commun. Secur., vol. 3, no. 2, pp. 48–53, 2015.

